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INCIDENCE MATRICES OF SUBSETS—A RANK FORMULA*
NATHAN LINIALt AND BRUCE L. ROTHSCHILD}

Abstract. Let n 2k =120 be integers, F a field, and X ={1, - -, n}. M =M, ;; is an (7) X (i) matrix
whose rows correspond to /-subsets of X, and columns to k-subsets of X, For Le X ’), KeX% the (L,K)
entry of M is 1 if L < K, 0 otherwise. The problem is to find the rank of M over the field F. We solve the
problem for F = Z, and obtain some result on F = Z3. The problem originated in extremal set theory and
seems to be applicable also for matroids, codes and designs.

Introduction. The following problem was posed by M. Katchalski and M. A.
Perles. Given n =k =1 =0, integers, let X ={1,2, - - -, n}. Denote by X ® the family
of all subsets of X of cardinality k. A family of k-sets % = X * is said to be closed if,
forevery Le X, |{K € #| L = K}|is never 1. They wanted to know the smallest number
N=N(n,l, k) such that if = X ® has more than N sets, then it contains a closed
subfamily. For k =/ +1, their problem was solved by P. Frankl, who showed that in
this case N = (7_1). In fact he showed that if & = X“*?, has more than (}_}) sets, then
there is a family % = &, such that for every L e X, {K € %|L = K}| is even. Define a
matrix M whose rows (columns) are indexed by X o (resp. X Dy For Le X,
KeX“P, the (L, K) entry is 1 if L < K, 0 otherwise. Frankl’s proof is obtained by
showing that the rank of this matrix over Z, is ("7%).

This raises the gemeral problem: Given n =k =1 =0, integers and a field F, define
a matrix M = M,, ;. as follows. Let X ={1, - - -, n}, then the rows (columns) of M are
indexed by X (resp. X*). For Le X, K e X, the (L, K) entry of M is 1 if L < K,
0 otherwise. What is the rank of M over the field F? For F = Q the answer appears in
the literature [1], [2]; it is p(M) = min {(7), (1)}, so M has the highest rank possible. In
this paper we solve the problem for F = Z, and for k = [+ 1 over Z,.

Define a cycle to be a family of k-sets such that every /-set is contained in an even
number of these k-sets (this is usually done in algebraic topology). The rank formula
over Z, gives the largest cardinality of a cycle-free subfamily of X o,

The rank formula over Z,. Let s be a nonnegative integer; we define b(s) to be
the unique set of nonnegative integers S, for which s =Y 2" Of course, b is an
injective function. If p, q are integers with b(p) > b(q) we simply write p ©q. This
defines a partial ordering on the nonnegative integers.

Define d =k —1, and let D =b(d). For a function f:D - Z", the nonnegative
integers we define f(D) =Y, .p f(x).

THEOREM 1. For n Z k + 1 the rank of M,, ;. over Z, is

_ 1\ D) h
fzugz*( b (I— ) f(x)zx).

xeD

Notation. We denote the matrix M,_,;—qx-- by [p, q, 1], where p, q, r are
nonnegative integers. Also, [p,q,r]; stands for M,_,;—41-», and [p,q, rl=
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M, _pi—gr-r D, q) is defined to be the sum

(_1)f(D)( n—p

.

I-q— ¥ f(x)2*

xeD

f:D->7Z*

Observe that M, ;x and M,, ,_«,.— are transposed matrices. Therefore, to cover the case
n =[+k in Theorem 1, replace [ by n —k in the sum formula.

We need some simple observations which we state without proof.

Observation 1.

[1,1,1] 0
[0,0,0]=

(1,0,1] | [1,0,0]

where the left (right) columns correspond to k-subsets which contain the element 1,
(do not contain 1, resp.). The upper (lower) rows are the [-sets containing (not
containing) 1.

Observation 2. For p=q=r, M, pq M0, =M, . (;-5).

Observation 3. (3) is odd iff a o b.

Observation 4. (p,q)={(p+1,q)+{(p+1,q+1).

Convention. If A is a matrix which depends on n, I, k, then A(p, q, r) denotes the
matrix which is obtained by replacing n by n —p, l by [ —q and k by k —r. Similarly, if
A depends only on n and ! (n and k), then A(p, q) results on replacing n by n —p and
I by l—q(k —q, resp.).

Let ¢ be a nonnegative integer; then we define

S = Z (t’j)'

jet

Also we define a block matrix A,, indexed by all j such that j = ¢. Let b(¢t) ={a;, -  * , a,}
with a;>a,*+ >a,=0. For i,jct the (i,j) block of A, is [ i,j] if j>i and
b(j—i)={as, -, a,}for some v =0. All the other blocks are zero. Note that

SO = (0, O): AO = [0’ 0’ 0],

and so we want to show that p(A,) = S,. Defining a by 2*|/d, we prove the stronger:

ProrosITION 1. For 0=t=2% p(A,)=S.

Proof. By induction on n. For n =0, 1 there is nothing to prove. To perform the
inductive step, we show that under the induction hypothesis the following hold:

PROPOSITION 2. p(Ajz=) =85

PROPOSITION 3. For 0=t=2% p(A,+1) = Si+1 implies p(A,) =S,

It is clear how Proposition 1 follows from Propositions 2, 3 by a backward
induction.

Proof of Proposition 2. For t =2° b(t) ={a}, so:

[t 41¢]
A= ’ St=<t’ 0)+<t’ t)-
[£,0,¢]1 | [£0,0]
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The matrices

0 [t ¢ 0], 0 [t ¢t 0]k
I+ , I+
0 0 0 0

are nonsingular (in fact they are self-inverse), and they satisfy

[¢ ¢ 0], [t ¢ 0]
I+ AT+ =

[10,1]

To prove this, use Observations 2, 3 to show that in Z, [t ¢ 0],[t,0,0]=[¢,¢ 0]
(=0, since t=2%|d, and so (d+t)»t Similarly [t¢ ¢][t,7,0],=0. But
[t,¢ 01080, (1=t ¢t t1(D) =t ¢, t], since d ¢, and also [, 0, £][, t, 0]« =[¢, 0, 0] for the
same reason.

Rank is preserved under multiplying by the nonsingular matrices, and so p(A,) =
p((¢, 0, t]). From the induction hypothesis the last rank is

(_l)f(D\{a}) n—t '
f:D\{a}>Z* l- Z f(x)zx
xeD\{a}
Now S, =(t,0)+(t, )= Y (-1)/®P n—t N n—t
f:D->Z l_' Z f(x)2x l—t— Z f(x)zx
xeD <eD

All the second summands appear also as first summands with the opposite sign: increase
f(a) by one. Doing all the canceling, we obtain only the sum of the first terms in which
f(a)=0;i.e.,

(=1)/PVad n—t

I- ¥ f&x)2*

xeD\{a}

b

f:D\{a}»Z*

p(A)=S fort=2% 0O

Now we turn to the proof of Proposition 3. We establish a relation between A,
and A,., between S, and S,.;. We define A by 2*||(t +1).

PROPOSITION 4.

S;=St+1+2 Z <t+1,j).
ict
7

PROPOSITION 5.

p(A)=p(A)+2 ¥ p(Am1-p1(27"1,2%,2%).
O=sv<aA
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First we show how Propositions 4, 5 imply Proposition 3. For any 0=» <A, set
=t+1-2""". Using the inductive hypothesis we use the equality p(A,)=S, =
Y {r, j) with n replaced by n —2**', I by [ —2" and k by k —2"; i.e. we use

P(A,(27,2%,27)= T (r+2"",j+2")= T (t+1,j+2")= T (t+1,i).
’C’ ~ 2l
The last equality follows on setting i =j +2". Summing over all 0=r <A yields that
p(A;+1) = S;+1 implies p(A,) = S;; i.e., Proposition 4, 5 imply Proposition 3 and thus the
main theorem.

We make the following simple observation.

Observation 5. For two nonnegative integers a, b, a < b + 1 holds iff exactly one
of the relations a = b, a —1 < b holds.

Proof of Proposition 4. S,=Y,..(tj), and by Observation 4 it equals
Yict+ 1L, )+ +1,j+ 1))=Y, (t+1,/)+Y, ,.,(t+1,j). By Observation 5, this
equals Y ,c, 1 (t+1,))+2%,c, ;1o {t+1,j). But (j<t and j—1<¢) is equivalent to
(j=t and 2* ¥ j). This proves Proposition 4. 0

To prove Proposition 5, we apply Observation 1 to each block of A,. Thus the i row
(column) of A, is replaced now by two rows (columns) which we denote by i, i*. The
i, j blocks of A, (being [t,i,j]iff tDi, t>j, joi and b(j—i)={as,* ', a,} for some
v =0) are replaced by

[t+1,i+1,j+1] 0

[t+1,ij+1] [t+1, 4]

A zero block is replaced by

with the appropriate dimensions. The resulting matrix is called B;; it is equal to A, but
described in a different way. B, is, to sum up, a block matrix whose rows and columns
are indexed by all i, i* satisfying i = ¢. The only nonzero blocks in B, are

B,(i,)=[t+1,i]]

Bt(i’j*)=[t+1,i’j+l] it j=i b(j—i)={(11, *++,a,} for some » 0.
B(i*, j*)=[t+1,i+1,j+1]

We want to define nonsingular matrices P,, Q; such that in C, = P.B,Q, the only
nonzero blocks are, for i, j < ¢,

i#0) CGH=[t+1,i7]
(j#t) CG*"=[t+1,i+1,j+1]
C.(0,/)=[t+1,0,j]1 iff b()={ay,"*",a,}forsome » =0 and 2*|j,
C.(* t*)=[t+1,i+1,t+1] if bG)={a.,,'--,a,}forsome »=1and2*|(i +1),
C0,t*)=[t+1,0,¢+1].

}iﬁ ji2i b(j—i)={ai, -, a,} for some v =0,
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The submatrix of C, spanned by all jo¢ with 2”|j, 0=Sv <A, is equal to
A 1212”71, 2%,27). To see this, we set a one-to-one correspondence between all
j'et+1-2""" and all j=¢ with 2”||j, given by j=j'+2" This shows the equality
between these matrices. Also the submatrix generated by all j* with jc ¢, 2°|(j+1),
0=v<A, equals A,1_p»+1(2"*",2%2"). Here we correspond j'ct+1-2"""to j=
j+2"-1,jcu

The remaining direct summand of C, is the one indexed by all j = ¢ with 2*|j, and
by all j* with j = 1, 2*|(j + 1). This submatrix is equal to A, : Use the correspondence,
to ict+1-2" assign j=ict, and to i = t+1 with 2*|)i assign j*= (i —1)* (note that
i—1c<1t). This correspondence shows that this submatrix is really equal to A,.1. Thus,
if we can find nonsingular matrices P, Q; so that P.B,Q, = C, then Proposition 5 is
established and therefore also the main theorem.

The matrices P, Q, are defined inductively. Reminding the reader that b(¢) =
{ay, -, a,} witha;>--->a, =0, we do the induction on 7. For 7 =0, i.e. t =0,

AO = [Oa O, O]’

[1,1,1] 0
[1,0,1] [1,0,0]

A1=BO=C0=

and so Py, Qo are defined to be identity matrices.

In the general case denote 2™ by 8, and s =¢— 8. We define L, K, to be block
matrices, indexed by all i, i* where i < ¢. The only nonzero blocks in these matrices are
the (j + 8, j*) blocks (j = s), whichare [t +1,j+8,j+1);and [t +1, j+ 6, j + 1]« respec-
tively.

Except for the cases ¢ = 2* — 1, which will be dealt with later, we define

Py(8, 8) Q;(8, 8)
P = I+L), Q=(I+K)
P(5,0) Q,(5,0)

Note that P, depends on #, /, ¢ only, and Q, on n, k, t and so P,(x, y)(Qs(x, y)) results
on replacing n by n —x and [ by [ —y (k by k —y), in P,(Q; resp.).
To calculate the product P.B,Q, we start by working out

(I+L,)B,(I+K,)=B,+L.B,+BK,+LBK..

The only nonzero blocks in LB, are (i+§,j*) blocks with ics, jct, i<j,
b(j—i)={a, ', a}, 0=v=r7). To find out what this block is we have to make the
following product:

[t+1,i’+6,i+1],[t+1,i+1,j+1]=[t+1,i+8,j+1]-(d+’+6—’_1).

&§—1
The binomial coefficient is odd iff
8ld+i-j).

We are assuming in Proposition 5 that ¢ <2 where 2°||d, so a; <a and 8|d. Hence,
the condition is equivalent to 8|(j —i); but j—i =2%+- .- +2% and this is equivalent
to h =0, 1. Therefore, the only nonzero blocks in LB, are: for j = s the (j + 8, j*) block
is[t+1,j+6,j+1], and the (j+38, (j+8)*) blockis [t+1,j+8, j+6+1].
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Similarly, the only nonzero blocks in B.K, are: for jc<s, the (j,j*) block is
[t+1,],j+1]and the (j + 8, j*) block is [t + 1, j + 6, j + 1]. Therefore, in LB, + B,K, the
only nonzero blocks are: for j = ¢, the (j, j*) block is [¢+1, j, j +1].

It is easy to check that L.B.K, =0.

Note that the submatrix of B, consisting of all i + 8, (i +8)* rows and j, j* columns
with i, j < s is equal to B,(8, 0, §), and so

0 0
I+L)B(I+K,)=A.+ s
B, (5,0, 8) 0

where the only nonzero blocks in A, are the (j, j) block [#+ 1, j, j] and the (j*, j*) block.

[t+1,j+1,j+1]for all j = t. Note also that (I + L,)A,(I +K,) = A, (details are easy and

are omitted) and so in the inductive process of defining P,, Q, we have P,A,Q,=A,.
By definition of A,

A(8, 8, 6)

A+(5,0,0) |’

and so

P (6, 6) Q(8, 8)
PthQt = At +

Py(3,0) B,(6,0, 9) Q:(5,0)

0 0
(5,0, 8) 0

In the last equality we made use of the fact that P;A,Q; = A, and P,B,Q; = C.. It can
be checked now that the only nonzero blocks P.B,Q; are given by: for i, j ¢,
i#0) PBQ.G,j)=[t+1,i]] o b(i—i)={ay, -, a)
(i%1) PBQU*M=[t+1,i+1,j+1]) orsomer=0,
PBQ,0,/)=[t+1,0,j]1 if b(j)={as, ', a,}withv=0,2"|j
PB.Q.(i*, t*)=[t+1,i+1,¢+1] iff b(i)={a,,' -, a.}withv=1,2*|(i+1),
PB,Q,(0,t*)=[t+1,0,¢+1],

where u is defined by 2“||(s + 1).

Since we assumed that ¢ is different from 2" —1, it follows that u = A, and so
P.B,Q, = C, as we wanted.

So assume t=2"~1 and so w =A —1 and s =2*—1. In this case we define X,
(resp. Y,) as we define P,(resp. Q) in the general case. The only way X,B,Y, differs from
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C, in this case is that it has the added nonzero (0, j) blocks with b(j)={as, -, a,},
v =0 and 2*|j and the (i¥*, t*) blocks with b(i) ={a,, * * *, a.} with v =1, 2*||(i + 1). The
only block of the first kind is the (0, §) block which equals [¢+1, 0, §] and of the second
kind, the (s*, t*) block, being [t +1,s+1, t+1].

We define the matrices E,(resp. F,) as block matrices indexed by all i, i* with i = ¢,
and the only nonzero block being the (s*,0) block which equals [2*,2*, 0],
(resp.[2%, 2%, 0]i). We define P, = (I + E,)X; and Q, = Y,(I + F,) and check that P,.B.Q, =
C,, as desired. This completes the proof of the main theorem.

A rank formula over Z,.
THEOREM 2. The rank of M, ;.1 over Z3 is

n—2j—1)
igo( I-j r

For n =21+ 1 this equals

igo (1-113]) —i;;o(l—3’;—2>'

Proof. Let F be a set of nonnegative integers; then we set w(F)=Y,.r 2", (of
course, w=>b""). Let X={1,---,n} be our base set. We show that F=
{(FeX®w(F)<2"*?/3} is an independent set of rows. Since F=
(FeXPne FIU{FeX®neF, (n—-1)¢F, (n-2)¢F}U{FeX®neF, (n—1)&F,
(n—2)eF,(n—3)2F,(n—4)¢F}U: -+, and this union is a disjoint union, |%|=
Yi=0 (”',2_",7 !y and this shows that the rank is at least this big. We prove that & is an
independent set of rows by induction on n. For any n and [ =0, n —1 this is clear. To
perform the inductive step, define Y ={1,- -, n -2},

B ={Be Y Plw(B)<2"/3},
B, ={Be Y Plw(B)>2"/3}.

If # is dependent, this means that there is a function f: & —» Z3, so that

VAex"P ¥ f(F)=0

FcA
Fe%

For Be %,, let A=BU{n—1, n}, to obtain
fBU{n-1)=0 VBe%RB,.

For Be B, A=BU{n—1,n}we get f(BU{n—-1}H+f(BU{n})=0.
For Ce Y?, let A = C U{n}; then we get

vceY? fC)+ Bgc f(BU{n})=0
Be®,

and for A = CU{n —1} we have
foO)+ ¥ f(BU{n-1hH=0,
BcC

<
Bey!™?

f(C)+ ZC fBU{n-1H+ Bgc fBU{n-1})=0.

Be®, Be%Ra
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All these equalities easily imply

vceY® Y fBU{nY=0.
BcC

Be®B,

But this shows that in M,_,; 1, where the basic set is Y, the rows of %;=
{Be Y"“”Iw(B)<2”/3} are linearly dependent, and this contradicts the induction
hypothesis.

For the reverse inequality we first make:

Observation 6. Let P be a p X q matrix, Q a q X r matrix and R an r X s matrix. If
PQR =0, then

p(P)+p(Q)+p(R)=q+r.
Now we prove
-1-2j
pMy141)= X (n I—i ]>-
i=0 -1

For [ =2 we have that over Q
M, 201 M1 Myie1=3Mp1-2,141
SO over Z3,
Mei20-1 My Myy1iq=0

and so over Z3,

P(My1-2,1-1)+p(Mp1-1,1) +p (M 1141) = (l f 1) + (r;) = (n -; 1).

The Lh.s. is

v

(n—1—2j)+(n—1—2j)+(n—1—2j)
=0\ [—=2—j I-1-j I—j
(n+1—2j)_(n—1—-2]')_ 5 (n+1—2]')_ 5 (n+1—2j>
j=0 l—] l'—l—j j=0 l"‘] ji=z1 l—]
_(n+1)
;)
It follows that all inequalities are in fact equalities, which completes the proof of the

first assertion.
The proof that for n =2/+1

jgo (n _12—]]_ 1) =]§0 (l—n3]> _jgo (1—37'—2)

is straightforward, by induction on /. This formula was presented just because it
resembles the rank formula of Theorem 1.
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