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We present a new explicit construction for expander graphs with nearly optimal spectral
gap. The construction is based on a series of 2-lift operations. Let G be a graph on n
vertices. A 2-lift of G is a graph H on 2n vertices, with a covering map π :H →G. It is
not hard to see that all eigenvalues of G are also eigenvalues of H . In addition, H has n
“new” eigenvalues. We conjecture that every d-regular graph has a 2-lift such that all new
eigenvalues are in the range [−2

√
d−1,2

√
d−1] (if true, this is tight, e.g. by the Alon–

Boppana bound). Here we show that every graph of maximal degree d has a 2-lift such

that all “new” eigenvalues are in the range
ˆ

−c
p

d log3 d,c
p

d log3 d
˜

for some constant c.
This leads to a deterministic polynomial time algorithm for constructing arbitrarily large
d-regular graphs, with second eigenvalue O

`

p

d log3 d
´

.

The proof uses the following lemma (Lemma 3.3): Let A be a real symmetric matrix
with zeros on the diagonal. Let d be such that the l1 norm of each row in A is at most d.

Suppose that |xtAy|
‖x‖‖y‖ ≤α for every x,y ∈{0,1}n with 〈x,y〉=0. Then the spectral radius

of A is O(α(log(d/α)+1)). An interesting consequence of this lemma is a converse to the
Expander Mixing Lemma.

1. Introduction

An d-regular graph is called a λ-expander, if all its eigenvalues but the first
are in [−λ,λ]. Such graphs are interesting when d is fixed, λ < d, and the
number of vertices in the graph tends to infinity. Applications of such graphs
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in computer science and discrete mathematics are many, see for example [24]
for a survey.

It is known that random d-regular graphs are good expanders ([13], [18],
[16], [15]), yet many applications require an explicit construction. Some
known constructions of such graphs appear in [26], [20], [7], [25], [5], [27], [1]
and [30]). The Alon–Boppana bound says that λ≥2

√
d−1−o(1) (cf. [29]).

The graphs of [25] and [27] satisfy λ≤ 2
√
d−1, for infinitely many values

of d, and are constructed very efficiently. However, the analysis of the eigen-
values in these construction relies on deep mathematical results. Thus, it is
interesting to look for construction whose analysis is elementary.

The first major step in this direction is a construction based on iterative
use of the zig-zag product [30]. This construction is simple to analyze, and
is very explicit, yet the eigenvalue bound falls somewhat short of the Alon–
Boppana bound. The graphs constructed with the zig-zag product have sec-
ond eigenvalue O(d3/4), which can be improved, with some additional effort
to O(d2/3). Here we introduce an iterative construction based on 2-lifts of
graphs, which is close to being optimal and gives λ=O

(√
d log3d

)
.

A graph Ĝ is called a k-lift of a “base graph” G if there is a k :1 covering
map π :V (Ĝ)→V (G). Namely, if y1, . . . ,yd ∈G are the neighbors of x∈G,
then every x′∈π−1(x) has exactly one vertex in each of the subsets π−1(yi).
See [9] for a general introduction to graph lifts.

The study of lifts of graphs has focused so far mainly on random lifts [9–
11,23,17]. In particular, Amit and Linial show in [10] that w.h.p. a random
k-lift has a strictly positive edge expansion. It is not hard to see that the
eigenvalues of the base graph are also eigenvalues of the lifted graph. These
are called by Joel Friedman the “old” eigenvalues of the lifted graph. In [17]
he shows that w.h.p. a random k-lift of a d-regular graph on n vertices
is “weakly Ramanujan”. Namely, that all new eigenvalues are, in absolute
value, O(d3/4). In both cases the probability tends to 1 as k tends to infinity.

Here we study 2-lifts of graphs. We conjecture that every d regular graph
has a 2-lift with all new eigenvalues at most 2

√
d−1 in absolute value. It

is not hard to show (e.g., using the Alon–Boppana bound [29]) that if this
conjecture is true, it is tight. We prove (in Theorem 3.1) a slightly weaker
result; every graph of maximal degree d has a 2-lift with all new eigenvalues
O
(√
d log3d

)
in absolute value. Under some natural assumptions on the base

graph, such a 2-lift can be found efficiently. This leads to a deterministic
polynomial time algorithm for constructing families of d-regular expander
graphs, with second eigenvalue O

(√
d log3d

)
.

A useful property of expander graphs is the so-called Expander Mixing
Lemma. Roughly, this lemma states that the number of edges between two
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subsets of vertices in an expander graph is what is expected in a random
graph, up to an additive error that depends on the second eigenvalue.

A key lemma in this paper (Lemma 3.3) shows a close connection between
the combinatorial discrepancy in a symmetric martix, and its spectral ra-
dius. This key lemma implies the following converse to the Expander Mixing
Lemma: Let G be a d-regular graph on n vertices, such that for every two
subsets of vertices, A and B,

∣∣e(A,B)−d|A||B|/n
∣∣≤α√|A||B| for some α<d

(where e(A,B) is the number of edges between A and B). Then all eigen-
values of G but the first are, in absolute value, O(α log(d/α)). The fact that
the bound is tight up to a logarithmic factor is surprising. It is known that
expansion implies a spectral gap (cf. [3]), but the actual bounds are weak,
and indeed expansion alone does not imply strong bounds on the spectral
gap [2].

The paper is organized as follows. After defining the basic objects –
expander graphs, signed graphs and 2-lifts – in section 2, we present the
main results in section 3. In sub-section 3.1 we observe that the spectrum
of 2-lifts has a simple description, which suggests an iterative construction
of expander graphs (described in sub-section 3.2). It reduces the problem
of constructing expander graphs to finding a signing of the edges with a
small spectral radius. In sub-section 3.3 we show that such a signing always
exists. In sub-section 3.4 we show how to find such a signing efficiently. An
alternative method is given in section 4, which leads to a somewhat stronger
notion of explicitness. Finally, in section 5 we prove the converse to the
Expander Mixing Lemma mentioned above.

2. Definitions

Let G=(V,E) be a graph on n vertices, and let A be its adjacency matrix.
Let λ1 ≥ λ2 ≥ ·· · ≥ λn be the eigenvalues of A. We denote by λ(G) =
maxi=2,...,n |λi|. We say that G is an (n,d,µ)− expander if G is d-regular,
and λ(G)≤µ. If λ(G)≤2

√
d−1 we say that G is Ramanujan.

A signing of the edges of G is a function s :E(G)→{−1,1}. The signed
adjacency matrix of a graphGwith a signing s has rows and columns indexed
by the vertices of G. The (x,y) entry is s(x,y) if (x,y)∈E and 0 otherwise.

The 2-lift of G associated with a signing s is a graph Ĝ defined as follows.
Associated with every vertex x∈ V are two vertices, x0 and x1, called the
fiber of x. If (x,y) ∈E, and s(x,y) = 1 then the corresponding edges in Ĝ
are (x0,y0) and (x1,y1). If s(x,y) =−1, then the corresponding edges in Ĝ
are (x0,y1) and (x1,y0). The graph G is called the base graph, and Ĝ a 2-lift
of G. By the spectral radius of a signing we refer to the spectral radius of
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the corresponding signed adjacency matrix. When the spectral radius of a
signing of a d-regular graph is Õ(

√
d) we say that the signing (or the lift) is

Quasi-Ramanujan.
For v,u ∈ {−1,0,1}n, denote S(u) = supp(u) (the set of indices i s.t.

ui �=0), and S(u,v)=supp(u)∪supp(v).
It will be convenient to assume throughout that V (G)={1, . . . ,n}.

3. Quasi-Ramanujan 2-Lifts and Quasi-Ramanujan Graphs

3.1. The eigenvalues of a 2-lift

The eigenvalues of a 2-lift of G can be easily characterized in terms of the
adjacency matrix and the signed adjacency matrix:

Lemma 3.1. Let A be the adjacency matrix of a graphG, andAs the signed
adjacency matrix associated with a 2-lift Ĝ. Then every eigenvalue of A and
every eigenvalue of As are eigenvalues of Ĝ. Furthermore, the multiplicity
of each eigenvalue of Ĝ is the sum of its multiplicities in A and As.

Proof. It is not hard to see that the adjacency matrix of Ĝ is:

Â =
(
A1 A2

A2 A1

)
,

where A1 is the adjacency matrix of (V,s−1(1)) and A2 the adjacency matrix
of (V,s−1(−1)). (So A=A1 +A2, As =A1−A2.) Let v be an eigenvector of
A with eigenvalue µ. It is easy to check that v̂=(vv) is an eigenvector of Â
with eigenvalue µ.

Similarly, if u is an eigenvector of As with eigenvalue λ, then û=(u−u)
is an eigenvector of Â with eigenvalue λ.

As the v̂’s and û’s are perpendicular and 2n in number, they span all the
eigenvectors of Â.

3.2. The construction scheme

We follow Friedman’s ([17]) nomenclature, and call the eigenvalues of A the
old eigenvalues of Ĝ, and those of As the new ones.

Consider the following scheme for constructing (n,d,λ)-expanders. Start
with G0 =Kd+1, the complete graph on d+1 vertices1. Its eigenvalues are d,

1 We could start with any small d-regular graph with a large spectral gap. Such graphs
are easy to find.
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Figure 1. The Railway Graph. Edges where the signing is −1 are bold.

with multiplicity 1, and −1, with multiplicity d. We want to define Gi as a 2-
lift of Gi−1, such that all new eigenvalues are in the range [−λ,λ]. Assuming
such a 2-lifts always exist, the Gi constitute an infinite family of (n,d,λ)-
expanders.

It is therefore natural to look for the smallest λ= λ(d) such that every
graph of degree at most d has a 2-lift with new eigenvalues in the range
[−λ,λ]. In other words, a signing with spectral radius ≤λ.

We note that λ(d)≥2
√
d−1. Otherwise, using the scheme above we could

get graphs that violate the Alon–Boppana bound. We next observe:

Proposition 3.1. Let G be a d-regular graph which contains a vertex that
does not belong to any cycle of bounded length, then no signing of G has
spectral radius below 2

√
d−1−o(1).

To see this, note first that all signings of a tree have the same spectral radius.
This follows e.g., from the easy fact that any 2-lift of a tree is a union of two
disjoint trees, isomorphic to the base graph. The assumption implies that
G contains an induced subgraph that is a full d-ary tree T of unbounded
radius. The spectral radius of T is 2

√
d−1− o(1). The conclusion follows

now from the interlacing principle of eigenvalues (cf. [21]).
There are several interesting examples of arbitrarily large d-regular

graphs for which there is a signing with spectral radius bounded away from
2
√
d−1. One such example is the 3-regular graph R defined as follows.

V (R)={0, . . . ,2k−1}×{0,1}. For i∈{0, . . . ,2k−1}, j∈{0,1}, the neighbors
of (i,j)∈R are ((i−1) mod2k,j), ((i+1) mod2k,j) and (i,1−j). Define s,
a signing of R, to be −1 on the edges ((2i,0),(2i,1)), for i∈ {0, . . . ,k−1},
and 1 elsewhere (see Figure 1). Let As be the signed adjacency matrix. It is
easy to see that A2

s is a matrix with 3 on the diagonal, and two 1’s in each
row and column. Thus, its spectral radius is 5, and that of As is

√
5<2

√
2.

3.3. Quasi-Ramanujan 2-lifts for every graph

We conjecture that every graph has a signing with small spectral radius:



500 YONATAN BILU, NATHAN LINIAL

Conjecture 3.1. Every d-regular graph has a signing with spectral radius
at most 2

√
d−1.

We have numerically tested this conjecture quite extensively.
In this subsection we show a close upper bound:

Theorem 3.1. Every graph of maximal degree d has a signing with spectral
radius O

(√
d · log3d

)
.

The theorem is an easy consequence of the following two lemmata. The
first one uses a probabilistic argument to show the existence of a signing
for which the Rayleigh quotient is small for vectors in v,u∈{−1,0,1}n . The
second shows how to conclude from this that the Rayleigh quotient for all
vectors is small – and therefore all new eigenvalues are small as well.

Lemma 3.2. For every graph of maximal degree d, there exists a signing s
such that for all v,u∈{−1,0,1}n the following holds:

(1)

∣∣vtAsu
∣∣

‖v‖‖u‖ ≤ 10
√
d log2 d,

where As is the signed adjacency matrix.

Lemma 3.3. Let A be an n×n real symmetric matrix such that the l1 norm
of each row in A is at most d, and all diagonal entries of A are, in absolute
value, O(α(log(d/α) + 1)). Assume that for any two vectors, u,v ∈ {0,1}n,
with supp(u)∩supp(v)=∅: ∣∣utAv∣∣

‖u‖‖v‖ ≤ α.

Then the spectral radius of A is O(α(log(d/α)+1)).

Proof of Lemma 3.2. First note that it’s enough to prove this for u’s and
v’s such that the set S(u,v) spans a connected subgraph. Indeed, suppose
that S(u,v) is not connected. Let S1, . . . ,Sk be the connected subgraphs of
S(u,v). Split u=

∑k
i=1u

i, so that supp(ui)⊂Si. Define v1, . . . ,vk similarly.
Observe that for i �=j, (ui)tAvj = 0, since there are no edges between Si

and Sj. Assume that the lemma holds for connected components, that is,
for i=1, . . . ,k, |(ui)tAvi|≤10

√
d log2 d‖ui‖‖vi‖. We have that:

∣∣utAv∣∣ ≤ k∑
i,j=1

∣∣(ui)tAvj∣∣ =
k∑

i=1

∣∣(ui)tAvi∣∣ ≤ k∑
i=1

10
√
d log2 d

∥∥ui∥∥∥∥vi∥∥
≤ 10

√
d log2 d‖u‖‖v‖,
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where the last inequality follows from the Cauchy–Schwartz inequality, and
the fact that ‖u‖2 =

∑k
i=1 ‖ui‖2, ‖v‖2 =

∑k
i=1 ‖vi‖2.

Thus, henceforth we assume that S(u,v) is connected. We will also as-
sume that d is somewhat large. This is justified by that fact that for
any signing, |vtAsu|

‖v‖‖u‖ ≤ d. Thus, the claim holds trivially for d < 997, since

d≤10
√
d log2 d in this range.

Consider some u,v ∈ {−1,0,1}n. Suppose we choose the sign of each
edge uniformly at random. Denote the resulting signed adjacency matrix
by As, and let Eu,v be the “bad” event that |vtAsu|

‖v‖‖u‖ > 10
√
d log2d. Assume

w.l.o.g. that |S(u)| ≥ 1
2 |S(u,v)|. Observe that vtAsu=

∑
i∈S(v),j∈S(u)(As)i,j

is the sum of independent variables, attaining values of either ±2, when
both (As)i,j , (As)j,i appear in the sum, or ±1 otherwise. By the Chernoff
inequality:

Pr[Eu,v] ≤ 2 exp
(
−100d log2 d|S(u)||S(v)|

8e(S(u), S(v))

)

≤ 2 exp
(
−100d log2 d|S(u)||S(v)|

8d|S(v)|

)

< d(−6|S(u,v)|),

where e(S(u),S(v)) is the number of edges between S(u) and S(v).
We want to use the Lovász Local Lemma [14], with the following de-

pendency graph on the Eu,v: There is an edge between Eu,v and Eu′,v′ iff
S(u,v)∩S(u′,v′) �=∅. Denote k= |S(u,v)|. How many neighbors, Eu′,v′ , does
Eu,v have, with |S(u′,v′)|= l?

Since we are interested only in connected subsets, this is clearly bounded
by the number of rooted directed subtrees on l vertices, with a root in
S(u,v). It is known (cf. [22]) that there are at most k

(d(l−1)
l−1

)
≈ kdl−1 such

trees (a similar argument appears in [19]. The bound on the number of trees
is essentially tight by [4]).

In order to apply the Local Lemma, we need to define for such u and v
a number 0≤Xu,v<1. It is required that:

(2) Xu,v

∏
(u′, v′):Eu,v∼Eu′, v′

(1 −Xu′, v′) ≥ d−6|S(u,v)|.

Observe that for S⊆ [n] there are at most 24|S| distinct pairs v,u∈{−1,0,1}n
such that S(u,v)=S.
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For all u,v set Xu,v =d−3k, where k= |S(u,v)|. Then in (2) we get:

Xu,v ·
∏

(u′, v′):Eu,v∼Eu′, v′

(1 −Xu′, v′) = d−3k
n∏

l=1

(
1 − d−3l

)kdl24l

≥ d−3k exp

(
−2k

n∑
l=1

d−3ldl24l

)
≥ d−3ke−3k > d−6k

as required (the last two inequalities rely on the fact that d is large).

Proof of Lemma 3.3. For simplicity, assume first that all diagonal entries
of A are zeros. We explain at the end of the proof how to deal with a general
matrix.

We start be showing that our assumptions imply that for any u∈{0,1}n,

(3)

∣∣utAu∣∣
‖u‖2

≤ 2α.

For any u1,u2∈{0,1}n such that S(u1)∩S(u2)=∅ we have that

(4) |u1Au2| ≤ α‖u1‖‖u2‖.

Let u ∈ {0,1}n, and denote k = |S(u)|. For simplicity we assume that k is
even, a similar argument works for the odd case. Set K =

( k
k/2

)
. Summing

up inequality (4) over all subsets of S(u) of size k/2, we have that:∑
u1:S(u1)⊂S(u),|S(u1)|=k/2

|u1A(u− u1)| ≤ Kαk/2.

For each i �=j∈S(u), ai,j is added up
( k−2
k/2−1

)
times in the sum on the LHS,

hence (since diagonal entries are by assumption zero):(
k − 2
k/2 − 1

)∣∣utAu∣∣ ≤ Kαk/2,
or: ∣∣utAu∣∣ ≤ α2k.

Thus, inequality 3 indeed holds.
Next, it follows that for any u,v∈{−1,0,1}n, such that S(u) =S(v), or

S(u)∩S(v)=∅: ∣∣utAv∣∣
‖u‖‖v‖ ≤ 4α.
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Fix u,v ∈ {−1,0,1}n. Denote u = u+ − u− and v = v+ − v−, where
u+,u−,v+,v−∈{0,1}n, and S(u+)∩S(u−)=S(v+)∩(v−)=∅.∣∣utAv∣∣ =

∣∣(u+ − u−)tA(v+ − v−)
∣∣

≤ 2α
(∥∥u+

∥∥∥∥v+
∥∥+

∥∥u+
∥∥∥∥v−∥∥+

∥∥u−∥∥∥∥v+
∥∥+

∥∥u−∥∥∥∥v−∥∥)
≤ 4α

√∥∥u+
∥∥2∥∥v+

∥∥2 +
∥∥u+

∥∥2∥∥v−∥∥2 +
∥∥u−∥∥2∥∥v+

∥∥2 +
∥∥u−∥∥2∥∥v−∥∥2

= 4α
√(∥∥u+

∥∥2 +
∥∥u−∥∥2)(∥∥v+

∥∥2 +
∥∥v−∥∥2) = 4α‖u‖‖v‖ .

The first inequality follows from the hypothesis on vectors in {0,1}n, and
the second from the l2 to l1 norm ratio.

Fix x ∈ R
n. We need to show that |xtAx|

‖x‖2 = O(α log(d/α)). By losing
only a multiplicative factor of 2, we may assume that the absolute value of
every non-zero entry in x is a negative power of 2: Clearly we may assume
that ‖x‖∞ < 1

2 . To bound the effect of rounding the coordinates, denote
xi =±(1+ δi)2ti , with 0≤ δi ≤ 1 and ti<−1, an integer. Now round x to a
vector x′ by choosing the value of x′i to be sign(xi) ·2ti+1 with probability
δi and sign(xi) ·2ti with probability 1− δi. The expectation of x′i is xi. As
the coordinates of x′ are chosen independently, and the diagonal entries of
A are 0’s, the expectation of x′tAx′ is xtAx. Thus, there is a rounding, x′,
of x, such that |xtAx|≤|x′tAx′|. Clearly ‖x′‖2≤2‖x‖2, so |xtAx|

‖x‖2 ≤2 |x′tAx′|
‖x′‖2 .

Denote Si = {j : xj =±2−i}, si = |Si|. Denote by k the maximal index i
such that si>0. Denote by xi the sign vector of x restricted to Si, that is, the
vector whose j’th coordinate is the sign of xj if j ∈Si, and zero otherwise.
By our assumptions, for all 1≤ i≤j≤k:

(5)
∣∣(xi)tAxj∣∣ ≤ α√sisj.

Also, since the l1 norm of each row is at most d, for all 1≤ i≤k:

(6)
∑
j

∣∣(xi)tAxj∣∣ ≤ dsi.
We wish to bound:

(7)
|xtAx|
‖x‖2

≤
∑k

i,j=1

∣∣(xi)tAxj∣∣2−(i+j)∑
i 2−2isi

.

Denote γ=log2(d/α), qi =si2−2i and Q=
∑

i qi. Add up inequalities (5) and
(6) as follows. For i= j multiply inequality (5) by 2−2i. When i < j≤ i+γ



504 YONATAN BILU, NATHAN LINIAL

multiply it by 2−(i+j)+1. Multiply inequality (6) by 2−(2i+γ). (We ignore
inequalities (5) when j>i+γ.)

We get that:∑
i

2−2i
∣∣(xi)tAxi∣∣+

∑
i

∑
i<j≤i+γ

2−(i+j)+1
∣∣(xi)tAxj∣∣+

+
∑
i

2−(2i+γ)
∑
j

|(xi)tAxj |

≤
∑
i

αqi +
∑
i

∑
i<j<i+γ

2α
√
qiqj +

∑
i

2−γd · qi

≤ α
∑
i

qi + α
∑
i

∑
i<j<i+γ

(qi + qj) + 2−γd
∑
i

qi

< (2−γd+ 2γα)
∑
i

qi =
(
α+ α log2(d/α)

)
Q.

Note that the denominator in (7) is Q, so to prove the lemma it’s enough
to show that the numerator,

(8)
∑
i<j

2−(i+j+1)
∣∣(xi)tAxj∣∣+

∑
i

2−2i
∣∣(xi)tAxi∣∣,

is bounded by

(9)

∑
i

2−2i
∣∣(xi)tAxi∣∣+

∑
i

∑
i≤j≤i+γ

2−(i+j)+1
∣∣(xi)tAxj∣∣+

+
∑
i

2−(2i+γ)
∑
j

∣∣(xi)tAxj∣∣.
Indeed, let us compare the coefficients of the terms |(xi)tAxj| in both expres-
sions (since |(xi)tAxj| = |(xj)tAxi|, it’s enough to consider i≤j). For i= j
this coefficient is 2−2i in (8), and 2−2i+2−(2i+γ) in (9). For i<j≤ i+γ, it is
2−(i+j)+1 in (8), and in (9) it is 2−(i+j)+1 +2−(2i+γ) +2−(2j+γ). For j>i+γ,
in (8) the coefficient is again 2−(i+j)+1. In (9) it is:

2−(2i+γ) + 2−(2j+γ) > 2−(2i+γ) ≥ 2−(i+j)+1.

It remains to show that the lemma holds when the diagonal entries of A
are not necessarily zero, but O(α(log(d/α) + 1)) in absolute value. Denote
B = A−D, with D the matrix having the entries of A on the diagonal,
and zero elsewhere. We have that for any two vectors, u,v ∈ {0,1}n, with
supp(u)∩supp(v)=∅:

|utAv|
‖u‖‖v‖ ≤ α.
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For such vectors, utBv = utAv, so by applying the lemma to B, we get
that its spectral radius is O(α(log(d/α) + 1)). By the assumption on the
diagonal entries of A, the spectral radius of D is O(α(log(d/α) + 1)) as
well. The spectral radius of A is at most the sum of these bounds – also
O(α(log(d/α)+1)).

An example of Bollobás and Nikiforov [12] shows that, as stated,
Lemma 3.3 is tight up to constant factors (there no bound is assumed on the
l1 norm of the rows, and so the bound is O(logn)). For the purpose of this
paper, Lemma 3.3 is interesting mainly for matrices where the l1 norm of
all rows is the same, and independent of n. Does a tighter bound hold under
these assumptions? In section 5 we construct an example showing that this
is not the case.

3.4. An explicit construction of Quasi-Ramanujan graphs

For the purpose of constructing expanders, it is enough to prove a weaker
version of Theorem 3.1 – that every expander graph has a 2-lift with small
spectral radius (see subsection 3.2). In this sub-section we show that when
the base graph is a good expander (in the sense of the definition below), then
w.h.p. a random 2-lift, where the sign of each edge is chosen uniformly and
independently, has a small spectral radius. We then derandomize the con-
struction to get a deterministic polynomial time algorithm for constructing
arbitrarily large expander graphs.

Definition 3.1. We say that a graph G on n vertices is (β,t)-sparse if for
every u,v∈{0,1}n, with |S(u,v)|≤ t,

utAv ≤ β‖u‖‖v‖.

Lemma 3.4. Let A be the adjacency matrix of a d-regular (γ(d), log2n)-
sparse G graph on n vertices, where γ(d)=10

√
d log2 d. Then for a random

signing of G (where the sign of each edge is chosen uniformly at random)
the following hold w.h.p.:

1. ∀u,v∈{−1,0,1}n : |utAsv|≤γ(d)‖u‖‖v‖.
2. Ĝ is (γ(d),1+log2n)-sparse

where As is the random signed adjacency matrix, and Ĝ is the corresponding
2-lift.

Proof. Assume that (2) holds. Following the same arguments and notations
as in the proof of Lemma 3.2, we have that there are at most n·dk connected
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subsets of size k. With probability at most d−6k requirement (1) is violated
for a given pair u,v such that |S(u,v)| = k. For each S there are at most
24|S| pairs u,v such that S(u,v)=S. The probability that there is some pair
u,v such that |S(u,v)|> log2n and for which (1) does not hold, is thus (by
the union bound) at most

∑
k>log2n

d−6k24k≤n−6log2 d+4. If |S(u,v)|≤ log2n

then by (2) there are simply not enough edges between S(u) and S(v) for
(1) to be violated. Thus, it suffices to show that w.h.p. (2) holds.

Let s be a signing, and define A1, A2 and Â as in Lemma 3.1. Given
u = (u1 u2),v = (v1 v2) ∈ {0,1}n ×{0,1}n, we wish to prove that utÂv ≤
γ(d)‖u‖‖v‖. As in the proof of Lemma 3.2 we may assume that S(u,v) is
connected – in fact, that it is connected via the edges between S(u) and S(v).
Hence, we may assume that the ratio of the sizes of these subsets is at most d.
Define x=u1∨u2, y=v1∨v2, x′=u1∧u2, and y′=v1∧v2 (the characteristic
vectors of S(u1,u2), S(v1,v2), S(u1)∩S(u2) and S(v1)∩S(v2)). It is not hard
to verify that:

(10) utÂv = u1A1v1 + u1A2v2 + u2A2v1 + u2A1v2 ≤ xtAy + x′tAy′.

If |S(x,y)|≤ log2n, then clearly |S(x′,y′)|≤ log2n and from the assumption
that G is (γ(d), log2n)-sparse

xtAy + x′tAy′ ≤ γ(d)
(√

|S(x)||S(y)| +
√

|S(x′)||S(y′)|
)
.

Observe that |S(u)| = |S(x)| + |S(x′)| and |S(v)| = |S(y)| + |S(y′)|, so in
particular utÂv≤γ(d)

√
|S(u)||S(v)|, and requirement (2) holds.

So assume |S(x,y)|= |S(u,v)|= log2n+1. It is not hard to see that this
entails S(u1,v1)∩S(u2,v2)=∅. In other words, S(u,v) contains at most one
vertex from each fiber. Hence, x′=y′=-0 and |S(u)|= |S(x)|, |S(v)|= |S(y)|.

Denote S = S(x,y), and assume w.l.o.g. that |S(y)| > 1
2 log2n. From

(10) utÂv ≤ xtAy, so it’s enough to show that xtAy ≤ γ(d)
√

|S(x)||S(y)|.
If this is not the case, we can bound the ratio between |S(x)| and |S(y)|:
Since the graph is of maximal degree d we have xtAy ≤ d|S(X)|. Hence,
|S(x)|
|S(y)| >

γ(d)2

d2 = 100log2 d
d .

Observe that the edges between S(u) and S(v) in Ĝ originate from edges
between S(x) and S(y) in G in the following way – for each edge e∈S(x)×
S(y) in G there is, with probability 1

2 , an edge between S(u) and S(v) in Ĝ.
Next we bound xtAy. Averaging over all S\{i}, for i∈S(y) we have that:

(|S(y)| − 2)xtAy ≤ |S(y)|γ(d)
√

(|S(y)| − 1)|S(x)|.
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Hence the expectation of utÂv is at most 1
2cγ(d)‖u‖‖v‖, where

c =

√
|S(y)|(|S(y)| − 1)

|S(y)| − 2
≤ 1.1,

assuming n is not very small (which we may, since n>d, and the lemma
holds trivially for small d’s). By the Chernoff bound, the probability that
utÂv>γ(d)‖u‖‖v‖ is at most:

2 exp
(
−0.9

2.2
γ(d)‖u‖‖v‖

)
≤ exp

(
−0.2γ(d)

(log2 n+ 1)(10
√

log2 d)√
d

)

= exp
(
−20 log2 d(log2 n+ 1)

)
,

Since |S(x)|
|S(y)| >

100log2 d
d , and |S(v)|> 1

2 log2n.
There are at most dlog2n+14log2n+1 pairs u,v with S(u,v) connected and

of size log2n+1, so by the union bound, w.h.p., requirement (2) holds.

Corollary 3.1. Let A be the adjacency matrix of a d-regular (γ(d), log2n)-
sparse G graph on n vertices, where γ(d) = 10

√
d log2 d. Then there is a

deterministic polynomial time algorithm for finding a signing s of G such
that the following hold:

1. The spectral radius of As is O
(√
d log3d

)
.

2. Ĝ is (γ(d),1+log2n)-sparse,

where As is the signed adjacency matrix, and Ĝ is the corresponding 2-lift.

Proof. Consider a random signing s. For each closed path p in G of length
l=2�log2n� define a random variable Yp equal to the product of the signs of
its edges. From lemmas 3.4 and 3.3, the expected value of the trace of Al

s,
which is the expected value of the sum of these variables, is

(
C
√
d log3d

)l,
where C is some absolute constant. Note that since l is even the sum is
always positive. For each u,v∈{0,1}n, with |S(u,v)|=log2n+1, and S(u,v)
connected, define Zu,v to be dl if utÂv≥γ(d)‖u‖‖v‖, and 0 otherwise. In the
proof of Lemma 3.4 we’ve seen that the probability that Zu,v is not 0 is at
most d−6log2n, thus the expected value of Zu,v is at most d−4log2n. Let Z be
the sum of the Zu,v’s. Recall that there are at most n(4d)log2n+1 pairs (u,v)
such that |S(u,v)|=log2n+1, and S(u,v) is connected. Hence, the expected
value of Z is less than d−2log2n.

Let X=Y +Z. Note that the expected value of X is approximately that
of Y , namely

(
C
√
d log3d

)l. The expectation of Yp and Zu,v can be easily
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computed even when the sign of some of the edges is fixed, and that of the
other is chosen at random. As there is only a polynomial number of variables,
using the method of conditional probabilities (cf. [8]) one can find a signing
s such that the value of X is at most its expectation. For this value of X,
tr(Al

s) = Y ≤
(
2C
√
d log3d

)l, and Z = 0 since if Z �= 0 then Z ≥ dl (which
would contradict the fact that X < dl, since Y ≥ 0). Clearly, the spectral
radius of As is O

(√
d log3 d

)
. In the proof of Lemma 3.4 we’ve seen that if

G is (γ(d), log2n)-sparse then so is Ĝ, for any signing of G. For our choice
of s all Zu,v =0, hence Ĝ is actually (γ(d), log2n+1)-sparse.

An alternative method for derandomization, using an almost k-wise in-
dependent sample space, is given in section 4.

Recall the construction from the beginning of this section. Start with a
d-regular graph G0 which is an (n0,d,µ)−expander, for µ=10

√
d log2 d and

n0>d log2
2n0. From the Expander Mixing Lemma (cf. [8]), G0 is (µ, log2n0)-

sparse. Iteratively chose Gi+1 to be a 2-lift of Gi according to Corollary 3.1,
for i = 1, . . . , log2(n/n0). Clearly this is a polynomial time algorithm that
yields an

(
n,d,O

(√
d log3d

))
-expander graph.

3.5. Random 2-lifts

Theorem 3.1 states that for every graph there exists a signing such that
the spectral radius of the signed matrix is small. The proof shows that for a
random signing, this happens with positive, yet possibly exponentially small,
probability. The following example shows the limitations of this argument,
and in particular, that there exist graphs for which a random signing almost
surely fails to give a small spectral radius.

Consider a graph composed of n/(d+ 1) disjoint copies of Kd+1 (the
complete graph on d+ 1 vertices). If all edges in one of the components
are equally signed, then As has spectral radius d. For d fixed and n large,
this event will occur with high probability. Note that connectivity is not the
issue here – it is easy to modify this example and get a connected graph for
which, w.h.p., the spectral radius of As is d− 1

d+1 .
However, for a random d-regular graph, it is true that a random 2-lift

will, w.h.p., yield a signed matrix with small spectral radius. This follows
from the fact that, w.h.p., a random d-regular graph is an (n,d,O(

√
d))-

expander ([18,16,15]). In particular, by the Expander Mixing Lemma, it is
(O(

√
d), logn)-sparse. By Lemma 3.4, w.h.p., a random 2-lift yields a signed

matrix with small spectral radius.
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4. A stronger notion of explicitness

In this section we suggest an alternative derandomization scheme to that of
section 3.4. We use the construction of Naor and Naor [28] of a small, almost
k-wise independent sample space. This derandomization scheme leads to a
construction which, in a sense, is more explicit than that in section 3.4.

4.1. Derandomization using an almost k-wise independent
sample space

Recall that in the proof of Corollary 3.1 we defined two types of random
variables: Let l = 2�log2n�. For each closed path p of length l, Yp is the
product of the signs of the edges of p. For each u,v∈{0,1}n, with |S(u,v)|=
log2n+1, and S(u,v) connected, let Zu,v be dl if utÂv≥γ(d)‖u‖‖v‖, and 0
otherwise. Define X to be the sum of all these random variables.

For brevity it will be convenient to make the following ad-hoc definitions:

Definition 4.1. A signing s of a d-regular graph G is (n,d)-good, if the
spectral radius of As is O

(√
d log3 d

)
and Ĝ is (γ(d),1+log2n)-sparse.

A d-regular graphG is an (n,d)-good expander, if it is an
(
n,d,O

(√
d log3d

))
-

expander, and is (γ(d),1+log2n)-sparse.

The proof showed that finding a good signing is equivalent to finding
a signing for which X does not exceed its expected value. We now show
that this conclusion is also true when rather than choosing the sign of each
edge uniformly and independently, we choose the signing from an (ε,k)-wise
independent sample space, with k=d log2n and ε=d−2d log2n.

Definition 4.2 ([28]). Let Ωm be a sample space of m-bit strings, and
let S= s1 . . . sm be chosen uniformly at random from Ωm. We say that Ωm

is an (ε,k)-wise independent sample space if for any k′ ≤ k and positions
i1<i2< · · ·<ik′ , ∑

α∈{−1,1}k′

∣∣Pr[si1 . . . sik′ = α] − 2−k′∣∣ < ε.
Naor and Naor [28] suggest an explicit construction of such sample spaces.

When k = O(logm) and 1/ε = poly(m), the size of the sample space is
polynomial in m (other constructions are also given in [6]).

We shall immediately see that the expected value of X does not change
significantly when the signing is chosen from such a sample space. Hence, an
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alternative way of efficiently finding a good signing is to go over the entire
sample space. There is at least one point in it for which X does not exceed
its expected value, and thus the signing is good.

Lemma 4.1. Let m= dn/2, k = d log2n and ε= d−2d log2n. Let Ωm be an
(ε,k)-wise independent sample space. Let X be as in the proof of Corol-
lary 3.1. Let Um be the uniform distribution on m bits. Then∣∣EΩm[X] − EUm [X]

∣∣ = o(1).

Proof. Recall that X=
∑

pYp +
∑

u,vZu,v, where Yp and Zu,v are as above,
the first sum is over all closed paths of length l=2�log2n�, and the second
sum is over all u,v∈{0,1}n, with |S(u,v)|=log2n+1 and S(u,v) connected.
Hence∣∣EΩm[X]−EUm [X]

∣∣ ≤∑
p

∣∣EΩm[Yp]−EUm[Yp]
∣∣+∑

u,v

∣∣EΩm [Zu,v]−EUm [Zu,v]
∣∣.

Let p be a path of length l, and denote the edges that appear in it an odd
number of times by i1, . . . , il′ , for some l′<l. Let si1, . . . ,sil′ be the signs of
these edges. Then the value of Yp is

∏l′

j=1 sij , and (for every distribution)

E[Yp] =
∑

α∈{−1,1}l′

Pr[si1, . . . , sil′ = α] ·
l′∏

j=1

αj .

Thus,∣∣EΩm [Yp] − EUm[Yp]
∣∣

=

∣∣∣∣∣
∑

α∈{−1,1}l′

( l′∏
j=1

αj

)(
PrΩm [si1, . . . , sil′ = α] − PrUm [si1, . . . , sil′ = α]

)∣∣∣∣∣
≤
∣∣∣∣∣
∑

α∈{−1,1}l′

(
PrΩm [si1 , . . . , sil′ = α] − 2−l′

)∣∣∣∣∣ < ε.
As there are less than dl closed paths p of length l,

∑
p |EΩm [Yp]−EUm[Yp]|<

εdl = o(1). A similar argument shows that |
∑

u,v |EΩm [Zu,v]−EUm[Zu,v]| =
o(1) as well.

In fact, it follows that w.h.p. (say, 1− 1
n2 for an appropriate choice of ε),

choosing an element uniformly at random from Ωm leads to a good signing.
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4.2. A probabilistic strongly explicit construction

The constructions of section 3.4 and of the previous subsection are explicit in
the sense that given n and d they provide a polynomial (in n) time algorithm
for constructing an (n,d)-good expander. However, in some applications of
expander graphs (e.g. derandomization) a stronger notion of explicitness is
required, so called “strongly explicit”. Namely, an algorithm that given n,
d and i,j∈ [n], decides in time polylog(n) whether i and j are adjacent.

We do not know how to achieve such explicitness using the 2-lifts scheme.
In this sub-section we suggest the notion of a “probabilistic strongly ex-
plicit” construction, and show that this level of explicitness can be obtained.
Intuitively, we construct a polynomial number of algorithms which define
a graph by deciding adjacency as above. Most of these algorithms define
graphs which are good expanders.

Formally:

Definition 4.3. Let fn :{0,1}t× [n]× [n]→{0,1}, with t=O(logn). Given
r ∈ {0,1}t, fn defines a graph Gfn(r), on n vertices, where i and j are
adjacent iff fn(r, i,j)=1. We say that fn is a δ-probabilistic strongly explicit
description of an (n,d)-good expander graph, if given n, fn can be computed
in time polylog(n), and, with probability at least 1−δ (over a uniform choice
of r), Gfn(r) is an (n,d)-good expander graph.

It will be convenient to give a similar definition for a signing of a graph,
and for a composition of such functions:

Definition 4.4. Let hn :{0,1}t×[n]×[n]→{−1,1}, with t=O(logn). Given
r ∈ {0,1}t, and a graph G on n vertices, hn defines a signing shn of G by
shn(r)(i,j) = hn(r, i,j). We say that hn is a δ-probabilistic strongly explicit
description of an (n,d)-good signing, if given n, hn can be computed in time
polylog(n), and, for any (log2n,γ(d))-sparse d-regular graph G on n vertices,
with probability at least 1− δ (over a uniform choice of r), hn defines an
(n,d)-good signing.

Definition 4.5. Let fn :{0,1}t1×[n]×[n]→{0,1}, and hn :{0,1}t2×[n]×[n]→
{−1,1} be as above. Their composition, f2n :{0,1}t×[2n]×[2n]→{0,1}, with
t= max{t1, t2} is as follows. For r ∈ {0,1}t, let r1 be the first t1 bits of r,
and r2 the first t2 bits in r. f2n is such that the graph Gf2n(r) is the 2-lift
of Gfn(r1) described by the signing shn(r2).

The following lemma is easy, and we omit the proof:
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Lemma 4.2. Let fn be a δ1-probabilistic strongly explicit description of an
(n,d)-good expander, and hn a δ2-probabilistic strongly explicit description
of an (n,d)-good signing. Then their composition is a (δ1 +δ2)-probabilistic
strongly explicit description of an (2n,d)-good expander.

We now show a that such explicitness can be achieved for constructions
based on 2-lifts. Think of an (ε,k)-wise independent space Ωm as a function
ω :{0,1}t→{−1,1}m, where |Ωm|=2t. It follows from the work of Naor and
Naor [28]), that not only can ω be computed efficiently, but that given r∈
{0,1}t,p∈ [m] ω(r)p (the p’th coordinate of ω(r)) can be computed efficiently
(i.e. in time polylog(m)). Takem=

(n
2

)
, and think of the elements of {−1,1}m

as being indexed by unordered pairs (i,j)∈
(
[n]
2

)
. Define hn(r, i,j) =ω(r)i,j .

It follows from the above discussion than hn is a 1
n2 -probabilistic strongly

explicit description of an (n,d)-good signing, for k and ε as above.
We now describe how to construct a δ-probabilistic strongly explicit de-

scription of an (N,d)-good expander graph. Let G be an (n,d)-good ex-
pander, with n ≥ 1

δ . For i = 0, . . . , l = log2(N/n), define ni = n · 2i and
mi =

(ni
2

)
. Define ki = d log2ni. Let ωi : {0,1}ti →{−1,1}mi be a description

of an (εi,ki)-wise independent space of bit strings of length mi, where εi is
such that an element chosen uniformly at random from this space yields an
(ni,d)-good signing with probability at least 1− 1

n2
i
.

The functions hni(r,p,q) =ωi(r)p,q are 1
n2

i
-probabilistic strongly explicit

descriptions of (ni,d)-good signings. Let fn be a description of G. For sim-
plicity, assume that adjacency in G can be decided in time polylog(n). Thus,
fn is, trivially, a 0-probabilistic strongly explicit description of an (n,d)-good
expander. Define fni as the composition of fni−1 and hni−1 . It follows from
this construction and Lemma 4.2 that:

Lemma 4.3. fnl
is a 1

n -probabilistic strongly explicit description of an
(N,d)-good expander graph.

5. A converse to the Expander Mixing Lemma

So far, we discussed an algebraic definition of expansion in graphs. Namely,
we said a graph is an (n,d,λ)-expander if all eigenvalues but the largest are,
in absolute value, at most λ. A seemingly unrelated combinatorial definition
says that a d-regular graph on n vertices is an (n,d,c)-edge expander if every
set of vertices, W , of size at most n/2, has at least c|W | edges emanating
from it.
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Surprisingly, the two notions are closely related. Thus (cf. [8]), an (n,d,λ)-
expander is also an (n,d, d−λ

2 )-edge expander. Conversely, an (n,d,c)-edge
expander is also an (n,d,d− c2

2d)-expander2. Thus, though the two notions of
expansion are qualitatively equivalent, they are far from being quantitatively
the same. While algebraic expansion yields good bounds on edge expansion,
the reverse implications are very weak. It is also known that this is not just
a failure of the proofs and indeed this estimate is nearly tight [2]. Is there,
we ask, another combinatorial property that is equivalent to spectral gaps?
We next answer this question.

For two subsets of vertices, S and T , let e(S,T ) denote the number of
edges between them. We follow the terminology of [31]:

Definition 5.1. A d-regular graph G on n vertices is (d,α)-jumbled, if for
every two subsets of vertices, A and B,∣∣e(A,B) − d|A||B|/n

∣∣ ≤ α√|A||B|.

A very useful property of (n,d,λ)-expanders, known as the Expander
Mixing Lemma (cf. [8]), is that a an (n,d,λ)-expander is (d,λ)-jumbled.
Lemma 3.3 implies the promised converse to this well known fact:

Corollary 5.1. Let G be a d-regular graph on n vertices. Suppose that for
any S,T ⊂V (G), with S∩T =∅∣∣∣∣e(S, T ) − |S||T |d

n

∣∣∣∣ ≤ α√|S||T |.

Then all but the largest eigenvalue of G are bounded, in absolute value, by
O(α(1+log(d/α))).

Note 5.1. In particular, this means that for a d-regular graph G, λ(G) is
a log2d approximation of the “jumbleness” parameter of the graph.

Proof of Corollary 5.1. Let A be the adjacency matrix of G. Denote
B=A− d

nJ , where J is the all ones n×n matrix. Clearly B is symmetric,
and the sum of the absolute value of the entries in each row is at most 2d.
Observe that A and B have the same eigenvectors. The all ones vector
is an eigenvector for eigenvalue d in A and 0 in B; all other eigenvectors
correspond to the same eigenvalue in both A and B. Thus, for the corollary

2 A related result, showing that vertex expansion implies spectral gap appears in [3].
The implication from edge expansion is easier, and the proof we are aware of is also due
to Noga Alon.
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to follow from Lemma 3.3 it suffices to show that for any two vectors, u,v∈
{0,1}n: ∣∣utBv∣∣ =

∣∣∣∣ut dnJv − utAv
∣∣∣∣ ≤ α‖u‖‖v‖.

This is exactly the hypothesis for the sets S(u) and S(v).

Note 5.2. For a bipartite d-regular graph G=(L,R;E) on n vertices, if for
any S⊂R,T ⊂L, with S∩T =∅∣∣∣∣e(S, T ) − |S||T |d

2n

∣∣∣∣ ≤ α√|S||T |.

Then all but the largest eigenvalue of G are bounded, in absolute value, by
O(α(1+log(d/α))).

The proof is essentially identical to the one above, taking B =A− d
nC,

instead of B = A− d
nJ , where Ci,j is 0 if i,j are on the same side, and 2

otherwise.

The corollary is actually tight, up to a constant multiplicative factor, as
we now show:

Theorem 5.1. For any large enough d, and 7
√
d < α < d, there exist in-

finitely many (d,α)-jumbled graphs with second eigenvalue Ω(α(log(d/α)+
1)).

It will be useful to extend Definition 5.1 to unbalanced bipartite graphs:

Definition 5.2. A bipartite graph G= (U,V,E) is (c,d,α)-jumbled, if the
vertices in U have degree c, those in V have degree d, and for every two
subsets of vertices, A⊂U and B⊂V ,∣∣e(A,B) − d|A||B|/|U |

∣∣ ≤ α√|A||B|.

We note that such bipartite graphs exit:

Lemma 5.1. For c|d and α=2
√
d, there exist (c,d,α)-jumbled graphs.

Proof. Let G′=(U ′,V ′,E′) be a c-regular Ramanujan bipartite graph, such
that |U ′|= |V ′|=n. Let G=(U,V,E) be a bipartite graph obtained from G′

by partitioning V ′ into subsets of size d/c, and merging each subset into a
vertex, keeping all edges (so this is a multi-graph).

Let A ⊂ U and B ⊂ V . Let A′ = A, and let B′ be the set of vertices
whose merger gives B. Clearly e(A,B) = e(A′,B′), |B′| = d/c|B|. As G′ is
Ramanujan, by the expander mixing lemma∣∣e(A′, B′) − c|A′||B′|/n

∣∣ ≤ 2
√
c|A′||B′|,
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or: ∣∣e(A,B) − d|A||B|/|U |
∣∣ ≤ 2

√
d|A||B|.

The following inequality can be easily proven by induction:

Lemma 5.2. For i=0, . . . , t let ai be numbers in [0,22i ·N ], for some N>0.
Then (∑

ai2−i
)2

≤ 3N
∑

ai.

Proof of Theorem 5.1. Fix d, and
√
d < ∆< d. Set t= 1

2 log2( 3d
4∆), τ =∑t

i=0 4i = d
∆ < ∆. Let N be some large number and n = τN (this will

be the number of vertices). For i,j = 0, . . . , t set di,j = d
τ 22j +∆2j−i when

i,j < t or i= j= t, and di,j = d
τ 22j −∆2j−i otherwise. Note that in this case

d
τ 22j −∆2j−i≥2j(∆2j−∆2−i)>0. Set αi,j =2

√
min{di,j ,dj,i}.

Let Vi be subsets of size 4iN , and G a graph on vertices V = ∪t
i=0Vi

(hence, |V | = n). For 0 < i,j ≤ t construct a (dj,i,di,j,αi,j)-jumbled graph
between Vi and Vj (or (di,i,αi,i)-jumbled if i=j).

The theorem follows from the following two lemmata.

Lemma 5.3. G is (d,7∆)-jumbled.

Proof. It is not hard to verify that G is indeed d regular. Take A,B ⊂ V ,
and denote their size by a and b. Denote Ai =A∩Vi, Bi =B∩Vi, and their
size by ai and bi. We want to show that:

|e(A,B) − dab/n| ≤ 3∆
√
ab.

For simplicity we show that e(A,B)≤ dab/n+7∆
√
ab. A similar argument

bounds the number of edges from below. From the construction,
∣∣e(Ai,Bj)−

di,j|Ai||Bj |/|Vj |
∣∣≤αi,j

√
|Ai||Bj |, or:

e(Ai, Bj) ≤ di,jaibj/(4jN) + αi,j

√
aibj .

Summing up over i,j=0, . . . , t we get:

e(A,B) ≤
∑

di,jaibj/(4jN) + αi,j

∑
αi,j

√
aibj

≤ d/n
∑

aibj +∆/N
∑

aibj2−(i+j) +
∑

αi,j

√
aibj .∑

aibj =ab, so it remains to bound the error term. As ai, bi∈ [0,N ·22i], by
Lemma 5.2:

∆/N
∑

aibj2−(i+j) = ∆/N
(∑

ai2−i
)(∑

bi2−i
)

≤ ∆/N
(√

3N
∑

ai

)(√
3N
∑

bi

)
= 3∆

√
ab.
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It remains to show that
∑
αi,j

√
aibj ≤ 4∆

√
ab, and hence it’s enough to

show that:∑
2

√
d

τ
aibj22max{i,j} +

∑
2
√
∆2|j−i|aibj ≤ 4∆

√
ab.

Indeed, as i,j≤ t, and 22t<τ ,

∑√
d

τ
aibj22 max{i,j} <

√
d
∑√

aibj < ∆
√
ab.

Similarly, 2|j−i|≤2t<
√
τ <

√
∆, and so:∑√

∆2j−iaibj < ∆
∑√

aibj = ∆
√
ab.

Lemma 5.4. λ(G)≥∆(t+1).

Proof. Take x∈R
n to be −2−t on vertices in Vt, and 2−i on vertices in Vi,

for i<t. It is easy to verify that x⊥-1, and that ‖x‖2 =N · (t+ 1). Let M
be the adjacency matrix if G. Since -1 is an eigenvector of M corresponding
to the largest eigenvalue, by the variational characterization of eigenvalues,
λ(G) ≥ xtMx

‖x‖2 . Hence, to prove the lemma it suffices to show that xtMx≥
∆N(t+1)2. Indeed:

xtMx =
t∑

i,j=0

di,j4iN2−(i+j) − 4
t−1∑
i=0

di,t4iN2−(i+t)

=
d

τ
N

t∑
i,j=0

2i+j +∆N
t∑

i,j=0

1 − 4
d

τ
N

t−1∑
i=0

2i+t + 4∆N
t−1∑
i=0

1

=
d

τ
N
(
22(t+1) − 4 · 22t

)
+∆N

(
(t+ 1)2 + 4t

)
> ∆N(t+ 1)2.

6. Reflections on Lemma 3.3

6.1. Finding the proof: LP-duality

As the reader might have guessed, the proof for Lemma 3.3 was discovered
by formulating the problem as a linear program. Define ∆i,j = |(xi)tAxj |.
Our assumptions translate to:

∀1 ≤ i ≤ j ≤ k : |∆i,j| ≤ α
√
sisj,

∀1 ≤ i ≤ k :
∑
j

|∆i,j | ≤ dsi.
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We want to deduce an upper bound on |xtAx|. In other words, we are
asking, under these constraints, how big

|xtAx|
‖x‖2

≤
∑k

i,j=1∆i,j2−(i+j)∑
i 2−2isi

can be.
The dual program is to minimize:

α
∑

i≤j bi,j
√
sisj + d

∑
i cisi∑

i 2−2isi

under the constraints:

∀1 ≤ i < j ≤ k, bi,j + ci + cj ≥ 2−(i+j)+1

∀1 ≤ i ≤ k, bi,i + ci ≥ 2−2i

∀1 ≤ i ≤ j ≤ k, bi,j ≥ 0
∀1 ≤ i ≤ k, ci ≥ 0 .

The following choice of b’s and c’s satisfies the constraints, and gives the
desired bound. These indeed appear in the proof of Lemma 3.3:

∀1 ≤ i < j ≤ k, j < i+ γ, bi,j = 2−(i+j)+1

∀1 ≤ i < j ≤ k, j ≥ i+ γ, bi,j = 0
∀1 ≤ i ≤ k, bi = 2−2i

∀1 ≤ i ≤ k, ci = 2−2i−γ+1.

6.2. Algorithmic aspect

Lemma 3.3 is algorithmic, in the sense that given a matrix with a large eigen-
value, we can efficiently construct, from its eigenvector, a pair u,v∈{0,1}n
such that S(u)∩S(v) = ∅, and |utAv| ≥ α‖u‖‖v‖. (There is a small caveat
– in the proof we used a probabilistic argument for rounding the coordi-
nates. This can be easily derandomized using the conditional probabilities
method.) Taking into consideration Note 5.1, given a d-regular graph G
where λ(G) is large, one can efficiently find disjoint subsets S and T , such
that e(S,T )− d

n |S||T | ≥ c · λ(G)/ log d
√

|S||T | (for some constant c). It is
conceivable that this might be useful in designing graph partitioning algo-
rithms.
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