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We consider a simple abstract model for a class of discrete control processes, motivated in 
part by recent work about the behavior of imperfect random sources in computer algorithms. 
The process produces a string of n bits and is a "success" or "failure" depending on whether the 
string produced belongs to a prespeeified set L. In an uninfluenced process each bit is chosen by 
a fair coin toss, and hence the probability of success is ]L[/2 ". A player called the controller, is intro- 
duced who has the ability to intervene in the process by specifying the value of some of the bits of 
the string. We answer the following questions for both worst and average case: (1) how much can 
the player increase the probability of success given a fixed number of interventions? (2) in terms of 
IL[ what is the expected number of interventions needed to guarantee success? In particular our 
results imply that if ILl/2 n= 1/co(n) where c0(n) tends to infinity with n (so the probability of success 
with no interventions is 0(1)) then with O ( ~ ) )  interventions the probability of success 
is 1-o(1).  

Our main results ancl the proof techniques are related to well-known results of Kruskal, 
Katona and Harper in extremal set theory. 

1. Introduction 

A number  o f  recent  studies ([11], [12], [13], [4], [1]; see [31 for  a survey) con-  
cern the following p rob lem:  Suppose we have a per formance  analysis for  some 
randomized  algori thm. H o w  sensitive is the analysis to imperfections in the r a n d o m  
source? Similar questions can be asked for  any r a n d o m  process.  

F o r  instance consider the following discrete model  o f  control .  A n  uncontro l -  
led object  such as a t h rown  rock  or  a b o a t  floating moves  according to  some  r a n d o m  
process. A t  each t ime unit  we th ink o f  nature  as taking a r a n d o m  step (e.g. a gust  
o f  wind or  a wave) by sampling some distr ibution o f  possible steps. 

The  movemen t  o f  the object  is influenced by a player,  called the controller. 
This player  has a definite goal,  such as navigat ing the object to some destination. 
At  each t ime step the control ler  can make  one move  which he chooses f rom a given 
repertoire (e.g. he can change the angle between his sails and  the wind). A typical 
quest ion tha t  arises is:  wha t  resources (e.g., energy, time) does the navigator  need 
in order  to reach his goal?  

The  analogy tha t  we wan t  to draw here is between the pairs 
r a n d o m  source - -  uncontrol led movemen t  
imperfect  source - -  control led movement .  

The a forement ioned  references deal wi th  quest ions such as :  Given a quanti tat ive 
bound  on  the nonrandomness  o f  the source how much  does the behavior  o f  the 
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randomized algorithm driven by it diverge from the random case? What amount 
of nonrandomness will lead the algorithm astray, so that the desired witness is never 
(or almost never) found. These are completely analogous t o  questions such as: 
Given the amount of energy (or any other resources) that the controller has available 
how much can the controlled vehicle deviate from its random trajectory? What is 
the amount of energy that will (almost surely) guarantee that the controller can 
reach his goal? 

Let us review some models used previously to capture the behavior of im- 
perfect sources. In [11], [12], [13], [14], [1] an imperfect coin is modeled by a coin 
whose probability of heads is either 6 or 1 -6 ,  for some constant 0 < 6 <  1/2. Be- 
fore each coin flip the adversary sets the probability of heads, and may base the 
choice on the entire past history of the algorithm and previous coin flips. In [4] 
a more powerful adversary is postulated. The source provides random bits to the 
algorithm in fixed length blocks. Each block is selected according to a probability 
distribution chosen by the adversary, subject only to an upper bound on the proba- 
bility of any particular block. 

In this present paper we take a point of view that is much influenced by the 
analogy to problems of control we described. A sequence of n bits is generated by 
a source. Certain strings are "successes" and the others are "failures". The sources 
are random except that the player (or adversary, depending on your point of view) 
may intervene in some of them by deterministically deciding the outcome. The 
restriction comes in limiting the number of deterministic steps taken by the source 
in the course of the process. 

The set of successful strings defines a language L of n bit words. In an un- 
controlled process, the probability of success is just ILl/(2"). Of interest is how the 
probability of success can be altered by intervention. 

The questions we answer here are" 
1. How much can the player increase the probability of success given a fixed number 

of interventions? We give tight upper and lower bounds in terms of ILl. 
2. What is the expected number of interventions needed to guarantee success? We 

give a tight upper bound in terms of ILl. 
3. Questions 1 and 2 deal with bounds that hold for all languages L of a particular 

size. We also compute the expected value of these quantities over "random" 
languages. 

In particular, we note the following asymptotic consequences of our main 
results (Theorem 3.2 and Theorem 4.3): If ILI/2n=l/w(n) where w(n) tends to 
infinity with n (so that with no intervention the probability of success is o(1)) then 
with O(1/n log w(n)) interventions the probability of success is 1-o(1).  Further- 
more, the expected number of interventions needed to guarantee success is 
o(r log w(.)). 

Two models which are related to the one studied here are "bit extraction" 
and "collective coin flipping". In the collective coin flipping model introduced by 
Ben Or and Linial ([2]), the adversary has a fixed number of interventions and must 
choose the positions in which he intervenes in advance. In the bit extraction problem 
studied by Chor, et al. ([5]), the adversary not only must choose the positions advance 
but also must decide the values of those positions in advance. These variations in 
the power of the adversary seem to be critical; the results in each case are very 
different. A comparison of these and other models in given in the survey paper ([3]). 
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2. Notation and terminology 

Let B, denote the set of  strings over {0, 1} of  length n. B0 consists of  one 
string, 0. A subset L ~B~ is called a language in B~. If  L is a language in Bn and 
aEBm for m~_n then L(a) denotes the language in B,_,~ consisting of  all strings 
z such that a~EL. 

The i th character in string o" is denoted by a(i). The support o f  o-, supp (a) 
is the set of  positions that are 1. 

Consider a process that sequentially constructs a string of  length n from 
{0, 1}, where each bit is assigned 0 or 1 with probability 1/2. Given a particular 
language LC=B,, the probability that aEL for a string o" produced in this way is 
ILl~2". If  the process produces a string in L we call the outcome a success, otherwise 
it is a failure. 

Now consider the same process in the presence of  a player who is allowed 
to determine some of the bits. An influence strategy is represented by a function s 
from the set of  strings o" of  length less than n to {0, 1, .}.  The interpretation is that 
each successive bit produced by the process depends on the string o" produced thus 
far: the next bit is uninfluenced (randomly selected) if s ( a ) = ,  and is equal to 
s(a) otherwise. I f  a is a string with s ( a ) # ,  then we say s intervenes on a. An in- 
fluencedprocess is therefore specified by a language L in B, and an influence strategy 
s. The value of  the process val (L, s) is the probability of producing a string in L 
when applying strategy s. 

A sequence o- in B,, is said to be admissible with respect to a strategy s if  it is 
a possible outcome of the influenced process, i.e. for every prefix a(1), a(2) . . . .  , a(i) 
on which s intervenes, s(a(1), a(2) . . . . .  a(i)) = a ( i +  1). The strategy s is said to be 
k-bounded if  for every admissible string the number of  interventions that occurred 
is at  most k. The strategy s guarantees success if every admissible string is in L. 

3. Optimal k-bounded strategles 

Let L be a language in B~. We define v~(L) to be the maximum over all k- 
bounded strategies s of  val (L, s), i.e., Vk(L) is the probability of  success if  the best 
k-bounded strategy is employed. In particular vo(L) = ILl/2 ~. 

Lemma 3.1. Let L be a labelling o f  B,,  and k >= l. Then 

Vk(L[1])+vk(L[O]) }. vk(r) = max{vk_l(L[1]), 2 

Proof. The three terms of  the maximum correspond to the three options at step 1 : 
force a l, force a 0 or don't  intervene, i~ 

Two important examples are: 

Example3.1. Suppose L = B ,  [I]. Then vo(L)=l/2 and Vk(L)=l for k_~l since 
the strategy that intervenes at the first step by forcing a 1 guarantees a successful 
outcome. 

Example 3.2. Let Cn, t denote the language consisting of  all strings of  length n with 

at least t l 's  (a threshold language), and let c(n, t ) = l C . , , I  = J= , `  �9 It is easy to 
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show (using, for instance, Lemma 3.1 and induction) that an optimal k-bounded 
strategy is to force the first k bits to be 1. Then 

vk(C~,t) = {~ ( n - k '  t-k)/2~-k ff k k tt} 

since for k<n, C,,t[l  k] is isomorphic to C.-k, t-k-  
In this section we will establish a tight lower bound on Vk(L ) for any language 

L in terms of  ILl. We prove:  

Theorem 3.2. Let L be a language in B~. I f  t<-n is an integer such that 

ILl =~ c(n, t) 
then for all k>-O, 

v~(L) ~_ c (n-k ,  t-k)~2 ~-~. 

In particular Vk(L)=l for k~_t. 

Observe that this result is tight for threshold languages and thus the 'theorem 
can be interpreted as saying that among languages of  a specified cardinality the 
threshold languages result in processes that are the hardest to influence. 

We will actually prove a refinement o f  Theorem 3.2, that provides, for each 
s<_-2 ~ and k_~0, the minimum of  Vk(L) over all languages with ILl =s.  Theorem 
3.2 only does this when s=c(n, t) for some n and t. We begin by defining a sequence 
o f  languages 0 1 2 n B,,  B] . . . . .  B,  such that IBm[ = i  for  each i. 

Define the following total order on Bn: all strings having r l 's precede those 
with r - 1  l 's and for each r the strings having exactly r l 's are ordered by reverse 
lexicographic order: a< fl i f  a j <  flj where j is the last index in which they differ 
(so ai=fll for i>j). For  example, B4 is ordered by: 

1111 < 1110<  1101 < 1011 < 0 1 1 1  < 1100<  1010< 0110 

< 1001 < 0101 < 0011 < 1000 < 0100 < 0010 < 0001 < 0000. 

For  s-<2 ", the language Bg consists of  the first s strings under this order. 

Theorem 3.3. Let L be a language in Bn and s=[L[.  Then for any k_~0, 

v~(L) ~_ vk(Bg. 
S _ _  Note  that for s=c(n, t), we have / 3 , -C , . t  and Theorem 3.3 implies The- 

orem 3.2. 
The p roof  of  Theorem 3.3 is by induction on k. The basic idea is to use 

Lemma 3.1 to express vk(L ) as a maximum of  three terms and use the induction 
hypothesis and a technical lemma to show that one of  those terms is at least Vk(B~). 
The proof  depends heavily on the combinatorial properties o f  the sets B,~ and we 
begin with a review of  some o f  these properties (Lemmas 3.4---3.7), and a com- 
binatorial characterization of  Vk(B s) (Lemma 3.8). 

The sets Bg play a central role in extremal set theory, particularly the celebra- 
ted theorem of  Kruskal [10], Katona [9] and Harper  [8] (see also [7], [6]). It  is well 
known in this theory that Bg is obtained as follows : 

1) Let  t be the smallest integer such that s~-c(n, t+ 1). Then 
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2) For  k = t , t - 1 ,  ..., 1, let a k be defined as the largest number a 
for which 

s - c ( n ,  t + l ) -  z~ -~ �9 
J=k+X 

(Note if the left hand side is 0 then ak=k--1). Now define Ak={a: Isupp ( a ) l = t  
and {1 +ak+l . . . . .  1 +at} ~supp  (a) =c {1 . . . . .  a~, 1 +ak+z, ..., 1 +a,}~. 

Then we have, 

0 .1 )  B~, = C,.,.IU.4,U... UAI. 
The sequence {as. } constructed above from s is unique and its properties are 

summarized by the following well known: 

I_emma 3.4. Let n be a fixed positive integer. Then for each integer s<2 "  there is 
a unique sequence a,, a,_a . . . .  , a z such that 

( a n ) ' ( a ' - l ]  (~1 (i) s = t n ) - r t n _ l ) + . . . +  

(ii) n _--> a~ _~ a~_~ _~..._--> al _~0 

(iii) if  a j ~  n then a t >as . -x .  

This representation of  s will be called the n-binomial expansion of  s. The 
proofs of  the following two propositions are left to the reader. 

Proposition 3.5. Let 1 <=b<a~_2" and let 

(a.~ (a._l ~ (all) a = t n J + t n _ l J + . . . +  

(b.~ (b.-1 

be the n-binomial expansions. Then for any j~_ 1 

l=s - ~="j t i )" 

Proposition 3.6. Suppose s< 2"-  1 and 

s =  k n ) - r t n _ l ) + . . . +  

r t b._., (bll) s-I-1 =tnJ+tn_lJ+...+ 
are n-binomial expansions.,Let j be the smallest index such that either ax+z>as.+ 1 
or aj+l=n. Then bi=at,for i>j, b ~ = l + a j ,  and b l= i -1  for i<j. II 

(a.) (an_x] (all) Let s = n + t n -  1) + " "  + be the n-binomial expansion of  s and con- 

sider the set B~,[1]. 
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~y 0.1),  
B~[1] = C,,,+I[1]UA,[1]U ...UAI[1]. 

Now C.,~+l[1]=C.-a, t  and Aj[1]={tr[supp ( ~ ) = t - 1  and 

{aj+~, aj+2 . . . . .  at} ~ supp (o-) ~ {1, 2 . . . . .  a a -  1, aj+x, aj-+2 . . . . .  at}}. 

Hence 

+ 

Note  that this is not an n-binomial expansion, because of  the (al O 1] term. Observe 

also that B~[1] is an initial segment of  B._I  with respect to the total order that has 
been defined. 

A similar analysis shows that B.~[0] is the initial segment of  B._l  of  cardinality 

_ ( a . _ l - l ~  ( a . _ ~ -  -L .- ,  j+t +  11j. 
since a. - - l<n.  This is essentially an (n-1)-binomial  expansion (unless a l = 0  
in which case we replace ax -  1 by 0 ) .  

Now we define (a. 1) 
(3.2) co,(s) = IB.~[1]l = - t n - 2  + "'" + 1 + z ( a l  => 1), 

Observe that 
W._lW.(s) = IBm.Ill]I, 

o~._~t~.(s) = IB~[OI]I, 

/t._x w . ( s ) =  IB~[10]I, 

/4,-~ re(s) = IBI[O0]I, 
and for k<-n, 

We write co~(s) for CO,_k+lC%_k+2...C%(S ). We will need the following boring facts. 

Proposition 3.7. Let s be an integer between 1 and 2"-  1 with n'binomial expansion 

. J+ tn - ,J+""  + t'-J" Then 

(i) The s ta string in B. begins with a 1 i f  and only i f  aj=j where j is the 
smallest index with aj~j.  

(ii) The ( s + l )  ta string in B. begins with a 1 i f  and only i f  oa=0;  hence 
o9. ( s +  1) = o~.(s) + x(at = 0). 

(iii) The s th string in B~. begins with a 10 i f  and only i f  a1=1. 
(iv) ~n_10)n(S) ~---(.0n_l~n(S ) +z(ax = 1). 
(v) co,(s)>-m(s). 
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Proof. (i) In the partition of  B~ given by (3.1), the s tu string is contained in Aj 
where j is the smallest index with a ~ j ,  since A~ is nonempty if a~i .  The last 
string in Bg is the last string in Aj. By definition of Aj this is the string b with 
supp(b )={a j - ( j - -1 ) ,a j - ( j -2 )  ..... a~, l + a j +  x, l+a j+z  . . . .  , l+a,}  and hence 
1 C supp (b) if and only if aj =j.  

( b, fb._l 
(ii) Let s + l = t n J +  + <,o n inom ., .o,ro o~ Oy< , 

the ( s + l )  th string begins with a 1 if and only if bx= j where j is the smallest index 
with bj~j. By proposition 3.6, j is the first index such that either a~+a>a j+ l  
or aj+l=n. If a~=0, then the first such index has aj=j -1  so bl= j and i f  al_~l, 
the first such index has a ~ j  so b~_j+l.  

(iii) Let j be the smallest index with a ~ j .  If a~>j then by (i), s begins with a 0. 
If aj=j, then the s th string begins with j l's and the j + l  tu element is 0. 

(iv) The successor of 10x is 01x. Hence 

/x,_ 1 co,(s) = og,_l/x,(s)+x(d h string begins 10) 

= co,_llx,(s)+x(al = 1), 
by (iii). 

(v) Every string lx precedes 0x in the order. 

Lemma 3.8. For O<=k~_n, vk(B~)=co~(s)/2 ~-~. 

Proof. By induction on k and n - k .  If k=0 ,  then vo(B])=s]2"=co~ ". If 
n-k=O then vk(B~)=Z(s>O)=co~(s)/2 "-k. For k and n - k > O  we have, by 
Lemma 3.1 and the induction hypothesis: 

vk(B:) = max {vk_x(B:[1]), vk-x(B:[0]), (vk(B~[1])+ vk(B: [0]))12} 
k - 1  k + l  k n - - k  = max {co~(s), o~._,(#x.(s)), co. ( s ) + o ~ . _ , ( # x . ( s ) ) } 1 2  . 

Now by Proposition 3.7 (v) and the fact that co,_lk-1 is a nondecreasing function the 
first term is at least the second term. By repeated application of Proposition3.7 (iv), 

k ..< k c0,_ x/x, (s) =/x~_k co, (s). Hence 

so co~(s) is the largest of the three terms and vk(B~)=o~(s)/2 "-k. II 

Proof of Theorem 3.3. Let s~=lL[l]l so=lL[0]l and assume without loss of  gene- 
rality that sly_So. By Lemma 3.8, vk(B~)=co~(s)/2 "-k, so we need to prove 

(3.4) Vk(L) ~= co~(s)/2 ~-k. 

We proceed by induction on n. For n = l ,  theresult is trivial. So let n>-I 
and assume the result holds for n -  1. Now by Lemma 3.1, 

vk(L) = max (vk_l(L[1]), vk_x(L[0]), (vk(L[1])+ vk(L[O]))12}. 

By the induction hypothesis 
~k_l  ( L  [ l l )  ~ k - a  n - k  co._1(s,)/2 

( ]) o~._1(s0)/2 v~_l L[O ~= k - 1  .-k 
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and 
(~(L  Ill) + ~ ( L  [0]))/2 ~ (O, Ll(S,)  + o~.*_ 1 (s0))/2 "-~. 

We need to show that one of  these three quantities is at least ~ ( s ) / 2  "-k. 
It suffices to prove 

I.emma 3.9. Let n, k, s, s o and s~ be nonnegative integers satisfying: 

O) n>- k, 

(it) 2 "-~ ~ s t  -->So --> 0. 

Oii) So+St >- s, 

(iv) ~ - l ( s O  < o~(s). 
Then 

co.-l(s0 +co.-alSo) -~ ~ ( s ) .  (3.5) k 

The statement of  this lemma resembles the cascade inequalities of  Katona 
[9] (see also [6]), but we see no way to deduce the lemma from these results. The 
proof  does use similar ideas. 

Proof. We proceed by induction on k. The difficult part of  the proof  is the basis, 
k = l ,  which we state as a separate lemma. 

Lemma 3.10. Let n, so, sl and s be integers satisfying so+s~>=s, 2"-l>-sl~_so>-O, 
and s~< o~,(s). 

Then 

0.6) og,_i(s0+o~,_~(So) => o~,(s). 

Assuming this for the moment, we prove the induction step of Lemma 3.9. Suppose 
k > l  and that  hypotheses (i), (it), (iii), and (iv) hold for n, k, s, So and sl. Let 
s'=con(s), 4=o~ . , l ( so )  and s~=co._l(sl). 

Claim. Hypotheses (i), (it), (iii), and (iv) hold for n - 1 ,  k - 1 ,  s', do and ~.  

It is trivial that (i) holds. By applying the function co._t to each term in the ine- 
quality (it) for n, st and So we obtain the corresponding inequality for n -  1, ~ and 
s'0. To establish (iii), note that by (iv) for n, k, s, st and so, COk.---~(SL)<CO~(S)= 
=o~'~'q(w~(s)) so by the monotonicity of  co, co,(s)>s t.  Thus n, s, st,  So satisfy 
the hypotheses of  Lemmas 3.10 and we conclude co,_l(s~)+co,_l(so)>-co,(s). Fi- 
nally, for (iv) we have ~- ~ _ k-t k _ k-i �9 co._dsO-co._l  (sO<o~.(s)-co._ds ). 

By the claim and the induction hypothesis we conclude: 

o~-t/s '~• ~-t/~ > co.~:l(s') n - i t  13 T n - 2 t o O )  - -  

which is equivalent to 
k k ~o._l(s0 +o~._l(s0) -~ co~.(s), 

as required to prove Lemma 3.9. Thus it remains to prove the basis case, Lemma 3.10. 

Proof of Lemma 3.10. By the monotonicity of  co we may assume that So=S-S t. 

(a~, ,a,_, , (all) Let s = ( n J + i n -  1l + . . .  + be the n-binomial expansion. We proceed by in- 
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duction on so. The basis for the induction is so=gn(s)+l  and s l=co . ( s ) - l .  
We must show 

o,~_,(~,(~)+ 1)+o,n_,(o,~(,)- 0 _~ o~(,). 
Now, 

o,~(,) = ~ _ , ( , o ~ ( s ) ) + o ~ . _ ~ ( o , n ( , ) )  

= co._l(Un(s))+oJn_i(oJ~(s))+x(a i = 1) 

by Proposition 3.7 (iv). So it is enough to show 

(3.7) o , . _ ~ 0 , o ( , ) + 1 ) + o , . _ 1 ( ~ . ( , ) - 1 )  _-> , o . _ ~ ( ~ . ( , ) ) + o , . _ , ( o , ~ C , ) ) + z ( a ,  = 0. 

As noted in (3.3), the n-binomial expansion of /q(s)  is 

IXn(S) = (an-~ l  l ) +  (an-221) + ... +(a~ 21) + (max (a~--l, 0)) 

so by Proposition 3.7 (ii), 

oJ._i(/x.(s)+ 1)--og._x(#x.(s)) = z(az = O)+;~(a~ = 1). 

If  a , = 0  then since co,_,(c%(s)-l)_->co,_x(co,(s))-l, (3.7) holds. If ax_~l, 
then 0.2) gives 

oJn(s)-1 =(anC;)+(a~n-i_.S1}+...+(a=ll ) 
and since a~>a 1 we have a2-1->l ,  so Proposition 3.7 (ii) gives to._t(to.(s))= 
=~o,_l(co~(s)-1) and again (3.7) holds, proving the basis step. 

Now for the induction step. We may assume 

Let 
/t.(s)+ 1 < so ~- s, < con(s)- 1. 

(b,-1) (b~-z) 
~, = [n_  lJ +l , ,_2J + ..- + (bl ' } 

= I'~-*~ 
,o 

be n-binomial expansions. If  ~o~_t(s o -  1) +con_x(s 1 + 1)=<con_l(s0) + to._l(s,), then 
we can apply the induction hypothesis to prove (3.6). Hence assume o9._1(s 0 -1)  + 
+oan_l(s1+l)>cO~_l(sO)+Co~_l(s O. Then the s~ h string of B._ 1 must begin with 
a 0 and the ( s t+ l )  ~h string of B._~ begins with a 1. By Proposition 3.7 (i) and 
(ii), b ,=0  and ci#i for all i<n. 

Case i. cx>0. Let j be the largest index such that c~>bj. Define 

(b.-1) Ibn-2~ (bj+l 
s~ = t n _  l J - t - tn_2J- I - . . . - I - t j _ l  - l J - I - (7) - I - . . .  _{_ (~l) 

f~.-,)_(~.-.)_ • 
4 = t n -  1)-~ t n - 2 )  T "'" T t j + l )  + ( ~ 1 +  "'" + (bl') �9 

Then these are n-binomial expansions and ~ > s , ,  So>S~. We also claim that g0 >/xn (s). 
Let k be the largest index such that ck#ak--1. Then Ck>ak--1 since otherwise 



278 D. LICHTENSTEIN, N. LINIAL, M. SAKS 

Proposition 3.5 would imply so<p.(s). If k>j then Proposition 3.5 implies s o p,(s) 
as required, so assume c i=a i -  1 for all i>j. Since cj< cj+l, we have cj< a j+ l -  1. 
Now ( ; t )+ .... + ( j , ) .< (c j J - l )  (aj --1) <= +) . Also since st<c%(s) then by Pro. 

position 3.5, 

(b 11 ) (bj+l"l (an 1) (aj+~-l] 
"-- +""  + [ j + l )  -<- -- + ' ' "  + (  j + l  ) 

SO 

*;<[ , , - l )+ . . .T t  j+l + +) ~o,~ 

which implies s~>g,(s) as claimed. Now apply induction to get 

(s) < (~)+~o (s~) (s,) ~-co (*0) (D. = (.0. n = (Dn . �9 

Case ii. c1=0. Let j be the first index such that cj>j- 1. Since cj~j, we have 
cj>=j+l. Then 

= ( ~ . - , ~ ,  (~.-;~+ 

re(s) >- in- l) ~ in-2) + "'" + - 

= [n_l)+tn_2)+...+l,j+l)+( j 

and we must have c~ = a i -  1 for i>j and cj =aj. 
Thus 

(a.-1- I~ (a._~- 
S o = [  n - 1  ) + [  n - 2 1 )  + .(aj+l-- 

Now 

s~ = s_so = (an)+ . (aj+,] a, a,_~ 

((a.nl_l 1) + (a.n~_2 l) + .(aj+l--1] (aj)) -- . . .-r[ j + l  )+  

since an ---- n. 

binomial recurrence 

. . . .  

= [ n _ l ) +  .,. [ J ) - r U - 1 ) - c " "  

Note this is a valid (n-1)-binomial expansion so by (3.2) and the 

c o . _ ~ ( s 0 ) + o . , ~ ( s O  = co.(s) .  
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(c~- 1) 
Subease b. s 0 - p ,  ( s ) > [  j _  1 J" Then let h be the smallest index such that c j - h  > 

>bj_ h (this holds or h = j - 1 )  and define 

, = (Cn-1)+ , (c~+x) . ( c j -1 )  . (c~-2) ( cj,--h 

s; = I n - I ) + " ' +  1] + ( j - h ) "  

Then s~+s~=s, and 
( q - - h )  , 

p. (s) < s o -  [ j _ h ) -< So < so 

so we may apply induction to obtain 

~on_l(s;)+co~_1(sO >- O~n(S). 

Now the expressions for ~ and s~ above are (n-1)-binomial  expansions. 
Applying (3.2) the binomial recurrence and the previous inequality yields 

~on-l(s0)+o~_1(sl) = coo_l(s;)+o~_~(s~) _~ ~o~(s). l 

This concludes the Proof  of  Lemma 3.10, which in turn completes the Proof  
of Lemma 3.9 and Theorem 3.3. 

We conclude this section by noting an upper bound on Vk(L). 

Proposition 3.11. For any language L in B~, Vk(L)~ ILl~2 ~-k. 

Proof. By induction on k. For  k = 0 ,  the inequality is an equality by definition. 
For k > 0 ,  Proposition 3.1 and the induction hypothesis yield, 

vk(L) = max {vk_x(L[O]), vk_j (L[I]), (Vk(L[O])+ vk(L[ll))/2} 

~_ max {IL [011/2 k, IZ [111/2 n-k, (IZ [0]l + IZ[1]l)/2 ~-~} 

= ILl/2 ~-~. 1 

4. The expected number of  interventions needed to guarantee success 

Let L be a language and consider strategies that guarantee that the string 
a produced is in L. For  a strategy s, let e(L, s) be the expected number of  interven- 
tions that occur when running strategy s. Let e(L) be the minimum of  e(L, s) over 
all strategies s. In this section we find the maximum of e(L) given ILl. 

We begin with a simple inductive characterization of  e(L)" 

Lemma 4.1. Let L be a language in B,. Then 

e(L) -- rain {1 +e(L[1]) ,  1 +e(L[0]) ,  (e(L[1])+e(L[O]))/2}. 

Proof. The three terms in the minimum correspond to the three choices at the first 
step: force a 1, force a 0, or don' t  intervene. 1 
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Let d(n, t) denote 2" minus the sum of the largest t binomial coefficients, i.e, 

_ t ( n + t ~ l ) / ~ l  {n~ 
d(n, t) = 2 " -  2; I .I 

j=[(n-t+l)]2] ~J)" 

We need the following result, which can be proved easily by induction: 

Proposition 4.2. d(n, t) is the unique solution o f  the recurrence 

f (n ,  t) = f ( n - 1 ,  t - 1 ) + f ( n - 1 ,  t + l )  n > t _~ 1 

with the initial conditions 
f (n ,  O) = 2" 

f (n ,  n) = 1 

f (n ,  n+ 1) = 0. 

The main result of this section is : 

Theorem 4.3. Let L be a language in B n. I f  }L}~=d(n, t) then e(L)<=t. Furthermore, 
for  each n and t there is a language D~,t with IOo,,I =d(n, t) and e(D.,t)=t. 

Proof. For positive integers n and real numbers t, 0~_t-<n+l, define 

~k(n,t)= if t >  " 

It is easy to see that ~b(n, t) is a nonincreasing function of t and ip(n, 0)=2 ~, 
~k(n, n ) = l  and lp(n, n + l ) = 0 .  We will show that for integers t ~ 0  

~(n~O = a(n, 0 

from which the theorem follows. 
We first show that ~p(n, t)>=d(n, t) by constructing the family of languages 

D.,, in B. promised by the theorem. Define D.,o=B.,  D.,.={I"}, and D.,.+I=~. 
For 1 ~t<-n, defined D., t inductively by 

Dn, t[1 ] = Dn_l,t+l, 

D.,,[0] = D . -1 , , - 1 .  

Then ID.al satisfies the recurrence in Proposition 4.2 so [D..,[ =d(n, t). 
To show e(D.,t)=t we proceed by induction on n. The basis, n = l  is immediate. 
The induction step follows from Lemma 4.1, which yields e(D.,t) =rain {t+2, t, t}=t, 

D.,t has the following explicit description: a string b is in D.,t if and only 
if for some initial segment of  b the number of  l 's exceeds the number of  O's by at 
least t. 

Next we want to show that ~(n, t)<-d(n, t). By Proposition 4.2, it would 
suffice to show that 

~b(n, 0 -~ ~k(n-- 1, t +  1)+~b(n-  1, t--  1) 

holds for all integers t with l~_t<=n. We begin with a weaker inequality. 
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Lemma 4.4. For all real t such that O~_t~_n, 

r  0 -~ max ~k(n-- 1, t+u)+~/(n--1, t - u ) .  
0_~u_~min(t, 1) 

Proof. Let L be a language in B, with e(L)~_t and ILl maximum. Then 

(4.1) ~k(n, t) = ILl = IZ[1]l+lZ[0]l 

~_ ~,(n- 1, e (L[ l l ) )+~(n-  l, e(L[0])) 
by definition o f  ~.  By Lemma 4.1, 

t = e(L) = rain {1 +e(L[1]),  1 +e(L[0]) ,  e(L[O])+e(L[1])} 

decreasing function o f  u for O<-u ~_ t. 

Proof. By induction on n. For  n = l ,  

if  
if  O < t  ~ _ 
if  l < t  ~ _ 

so (i) holds. Also if( l ,  t ) = 2 - t  for 0_~t_~2 so (ii) and (iii) hold. 

and so, 
e(L[1]) _~ t - - l ,  

e(L~OJ) _~ t - l ,  
e(L[O])+e(L[1]) ~_ 2t. 

Assuming, without loss of  generality, e (L [1]) _-> t, and setting e(L[1])=t+v, 
e(L[O])=t-u we have u<_-min (1, t, v). Hence by (4.1) 

~b(n, t) a ~b(n-1,  t+v)+~, (n -1 ,  t - u )  

~_ ~ k ( n - - l , t + u ) + ~ ( n - - l , t - - u )  

for some 0_~u~_min (1, t). II 

Now ~(n, t)~_d(n, t) would follow from Lemma 4.4 and Proposition 4.2, 
if we can show that for integral t, ~ ( n - 1 ,  t+u)+~k(n-1,  t - u )  is maximized for 
0<=u_~l by u = l .  To do this it would be enough to show that, for fixed n, r  t) 
is a eonvex function t. This, however, is not  true. To get around this we introduce 
the function ~(n, t) to be equal to ~b(n, t)  if t is an integer and to be piecewise linear 
on each interval [t, t + l ]  for fixed n. Precisely 

~b(n, 0 = q~(n, l t l ) ( I t l - t )+r  [tl)(t-[tl) 
where [tl denotes the greatest integer ~_t and [tl denotes the least integer _~t. 

We now complete the Proof  of  Theorem 4.3 by using induction on n to prove 

Lemma 4.5. 
(i) ~b(n, t)=d(n, t) for all integers l ~_t~_n 

(ii) ~(n, t)<=$(n, t) for  all real t, O~_t~_n+ 1 
(iii) ~(n, t) is a convex function o f  t, i.e., $(n, t+u)+$(n ,  t--u) is a non- 
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Now assume n >  1 and that (i), (ii) and (iii) hold for n - 1 .  By Lemma 4.4, 
and (ii) and (iii) for n - I ,  we have that for l<=t<=n 

(4.2) $(n,  t) <- max ~ ( n - 1 ,  t+u)+~b(n-1, t -u)  
0. ,gu~a 

max ~b(n-l, t+u)+6(n-1, t -u)  

= $(n- -1 ,  t +  1 )+~(n- -1 ,  t - l ) .  

I f  t is an integer then by definition of  ~ and (i) for n = 1 we get 

~k(n, t) >-_ d(n-1, t+ l)+d(n-1, t - l ) .  

Proposition 4.2 yields ~k(n, t ) =  Since we have already established ~(n, t)~d(n, t), 
=d(n, t), establishing (i). 

To prove (ii), we need to consider two cases. 

Casea .  O<=t<=l. Then 

~(n,  t) = (1-- t )~(n,  O)+t~(n, 1) 

and 

= ( 1 - 0 2 " + t ~ ( n ,  1) = (1-t)2n+td(n, 1) 

~k(n, t) ~ max O(n--1, t-u)+O(n--1, t+u) 
0 ~ u ~ t  

~_ max ~ ( n - 1 ,  t -u)+~(n-1 ,  t+u) 

= 6 ( n - l ,  0 )+~b(n-1 ,  20 

= 2 " - l + ~ b ( n -  1, 2t). 

I f  t<=l/2 then 2"-a_~(1- t )2"  and ~(n-l,2t)=2tC/(n-1, 1)=2td(n-1, 1) 
which is less than or equal to td(n, 1) when n_~2. If  1/2<t_~l ,  then 

2 " - 1 + ~ ( n - 1 ,  2t) = 2"-1 + ( 2 - 2 t ) ~ ( n - - 1 ,  1 ) + ( 2 t - l ) ~ ( n - 1 ,  2) 

= 2"-l+(2-2t)d(n-1, 1)+(2t-1)d(n--1, 2) 

I ] 
= 2 ~ - 2 t  - -  1 

which is less than or equal to ~(n,  t). 
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Case b. l<-t<=n. Let a=[q  and write t = a + 2 .  Then by (i) for n, 

~(n, a+2)  = (1-2)~b(n, a)+2ff(n, a +  1) 

= (1 -2 )  d(n, a)+2d(n, a+ 1) 

while by (4.2) (i) for n -  I, and Proposition 4.2, 

~p(n, a+2)  ~_ ~ ( n -  1, a + 2 - 1 ) + ~ ( n -  l, a + 2 +  1) 

= (1 - - 2 ) ~ ( n -  1, a -  1 ) + 2 ~ ( n -  1, a) 

+ ( 1 - 2 ) i f ( n -  I, a +  1)+ 2 ~ ( n -  1, a + 2 )  

= ( 1 - 2 ) ( d ( n -  1, a - l ) + d ( n -  1, a+ 1)) 

+ 2 ( d ( n - 1 ,  a)+d(n-1, a+l)) 
= (1-2)d(n ,  a)+2d(n, a+ 1), 

establishing (ii) in this case. 
Finally to show that ~b(n, t) is convex it is enough (by piecewise linearity bet- 

ween integers) to show ~(n, t - 1 ) + ~ ( n ,  t+l)_m2~(n, t) for integral l~_t~_n. 
By (i), this is equivalent to 

d(n, t -1)+d(n,  t + l )  _~ 2d(n, t) 
o r  

d(n, t - 1 ) - d ( n ,  0 ~- d(n, t)-d(n, t + l )  

which is obvious from the definition of d(n, t). II 

5. Random languages 

In the previous sections we obtained tight bounds on the quantities vk(L) 
and e(L) for arbitrary languages. The bounds are "worst case" in the sense that 
they hold for any language. In this section we investigate the behavior of vk(L ) 
and e(L) for random languages in B,. We consider the distribution on languages 
of B, which for fixed p independently assigns each string b to L with probability p. 
We denote this distribution by RL(n;p). If L is chosen from RL(n;p) we write 
L.-. RL (n; p) and say L is random with parameter p. 

We define E(n,p) to be the expected value of e(L) where L~,RL(n;p). 

Theorem 5.1. For integers n~_l and 0_~p~_l 

E(n,p)~_2(1-p)/p, 

and there exists an e(n)>0 such that for O<p<e(n), 

E(n, p) ~_ log 1/p. 

Proof. Let L be a random language in B, with parameterp. With probability (1 -p)~", 
L is empty and so e(L) is, by definition, n + l .  So we consider random languages 
subject to L being nonempty and analyze the strategy that intervenes at a step only 
if one of the possible outcomes guarantees a failure. 
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Let E'(n, p) be the expected number of  interventions using this strategy on 
a random language L conditioned on L nonempty. Now the probability of interven- 
tion at step 1 is equal to 

prob {t[1] = 0 orL[0] = 0 ]L r 0} 

= 2(I--p)W-* ( I - - ( I -  p)2"-*)/(I--(I--p)~") 

= 2(1 -p)"- ' / (1  +(1 _p)2--~). 

Whether or not an intervention occurs, the problem is reduced to a random 
nonempty language in Bn_ t. Hence 

E'(n, p) = E ' ( n -  1, p)+2(1 -p)2"-1/(1 +(1 _p)W-t) 

n 

e ' ( , ,  p) = 2 Z 

From this we obtain 
n 

E(n, p) -- (1 -p)2"(n+ 1)+(1 - ( 1  -p)~")2 Z (1 -p)~'-~/(1 +(1 _p)2~-,). 

The bounds in the theorem are obtained from this by routine analytic esti- 
mates, il 

Next we want to investigate Vk(n,p), defined to be the expected value of 
Vk(L) where L..~RL(n; p): Since we can always choose not to intervene at step 1 
we have 

Vk(n, p) >- Vk(n-- 1,p). 

Thus, Vk(n,p) is monotone and bounded as a function o f n  so lirn Vk(n,p) ex/sts; 

call it Vk* (p). We will prove: 

Theorem 5.2. For all p< l and k>-O, Vk*(p)<l. 

In other words, a bounded number of interventions is not enough to almost 
surely produce a success. 

On the other hand, since Vk(n,p)~l--(1--p) k (using the strategy that inter- 
venes in the last k steps), if k(n) is any function that goes to infinity with n then 
l i fn  Irk (,)(n, p) = I. 

Lemma 5.3. For any k and p, 
V~ (p) ~_ p2 k. 

Proof. We show that for all n, Vk (n, p)<=p2 k. Vk (n, p) is the expected value of Vk (n, p) 
where L is chosen from RL(n; p). Now by Proposition 3.11 E(v~(L))<=E([L[/2"-k)= 
=p2 k. II 

Proof of Theorem 5.2. Let h(L) be the minimum number of interventions that 
guarantee a success. Let ~(n, k,p) be the probability that h(L)<=k if L...,RL(n; p). 
Trivially ~(n, 0 ,p )=p  2" and ot(n, n, p)= l - ( 1 - p )  ~". The result we want follows 
from two lemmas. 
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Lemma 5.4. For any n>-m>-k~_O and 0~p~_l ,  

Vk(n,p) _~ 1 --(1 -2ke(rn,  k,p))2 -=. 

I.emma 5.5. For fixed k and p< 1, 

lira ct(n, k, p) = 0. 
t l~oa  

To deduce the theorem, note that Lemma 5.5 implies that we can find m 
such that ~(m, k , p ) < 2  -~. Then Lemma 5.4 implies that for any n~_m, Vk(n,p) is 
bounded away from 1, so V*(n,p)< 1. 

It remains to prove the lemmas. 

Proof of Lemma 5.4. Let L be a language in Bn and consider L '  ~B, -m with L" = 
= {aEB,_mlh(L[a])<=k}, i.e., a is in L" if, starting from a, a string of  L can be forced 
using at  most/~ interventions. I f  L is random with parameter p, then L" is random 
with parameter ~(rn, k,p). By Lemma 5.2, the probability of  producing a string in 
L' using k interventions is at most 2k~(m, k,p). Hence with probability at least 
1-2k~(rn, k,p), the first n - m  bits yield a string not in L '  which means that in 
the last m bits there is a nonzero probability of  producing a string not in L even 
with k interventions. This probability must be at least 2 -m. Thus 

as required, l 

Vk(n,p ) <_- 1 --(1--2k~(m, k,p))2 -m 

Proof ofLemma 5.5. We first obtain a recurrence for ct(n,k,p). Success for L is 
guaranteed by k interventions if  and only if  k - 1  interventions guarantee success 
for either of  L[1] and L[0] or k interventions guarantee success for both of  them. 
Thus 

(n, k, p) = ~ (n - 1, k, p)2 + 2~ (n - 1, k - 1, p) (1 - ~ (n -- 1, k, p)). 

Now we show that ~(n, k ,p ) - -0  as n--~o by induction on k. For  k = 0 ,  
~(n, 0 , p ) = p  2" which tends to 0. Now let k > 0 .  By induction, for any 8>0 there 
is an index n ( k -  1, 8) such that ~(n, k -  1, p)<-e for n ~_n(k- 1, e). So for n -  1 
>=n(k-- 1, 5) we have 

(5.1) ~(n,/~,p) ~_ ~(n-  1, k,p)~+2~(1 - ~ ( n -  1, k,p)). 

Let fl (n, k, p) = 1 - ~ (n, k, p) then we get that  for n _~n ( k -  1, 8), 

I~(n, k, p) ~_ ( 2 - 2 8 - ~ ( n -  1, ~, p ) )p (n-  1, k, p). 

Now if ~(n- l , k ,p )~_l -38  then for n>n(k - l ,8 )  

~(n, k, p) -> (1+ 8)/~(n- 1, k, p) 

so since f l(n(k- l, 8), k, p)>O, eventually fl(n,k,p)>-l-3~, i.e., ~(n,k,p)<_38. 
Once this happens, then (5.1), implies that  for a<  1/9 that  a(n, k,p) stays below 
3~. Since 8 can be taken arbitrarily small, this shows that lirn ~(n, k , p ) = 0 .  I 
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6. An open problem on generalized influence strategies 

We conclude this paper with a discussion of  a generalization o f  the influence 
strategies studied above. We have assumed a model where the value of  an influenced 
bit is completely determined by the player. More generally, we can look at strategies 
where the player can only impart  a limited amount  o f  bias to the influenced bits, 
i.e. influencing a bit towards 1 increases the probability o f  a 1 to 1/2+n. This more 
general influence process is specified by a triple (L, s, ~) where L is a language, s a 
strategy and ~ a fixed number indicating the bias of  each influenced bit. (The case 
we have considered is e = 1/2, which we call a pure influence process.) We define 
val (L, S, e) to be the probability that the process produces a word in L. 

It  is natural to ask if  the results of  Section 3 generalize to partial influence 
processes. Let  Vk(L, ~) be the maximum of  val (L, s, 8) over k-bounded strategies s. 
We have seen that for 8=1/2  and any k, the "hardest"  languages to influence are 
threshold languages and the  "easiest" are languages where membership is decided 
by a small number o f  bits. 

First of  all it is easy to show that for any 1-bounded strategy. 

val (L, s, ~) = ILl + 2~ (val (L, s ) - I L l )  

and hence the value of  the optimal 1-bounded strategy is linearly related to 8. Hence 
the results of  Section 3 for k = 1 generalize to the case of  arbitrary 8. 

However the results of  Section 3 do not  generalize when k >  1. Consider the 
case j = n .  Then the model is equivalent to the slightly random source introduced 
in [11]. Suppose, for example, that ILl =2n-L Then for any constant e>0 ,  since 
we can bias each toss by e we can virtually guarantee success if  L is a threshold 
language. In fact, it was observed in [1] that threshold languages are the easiest to 
influence in this case. I f  L=Bn[1], our influence is still limited to 1/2+e since 
only the outcome of  the first bit matters, and [11] prove that this is the hardest 
language to influence. Hence for small ~, the hardest language to influence for k = 1 
becomes the easiest for k = n  and vice versa! 

We do not know what languages are the hardest to influence when 8 is small 
and k is somewhere between 1 and n and it would be interesting to understand how 
the transition that occurs. 

Acknowledgement. We thank Noga Alon for useful discussions regarding Theorem 
5.2, and a referee for helpful suggestions. 
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