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A Lower Bound on the Area of Permutation Layouts I 

Alok Aggarwal,  2 Mar ia  Klawe, 3 David  Lichtenstein, 4 Na than  Linial, 5 
and Avi Wigderson 5 

Abstract. In this paper we prove a tight f~(n3) lower bound on the area of rectilinear grids which allow 
a permutation layout of n inputs and n outputs. Previously, the best lower bound for the area of 
permutation layouts with arbitrary placement of the inputs and outputs was ~(n2), though Cutler and 
Shiloach [CS] proved an f~(n 25) lower bound for permutation layouts in which the set of inputs and the 
set of outputs each lie on horizontal lines. Our lower bound also holds for permutation layouts in 
multilayer grids as long as a fixed fraction of the paths do not change layers. 
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1. Introduction. A rectangle R of a rectilinear grid is said to contain an n- 
permuta t ion  layout  if 2n distinct nodes of R can be labeled as n inputs and n 
outputs  so that for any one- to-one mapping  z f rom a subset of  the inputs into the 
set of  outputs,  we can find a set of  node disjoint paths inside R joining each input x 
in the domain  of  z to the output  r(x). We refer to z as a permutat ion,  and to the 
node disjoint paths as the rout ing of ~. Figure 1 shows an example of  such a 
routing. 

Permuta t ion  layouts have proved extremely useful in the layout  of  printed 
circuits and large-scale integrated chips, and hence have received substantial 
at tention (see I-CS], [ K K F I ,  I-$23, and [TK]) .  Examples of rectangles with O(n 3) 
area which contain n-permutat ion layouts  (and simple alogori thms for finding the 
routings) were given by Cutler and Shiloach [CS],  who also proved that  if all the 
inputs lie on a single horizontal  line, and all the outputs  on another,  then the 
rectangle must  have area at least f~(n25). 

In this paper  we prove that  Cutler and Shiloach's upper  bound  is asymptotical ly 
optimal by giving an f~(n 3) lower bound  on the area of rectangles containing 
n-permutat ion layouts  (a sketch of  the p roof  of  this result appeared in our  
conference paper [ A K L L W ] ) .  Here we actually prove a stronger result, namely 
that multi layer grids which contain n-permutat ion layouts  also require f~(n 3) area, 
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Fig. 1. A routing of a permutation. 
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as long as some (arbitrarily small) fixed fraction of the paths in each routing do not 
change layers. The restriction that a fixed fraction of the routing paths do not 
change layers is essential, since the standard crosspoint switch (see Figure 2) is a 
two layer n-permutation layout with O(n a) area, in which every routing path 
changes layers once. This area is asymptotically optimal (Theorem 5.2). 

In the crosspoint switch it is easy to see that the grid nodes at which the path 
layer changes occur depend on which permutation is being routed. Paterson l-P] 
gives a two-layer grid with O(n a'5) area containing an n-permutation layout in 
which all the paths in the routing change layers exactly once, and these layer 
changes occur at a fixed set of n grid nodes, independent of the permutation being 
routed. Paterson's result is the best upper bound known currrently for an n- 
permutation layout in which each path changes layers at most once, with all layer 
changes occurring at some fixed set of O(n) nodes. However, as was pointed by our 
referee, it is possible to achieve an O(n z) area 2-layer n-permutation network, in 
which every path changes layers exactly twice with layer changes occurring at a 

fixed set of 2n nodes, by using (essentially) a (x/~, x/~, x/n) Bene~ network [B]. We 
sketch this construction at the end of Section 5. 

The results in this paper imply lower bounds on the area needed for embedding 
n-node graphs of bounded degree in the k active layer model, a model which 
represents the layout of printed circuit boards with k layers. Upper bounds for this 
and related problems are given in our conference paper [AKLLW] and in I-AKS]. 

The paper is organized as follows. In Section 2 we prove the existence of graphs 
with the property that any induced subgraph with enough edges has a quadratic 
crossing number. Section 3 defines a kind of quotient graph, and proves a 
straightforward lemma relating the crossing numbers of graphs and their quotients. 
In Section 4 we begin with a generalization of the definition of an n-permutation 
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Fig. 2. A crosspoint switch. 

layout to multilayer grids. We then prove a few simple lemmas about rectangles 
containing multilayer permutation layouts. Finally, in Section 5 we prove the lower 
bound on the area of a rectangle containing a multilayer permutation layout, by 
examining a routing which yields a quotient graph with the crossing number 
properties discussed in Section 2. The lower bounds on the crossing number of the 
quotient graph and the relationship of the quotient graph's crossing number to the 
crossing number of the routing graph produce the desired lower bound on the area 
of the rectangle. 

2. Crossing Numbers and Expanding Graphs. The key point in the proof of the 
lower bound is to use a routing to simulate a graph with a large crossing number. 
For the argument to work, it is necessary that the graph with a large crossing 
number have bounded degree. It is not hard to show that n-node expanding graphs 
have an D(n 2) crossing number (for hounded degree expanding graphs this follows 
immediately from Theorem 1 of [L2], and a simple extension to expanding graphs 
of arbitrary degree is given in Lemma 4.4 of [AKLLW]). Since the existence of 
expanding graphs of bounded degree is well known, in [AKLLW] we were able to 
use this lower bound to prove a lower bound on the area of rectangles containing n- 
permutation layouts. In multilayer permutation layouts, many of the paths in the 
routing will be allowed to change layers (a more precise definition is given in the 
next section), with only a fraction of the paths being forced to lie on a single layer. 
Thus, in order to prove a lower bound on the area of rectangles containing 
multilayer permutation layouts, we will need graphs of bounded degree with the 
property that every subset of sufficiently many edges induces a graph with a large 



244 A. Aggarwal, M. Klawe, D. Lichtenstein, N. Linial, and A. Wigderson 

crossing number. It turns out that the right graphs for this purpose are regular 
graphs whose adjacency matrices have small enough second-largest eigenvalues. 
For regular graphs this eigenvalue property implies expansion; in fact, it is almost 
equivalent to being an expanding graph [AM], [A]. 

A graph is said to be d-regular if every node has degree exactly d. A graph is 
bipartite if the nodes of the graph can be partitioned into two disjoint sets, A and B, 
so that every edge is of the form (a, b), where a e A and b e B. It is easy to see that if 
a bipartite graph is also d-regular, then the sets A and B must have the same 
number of nodes. 

LEMMA 2.1. For each positive integer s, there is a positive integer d(s), such that if n 
is sufficiently large, for some m with n/2 < m <_ n, there is a d(s)-regular bipartite 
graph G on 2m nodes, with the property that, for any subset T of at most [-2m/sJ 
nodes, the number of edges of G with both endpoints in T is at most 8d(s)m/s 2. 

The proof relies on two results concerning the second-largest eigenvalue of the 
adjacency matrix of a regular graph. 

PROPOSITION 2.2 [AC, Proposition 4], [FP, Lemma 2.1]. If2 is the second-largest 
eigenvalue of the adjacency matrix of a d-regular graph on m nodes, and S is a subset 
of am nodes, then the number of edges with both endpoints in S is at most 
c~ 2 dm/2 + 2~(1 - ~)m/2. 

THEOREM 2.3 I-LPS]. I f  r and q are primes congruent to 1 mod 4 with r < q, there 
is an (r + 1)-regular graph X" q on q + 1 nodes, such that the second-largest 

eigenvalue, 2, of the adjacency matrix of X ~" q satisfies )t < 2x~. 

PROOF OF LEMMA 2.1. Let r be the smallest prime congruent to 1 mod 4 with 
r >__ s 2. By the prime number theorem for arithmetic progressions [D, p. 123], for n 
sufficiently large there is a prime q with r < n/2 < q < n which is congruent to 1 
mod 4. Let G be the double cover of the (r + 1)-regular (q + 1)-node graph X r' q, 
i.e., G has nodes {ux: x E X" q} w {vx: x ~ X r' ~} and edges {(ux, vy) : (x, y) is an edge 
in X r' q}. We take d(s) = r + 1 and m = q + 1. Now let T be a subset of at most 
[2m/s-] of the nodes of G, and let S be the subset of nodes of X" q defined by 
S = {x: u, e Tor  Vx e r}. Clearly, ISl < I r l  < [-21X" ql/s-1. Applying Proposition 
2.2, a routine calculation shows that the number of edges of X ~' q with both 
endpoints in S is at most 4d(s)m/s z. Finally, it is easy to see that the number of edges 
in G with both endpoints in T is at most twice the number of edges in X *'q with 
both endpoints in S, which completes the proof. [] 

We are now ready to prove the result we need. The proof idea is essentially a 
variant on that of Theorem 1 in [%2]. We are grateful to Tom Leighton for 
suggesting this simplification of our original proof. 

THEOREM 2.4. For each positive integer p, there is a positive integer d'(p), such that 
if n is sufficiently large, for some m with n/2 < m <_ n, there is a d'(p)-regular bipartite 
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graph G on 2m nodes, with the property that any subset of at least lip of the edges of G 
induces a subgraph with an f2(n 2) crossing number. 

PROOF. Let s = 16p and assume that n is sufficiently large for Lemma 2.1 to hold. 
Define d'(p)= d(s). Let G be the d'(p)-regular bipartite graph on 2m nodes 
described in Lemma 2.1. Note that G has d(s)m edges. Assume F is a subset of the 
edges of G with I F I > d(s)m/p, and let H be the subgraph of G induced by the edges 
in F. Next let c be the crossing number of H, and let b be the number of edges which 
must be removed from H to separate H into s pieces each of size at most [-2m/s-]. 
Since m > n/2, to show that c = f~(n2), it suffices to prove that c + 2m = f~(b 2) and 
b = f~(m). 

We first show that b >_ d(s)m/2p. Suppose B is a subset of F such that removal of 
the edges in B separates H into s disconnected pieces of size at most [-2m/s-]. It 
suffices to show that J BI > d(s)m/2p. Let T~ be the set of nodes in the ith piece for 
i = 1 , . . . ,  s. By the choice of G, the number of edges of F with both points in T~ is at 
most 8d(s)m/s 2 for each i, so the total number of edges o f F  which are not in B is at 
most 8d(s)m/s = d(s)m/2p. Now as F has at least d(s)m/p edges, obviously 
I BI > d(s)m/Zp. 

Next, given a planar embedding of H with c edge crossings, we construct a 
(c + 2m)-node planar graph, H', by replacing each edge crossing with a new node. 
Assigning weight 1 to each original node of H, and weight 0 to each new node, by 
the weighted version of the planar separator theorem [LT1], there is a subset C of 
nodes of H' with c + 2m = ~(I C I 2), whose removal separates the remaining nodes 
of H' into s pieces, each of weight at most [2misT. Let B be the edges in F which are 
either adjacent to original nodes in C, or have edge crossings which are new nodes 
in C. Clearly ICI = f~(In[)  and Inl _> b; hence c + 2m = ~(b2). [] 

It is more convenient for us to use this theorem in the following form. 

COROLLARY 2.5. For p fixed, there exist fixed f ,  ~ > 0, such that for every 
sufficiently large n there is an f-regular bipartite graph G on at most 2n nodes, such 
that any subset of at least lip of the edges of G induces a subgraph with at least ~n 2 
crossing number. 

3. Quotient Graphs and Crossing Number. The purpose of this section is to 
introduce concepts which we use in Section 5 to formalize our notion of how a 
routed permutation "simulates" a graph of bounded degree, and in particular to 
demonstrate the connection between the crossing number of a graph and its 
"simulation." For any graph G, a path partition of G is a collection {Pi: 1 _< i ___ m} 
of node disjoint simple paths in G such that every node of G is on some path Pi. If 
Q = {Pi: 1 < i _< m} is a path partition of G, the quotient graph of G by Q is the 
graph on m nodes {pi: 1 < i < m}, where Pi is adjacent to pj if and only if i ~ j and 
there is some node on P~ adjacent to a node on Pj. When we apply this in Section 5, 
the quotient graph will be the graph we wish to simulate, and the original graph G 
will be a graph composed of permutation edges and some extra paths which form 
the path partition. 
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LEMMA 3.1. Let Q = {Pi: 1 < i < m} be a path partition of a graph G = (V, E), let 
H be the quotient graph of G by Q, let d n be the maximum degree of H, and let 
Er = {(x, y) e E : (x, y) is an edge of Pi for some i}. Then for any embedding of G in 
the plane with the property that every edge crossing is between an edge in EQ and an 
edge in E\EQ, the number of crossings in this embedding is at least 1/d n times the 
crossing number of H. 

PROOF. It suffices to show that given such an embedding of G we can obtain an 
embedding of H in the plane with at most dH times as many crossings. For each 
path Pi choose one of its endpoints to be Pi, and embed pi wherever that endpoint 
of P~ was embedded. For each edge (Pi, P j) in H, we choose an edge (x, y)joining a 
node x on P~ to y on P~. The edge (p~, p j) is embedded by approximately following 
the embedding of Pi from Pl to x, then the embedding of (x, y) to y, and finally the 
embedding of Pj to pj. It is not hard to see that this can be done so that whenever 
(x j, y j) is an edge of Pj and (x, y) is an edge of G which crosses (x j, y~) in the 
embedding of G, then at most d crossings occur between the edges of H adjacent to 
pj and an edge of H following the embedding of (x, y), where d is the degree of pj. 
Moreover, the embedding can be done so that these are the only kind of edge 
crossings in the embedding of H. An example is shown in Figure 3. [] 
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Fig. 3. Embedding the quotient graph. 
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4. Multilayer Permutation Layouts. A grid placement of a set V of nodes is a pair 
(a, R),  where R is a rectangular grid and a is a one-to-one mapping of V into the 
nodes of R. For k a positive integer, let R *k be the three-dimensional rectilinear grid 
consisting of k copies of R aligned one on top of each other. Similarly, for z a node 
in R, let z *k be the k vertically aligned nodes of R *k which occupy z's position in 
each copy of R. 

If G = (V, E) is a graph and (a, R) is a grid placement of V, we say G has a k 
active layer (a, R) embedding if there exists a set of paths {P(x, y) : (x, y) s E} in R *k 

which are node-disjoint except possibly at endpoints, with P(x, y)joining a node in 
a(x)  *k to a node in a(y)  *k for each edge (x, y) of G. We refer to the paths P(,, r) as 
the embedded edges of G, and sometimes, when the context is clear, as the edges of 
G. We say that a path in R *k does not change layers if it remains entirely within one 
copy of R. Otherwise we say that the path changes layers. Examples of paths which 
do and do not change layers are shown in Figure 4. 

For 0 < a < 1, we say G has a k active layer (a, R) embedding with cut ratio a, if 
G can be embedded in R** with the placement of the nodes defined by a, with at 
most a[E[ of the embedded edges changing layers. 

A rectangle R is said to contain a k-layer a-cut n-permutation layout if there is a 
grid placement (a, R) of n inputs and n outputs such that, for every one-to-one 
mapping z from a subset of the inputs into the outputs, the graph with edges 
{(x, z (x ) )  : x is an input in the domain of z} has a k active layer (a, R) embedding 
with cut ratio a. We refer to such a grid placement as k-layer a-cut permutable, to 
the one-to-one mappings from subsets of the inputs to subsets of the outputs as 
permutations, and to the embedded edges of a permutation as the routing of the 
permutation. Moreover, we abbreviate k-layer 1-cut n-permutation layout to k- 
layer n-permutation layout. Note that a l-layer n-permutation layout is simply the 
n-permutation layout we defined in the introduction. 

In the next section we prove that, for each k > 1 and a < 1, if n is sufficiently 
large, every rectangle which contains a k-layer a-cut n-permutation layout, has 
~(n 3) area. The remainder of this section is devoted to some simple lemmas about 
rectangles containing k-layer n-permutation layouts. 

A horizontal (vertical) midline is any line halfway between two adjacent 
horizontal (vertical) lines of the grid. 
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Fig. 4. Path (b) changes layers, but path (a) does not. 
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LEMMA 4.1 Let R be a rectangle containing x inputs and y outputs. Then either R 
has a horizontal line L containing at least x/3 inputs and y/3 outputs, or R has a 
horizontal midline L such that at least x/3 inputs lie on one side of L and y/3 outputs 
on the other. 

PROOF. Let L be the lowest horizontal midline such that L has either at least x/3 
inputs or at least y/3 outputs below it. Without loss of generality assume that L has 
at least x/3 inputs below it. If L has at least y/3 outputs above it we are done so we 
may assume that there are less than y/3 outputs above L, and hence more than 2y/3 
outputs below L. Now if there are at least x/3 inputs above L we are done so we 
may assume there are greater than 2x/3 inputs below L. Let L' be the horizontal 
line immediately below L By the choice of L, L' has less than x/3 inputs and less 
than y/3 outputs strictly below it, and hence must have at least x/3 inputs and y/3 
outputs on it. [] 

COROLLARY 4.2. I f  R contains a k-layer n-permutation layout, then R has both 
width and height at least n/3k. 

PROOF. If some horizontal line has at least n/3 inputs and n/3 outputs on it, then 
the width of R is at least 2n/3. If not, then by Lemma 4.1 there is a horizontal 
midline L with at least n/3 inputs on one side and at least n/3 outputs on the other. 
Now any embedding of a permutation mapping n/3 of these inputs to n/3 of these 
outputs must have at least n/3 paths crossing L, and on each layer the paths must 
be disjoint. Thus in some layer there are at least n/3k disjoint paths crossing L, so L 
(hence R) has width at least n/3k. A symmetric argument yields the same lower 
bound for the height. [] 

COROLLARY 4.3. Ira rectangle R contains x inputs and y outputs, then there is a 
midline L (either horizontal or vertical) with x/6 inputs on one side and y/6 outputs on 
the other. 

PROOF. If there is a horizontal line L with at least x/3 inputs and at least y/3 
outputs on it, let L' be the leftmost vertical midline such that, on its left, L' has 
either at least x/6 of the inputs on L or at least y/6 of the outputs on L. Clearly, L' 
must have either exactly x/6 inputs of L on its left or exactly y/6 outputs of L on its 
left but not both. Without loss of generality assume that exactly x/6 inputs are on 
the left of L'. Then since at most y/6--1 outputs of L are on the left of L', at least y/6 
outputs of L are on the right of L'. On the other hand, if no such horizontal line L 
exists, then by Lemma 4.1 there is a horizontal midline with at least n/3 inputs on 
one side and n/3 outputs on the other, so we are done. []  

LEMMA 4.4. Let R be a rectangle of width W containing n inputs and n outputs, and 
let b be a positive integer. Then there are two collections I and 0 of subrectangles of R 
such that: 

(a) Each subrectangle has width at most b. 
(b) Any pair of distinct subreetangles in I u 0 are disjoint. 
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(c) The total number of inputs (outputs) in the union of the subrectangles in I (0) is at 
least nil2. 

(d) Each subrectangle in I (0) contains at least n/(12FW/b T) inputs (outputs). 
(e) I/I, [OI _< 7W/bT. 

PROOF. First partition R into [W/b7 rectangles of width at most b by slicing R 
with vertical midlines distance b apart (the rightmost rectangle may be narrower 
than b). Now by Corollary 4.3 each such slice S can be partitioned into two 
subrectangles such that one, say S~, contains at least a sixth of the inputs in S, and 
the other, say S o, contains at least a sixth of the outputs in S. Let I' be the set of 
such S, and let O' be the set of such S o. Clearly, II'l = IO'l = FW/b-], and the 
subrectangles in I' (0') collectively contain at least n/6 inputs (outputs). Let 
d = FW/b-] and let I be the subset of rectangles o f f  containing at least n/12d inputs, 
and similarly let O be the set of rectangles of O' containing at least n/12d outputs. 
We claim that the total number of inputs in the union of the rectangles in I is at 
least nil2. This is because the rectangles in I ' \ I  collectively contain at most dn/ 
12d = nil2 inputs leaving at least nil2 in I. The argument for 0 is identical. [] 

5. The Lower Bound. Since the proof of the lower bound is rather complicated, we 
begin this section with a sketch of the ideas involved. For simplicity's sake, we 
describe the case of a single-layer grid. 

We want to prove that the height of the rectangle containing the n-permutation 
layout is f~(na/W) where W is the width of the rectangle. Let us say a path is 
descending if every horizontal midline intersects the path at most once. The height 
of a descending path is the vertical difference between its endpoints. A descending 
path is shown in Figure 5. If a descending path lies inside a narrow vertical slice of 
the rectangle and only makes a small number of left/right direction changes, the 
path can only be long if its height is large. Moreover, suppose a descending path in 
a narrow slice is chopped up into subpaths, with each subpath only making a small 
number of left/right direction changes. Then if many of the subpaths are long, the 

V 
I 

V" 
I 

J 
Fig. 5. A descending path. 
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Fig. 6. Grouping the nodes into supernodes. 

entire descending path must have very large height since its height is the sum of the 
heights of its subpaths. Thus our strategy is to find such a descending path with 
many long subpaths. 

We do this by finding a "good" set of disjoint narrow subrectangles, and in each 
subrectangle taking either the descending path of minimal length which conneets 
up all the inputs or the one connecting up all the outputs. This is shown in Figure 
6(a). Along each path we group the inputs (outputs) into "supernodes" (see Figure 
6(b)), and take the subpaths to be the subpaths connecting up the inputs (outputs) 
in each supernode. Then we choose a permutation so that the supernodes simulate 
a graph with a quadratic crossing number. Because of the quadratic crossing 
number, when this permutation is routed, many of the supernodes must have a 
linear number of the routed permutation edges crossing the subpath inside the 
supernode. A supernode subpath cannot be shorter than the number of routed 
permutation edges which cross it, so many of these supernode subpaths must be 
long. Finally, there must be paths which have lots of long supernode subpaths, and 
hence are very long. Of course, some amount of care is needed in the definitions of 
"narrow," "many," "long," etc., to make this work, and multiple layers introduce 
some complications, but this is basically the idea behind the proof. 
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THEOREM 5.1. For each k > 1 and a < 1, if  n is sufficiently large, every rectangle R 
containing a k-layer a-cut n-permutation layout has f~(n 3) area. 

PROOF. Let (a, R) be a grid placement of n inputs and n outputs which is k-layer 
permutable with cut ratio a. Choose an integer p such that (1 - a)/k > 1/p, let f 
and ~ be as in Corollary 2.5, let b = Lr and let W be the width of R. We 
assume that n is large enough that b > 1. If FW/bl >_ n / 9 6 f  we are done since the 
height is at least n/3k by Lemma 4.1 and b = ~(n). Thus we may assume that 
[W/if] < n/96 f . 

Let I and O be collections of subrectangles of R with properties (a)-(e) of Lemma 
4.4. Now for each rectangle in I, connect the inputs with a descending path P of 
shortest length on the grid, and group the inputs into sets of size f (f-tuples) 
according to their order on the path P. We refer to these f-tuples as superinputs. 
For each superinput let the height of the superinput be the vertical difference 
between the highest and lowest input in the superinput, and let the spine of the 
superinput be the subpath of P connecting the f inputs in the superinput. In each 
rectangle in I remove the [-n/24fd7 superinputs with the greatest heights, where 
d = FW/b-]. 

We now prove that the total number of remaining superinputs is at least 
Fn/48f-]. Since Ill < d and the rectangles in I collectively contained at least 
n/12 inputs, the number of supefinputs originally created was at least 
(n /12 f )  - d. At most dFn/24fd-] superinputs were removed altogether so at least 
V(n/12 f )  - d - dFn/24 f d-]-] remain. Moreover, we assumed d = [W/b-] < n/96 f , 
so we have [(n/12 f )  - d - dVn/24 f d l l  >_ [(n/12 f )  - d - d(1 + n/24 f d)l = 
[-(n/24 f )  - 2d-] > [-n/48 f-] as desired. 

Similarly form superoutputs, remove the [-n/24fd-] superoutputs with the 
greatest heights from each rectangle in O, leaving at least [ n / 4 8 f l  superoutputs. 

By Corollary 2.5, for n sufficiently large, there is an f-regular bipartite graph G 
on at most 2[-n/48f-] nodes such that any subset of at least l ip  of the edges of G 
induces a subgraph with at least an ~Fn/48f-] 2 crossing number. Let 2m be the 
number of nodes in G, let E be the edges of G, and let A and B be the two node 
subsets of G, i.e., both IAI, IB] = m and all edges in E are between A and B. Let V x 
be a subset of exactly m of the remaining superinputs in I, and similarly let V o be m 
of the remaining superoutputs in O. We refer to the superinputs and superoutputs 
in Vx u Vo as supernodes. 

We are ready to choose the permutation so that the supernodes simulate G. 
Let q~ be a one-to-one mapping from A u B onto V1 u Vo with q~(A)= V~ 
and q~(B) = Vo. Let V~ = {z: z is an input in a superinput in 1:i} and let V~ = 
{z : z is an output of a superoutput in Vo}. Now let z be a permutation from V~ to 
V~ such that, for every edge (x, y) in E, there is an input x' in ~0(x) and an output 
y' in q~(y) such that y' = z(x'). Since G is f-regular it is easy to see that such a z 
exists. For each edge (x, y) �9 E, let qb(x, y) be the edge (x', y'), where x', y' are as above. 

Since (a, R) is a k-layer permutable grid placement with cut ratio ~, there is a k- 
layer embedding, t/, of the set of edges ~(E) such that at most a i EI edges change 
layers. Since at least (1 - ~)lEI edges of (I)(E) do not change layers, some layer must 
contain at least (1 - ~)1EI/k edges of O(E) which make no layer changes. Assume 
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without loss of generality that this is the first layer, let F c E such that O(F) is this 
set of edges, and let H be the subgraph of G induced by the edges in F. Note that 
since IFI - (1 - cOlEl/k > IEl/p, by the choice of G the subgraph H has crossing 
number at least r 

Let V' = V~ u Vb, let E' = O(F) w {(v', w') : v' and w' are in the same supernode 
and are adjacent on its spine}, and let H' = (V', E'). It is easy to see that the spines 
of the supernodes form a path partition of H', and that H is the quotient graph of 
H' by this path partition. Moreover, the embedding of H' obtained by combining 
the embedding of O(F) given by r/with the spine paths themselves, has the property 
that every edge crossing is between an edge in ~(F) and a spine edge. Thus by 
Lemma 3.1 this embedding of H' has at least ~[n/48f-]2/f crossings. Since there are 
2m supernode spines and m < [n/48f],  one of these spines must have at least 
r crossings, and hence must be at least that long. Since the original 
path was descending of shortest length, the spine must also be descending of 
shortest length, and it is easy to see that this implies that the supernode has height 
at least (~[-n/48fT/2J) - ( f  - 1)b. This is because the rectangle containing the 
supernode has width at most b, and clearly any f nodes can be joined by a 
descending path with length at most ( f  - 1)b plus the maximum difference in their 
heights. Moreover, ( ~[-n/48 f 7/2 f )  - ( f  - 1)b _> ~n/96 f 3 since b = L ~n/96 f3].  

Now, at least [n/24fd7 supernodes of greater height were removed from the 
rectangle containing this supernode. Thus, since the original path connecting the 
supernodes in this rectangle was descending, its total height is at least 
Fn/24fdT(~n/96f3). This implies that the area of R is at least WFn/24fdT(~n/96f3), 
which is easily verified to be ~(n 3) [] 

THEOREM 5.2. A similar (though much simpler) argument can be used to prove that, 
for any fixed k > 1, if n is sufficiently large, every rectangle containing a k-layer 
n-permutation layout has area ~(n2/k2). Briefly, the argument is as follows. Since the 
n-permutation layout can simulate an expanding graph with a linear number of nodes, 
and since the expanding graph has a quadratic crossing number, when the simulated 
expanding graph is projected onto the bottom layer there must be f~(n 2) crossings. It  is 
not hard to see that this implies that one of the grid layers must have ~(n2/k 2) area. 

We close with a brief sketch of how the Bene~ network can be used to give an 
O(n z) area 2-layer n-permutation network, in which every path changes layers 
exactly twice with layer changes occurring at a fixed set of 2n nodes. This idea was 
suggested by the referee. The Bene~ network is a three-stage network, with each 
stage consisting of x/~ disjoint x/n x x/~ crossbars. For i = 1, 2, the jth output in 
the kth crossbar of stage i is connected to the kth input in the jth crossbar of stage 
(i + 1). It is well known that this forms an n-permutation layout between the n 
inputs of the first stage and the n outputs of the third stage. We now describe the 
2-layer grid implementation of the Bene~ network. An illustration of the layout is 

given in Figure 7. Each x/~ x x/n crossbar is implemented by a x/n-permutation 
layout in an O(v/n) x O(n) l-layer grid, in which the inputs lie in order on the top 

horizontal line, and the outputs are spaced O(x/~ ) apart in order on the middle 
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vertical line. (Such a layout is easy to construct using the methods of Cutler and 
Shiloach, and is the type illustrated in Figure 1.) Thus each stage can be embedded 
in a single layer in an O(n) x O(n) grid with all inputs in order on the top line. 
Moreover, because of the spacing of the outputs, it is easy to see that all the edges 
from the outputs of stage i to the inputs of stage i + 1 can be routed in a single layer 
in an O(n) x O(n) grid with the inputs of stage i + 1 lying in order on the bottom 
horizontal line. From this it is clear that the Bene~ network can be embedded as 
follows. Stage 1 is embedded on layer 1. On layer 2 we embed the edges from the 
outputs of stage 1 to the inputs of stage 2 and stage 2 itself. Finally, back on layer 1, 
we embed the edges from the outputs of stage 2 to the inputs of stage 3 and stage 3. 
When used as an n permutation layout, each path changes from layer 1 to 2 at a 
stage 1 output and back to layer 1 at a stage 2 output. 
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Note Added in Proof Klawe and Leighton have recently extended the ~(n  3) lower 
bound on the size of permutation layouts to arbitrary planar graphs implementing 
a permutation network (see M. Klawe and Tom Leighton, A tight lower bound on 
the size of planar permutation networks, Proc. Internat. Syrup. SIGAL '90, Lecture 
Notes in Computer Science, Vol. 450, Springer-Verlag, Berlin, pp. 281-287). 
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