
SIAM J. COMPUT.
Vol. 11, No. 3, August 1982

(C) 1982 Society for Industrial and Applied Mathematics
0097-5397/82/1103-0001 $01.00/0

THE COUNTERFEIT COIN PROBLEM REVISITED*

NATHAN LINIAL AND MICHAEL TARSI:

Abstract. We find the optimal algorithm in the sense of average run time for the counterfeit coin
problem: Given n coins, one of which is heavier or lighter than the rest. Using a balance scale, find the
counterfeit coin and whether it is heavy or light. An interesting feature of the solution is that our algorithm
is a straight line algorithm. We also find the optimal algorithm if a standard coin is available for the first
weighing.

Key words, average-optimal algorithms, search problems, Huffman trees, straight-line algorithms

In this paper we consider the following algorithmic problem which is a variation
on the ancient false coin problem. (Find the counterfeit one, out of 12, by 3 weighings.)

The Problem.
Input: n => 3 coins, one of which is false, being either heavier or lighter than the

other coins.
Output: Find the counterfeit coin and whether it is heavy or light. The output

coin j is light (resp. heavy) is denoted jL (resp. jH).
Step: The elementary step is placing an equal number of coins on the two sides

of a balance.
Assuming the possible 2n outcomes equally likely, we look for algorithms which

take the smallest number of steps on the average.
(1) Straight line/nonstraight line, i.e., branching is prohibited or allowed. Branch’

ing prohibited means that the location of the coins for every weighing is given and
cannot be changed according to the results of previous weighings. We show that this
does not change the situation.

(2) A standard coin is available for use in the weighings in addition to the set of
n coins. It turns out that the average number of steps can sometimes be reduced using
this extra coin.

We define four functions:

F(n), Fu(n), S(n), Sly(n).

F(n) is defined as 2n times the smallest average number of steps that any algorithm
takes to solve the problem. (Note that when n coins are given there are 2n possible
outcomes). The other three functions are defined for the straight line case (no branching
allowed), with a standard coin, and straight line with a standard coin, respectively.

Our main results are summarized in the following.
THEOREM. For n >-3, F(n)= FN(n), S(n)= Su(n) (i.e., branching cannot reduce

the average number of steps). Let

2n=3t+2k+l, (3 > k => 0).

* Received by the editors May 8, 1981 and in revised form June 23, 1981.
Department of Mathematics, University of California, Los Angeles, California 90024 and Institute

of Mathematics and Computer Science, Hebrew University, Jerusalem 91904 Israel. The work of this
author was supported by the Chaim Weizman post-doctoral grant.

$ Department of Mathematics, University of California, Los Angeles, California 90024. The work of
this author was supported in part by the National Science Foundation under grant MCS 78-18924.

409

410 NATHAN LINIAL AND MICHAEL TARSI

Then

4,
F(n) 2nt + 3k +

3,

$(n)=2nt+3k+
3,

k even,
k odd,

k even,
k odd.

Before going into the proof, we need some definitions:
We call a tree ternary if each node has at most 3 sons, called the L-, N- and

R-sons, respectively. For a ternary tree T rooted at r, the subtree of T rooted at the
L son of r is called the L-subtree of T, and its leaves are the L-leaves of T. The N-
and R-subtrees and N- and R-leaves are defined similarly. The definition extends in
the obvious way to w-subtrees and w-leaves, w being any word over the alphabet
{L, N, R}. Also we define h(T) Y d(x, r), the sum taken over all leaves x of T and
d(x, r) being the distance in T from x to r.

An algorithm which solves the counterfeit coin problem can be represented by
a rooted ternary tree: The problem has 2n possible outcomes 1H, 1L,..., nil, nL.
Every possible outcome is discovered by a certain sequence of weighing results. We
denote such a sequence by a word over the alphabet {L, N, R}. The ith letter is R (L)
if the right (left) side of the balance is heavier at the ith weighing and N if both sides
are equal. Since the process stops when the counterfeit coin is discovered, the obtained
set of words is prefix free and naturally defines a ternary tree with 2n leaves. This is
the tree which we assign to the algorithm. The definitions make it clear that the
average number of steps that the algorithm takes equals (1/2n)h(T), where T is the
corresponding tree.

It is clear now that the following Huffman problem [Hu] is closely related:
Evaluate H(n)=min h(T) over all ternary trees with 2n leaves, and describe all

trees which attain this minimum.
We illustrate the situation in the following:
Observation 1.

FN(n) >-F(n) >=H(n),

SN(n)>-S(n)>-_H(n),

F(n)>-S(n),

Fr(n >- S(n).

Convention. Given an integer n _-> 3, we represent

2n 3t + 2k + l, 3t>k_>0.

The proof of the main theorem obviously follows from the following four
propositions"

PROPOSITION l.

H(n) 2nt + 3k + 2.

The trees which achieve this minimum are the following: Starting from a complete
ternary tree of height t, choose any k + 1 leaves. Attach to k of them 3 new leaves
’k’) and attach 2 new leaves to the (k+l)st (. "7"). For any other tree T with

2n leaves, h(T) > H(n).
Proof. See [Hu] for the general Huffman tree problem. !-1

COUNTEIFEIT COIN PROBLEM 411

PROPOSITION 2.
0, k even,

$(n)>-H(n)+
1, k odd.

PROPOSITION 3.
2, k even,

F(n >- H(n +
1, k odd.

PROPOSITION 4.
4,

FN(n) <- 2nt + 3k +
3,

k even,
k odd,

2, k even,Sr(n) <- 2nt + 3k +
3, k odd.

The proof of Propositions 2, 3 is based on the fact that not every ternary tree
corresponds to an algorithm for the counterfeit coin problem.

PROPOSITION 5. Itl a ternary tree which corresponds to an algorithm for the
$-pr,oblem (even ifbranching is allowed and a standard coin given), the following holds:

(S 1) For all .i >-_ 0 the number of NiL-leaves equals the number of NiR-leaves.
.In an F-problem ternary tree (branching still allowed, no standard coin):
(F1) The number of L-leaves number of R-leaves is even.
.Pro@ According to the tree representation of an algorithm, the NiR leaves

correspond to the outcomes still possible after "equal" weighings and one "right
side heavier", meaning that one of the coins on the right-hand side in the (i + 1)st
step is heavier or one of those in the left side is lighter. The NiL leaves correspond
to the same coins jutst switching "heavier" and "lighter", and this proves ($1).

.As for (F1), if b coins are placed on each side of the balance in the first step,
there are 2b L-leaves as well as R-leaves in the tree. (Notice that it is not so if a
standard coin partici.pates in the first weighing.)

Instead of Proposition 2, we prove the somewhat stronger:
PROPOSITION 2’.. I T is a rooted ternary tree with 2n leaves satisfying ($1), then

0, k even,
h(T)>-H(n)+

1, k odd.

(We remind the reader that we always represent 2n 3’ + 2k + 1, (3’ > k >- 0)).
Proof. The definit:ion of Huffman trees implies h(T) >-H(n), and so we only want

to prove that no Huttrnan tree with 2n leaves satisfies condition ($1) if k is odd. We
prove it by induction on t. For 1 the only odd k to be considered is k 1, so
2n 6. The only Huffnaan tree with 6 leaves (up to a permutation) is

This tree and any permutation of it violates condition ($1).
By the description (f Huffman trees in Proposition 1, the number of L, N, R-leaves

are all between 3t-1 mad 3’. Also, two of these numbers are odd and one is even.
Together with conditioa ($1), this implies that

number of L-l eaves number of R-leaves 3’- + 21, 3’-__>/__>0,
and

number of N-Ieaves 3’-1 + 2m + 1, m is odd, 3’-- 2 _-> m _-> 1.

412 NATHAN LINIAL AND MICHAEL TARSI

Using once again our knowledge about Huffman trees, we see that the L, N,
R-subtrees of a Huffman tree are all Huffman trees. But the N-subtree satisfies;

condition (S1) and so cannot be a Huffman tree by the induction hypothesis.
Proof of Proposition 3. In view of Proposition 2 and the obvious fact that F(n) ’-_

S(n), it suffices to discuss the case of even k. For any tree T satisfying (S1) and (Flt)
with 2n leaves and 2n 3 +2k + 1 (k even, 3t- 1 =>k =>0), we construct anothr
ternary tree with 2n leaves T’ so that h(T)>-h(T’)+2. This will prove our claim.
(F1) implies that the number of L-leaves in T which equals the number of R-leaves
in T is even. We call it 21. The number of N-leaves is even, too, and ’vee call it 2m.
Replace the L, N, R-subtrees of T by Huffman trees with 21, 2m, 21 leaves, respectively.
We claim that

21, 2m _-> 3 -1.
By Proposition 1 each of the L, N, R-subtrees of T has a node with exactly two s,ons

which are leaves. Let x, y,z be these nodes with sons xl, x2, y l, y2 and zl, z2
respectively. Assume without loss of generality that d(x, r) => d (y, r). Delete xl, x: and
add a new son Y3 to y. If d(x, r)> d(y, r), this already reduces h(T) by at least two.
So we may assume that d (x, r) d (y, r) d (z, r), which by Propositilcn 1 implies

21, 2m _-> 3 t-1.
Since 2n 41 + 2m and k is even, it follows that

2m 3t-1 -t- 2s + 1, s odd, 3t-l-2__>s_> 1.

Now we show how to reduce h(T) by at least two: transfer leaves from the
L-subtree to the R-subtree as in the above-described procedure./Ks mentioned above,
this reduces h(T) by one. Now the Nosubtree satisfies (S1) and s is odd, so on replacing
the N-subtree by a Huffman tree with 2m lehves at least anotter one is gained, as
shown in Proposition 2’. [q

Proof of Proposition 4. The proof is constructive and inducti,ve on n. Straigh’t line
algorithms will be represented by means of a table having n ro,ws: one for each coin
and a column for each weighing step. The (i,]) entry of the tble being L, R or N
indicates that the ith coin is placed on the left, placed on the ritght, or not placed on
the balance at the flh weighing step. Not all the rows must be o f equal length. Empty
entries at the end of a row indicate that if the corresponding ccin is false, then it will
be known by the last step in whose column there is an {N, L, R } entry in the row.

Associating L with 1, R with -1 and N with 0, it is obv’ious how arithmetic is
done on the "row vectors" of the table. The vectors table con,;titutes an algorithm to
solve the false coin problem if and only if the following 3 condtitions hold"

(T1) For x, y rows of the table, x is not a prefix of y.
(T2) For x, y rows of the table, -x is not a prefix of y.
(T3) The sum of all row vectors is the zero vector.
Necessity. If (T1) is violated we cannot tell between the outcomes xH and yH.

If (T2) fails to hold, then an xH outcome cannot be told fromt a yL outcome. Failure
of (T3) implies that one of the weighing steps is worthless sitce we place a different
number of coins on the right side and left side of the balance.

Sufficiency. Let b be a row vector over {N, L, R} indiclating the results of the
steps given by the balance. The flh entry being L, R or N intdicated that on the flh
step the left (resp. right) hand was heavy or they were balan,ced (resp.). Now either
a prefix of b is a row in the table and this row is unique by (T1), or a prefix of -b is
a row in the table and there is only one such row by (T2). In either case we know

COUNTERFEIT COIN PROBLEM 413

the false coin, being heavy in the first case and light in the second case. It is impossible
that both situations should occur, by (T2). Since one of the coins is false, b or -b
should appear on the table. So we have:

smallest number of nonempty entries in an
FN(n) 2 X n-row table satisfying (T1), (T2), (T3).

Before we can construct the tables we need some more terminology: If B is table
with entries L, N, R and empty, we denote by RB the array resulting from affixing
an R at the beginning of each row in B. Similar definitions hold for NB, LB. Also,
-B is the array which we obtain on replacing each L entry in B by R and each R
by L. For arrays B, C, we let

B
C

stand for the array whose row set is the union of the row set of B with that of C. If
w is a row in B and Wl," , w. are words over {L, N, R}, we denote by

the operation where the row w is deleted and the rows Wl, Wp are introduced
into the array. Also N is the row of r consecutive N’s, etc. Finally, the sum of all
row vectors in B is denoted by B, and [B[is twice the number of nonempty entries
in B.

We construct our tables for the FN problem first. As usual, we represent 2n
3 + 2k + 1 (3 1 k _-> 0), and the corresponding table is called At,k. We start with
the case of odd k. We describe a construction for k- 1 which is done by induction
on t. The other tables for odd k are obtained by a simple procedure.

The case of even k is a little more involved. Using induction on t, we take care
of the cases k 0, 2. Most of the remaining cases can be handled easily using the At,2
table. The case k 3t- 1 is again handled separately by induction on t. Most of the
(routine) calculations to ensure that conditions (T1), (T2), (T3) are satisfied and that
the definitions make sense are omitted.

The solution for the SN problem follows from the FN case in a simple way.
We start the construction by defining a sequence of arrays Bt as follows:

For ->_ 1, define

B1 L (a one-by-one array with an L entry).

RBt

=LBtB,+
IN(_Bt
LNt.

Bt is a (3t- 1)/2 by array satisfying (T1), (T2); it does not satisfy (T3) since Bt Lt.
Note also that L is a row in Bt. Define now the array At,1 which is obtained from Bt
by

Lt ..R t+l

NtL.

NATHAN LINIAL AND MICHAEL TARSI

At.1 supplies an algorithm for Fr(n), where n =(3 +3)/2 and IA,,l[=2(tn +3) as
needed.

For 2n 3 + 2k + 1, k -> 3 odd, say k 21 + 1, we start from At. changing it into
At,k by picking distinct rows x,..., Xl of length and replacing each one of them:

xR

X XL
(-xi)N.

Note that At.k satisfies (T1), (T2), (T3) and

IA,, Fv (n),

so At,k supplies an optimal algorithm for the n coin problem.
Next we handle the case of even k. For k 0,

n=(3t+l)/2, t>-2,

change Bt into At,o by the operations

LtNL’ R+I xx(L),

where x is any row of length in B, and (L) indicates that this coin is placed on the
left side of the balance on step (t + 1) only to have an equal number of coins on the
right and left hands of the balance. If this coin is false, it will be known after steps
since conditions (T1), (T2) hold also if the (L) is omitted. Therefore we do not count
the (L) in IA,,01. Hence [A,,01- 2(tn / 2) and so it gives the optimal algorithm for k 0,
n (3 + 1)/2. For k 2 and n (3’ + 5)/2, change At,o into At.2 by

x(L) (-x)L LtN- LtR.
xN

Now]A,,2J JA,01 + 2(2t + 3) 2(nt + 5), so A,,2 solves the problem for n (3 + 5)/2.
For even k, 3’- 3 k 4, k 2l + 4, we pick distinct rows x,..., x of length in
At,2 and replace each of them:

xR

X xiL
(-x,)N.

It is again routine to check that A,., is an optimal solution table.
For the last remaining case, n (3- 1)/2, start from Bt, and to have condition

(T3) hold replace

L’ N’R, x x(L),

x being any row of length and (L) is as explained above.
To complete the proof we only need to show that

Sly(n) <- 2nt + 3k + 2 for even k.

(The case of odd k is already settled, since Fly(n) >- Sly(n) is obvious.) To construct
a table for this problem, if n (3t+l- 1)/2, start with an At.k/1 table, which has n + 1
rows and satisfies IA,.+I- 2 +(n + 1)+ 3(k + 1)+ 3. Two of the rows in At.k+X are LtN

COUNTERFEIT COIN PROBLEM 415

and R t+l. Let St, k be the table which results on performing

LtN (LtR), Rt+I.-, R t.
The row vector (LR) is the row for the standard coin. Now St, violates only condition
(T2) in that -R t= L and L is a prefix of LtR. But if the results of the weighings are
R or L we know that the R coin is counterfeit, as the (LtR) coin is known to be a
standard coin. Thus we do not count the (LR) row, and we get

I-]At,:+l[-2(t + 1)-2 2nt + 3k + 2,

as required.
At last, if n (3 t+l 1)/2, the table {B,+, where (R ’+1)(R,+,, comes for the standard

coin, supplies the required algorithm.

Acknowledgment. The first author wishes to express his thanks for the generous
support of the Chaim Weizman postdoctoral grant.

[Hu]

[Me]

REFERENCE

D. A. HUFFMAN A method for the construction of minimum redundancy codes, Proc. IRE, 40,
(Sept. 1952), p. 1098.

D. G. MEAD, The average number of weighings to locate a counterfeit coin, IEEE Trans. Inform.
Theory, IT-25 (1974), pp. 616-617.

