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Preface 

Welcome to the eighth edition of the International Workshop on Argumentation in Multi-Agent 
Systems (ArgMAS 2011), being held in Taipei, Taiwan, in association with the Tenth 
International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2011).  
Previous ArgMAS workshops have been held in New York City (2004), Utrecht (2005), 
Hakodate (2006), Honolulu (2007), Estoril (2008), Budapest (2009), and Toronto (2010), and 
the event has now established itself on the international calendar among researchers in 
computational argument and dialectics. 
 
This document contains the proceedings of the workshop, comprising 11 papers and position 
statements selected following a rigorous peer-review process.   We thank all authors who 
made submissions to ArgMAS 2011, and we thank the members of the Programme 
Committee for their efforts in reviewing the papers submitted.  We also thank the two 
anonymous reviewers selected by Iyad Rahwan to review the submission of two of the 
editors in a process of indirection.  The papers presented at the workshop are assembled in 
this document in alphabetical order of the surname of the first author.  
 
Following successful experiences in the previous two years, we hope again this year to have 
selected official respondents offer short critiques to several of the papers presented at 
ArgMAS 2011.  We have adopted this innovation from conferences in Philosophy, where it is 
standard, and we found it worked will in stimulating discussion.  We thank the official 
respondents for their willingness to undertake this task.  
 
We hope that you enjoy the workshop, the conference overall, and your time in Taiwan.  

 

 

 

 

 

Peter McBurney, Simon Parsons and Iyad Rahwan 

Programme Co-Chairs 

May 2011 



Manipulation in group argument evaluation

Martin Caminada1, Gabriella Pigozzi2, and Mikołaj Podlaszewski1

1 Individual and Collective Reasoning, Computer Science and Communication, University of
Luxembourg, 6, Rue Richard Coudenhove Kalergi, L-1359 – Luxembourg
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Abstract. Given an argumentation framework and a group of agents, the indi-
viduals may have divergent opinions on the status of the arguments. If the group
needs to reach a common position on the argumentation framework, the question
is how the individual evaluations can be mapped into a collective one. This prob-
lem has been recently investigated by Caminada and Pigozzi, who introduced and
studied three aggregation operators that guarantee a collective outcome compati-
ble with the individuals’ positions. In this paper, we investigate the behaviour of
two of such operators from a social choice-theoretic point of view. In particular,
we study under which conditions these operators are Pareto optimal and whether
they are manipulable. Our findings cast light on a virtuous type of manipulation,
where - by lying - an agent increases not only its personal utility but also promotes
the social welfare.

Keywords: Group decisions, Argumentation, Collective argument evaluation,
Pareto optimality, Manipulation

1 Introduction

Individuals may draw different conclusions from the same information. For example,
members of a jury may disagree on the verdict even though each member possesses the
same information on the case under discussion. This happens because individuals can
hold different reasonable positions on the information they share. Hence, the question is
how the group can reach a common stance starting from the positions of each member.

In this paper we are interested in group decision-making where members share the
same information. One of the principles of argumentation theory is that an argumen-
tation framework can have several extensions/labellings. If the information the group
shares is represented by an argumentation framework, and each agent’s reasonable po-
sition is an extension/labelling of that argumentation framework, the question is how
to aggregate the individual positions into a collective one. Caminada and Pigozzi [3]
have studied this issue. They formalised the problem of the aggregation of individual
labellings using the judgment aggregation framework [16, 9, 17], a research line shared
also by Rahwan and Tohmé [24]. This approach is justified by the similarity between
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2 Martin Caminada, Gabriella Pigozzi, and Mikołaj Podlaszewski

the problem of aggregating individual judgments on a given set of propositions, and
that of aggregating individual labellings on a given argumentation framework.

Formal models of judgment aggregation combine logic with an axiomatic approach
in the social choice tradition [1, 25]. As the famous impossibility theorem of Arrow
showed that there exists no aggregation function that assigns a collective preference
ordering to a set of individual preference orderings, and that meets some minimal con-
ditions, so impossibility results in judgment aggregation showed that there exists no
judgment aggregation function satisfying similar minimal conditions [15, 19, 9]. Corre-
spondingly, Rahwan and Tohmé provided a counter-part of such impossibility result for
abstract argumentation theory [24].

Following the tradition of social choice theory, the relaxation of one of the con-
ditions imposed on the aggregation function constitutes a possible escape route to the
impossibility results. While Rahwan and Tohmé explored the restriction of the space
of possible individual judgments, Caminada and Pigozzi ensured collective rationality
by dropping the condition of independence of irrelevant alternatives. Intuitively, this
condition ensures that the collective position on each argument depends only on the in-
dividual positions on that argument. In preference and in judgment aggregation settings,
the independence condition is defended by appealing to non-manipulability [10]. How-
ever, [3] did not study the consequences of dropping independence. Aim of this paper
is precisely to fill in the gaps and to examine the impact of dropping the independence
condition.

In order to investigate the consequences of relaxing the independence condition, we
study here the behaviour of the aggregation operators introduced in [3] from a social
choice-theoretic point of view. The key property of the three aggregation operators in
[3] is that the collective outcome is ‘compatible’ with each individual position. That is,
an agent who has to defend the collective position in public will never have to argue
directly against his own private position.

We start here by formalising and examining the intuition that, although every social
outcome that is compatible with one’s own labelling is acceptable, some outcomes are
more acceptable than others. That is, a collective outcome is more acceptable than an-
other if it is compatible and more similar to one’s own position than the other. In order
to capture how much the various possible positions differ from each other, we use the
notion of distance among labellings. Distance-based approaches have already been used
to tackle aggregation problems, like in social choice theory [18, 13, 2], belief merging
[14] and its application to judgment aggregation [20]. Thus, we say that a collective
outcome is more acceptable than another if it is compatible, but the distance to one’s
own labelling is smaller than the other.

The observations above give rise to two new research questions, to be addressed in
the current paper:

(i) Are the social outcomes of the aggregation operators in [3] Pareto optimal if
preferences between different (compatible) outcomes are also taken into account?

(ii) Do agents have an incentive to misrepresent their own opinion in order to obtain
a more favourable outcome? And if so, what are the effects of this from the perspective
of social welfare (that is, on the utility of the outcome for the other agents)?

2



Manipulation in group argument evaluation 3

We focus on the behaviour of two of the three aggregation operators defined in [3].
The object of study of welfare economics is the well-being of a society. Pareto opti-
mality is a key principle of welfare economics which intuitively stipulates that a social
state cannot be further improved. When comparing two possible social outcomes, an
outcome is called Pareto optimal if it is not possible to make one individual better off

without making at least one other person worse off. In our approach, an outcome is a
possible collective position. Thus, the first contribution of the paper is to study whether
the compatible social outcomes selected by our aggregation operators are Pareto opti-
mal. In order to investigate Pareto optimality, we consider the submitted labelling as the
individual’s most preferred option. By using a notion of distance, we derive the indi-
vidual preference ordering over the other permissible labellings. We show that the two
aggregation operators are Pareto optimal, when a certain distance is used.

The second contribution is on the manipulability of the aggregation operators. Ma-
nipulability is usually considered to be an undesirable property of social choice decision
rules. If an aggregation rule is manipulable, an individual may, upon learning the pref-
erences of the other agents, misrepresent his input to ensure a social outcome that is
better for him than it would have been had he voted sincerely. Our findings show that,
while the two operators are manipulable, the sceptical aggregation operator guarantees
that an agent who lies does not only ensure a preferable outcome for himself, but even
promotes social welfare, what we call a benevolent lie.

The paper is structured as follows: Section 2 is devoted to outlining the abstract
argumentation framework. In Section 3 we define preferences over the individual eval-
utaions. Pareto optimality and the manipulability issues are addressed in Section 4 and
5 respectively. Section 6 discusses the related work, and Section 7 concludes the paper.

The current paper should be seen as a full version of an extended abstract presented
at the AAMAS 2011 main conference [4].

2 Preliminaries

2.1 Argumentation preliminaries

Definition 1 (Argumentation framework). Let U be the universe of all possible ar-
guments. An argumentation framework is a pair (Ar, def ) where Ar is a finite subset of
U and def ⊆ Ar × Ar.

We say that an argument A defeats (or attacks) an argument B iff (A, B) ∈ def . For
example, in Fig. 1, we have that A attacks B and that B attacks C.

A B C

Fig. 1. An argumentation framework.

3



4 Martin Caminada, Gabriella Pigozzi, and Mikołaj Podlaszewski

Following [3], we use the argument labellings approach of [5]3 rather than Dung’s
original extension approach [11]. The idea of a labelling is to associate with each argu-
ment exactly one label, which can either be in, out or undec. The label in indicates
that the argument is explicitly accepted, the label out indicates that the argument is
explicitly rejected, and the label undec indicates that one abstains from an explicit po-
sition on the argument.

Definition 2 (Labelling). Let (Ar, def ) be an argumentation framework. A labelling is
a total function L : Ar −→ {in, out, undec}.

We write in(L) for {A | L(A) = in}, out(L) for {A | L(A) = out} and undec(L) for
{A | L(A) = undec}. Sometimes, we write a labellingL as a triple (Args1,Args2,Args3)
whereArgs1 = in(L),Args2 = out(L) andArgs3 = undec(L). In some cases, it only
matters whether an agent has a clear position (in or out) on an argument or whether he
abstains. We then write dec(L) for in(L) ∪ out(L).

Typically, given an argumentation framework, there exists more than one possible
labelling, but not all labellings are reasonable. Several semantics have been defined in
the literature, but we will consider only the following ones.4

Definition 3 (Illegal arguments). Let L be a labelling of argumentation framework
(Ar, def ) and let A ∈ Ar. We say that:

1. A is illegally in (in L) iff L(A) = in and ∃B ∈ Ar : (Bdef A ∧ L(B) , out)
2. A is illegally out (in L) iff L(A) = out and ¬∃B ∈ Ar : (Bdef A ∧ L(B) = in)
3. A is illegally undec (in L) iff L(A) = undec and ∃B ∈ Ar : (Bdef A ∧ L(B) =

in) ∨ ∀B ∈ Ar : (Bdef A ⊃ L(B) = out).

For example, argument A of Fig. 1 is in as it has no defeaters. Argument B must be
out since it has a defeater (argument A) and its defeater is in. Finally, argument C is
in since its only defeater (argument B) is out.

Definition 4 (Admissible labelling). An admissible labelling is a labelling without ar-
guments that are illegally in and without arguments that are illegally out.

Definition 5 (Complete labelling). A complete labelling is a labelling without argu-
ments that are illegally in, without arguments that are illegally out and without argu-
ments that are illegally undec.

Intuitively, an admissible labelling ensures that an agent has reasons for each in and
out positions on an argument, and finally, a complete labellings adds the condition that
an agent cannot remain undecided if he has a reason to accept or reject an argument.

Four labellings of an argumentation framework are depicted in Fig. 2. Labellings
L1 and L2 are admissible and complete. Labelling L3 is admissible but not complete
because argument C is illegally undec as its attacker, argument B is in. Labelling L4
is not admissible and not complete because argument C is illegally out.

3 Other labellings approaches are [21, 27, 28].
4 For an explanation of why this is not a too restrictive assumption, the reader is referred to [3].
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Manipulation in group argument evaluation 5

Fig. 2. The four labellings of a simple argumentation framework.

The basic difference between an extension [11] and a labelling [5, 6] is that an exten-
sion only represents the arguments that are accepted, whereas a labelling also represents
the arguments that are rejected or left undecided. Well-known results are that the set of
in-labelled arguments of an admissible labelling (complete labelling) is an admissible
set (complete extension) in the sense of [11]. Moreover, for each admissible set (com-
plete extension) there exists an admissible labelling (complete labelling) of which set
of in-labelled arguments is precisely the admissible set (complete extension). Finally,
for admissible labellings/sets the relationship is many-to-one, whereas for complete la-
bellings/extensions the relationship is one-to-one. For more details on how labellings
relate to extensions, see [5, 6].

So the idea is that labellings provide a slightly more expressive though equiva-
lent way to express Dung’s theory of argumentation. Whereas Dung’s original theory
focusses only on the sets of accepted arguments, with labellings one can also refer ex-
plicitly to the sets of rejected arguments and the sets of arguments where one does not
have an explicit opinion about.

In essence, a labelling based semantics can be seen as a function that, given an
argumentation framework, yields zero or more labellings, each of which can be seen as
a reasonable position that one can take in the presence of the argumentation framework.

Definition 6 (Labelling based semantics). Let AF be the set of all possible argu-
mentation frameworks using a universe U. Let Labellings be {L | there exists an argu-
mentation framework AF ∈ AF such that L is a labelling of AF}. A labelling based
semantics is a function T : AF → 2Labellings.

2.2 Aggregation problem

We are now ready to formally summarize the problem of aggregation of individual la-
bellings into a collective position on a given argumentation framework. The definitions
and results in this section are from [3].

5



6 Martin Caminada, Gabriella Pigozzi, and Mikołaj Podlaszewski

Given a set of individuals N = {1, . . . , n}, we need to define a general labellings
aggregation operator OAF that assigns a collective labelling LColl to each profile
P = {L1, . . . ,Ln} of individual labellings.

Definition 7 (Labelling aggregation operator OAF). Let Labellings be the set of all
possible labellings of argumentation framework AF = (Ar, def ). A general labellings
aggregation operator is a function OAF : 2Labellings − {∅} → Labellings such that
OAF({L1, . . . ,Ln}) = LColl.

We are interested in aggregation operators that produce a collective outcome com-
patible with the individual opinions. The idea is to ensure that each member can pub-
licly defend the common decision without having to directly go against his own posi-
tion. Two notions of compatibility have been introduced in [3].

Definition 8 (Less or equally committed v). Let L1 and L2 be two labellings of ar-
gumentation framework AF = (Ar, def ). We say that L1 is less or equally committed as
L2 (denoted by L1 v L2) iff in(L1) ⊆ in(L2) and out(L1) ⊆ out(L2).

Definition 9 (Compatible labellings ≈). Let L1 and L2 be two labellings of argumen-
tation framework (Ar, def ). We say that L1 is compatible with L2 (denoted as L1 ≈ L2)
iff in(L1) ∩ out(L2) = ∅ and out(L1) ∩ in(L2) = ∅.

The intuition is that, in order to be compatible, two labellings cannot have in− out
conflicts. It can be noted that v is a partial order on labellings, whereas ≈ is not transitive
[3]. It holds that if L1 v L2, then L1 ≈ L2.

We are now ready to state the sceptical and credulous aggregation operators.

Definition 10 (Sceptical initial aggregation operator sioAF). Let Labellings be the
set of all possible labellings of argumentation framework AF = (Ar, def ). The sceptical
initial aggregation operator is a function sioAF : 2Labellings−{∅} → Labellings such that
sioAF({L1, . . . ,Ln}) =

{(A, in) | ∀i ∈ {1, . . . , n} : Li(A) = in}∪

{(A, out) | ∀i ∈ {1, . . . , n} : Li(A) = out}∪

{(A, undec) | ∃i ∈ {1, . . . , n} : Li(A) , in ∧ ∃i ∈ {1, . . . , n} : Li(A) , out}.

The idea is that the group initially labels an argument in (respectively out) if all
individual participants agree that the argument is in (respectively out). Otherwise it is
undec. This procedure does not preserve admissibility. This means that it may return a
labelling with illegally in or illegally out arguments. This is why, after the initial ag-
gregation, a second iterative phase follows, where all the illegally in or out arguments
are re-labelled to undec. Formally, this is defined as follows:

Definition 11 (Down-admissible labelling). Let L be a labelling of argumentation
framework AF = (Ar, def ). The down-admissible labelling of L is the biggest element
of the set of all admissible labellings that is less or equally committed than L.

The down-admissible labelling is defined according to the partial order given by v.
It has been shown in [3] that such element always exists and is unique. We can now
define the sceptical operator that ensures admissible outcomes.

6



Manipulation in group argument evaluation 7

Definition 12 (Sceptical aggregation operator soAF). Let Labellings be the set of
all labellings of argumentation framework AF = (Ar, def ). The sceptical aggregation
operator is a function soAF : 2Labellings−{∅} → Labellings such that soAF({L1, . . . ,Ln})
is the down-admissible labelling of sioAF({L1, . . . ,Ln}).

The aggregation operator above produces social outcomes that are less or equally
committed to all the individual labellings. The following theorem, taken from [3], also
ensures that this result is maximal.

Theorem 1. Let L1, . . . ,Ln (n ≥ 1) be labellings of argumentation framework AF =

(Ar, def ). Let Lso be soAF({L1, . . . ,Ln}). It holds that Lso is the biggest admissible
labelling such that for every i ∈ {1, . . . , n}: Lso v Li.

The second aggregation operator that we consider here is the credulous one.

Definition 13 (Credulous initial aggregation operator cioAF). Let Labellings be the
set of all possible labellings of argumentation framework AF = (Ar, def ). The credu-
lous initial aggregation operator is a function cioAF : 2Labellings−{∅} → Labellings such
that cioAF({L1, . . . ,Ln}) =

{(A, in) | ∃i ∈ {1, . . . , n} : Li(A) = in ∧ ¬∃i ∈ {1, . . . , n} : Li(A) = out}∪

{(A, out) | ∃i ∈ {1, . . . , n} : Li(A) = out ∧ ¬∃i ∈ {1, . . . , n} : Li(A) = in}∪

{(A, undec) | ∀i ∈ {1, . . . , n} : Li(A) = undec ∨ (∃i ∈ {1, . . . , n} : Li = in ∧ ∃i ∈
{1, . . . , n} : Li = out)}.

The idea is that the group initially labels an argument A in (respectively out) if
there is someone who believes A is in (respectively out) and nobody thinks A is out
(respectively in). A is labelled undec in all other cases. The admissibility problem
reappears here and is solved again by an iterative second phase where all illegally in
and out arguments are relabelled undec.

Definition 14 (Credulous aggregation operator coAF). LetAdmLabellings be the set
of all admissible labellings of argumentation framework AF = (Ar, def ). The credulous
aggregation operator is a function coAF : 2AdmLabellings − {∅} → AdmLabellings such
that coAF({L1, . . . ,Ln}) is the down-admissible labelling of cioAF({L1, . . . ,Ln}).

It holds that the credulous outcome labelling (Lco = coAF({L1, . . . ,Ln})) is compat-
ible with all the individual labellings, i.e. Lco ≈ Li (for each i ∈ {1, . . . , n}).

3 Preferences

In order to investigate Pareto optimality and strategy-proofness we need to assume that
agents have preferences over the possible collective outcomes. For this purpose, we
now define Hamming sets and Hamming distance (also called Dalal distance) among
labellings, using similar approach as in [8].

Definition 15 (Hamming set 	). Let L1 and L2 be two labellings of argumentation
framework (Ar, def ). We define the Hamming set between these labellings as L1	L2 =

{A | L1(A) , L2(A)}.

7



8 Martin Caminada, Gabriella Pigozzi, and Mikołaj Podlaszewski

Definition 16 (Hamming distance |	|). Let L1 and L2 be two labellings of argumen-
tation framework (Ar, def ). We define the Hamming distance between these labellings
as L1 |	| L2 = |L1 	 L2|.

In short, the Hamming set is the set of arguments on which two labellings differ,
whereas the Hamming distance is the number of arguments on which two labellings
differ. Since the labellings have only three values, we can use the following lemma.

Lemma 1. Let (Ar, def ) be an argumentation framework andL1 andL2 two labellings:
a) L1 	 L2 = in(L1) ∩ out(L2) ∪ in(L1) ∩ undec(L2) ∪ out(L1) ∩ in(L2) ∪
out(L1) ∩ undec(L2) ∪ undec(L1) ∩ in(L2) ∪ undec(L1) ∩ out(L2)
b) if L1 v L2 then L1 	 L2 = undec(L1) ∩ dec(L2)
c) if L1 ≈ L2 then L1 	 L2 = dec(L1) ∩ undec(L2) ∪ undec(L1) ∩ dec(L2)

Proof.
a) Follows from the fact that in(L), out(L) and undec(L) partition the domain of
any labelling L.
b) and c) are obtained by eliminating the empty sets in a) and replacing in(L) ∪
out(L) by dec(L).

�

We are now ready to define an agent’s preference given by the Hamming set and the
Hamming distance as follows.

We writeL ≥i L
′ to denote that agent i prefers labellingL toL′. We writeL ∼i L

′,
and say that i is indifferent between L and L′, iff L ≥i L

′ and L′ ≥i L. Finally, we
write L >i L

′ (agent i strictly prefers L to L′) iff L ≥i L
′ and not L ∼i L

′.
We assume that the labelling submitted by each agent is his most preferred one and,

hence, the one he would like to see adopted by the whole group. The order over the
other possible labellings is generated according to the distance from the most preferred
one.

Definition 17 (Hamming set based preference ≥i,	). Let (Ar, def ) be an argumenta-
tion framework, Labellings the set of all its labellings and ≥i the preference of agent
i. We say that agent i’s preference is Hamming set based (written as ≥i,	) iff ∀L,L′ ∈
Labellings,L ≥i L

′ ⇔ L 	 Li ⊆ L
′ 	 Li where Li is the agent’s most preferred

labelling.

Definition 18 (Hamming distance based preference ≥i,|	|). Let (Ar, def ) be an argu-
mentation framework, Labellings the set of all its labellings and ≥i the preference of
agent i. We say that agent i’s preference is Hamming distance based (written as ≥i,|	|)
iff ∀L,L′ ∈ Labellings,L ≥i L

′ ⇔ L |	|Li ≤ L
′ |	| Li where Li is the agent’s most

preferred labelling.

The Hamming set based preference yields an partial order, whereas the Hamming
distance based preference yields a total preorder.

We now prove two lemmas establishing the relations between less or equally com-
mitted labellings and Hamming set/distance based preferences over labellings.

8



Manipulation in group argument evaluation 9

Lemma 2. LetL,L′ andLi be three labellings such thatL v L′ v Li. IfLi is the most
preferred labelling of agent i and his preference is Hamming set or Hamming distance
based, then L′ ≥i,	 L and L′ ≥i,|	| L respectively.

Proof. FromL v L′, we have that dec(L) ⊆ dec(L′), which is equivalent to undec(L′) ⊆
undec(L) because undec is the complement of dec. From this it follows that undec(L′)∩
dec(Li) ⊆ undec(L) ∩ dec(Li). Since L v Li and L′ v Li (by assumption and transi-
tivity of v), we can use Lemma 1b to obtain L′ 	 Li ⊆ L 	 Li. By definition we have
that L′ ≥i,	 L and L′ ≥i,|	| L.

�

Lemma 3. Let L, L′ and Li be three labellings and let L v Li. If Li is the most
preferred labelling of agent i, his preference is Hamming set based and L′ ≥i,	 L, then
L v L′.

Proof. L′ ≥i,	 L implies L′ 	 Li ⊆ L 	 Li which implies L(A) = Li(A) ⇒ L′(A) =

Li(A) for any argument A (i). L v Li implies L(A) = Li(A) for any A ∈ dec(L) (ii).
From (i) and (ii) it follows that L(A) = L′(A) for any A ∈ dec(L). Hence L v L′.

�

We now have the machinery to represent individual preferences over the collective
outcomes. We can now turn to the first research question of the paper, i.e., whether the
sceptical and credulous aggregation operators are Pareto optimal.

4 Pareto optimality

Pareto optimality is a fundamental social welfare principle that guarantees that it is not
possible to improve a social outcome, i.e. it is not possible to make one individual better
off without making at least one other person worse off. In order to address the question
of whether the sceptical and the credulous aggregation operators are Pareto optimal, we
first need to define when a labelling Pareto dominates another labelling.

Definition 19 (Pareto dominance). Let N = {1, . . . , n} be a set of individuals with
preferences ≥i, i ∈ N. Labelling L Pareto dominates L′ if ∀i ∈ N, L ≥i L

′ and ∃ j ∈
N,L > j L

′.

A labelling is Pareto optimal if it is not dominated by any other labelling.

Definition 20 (Pareto optimality). Labelling L is Pareto optimal if there is no L′ , L
such that ∀i ∈ N, L′ ≥i L and ∃ j ∈ N,L′ > j L.

We say that an aggregation operator is Pareto optimal if all its outcomes are Pareto
optimal. In particular, candidates for dominance are admissible and less or equally com-
mitted labellings in the case of the sceptical operator, and compatible labellings in the
case of the credulous operator.

Theorem 2. If individual preferences are Hamming set based or Hamming distance
based, then the sceptical aggregation operator is Pareto optimal when choosing from
the admissible labellings that are smaller or equal (w.r.t v) to each of the participants’
individual labellings.

9



10 Martin Caminada, Gabriella Pigozzi, and Mikołaj Podlaszewski

Proof. Let P be a profile of admissible labellings, LS O = soAF(P) and LX some ad-
missible labelling with the property ∀i ∈ N,LX v Li. From Theorem 1 we know that
LS O is the biggest admissible labelling with such property, so LX v LS O. So we have
∀i ∈ N,LX v LS O v Li. From Lemma 2 we have LS O ≥i,	 LX and LS O ≥i,|	| LX

for any i. So no agent strictly prefers LX and hence there is no labelling that dominates
LS O.

�

Theorem 3. If individual preferences are Hamming set based, then the credulous ag-
gregation operator is Pareto optimal when choosing from the admissible labellings that
are compatible (≈) to each of the participants’ individual labellings.

Proof. Let P be a profile of admissible labellings, LCO = coAF(P), LCIO = cioAF(P).
Assume by contradiction that there exists some admissible labelling LX with the prop-
erty ∀i ∈ N,LX ≈ Li that dominates LCO.

First notice that compatibility ensures that there are no in/out conflicts betweenLX

and LCO. If there is a conflict between agents’ labellings on some argument, then both
LX and LCO need to label it undec. If there exists an agent whose labelling decides on
some argument and other agents’ labellings agree or retain from decision, LCO and LX

also agree or retain from decision. If all agents retain from decision on some argument,
LCO by definition also retains, and LX may label freely.

Let us take A ∈ dec(LX). Then, there needs to be an agent with a labelling that
agrees on A. Otherwise all agents’ labellings would be undecided on such argument
and, according to definition,LCO would not decide either. But then all agents’ labellings
will agree on such argument with LCO and disagree with LX , so no agent will strongly
prefer LX , which contradicts with domination. So there exists at least one agent whose
labelling agrees withLX on A. Other agents’ labellings also need to agree on A or label it
undec because of the compatibility of LX . Then by definition LCIO(A) = LX(A). This
holds for any argument A ∈ dec(LX), so we have LX v LCIO. But LX is admissible
and, by Theorem 1, LCO is the biggest admissible labelling less or equally committed
as LCIO. So we have LX v LCO v LCIO.
LX must be different fromLCO to dominate it. Let A be an argument on which these

labellings differ. From the previous it follows that A ∈ undec(LX) and A ∈ dec(LCO).
LCO decides on an argument only if there exists an agent that decides on such argument.
But then this argument will agree on A with LCO and disagree with LX , so it will not
prefer LX . This is in contradiction with dominance. Hence, such dominating labelling
cannot exist.

�

Observation 1 The credulous aggregation operator is not Pareto optimal when the
preferences are Hamming distance based. An example is given in Fig. 3. Both labellings
LCO and LX are compatible with both L1 and L2, but LX is closer when applying
Hamming distance. L1 	LCO = L2 	LCO = {A, B, E, F,G}, so Hamming distance is 5,
whereas L1 	 LX = L2 	 LX = {A, B,C,D}, so Hamming distance is 4.

We summarise our results in Table 1 below.
We are now ready to address the second research question of the paper, that is,

whether the credulous and sceptical aggregation operators are manipulable.

10



Manipulation in group argument evaluation 11

Fig. 3. The credulous aggregation operator is not Pareto optimal under Hamming distance based
preferences.

Sceptical Operator Credulous Operator
Hamming set Yes (Theorem 2) Yes (Theorem 3)

Hamming distance Yes (Theorem 2) No (Observation 1)

Table 1. Pareto optimality of the aggregation operators depending on the type of preference.

5 Strategic manipulation

When an agent knows the positions of the other agents, he may discover that he has an
incentive to submit an insincere position. If an aggregation rule is manipulable, an agent
may obtain a social outcome that is closer to his actual preferences by submitting an
insincere input. Hence, an important question to address when dealing with aggregation
procedures is to study whether they are strategy-proof (i.e. non-manipulable).

In order to talk about manipulability, we first need to denote a profile in which
a labelling has been changed. We recall that by profile we refer to a set of individual
labellings {L1, . . . ,Ln}. Profile PLk/L

′
k

is profile P where agent k’s labellingLk has been
changed to L′k.

Definition 21 (Strategic lie). Let P be a profile andLk ∈ P the most preferred labelling
of an agent with preference ≥k. Let O be any aggregation operator. A labelling L′k such
that O(PLk/L

′
k
) >i O(P) is called a strategic lie .

11



12 Martin Caminada, Gabriella Pigozzi, and Mikołaj Podlaszewski

Definition 22 (Strategy-proof operator). We say that an aggregation operator O is
strategy-proof if strategic lies are not possible.

Fig. 4. The credulous aggregation operator is not strategy-proof.

Observation 2 The credulous aggregation operator is not strategy-proof. See the ex-
ample in Fig. 4. The agent with labelling L2 can insincerely report L′2 to obtain his
preferred labelling. This makes agent with labelling L1 worse off. The example is valid
for both Hamming set and Hamming distance based preferences.

Fig. 5. The sceptical aggregation operator is not strategy-proof.

Observation 3 The sceptical aggregation operator is not strategy-proof. Consider the
three labellings in Fig. 5. Labelling L1 of agent 1 when aggregated with L2 gives la-
belling L3, which differs on all three arguments 5. But, when the agent strategically lies

5 To see why this is reasonable outcome, consider the following example, taken from [22].

A: John says the suspect stabbed the victim.
B: Bob says the suspect shot the victim.
C: The suspect is innocent.

This essentially yields an argumentation framework like in Fig. 5 where A and B attack each
other as well as C. John may subscribe to labelling L2, Bob to labelling L1. However, given

12
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and reports labelling L2 instead, the result of the aggregation is the same labelling L2,
which differs only on two arguments {A, B}. The example is valid for both Hamming set
and Hamming distance based preferences.

Surprisingly, however, this lie does not harm the other agent. Quite the opposite, it
improves the social outcome for both the agents. In order to study this kind of situation,
we now introduce the distinction between malicious and benevolent lies.

Definition 23 (Malicious lie). Let O be some aggregation operator and P a profile. We
say that a strategic lie L′k is malicious iff, for some agent j , k, O(P) > j O(PLk/L

′
k
).

Definition 24 (Benevolent lie). Let O be some aggregation operator and P a profile.
We say that a strategic lie L′k is benevolent iff, for any agent i O(PLk/L

′
k
) ≥i O(P) and

there exists an agent j , k, O(PLk/L
′
k
) > j O(P).

Theorem 4. Consider the sceptical aggregation operator and Hamming set based pref-
erences. For any agent, his strategic lies are benevolent.

Proof. Let P be a profile, and L′k a strategic lie of agent k. Denote LS O = soAF(P) and
L′S O = soAF(PLk/L

′
k
). Agent k’s preference is L′S O >k LS O (i). We will show that for

any agent i , k, we have L′S O >i LS O.
Since the sceptical aggregation operator produces social outcomes that are less or

equally committed to all the individual labellings, we have that L′S O v Li for all i , k
(ii). Similarly, we have LS O v Lk (iii). From (i) and (iii), by Lemma 3, we have that
LS O v L

′
S O (iv). From (iv) and (ii) we have LS O v L

′
S O v Li for all i , k. Finally, we

can apply Lemma 2 to obtain L′S O ≥i LS O for all i , k (v). We showed that lie is not
malicious, now we show that it is benevolent.

(iii) implies undec(Lk) ⊆ undec(LS O) (vi). (i) and (vi) implies ∃A ∈ dec(Lk) :
A ∈ undec(LS O) ∧ A ∈ dec(L′S O) (vii). From (vii), (ii) and (v) L′S O >i LS O for i , k.

�

Theorem 5. Consider the sceptical aggregation operator and Hamming distance based
preferences. For any agent, his strategic lies are benevolent.

Proof. Let P be a profile, and L′k a strategic lie of agent k whose most preferred la-
belling is Lk. Denote LS O = soAF(P) and L′S O = soAF(PLk/L

′
k
). We will show that,

if L′S O is strictly preferred to LS O by agent k, then it is also strictly preferred by any
other agent. Without loss of generality we can take agent j, j , k,whose most preferred
labelling is L j.

Let us partition the arguments into the following disjoint groups: A = dec(LS O) \
dec(L′S O) (decided arguments that became undecided), B = dec(L′S O) \ dec(LS O)
(undecided arguments that became decided), C = dec(L′S O) ∩ dec(LS O) (arguments
decided in both labellings), D = undec(L′S O) ∩ undec(LS O) (arguments undecided in
both labellings).

LabellingsLS O andL′S O agree on the arguments in D (which are labeled undec) and
C, whose arguments are labeled in or out. On the arguments in C there are no in−out

the conflicting testimonies, a judge may decide that there is simply insufficient evidence that
is beyond reasonable doubt to reject the presumption of innocence.

13



14 Martin Caminada, Gabriella Pigozzi, and Mikołaj Podlaszewski

conflicts between LS O and L′S O as the sceptical aggregation operator guarantees social
outcomes less or equally committed than L j. Therefore, only arguments from A and B
have an impact on Hamming distance.

Both labellings Lk and L j agree with LS O on the arguments in A because LS O

decides on those arguments and is less or equally committed than both labellings. On
the other side, L′S O remains undecided on the arguments in A so both labellings Lk and
L j disagrees with L′S O on A.
L′S O is less or equally committed than L j so, as above, we obtain that on the argu-

ments in B, L j agrees with L′S O and disagrees with LS O. On the contrary, L′S O does
not have to be less or equally committed than Lk and so, for agent k, some of the argu-
ments from B increase the distance and some of them decrease. If agent k prefers L′S O
to LS O, then the number of the arguments decreasing the distance must be greater than
the number of those increasing by more than |A|. But for agent j all the arguments from
B are decreasing the distance, as L j agrees with L′S O on the whole B. So, if agent k
gains by switching to labelling L′S O, agent j needs to gain at least the same.

�

Note that this is not in contradiction with the result that the sceptical aggregation
operator is Pareto optimal (Theorem 2). There, the outcome needed to be less or equally
committed than all the opinions in the profile. Here, the outcome is less or equally com-
mitted than the insincere submitted labellingL′, rather than the most preferred labelling
Lk. If we restrict the lies to the ones that aggregated are less or equally committed, then
the sceptical aggregation operator is strategy-proof.

We summarise our results in Table 2.

Sceptical Operator Credulous Operator
Hamming set No (Observation 3) No

but it is benevolent (Theorem 4) and not benevolent (Observation 2)
Hamming distance No (Observation 3) No

but it is benevolent (Theorem 5) and not benevolent (Observation 2)

Table 2. Strategy-proofness of operators depending on the type of preference.

6 Related Work

The study of aggregation problems in abstract aggregation is recent. The aggregation of
individual defeat relations into a social one has been investigated by Coste-Marquis et
al. [7] and Tohmé et al. [26]. In [7], an approach to merge Dung’s argumentation frame-
works is presented. Unlike our approach, the argumentation frameworks to be merged
may be different, that is agents may ignore arguments put forward by other agents. Con-
flicts between argumentation frameworks are solved using merging techniques [14], in
particular a distance-based merging operator. The intuition is to minimize the distance
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between the profile and the collective outcome. Typically, more than one argumenta-
tion system minimizes the chosen distance. Hence, the final step consists in asking the
individuals to vote on the selected extensions to obtain the final group argumentation
framework. Their approach is shown to preserve at the collective level all the evalua-
tions on which the individuals do not disagree.

The main conceptual difference between the approach of Coste-Marquis et al. [7]
and the approach of Caminada and Pigozzi [3] on which the current paper is based can
be explained as follows. When one interprets an argumentation framework as the often
conflicting information that is available in a particular case, one can distinguish between
situations where the participants all have the same information available and situations
when they do not. In the latter situations, one has to merge the available information.
How to do this is a question studied in the work of Coste-Marquis et al. [7]. However,
in the former situations, where all participants do share the same information, it is still
possible to have different opinions about how to interpret this information, because it
is perfectly possible for several reasonable interpretations to exist. An example of this
would be a jury in a legal trial, whose members are all presented precisely the same
facts but can still disagree on how to interpret these facts when it comes to reaching a
verdict. It is these kinds of situations, where the participants share the same information
(argumentation framework) but still disagree on how to interpret it (resulting in different
labellings) that are studied in [3] as well as in the current paper.

In Tohmé et al. [26], the aggregation of individual attack relations is linked to the
aggregation of individual preferences in social-choice. They show that, by assuming
argumentation frameworks in which the attack relations are acyclic, it is possible to
define an aggregation operator that satisfies Arrow’s theorem conditions.

The work of Rahwan and Tohmé [24] is closer to the approach of [3] and of the
present paper. Given an argumentation framework, Rahwan and Tohmé address the
question of how to aggregate individual labellings into a collective position. By drawing
on a general impossibility theorem from judgment aggregation, they prove an impossi-
bility result and provide some escape solutions. Moreover, they investigate the manipu-
lability issue of the plurality aggregation rule.

Another work by Rahwan and Larson [23] explores welfare properties of collec-
tive argument evaluation. They consider agents with a preference relation between the
various complete labellings. An example of such a preference relation would be to try
to maximize the in-labelling of a set of arguments an individual agent cares about. In
particular, they show that different types of preference orderings result in different types
of labellings becoming Pareto optimal.

In this paper, the analysis of manipulability conducted to the formulation of a benev-
olent type of manipulation. A similar idea was introduced and studied in [12], where
manipulation was seen as a coordinated action of the whole group. There, the authors
consider individuals that are willing to deliberately fallback into declaring a less pre-
ferred input to ensure that a collective decision can be made. Hence, they analyze how
the individuals can achieve two goals simultaneously: to ensure a rational group deci-
sion and, at the same time, to do so by diverging the slightest possible from their own
sincere judgments.
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7 Conclusion

Caminada and Pigozzi defined the problem of aggregating individual labellings in a
judgment aggregation setting [3]. In order to escape the impossibility results that plague
judgment aggregation, and that Rahwan and Tohmé proved to hold also for abstract
argumentation [24], they relaxed the independence condition. However, in preference
and judgment aggregation settings, one reason to impose the independence condition
is that it ensures non-manipulability. Thus, aim of this paper was to examine the con-
sequences of dropping independence for two operators of [3]. To this end, we have
analyzed the sceptical and credulous aggregation operators introduced in [3] from a
social welfare perspective. First, we have addressed the question of whether the two ag-
gregation operators are Pareto optimal, i.e. whether they select an outcome that cannot
be improved for one agent without damaging the other individuals. Second, we have
investigated whether the two aggregation operators can be manipulated. We have found
that, whereas the credulous aggregation operator is prone to manipulation and, by ly-
ing, an agent harms the other members, the sceptical aggregation operator also offers
incentives to lie but somewhat surprisingly those lies turn out to promote social welfare.
Our findings show that relaxing the independence condition does not lead to harmful
consequences.

In future work, we plan to consider focal set oriented agents, that is, agents who care
only about a subset of the argumentation framework. An agent may not require that his
position on all the issues at stake becomes the group outcome. In this case, an agent will
be prone at strategizing in order to have his labelling on a subset of the arguments only
assumed by the whole group. We plan to explore the strategic behavior of the sceptical
and credulous outcomes for focal set oriented agents.
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Abstract. This paper introduces the use of fuzzy labels in argumen-
tation. The first approach we propose is built as a natural extension
of the in, out, undec labeling to real valued labels, coupled with an
unsupervised learning algorithm that assigns consistent labels starting
from a random initial assignment. The second approach regards argu-
ment (fuzzy) labels as degrees of certitude in the argument’s acceptabil-
ity. This translates into a system of equations that provides among its
solutions the labelings that describe complete extensions.

Keywords: argumentation framework, fuzzy labeling

1 Introduction

Since the initial work of Dung [9], argumentation frameworks have steadily
gained popularity and a lot of work has been done for extending various parts
of his proposal.

Argument acceptability is most often dealt with by means of extension-based
semantics. The initial semantics proposed by Dung [9] (complete, grounded,
preferred, stable) were followed by several others: semi-stable [4], stage [11],
ideal [8], eager [5], prudent [7], CF2 [2], resolution-based grounded [1], enhanced
preferred [12].

Another approach to argument acceptability is that of argument labeling,
proposed by Caminada [3, 6], where each argument is assigned one of three la-
bels: in, out, undec. The labels are assigned so as to obey some restrictions
that define complete labelings, which are shown to be in a one-to-one corre-
spondence with complete extensions. Additional set-inclusion related constraints
(maximality or minimality) are used for identifying the labelings that correspond
to semantics that prescribe extensions that are complete (grounded, preferred,
stable, semi-stable).

We feel that this approach can be extended in such a way as to allow for
other semantics to be described in terms of labelings as well. The approach we
propose does not do that itself, but provides links with domains that were not,
to the best of our knowledge, linked with the labeling approach before, namely
converging recursive sequences, systems of equations and SCC-recursiveness.

What we propose are real-valued labels in the interval [0, 1]. We call these
values fuzzy labels. Two approaches for defining the completeness rules for this
kind of labeling are defined and analyzed with relevant examples.
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Next section will provide some more details about related work, expecially
that of Caminada. Section 3 will introduce the fuzzy labels and derive the criteria
for complete labelings. We continue in section 4 with an unsupervised learning
approach for assigning fuzzy labels. Section 5 introduces a set of different criteria
for complete labelings and relates this approach to solving systems of equations.
The paper ends with conclusions and remarks about future work.

2 Related Work

As we stated already in the introduction, our work is based on that of Caminada
[3, 6] and constitutes an attempt to generalize it. In his work, Caminada proposes
the assignment of one of three labels (in, out, undec) to each argument. This
assignment can be linked with the justification state of the arguments, in the
sense that the in label corresponds to arguments that are accepted, the out label
corresponds to arguments that are defeated and the undec label corresponds to
arguments for which no decision is taken.

In order to ensure that labels do indeed correspond to the justification state of
the arguments (with respect to a given semantics) some constraints are enforced
on the labelings. A labeling is considered complete if the following criteria are
met:

– if an argument is labeled in, its attackers are labeled out
– if an argument is labeled out, at least one of its attackers is labeled in
– if all attackers of an argument are labeled out, then the argument is labeled

in
– if an attacker of an argument is labeled in, then the argument is labeled out

Caminada shows that complete labelings are in a one-to-one correspondence
with the complete extensions of the argumentation framework, in the sense that
the arguments labeled in by a complete labeling form a complete extension of
the framework and for each complete extension there is such a complete labeling.
Relaxing the constraints yields admissible or conflict-free labelings.

Furthermore, Caminada shows that the preferred extensions correspond to
the complete labeling with the maximal set (with respect to set inclusion) of
in arguments and with the maximal out, stable corresponds to empty undec,
grounded corresponds to minimal in, minimal out and maximal undec, and
semi-stable corresponds to minimal undec.

Our approach extends the domain of the labels to the real interval [0, 1] and
translates the completeness rules for numeric values. We will define a mapping
of fuzzy labels to in, out, undec so as to benefit from all the results that hold
for Caminada’s approach, but we will also point out how fuzzy labels can be
used for richer information on the justification state of the arguments.

Another important addition of our approach is the fact that we provide
an algorithm for assigning labels based on an initial random assignment. The
algorithm exhibits fast convergence experimentally and can also be parallelized
for better performance.
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Our approach may also be linked with fuzzy argumentation frameworks, de-
fined by Janssen et al. [10] in the sense that the fuzzy labels may be interpreted
as fuzzy membership to an extension. However, Janssen’s approach differs signif-
ficantly from ours by the fact that the attack relation that defines the framework
is taken to be fuzzy and the conflict-free and admissibility definitions are changed
accordingly.

We will also link a part of our approach with SCC-recursiveness used by
Baroni et al. [2]. We believe that this link might enable a correlation between
the CF2 semantics defined in the same paper and argument labeling.

3 Introducing Fuzzy Labels

We begin this section by recalling the definition of argumentation frameworks,
then provide the intuition behind our proposal, namely the link with the in,
out and undec labels of Caminada, by proposing an alternate definition of the
criteria for complete labelings.

Definition 1. An argumentation framework is a pair (A,R), where A is a set
of arguments and R is a relation defined on A, i.e. R ⊆ A×A. An argument a
is said to attack an argument b (written a→ b) iff (a, b) ∈ R.

Note that we have recalled the definition of argumentation frameworks mostly
for notational purposes. We will not define the semantics here as well, since they
may be looked up in referred papers.

Definition 2 (Complete labeling [6]). Let F = (A,R) be an argumentation
framework. A complete labeling of F is a labeling such that for each argument
a ∈ A it holds that:

1. if a is labeled in, then all attackers of a are labeled out
2. if all attackers of a are labeled out, then a is labeled in
3. if a is labeled out, then a has an attacker that is labeled in
4. if a has an attacker that is labeled in, then a is labeled out

Definition 3. We define the following (intuitive) order relations on the set of
labels: out < undec < in. We also define the opposite of each label: opp(in) =
out, opp(out) = in and opp(undec) = undec. We will use λ(a) to denote the
label of the argument a.

Let F = (A,R) be an argumentation framework. A complete labeling of F is
a labeling such that for all arguments a ∈ A it holds that

1. λ(a) = opp(maxb∈A,b→a λ(b)), if a has at least one atttacker
2. λ(a) = in, if a is not attacked

Alternatively, we can keep just relation 1 of definition 3 and assume that the
maximum is defined to take the minimum possible value (out) when the set of
attackers is empty.
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Proposition 1. Definitions 2 and 3 are equivalent.

Proof. It is easy to see that all attackers of a are out iff maxb∈A,b→a λ(b) = out
and a has an attacker labeled in iff maxb∈A,b→a λ(b) = in.

We are now ready to introduce complete fuzzy labelings.

Definition 4 (Complete fuzzy labeling). Let F = (A,R) be an argumenta-
tion framework. A complete fuzzy labeling of F is a mapping λ : A → [0, 1] such
that:

1. λ(a) = 1−maxb∈A,b→a λ(b), if a has at least one atttacker
2. λ(a) = 1, if a is not attacked

Again, we can simplify things if we consider that the maximum is defined as
0 for the empty set.

Definition 5 (Fuzzy labeling conversion). Let F = (A,R) be an argumen-
tation framework and λ a complete fuzzy labeling of F . For α ∈ [0, 0.5) we define
the α-conversion of the fuzzy labeling as the labeling λ(α) with:

λ(α)(a) =





out , if λ(a) ∈ [0, α]
undec , if λ(a) ∈ (α, 1− α)
in , if λ(a) ∈ [1− α, 1]

Proposition 2. The α-conversion of a complete fuzzy labeling is a complete
labeling.

Proof. Check that the converted labeling satisfies definition 3.

Consider the following simple framework

a↔ b→ c

and the following complete fuzzy labelings:

λ1(a) = 0.3, λ1(b) = 0.7, λ1(c) = 0.3
λ1(a) = 0.6, λ1(b) = 0.4, λ1(c) = 0.6

If we compute λ(0.2)
1 , all arguments will be labeled undec, which corresponds

to the grounded extension ∅. The same is true for λ(0.2)
2 . On the other hand,

λ
(0.45)
1 will label a and c out and b in, which corresponds to the complete ex-

tension {b}, while for λ(0.45)
2 we get the complete extension {a, c}. From this we

see that the actual complete labeling that we get upon conversion depends on
the value we choose for α.

It is easy to see that once we apply conversion we get the usual complete
labeling that maps to complete extensions. If we keep the fuzzy labels, however,
we also get a preference between arguments and also a restriction on preferences
(in this case a and c must have the same value). This, coupled with the algorithm
in the next section, provides richer information to a rational agent deciding on
the acceptability of the arguments.
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Proposition 3. Let F = (A,R) be an argumentation framework and λ a com-
plete fuzzy labeling of F . Then λ(a) = 1 for all arguments a in the grounded
extension of F and λ(a) = 0 for all arguments a attacked by the grounded ex-
tension.

Proof. Consider that we assign labels one by one. First, we can safely assign 1
to all arguments that are not attacked. The arguments attacked by these must
then be labeled 0, as the maximum label among their attackers is bound to be
1. Then look at all arguments that only have attackers which are labeled 0 and
label them 1. And so on, practically doing the construction of the grounded
extension.

Alternatively, consider the fact that any α-conversion of a complete fuzzy
labeling is a complete labeling that describes a complete extension. Since this
is true for any α ∈ [0, 0.5), it must also hold for α = 0, where only arguments
labeled 1 become in and only arguments labeled 0 become out. The result follows
from the fact that the grounded extension is included in all complete extensions.

4 Unsupervised Learning of Fuzzy Labels

In the previous section we have provided two simple examples of complete fuzzy
labelings where we have chosen the values to fit the restrictions. We will discuss
the actual choice of the labels in this section and provide some experimental
results for the approach.

We consider that the rational agent trying to label the arguments starts with
an initial labeling, which may be a random assignment or may be based on other
criteria that depend on the agent. We denote the initial label of argument a with
λ

(0)
a .

At each step k, the label of each argument a is updated according to the
following rule.

λ(k+1)
a = (1− α)λ(k)

a + α(1−maxb→aλ(k)
b )

.
We implicitly assume that the maximum value is taken to be 0 whenever

there is no attacker. Running this algorithm we observed that the values converge
rapidly on all tests. We take the result labeling as:

λ(a) = lim
k→∞

λ(k)
a

In practice we use a limit on the difference between consecutive values of the
labels in order to decide when to stop the algorithm. Note that the limit values
satisfy the conditions for complete fuzzy labelings.

One advantage of this simple algorithm is that it can easily be parallelized.
Also, experimental results show that convergence occurs in a small number of
steps. We will use the rest of this section to show some experimental results.
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The first set of tests consisted in checking the number of steps required for
convergence for a specially devised framework with overlapping complete exten-
sions and an empty grounded extension (actual convergence of the algorithm
toward the grounded extension is obvious from proposition 3).

Out of 20 tests on the given framework (containing 9 arguments with a
symmetric structure of attacks) we got the results from table 1.

Steps needed Number of occurences

6 2

7 1

8 3

9 12

10 2
Table 1. Number of steps needed for convergence on 20 tests on the same framework,
but with different initial values

From this we can see that the number of steps needed for convergence is
rather stable (does not depend on the initial labels of the arguments). Note
however that the results are different (a different complete extension is obtained
each time).

We have also tested with a different attack relation, but still with 9 arguments
and noticed a larger variation in the number of steps, ranging from 9 to 22, which
means that the important part of the framework with respect to convergence rate
is the attack relation.

We have also tested against large frameworks and the table below shows that
the size of the argumentation framework does not have a large impact on the
number of steps needed for convergence (the increase is sublinear), as can be
seen in table 2.

Number of arguments Steps needed (average)

10 13.8

20 15

30 20.8

40 19.6

50 21.2

100 26.2
Table 2. Average number of steps needed for various number of arguments.
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5 Fuzzy Labels as Certitude Factors

In the first approach we proposed for fuzzy labelings, the completeness rules
focus on the strongest attacker of an argument. The second approach, to be
described further, is aimed at considering all attackers.

For this, we think of the fuzzy labels as certitude factors for the acceptabil-
ity of the argument or, in other words, as probabilities that the argument is
acceptable. With this, the intuitive rule for complete certitude labelings follows.

Definition 6 (Complete certitude labeling). Let F = (A,R) be an argu-
mentation framework. A complete certitude labeling of F is a labeling λ : A →
[0, 1] such that for all arguments a it holds that:

– λ(a) =
∏
b∈A,b→a(1− λ(b)), if a has at least one attacker

– λ(a) = 1, if a has no attacker

Let’s consider again the simple framework

a↔ b→ c

The rules of the definition translate into the following system of equations




x = (1− y)
y = (1− x)
z = (1− y)

From the system, we see that x can have any value, z = x and y = 1−x. The
result is consistent with that of the previous approach, which is to be expected
since we have at most one attack so the product and the maximum return the
same value.

Proposition 4. Let F = (A,R) be an argumentation framework and λ a com-
plete certitude labeling of F . Then λ(a) = 1 for all a in the grounded extension
of F and λ(a) = 0 for all arguments a attacked by the grounded extension.

Proof. Similar to that of proposition 3.

An interesting feature of this approach is the connection with SCC-s. If the
framework is broken into multiple SCC-s, the computation can be performed
for each SCC separately, starting with the ones that are not attacked by any
other SCC. This opens the posibility of using this labeling in conjunction with
an analysis based on SCC recursiveness.

6 Conclusions and Future Work

The main contribution of this paper consists in extending the labeling approach
to real-valued labels and providing two approaches for working with these labels.

24



8

Also, this proposal links the argumentation domain with systems of equations
and with convergent recursive sequences.

As future work we are looking for formal proofs to back up the experimen-
tal data that we have so far. We also aim to use this approach for describing
semantics that are not complete.
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Abstract. Many works have identified the potential benefits of using
argumentation in multiagent settings, as a way to implement the ca-
pabilities of agents (eg. decision making, communication, negotiation)
when confronted with specific multiagent problems. In this paper we
take this idea one step further and develop the concept of a fully inte-
grated argumentation-based agent architecture. Under this architecture,
an agent is composed of a collection of modules each of which is re-
sponsible for a basic capability or reasoning task of the agent. A local
argumentation theory in the module gives preferred decision choices for
the module’s task in a way that is sensitive to the way the agent is
currently situated in its external environment. The inter-module coordi-
nation or intra-agent control also relies on a local argumentation theory
in each module that defines an internal communication policy between
the modules. The paper lays the foundations of this approach, presents
an abstract agent architecture and gives the general underlying argumen-
tation machinery minimally required for building such agents, including
the important aspects of inter-module coordination via argumentation.
It presents the basic properties that we can expect from these agents and
illustrates the possibility of this type of agent design with its advantages
of high-level of flexibility and expressiveness.

1 Introduction

In recent years, many authors have promoted argumentation as a means to deal
with specific multi-agent problems, for instance negotiation or communication
with other agents. Indeed, recently argumentation has seen its scope greatly
extended, so that it now covers many of the features usually associated to the
theories of agency [30]. The benefits of argumentation are well established: a
high-level of flexibility and expressiveness, allowing powerful and diverse rea-
soning tasks to be performed. In particular, different semantics can be used for
different purposes without altering the underlying basic principles.
? This work grew out of the initiative of the 2008 Dagstuhl Workshop on the ”Theory

and Practice of Argumentation Systems” to ask groups of researchers to propose
ways of consolidating the work on several main themes of argumentation in Computer
Science, such as the theme of argumentation in agents, which is the concern of this
paper.
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We study how this idea can be taken one step further to develop the concept
of a fully integrated argumentation-based agent (ABA) architecture. The idea
seems natural: for instance, to make the most of argumentation-based protocols,
an agent should also demonstrate some argumentative reasoning capabilities.
Similarly, for an agent to take informed and coherent decisions it needs to be
able to argue about its choices by linking them to its underlying motivations
and needs. What is missing is a global framework of how all these features could
be glued together, both in terms of abstract design and technical specifications.

This paper lays the foundations of such an approach to agency, presents an
abstract agent architecture obeying these principles, and gives the general un-
derlying argumentation machinery minimally required for building such agents.
In short, an agent is made of a collection of modules each of which is responsible
for a basic capability or reasoning task of the agent. This is governed by a local
argumentation theory in the module that gives preferred decision choices for the
local task of the module, sensitive to the way the agent is currently situated in
its external environment. The inter-module coordination and thus intra-agent
control also relies on an argumentation theory that defines an internal commu-
nication policy between the modules. This gives an agent architecture that is
coherently designed on an underlying argumentation based foundation.

From the early BDI architectures to the recent developments of computa-
tional logic based agents, the genealogy of agent architecture is now very dense.
We can summarize the main objectives sought by the latest developments of
agent architectures as follows:
– make the design easier (for instance by adopting readily understandable

languages, or by semi-designing the agent, like introducing typical agent
types [21]);

– bridge the gap between specification and implementation, the most typical
case being the first BDI specifications vs. its concrete implementations (as
noticed for instance by [24]);

– make agents more flexible and sensitive to external events [26], in particular
going further than the classical “observe-think-act” cycle (as for instance the
cycle theories in the KGP model [14] do);

– introduce new features not originally present in the architectures that now
appear to be vital to autonomous agents (for instance social features [7] or
learning [1])

We regard the adoption of a unified argumentation based architecture as highly
positive regarding the first three issues, in particular. Our argumentation-based
agent architecture is a high-level architecture that can also encompass other
methods by transparently incorporating them in the architecture as black boxes
that generate information or choices to be argued about. Its main concern is
indeed to manage its different options by considering the arguments for and
against in the light of the currently available information from the environment.

The argumentation basis of the ABA architecture does not depend on any
specific argumentation framework but only requires some quite general proper-
ties of any such framework to be used. Irrespective of the framework used the
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argumentation-based foundation of ABA agents provides various advantages, in-
cluding that of its rational or valued based decisions that facilitates the focus of
purpose by the agent and the more effective interaction between agents which
can explain their positions or requests.

Our work shares similarities with other argumentation based agent approaches
when it comes to addressing specific issues and features of agents, e.g. in the re-
cent KGP model of agency [14] goal decision and cycle theories for internal
control are also captured through argumentation. However, the objective of as-
sembling all these features in a single and coherent architecture uniformly based
on argumentation has been the main challenge of our approach. The closest
connection is with the work in [29] which proposes an Agent Argumentation Ar-
chitecture (called AAA) and further developments of this in [18]. As in our case,
argumentation is used as the primary means to arbitrate between conflicting
motivations and goals. More specifically, in this work the high-level motivations
of the agents are operationally controlled by faculties. These faculties make use
of a dialogue game to arbitrate among the conflicting goals, depending on the
consequences they foresee, or on favoured criteria of assessment. Also the re-
cent work of Argumentative Agents [27] with their ARGUGRID platform uses
argumentation as the main way to support an agent’s decisions with particular
emphasis on the process of negotiation between such agents.

The wider context of our work is that of modularly composed agent archi-
tectures with internal rationality for managing the different internal processes
of the agent, as found for example in the works of [25] and [22]. In our proposed
approach argumentation plays a central role both for the decisions within each
module and for the interaction between the various agent modules. In particular,
our approach offers an alternative way to view and possibly extend the use of
bridge rules that other architectures use for the intra-agent reasoning.

The rest of the paper is as follows. In the next section we present the basic
argumentation machinery for building ABA agents. Sections 3 and 4 present the
abstract agent architecture and its intra-agent control. In Section 5, we detail
some basic formal properties that we can expect from ABA agents, concluding
in Section 6.

2 Argumentation Basics

The backbone of an ABA agent is its use of argumentation for decision mak-
ing. Argumentation allows an agent to select the “best” or sufficiently “good”
option(s), given some available information about the current state of the world
and the relative benefits of the potential options. For instance, an agent may
want to decide its best options of goals to pursue or partners to work with. We
will denote with O the set of possible options of a decision problem. For sim-
plicity of presentation, these options are assumed to be mutually exclusive and
pairwise conflicting. For instance, an agent may want to choose between two
possible partners, Alice and Carla, for carrying out a task. Thus, O = {Alice,
Carla}.
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The overall value of any certain option can be judged through evaluating by
means of several parameters how much this option conforms to the preferences
of the decision maker. An agent may for instance choose between Alice and
Carla on the basis of parameters such as reliability and generosity. Each agent
is thus equipped with finite sets, M, of parameters that are used in expressing
the relative preferences or priority amongst options. This, as we will see below,
is done using these parameters to parameterize the various options and the
arguments that the agent has for these (c.f. with the Value-Based Argumentation
in [2]). Parameters may not be equally important, for example the reliability of
a partner may be more important than its generosity. Thus arguments for a
partner that carry the parametrization of reliability will be preferred. We will
denote by, ≥, a partial ordering relation on a set M of parameters reflecting
their importance.

From the current state of the world, as perceived by an agent, basic argu-
ments are built in favor of options in O and these are labelled using appropriate
parameter spaces, M, of the agent. Let A denote the set of all those arguments
for a specific decision problem. Each argument supports only one option but
an option may be supported by many arguments. Let F : A 7−→ O be a func-
tion which associates to each argument, the option it supports. An argument
highlights the positive features of each option, such as the parameters that la-
bel the option. For example, an argument in favor of Carla would be that she
is generous, while an argument in favor of Alice would be that she is reliable.
Let also H : A 7−→ (2M) be a function that returns the parameters that label
each argument. Since the parameters are not necessarily equally important, the
arguments using them will in general have different strengths. For instance, if
we assume that reliability is more important than generosity, then the argument
that is based on reliability is stronger than the one that is based on generosity.

We will assume that the relative strength between arguments is based on the
an underlying priority ordering on the parameter space that is used to label the
arguments. Hence in what follows, º, will denote a partial preorder on the set of
arguments that expresses the relative strength of arguments, grounded in some
way on the relation, ≥, on the parameter space of arguments. This lifting of the
ordering on the parameters to an ordering on the arguments, that are labelled
by the parameters, can be done is several ways and is in general application
domain depended.

In most frameworks for argumentation we have two basic components: a set,
A, of arguments and an attack relation among them. This relation captures
the notion of one argument conflicting with another and providing a counter-
argument to it. In our case, arguments that support distinct options are conflict-
ing since the options are assumed to be mutually exclusive. So, e.g., we might
define that α1 Attacks α2 iff F(α1) 6= F(α2), and α1 º α2, for two arguments
α1, α2 ∈ A. This gives the following argumentation theory:

Definition 1 (ABA Argumentation theory). An argumentation theory, AT,
for decision making of an ABA agent is a tuple 〈O, A,M, F , H, ≥, º, Attacks〉
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where Attacks is chosen by the specific argumentation framework that we base
the agents on.

The process of argumentation is concerned with selecting amongst the (conflict-
ing) arguments the acceptable subsets of arguments. This notion of acceptability
has extensively been studied by several papers, e.g. [9]. Indeed, there are differ-
ent proposed semantics for evaluating arguments and the semantics of (maximal)
acceptable arguments. One widely used form of such a semantics is based on the
notion of admissible arguments. According to this semantics, a subset B of A is
admissible and hence acceptable iff it satisfies the following requirements:

– it is not self attacking, i.e. there is no element of B that attacks another
element of B,

– for every argument α ∈ A, if α attacks (w.r.t. Attacks) an argument in B,
then there exists an argument in B that attacks an argument in A.

Maximal admissible arguments, called preferred extensions, are then taken
as the maximal acceptable extensions of a given argumentation theory. In an
argumentation-based approach, the choice of the “best” option(s) among ele-
ments of O is based on the maximal acceptable arguments associated with the
different options as follows.

Definition 2 (Best decision/option(s)). Let AT = 〈O, A, M, F , H, ≥, º,
Attacks〉 be an argumentation theory for decision making, E1, . . . , En its maximal
acceptable extensions, and d ∈ O. The option d is a possible best (or optimal)
decision of AT iff ∃α ∈ A such that F(α) = d and α ∈ Ei for some i = 1, . . . , n.

It is clear that the basic component of this decision theory is the preference
relation ≥ on the set M of parameters. This relation may be context dependent
on the current situation in which the deciding agent finds itself. For example,
the preference of reliability over generosity applies in case the task to do is
urgent, while generosity may take precedence over reliability in case the agent
is short on resources (money). Furthermore, conflicts between preferences may
arise, e.g when an agent is in a situation in which it has an urgent task and
it lacks resources. Then our original decision problem for choosing an optimal
option is elevated to the decision of which of the preferences is (currently) more
important. We are thus faced with a new decision problem on choosing the best
priority amongst the basic arguments to answer our original decision problem.

This new problem is of the same form as the decision problems that we
have described above where now our options have the special form m ≥ m′ or
its conflicting one of m′ ≥ m, where m and m′ are members of M, or of the
form α º β where α and β are arguments, i.e. members of A. Our argumenta-
tion theory thus contains priority arguments for these options capturing higher
order preferences. We can then combine these two argumentation theories to
have a single argumentation theory that contains both basic arguments for the
object-level options and priority arguments for the relative importance of the
parameters and arguments. This extension can be done in several ways, see e.g.
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[17, 23, 16, 8]. In [23], where this problem was originally studied, and in [16], ba-
sic (object-level) arguments are constructed from rules which are given names or
classified in types and then preference arguments are given as rules for a priority
ordering between (the names of or the types of) two rules. Such priority rules
can also be named or categorized and hence high-order preference can be given
as rules for the priority between (lower-level) priority rules.

3 ABA Architecture

The ABA architecture’s basic principle is to build an agent from a loosely cou-
pled set of modules that are to a large extent independent from each other with
no or minimal central control. Each module is based on an argumentation theory,
concerning a certain internal task of the agent, that provides a policy of how to
take decisions on this type of tasks. A module contains also another argumen-
tation theory responsible for its involvement in the intra-agent control (IAC) of
the agent. Together these local IAC theories in each module give (see the next
section) a distributed high-level argumentation-based communication protocol
under which the internal operation of the agent is effected. The modularity of
the ABA agent approach aims to allow the easy development of an agent by
being able to develop separately its modules adding further expertise to it as
we see appropriate without the need to reconsider other parts of the agent. An
ABA agent module is defined as follows.

Definition 3 (ABA Agent Module). An ABA agent module is a tuple M =
〈IAC, T,R〉 where:
– IAC is an argumentation theory for intra-agent control,
– T is an argumentation theory for the task of the module,
– R = 〈P,C〉 where P and C are sets of names of other modules, the parent

and child modules of M respectively.

Each module, M , is based on its own argumentation theory, T , pertaining to
its specialized task. This is an expert (preference) policy comprising, as we have
described in the previous section, of arguments for the different choices parame-
terized in terms of preference criteria together with priority arguments on the
relative importance of these criteria and hence also on the basic arguments that
they parametrize. The information (basic and priority arguments) contained in
the argumentation theories in the various modules is given to the agent at its
initial stage of development and remains relatively static, although some parts
may be further developed during the operation of the agent. The dynamic in-
formation of the agent is that of its view of the external world, as we shall see
below. This also affects which part of the static information is applicable in each
situation.

The sets P and C of a module express a dependence between the modules
that captures a request-server relationship where the decisions taken by a par-
ent module form part of the problem task of a child module. For example, a
Planning module will be a child of a Goal Decision module since Planning
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decides on (or selects plans) to achieve the goals decided by Goal Decision.
The IAC component will be described in more detail in the next section.

Definition 4 (ABA Agent). An ABA agent is a tuple, 〈Ms,Mot,WV 〉, where

– Ms = {M1, ...,Mn} is a set of ABA modules for the different internal capa-
bilities of the agent,

– Mot is a module containing an ABA argumentation theory for the agent’s
Motivations and Needs,

– WV is a module that captures the current World View that the agent has
about its external environment.

The number of modules and the capability they each provide to the agent is not
fixed but can vary according to the type of application that the agent is built
for. However, the Motivations and Needs (Mot) and the World View
(WV ) modules are specialized modules that play a central role and are arguably
required to design any ABA agent.

Motivations and needs. An ABA agent contains a special module, Mot, for gov-
erning its high-level Motivations and Needs. These in turn can play a role in the
decisions of many different modules of the agent. The Mot module comprises
of an ABA argumentation theory where, through a preference structure on the
Needs of the agent that are parameterized by its Motivations and that also de-
pends on the current world view of the agent, it decides on the current high-level
Needs of the agent. It thus defines the current Desires of the agent that drive
the behaviour of the agent. This is achieved through the use of Needs as a pa-
rameter space for the arguments in many of the other modules. For example,
the concrete goals that an agent sets in its Goal Decision module are selected
according to these desires and therefore they come to best serve these desires.
One way to formulate the Motivations and Needs policy is to follow a cognitive
psychology approach. In particular, as in [16], we can use Maslow’s basic moti-
vations M1, . . . ,M5 for human behaviour: M1 = Physiological, M2 = Safety, M3

= Affiliation or Social, M4 = Achievement or Ego, and M5 = Self-actualization
or Learning. The motivations policy is then an argumentation theory for the rel-
ative priority or strength of these motivational factors, dependent on the current
world view.

Example 1. Consider Alice and her friends A = {Bill, Carla,Dave,Elaine}. Let
us suppose that Alice’s current needs are NA = {needf ,needc,needm, neede},
where f = food, c = company,m = money, e = entertainment. The argu-
ments for these may be labelled by the basic motivations in the following way:
H(needf ) = {M1}, H(needc) = {M3}, H(needm) = {M2}, H(neede) = {M5}.
We will assume that the induced strength relation on the basic arguments for
Alice’s current needs renders the arguments for the needs of food, company and
money acceptable, while the argument for entertainment is not. These accept-
able needs form the current desires of Alice and are part of her current state.
These then affect the argumentation in other modules of Alice which use the
Needs to parameterize their arguments.

32



Example 2. Alice decides the high-level goals to serve these desires in her Goal
Decision module. Given her current World View, she has basic arguments for
the following set DA of potential goals:

DA=





Gcheap : Have a cheap dinner with company
Gfree : Be taken out for dinner by someone
Ghome : Have dinner alone at home

From the connections between goals and needs the basic arguments for these
potential goals are labelled by the needs they each serve:

Ac with F(Ac) = Gcheap and H(Ac) = {needf ,needc}
Af with F(Af ) = Gfree and H(Af ) = {needf ,needc,needm}
Ah with F(Ah) = Ghome and H(Ac) = {needf}

Alice makes use of her argumentation theory for determining the priority of
these arguments by evaluating the parameter pertaining to each argument. This
yields Af º Ac º Ah, and so Gfree is the only goal that has an acceptable
argument and this is the current choice in the Goal Decision module.

Example 3. In order to achieve her goal Gfree, Alice adopts a preferred plan
Πfree —choice of restaurant, time of dinner etc. — from her plan library in
a similar argumentation process. She chooses this plan using her argumenta-
tion theory for plan selection in her Plan module based on some parametriza-
tion of the plans and a priority ordering of these parameters. The chosen plan
cannot be effected entirely by Alice as it requires resources from other agents
(it contains the requests for the external resources for money, (reqm), and
for company, (reqc)). Now Alice is faced with the problem of deciding which
other (sets of) agent can best serve these requests. This is the task of the
Collaboration module. In this she has arguments for different agent part-
ners to provide needed resources. These arguments are labelled by a paramet-
ric space of agent profiles, such as: Mprofile = {Reliable, Likeable, Generous,
Boring, Parsimonious, Offensive, Wealthy} = {R,L,G,B, P, O,W}. In Alice’s
world view each of the other agents have a profile parametrization, e.g.: PA(Bill) =
{R,P, B,W},PA(Carla) = {R,L},PA(Dave) = {O,G,B,W}. Alice’s argumen-
tation policy for the priority of arguments for the different partner agents makes
use of these profile parameters by measuring the extent to which the profiles
serve the requested resources. Here Dave is the only agent that has profile at-
tributes (G,W ) that serves reqm, and so there is just one acceptable argument
and corresponding choice of Dave.

World view. The agent’s world view is maintained in the World View mod-
ule, WV , providing a common view of the current state of the world to all
other modules of the agent. The basic arguments and priority arguments in the
agent’s other modules depend on the world view, thus making them context
dependent and adaptable to changes in the external environment of the agent.
The World View module is thus a special module in the ABA architecture
responsible for this global task. It can be realized in different ways, e.g. in terms
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of beliefs and a process of belief revision as in a BDI architecture. Then the
current beliefs give the current world view that grounds the arguments in the
different modules of the agent. Nevertheless, the WV module can can also be
based, if the designer so wishes, on an argumentation theory for Reasoning
about Actions and Change, as shown for example in [15, 28]. In this the
main arguments are those of forward and backward persistence in time of world
properties and the preference structure is given by the time ordering of the times
from which the persistence starts, e.g. forward persistence that is rooted at later
time is stronger than other forward persistence rooted at an earlier time and
analogously for backward persistence. The external environment feeds this mod-
ule with new information on events and properties that have been observed at
certain times. An argumentation process then gives the properties of the world
that currently hold.

Figure 1 gives a picture of the overall general structure of the basic architec-
ture of an ABA agent. During its operation an ABA agent is characterized by a
current internal state.

Definition 5 (Agent State). A state of an ABA agent, 〈Ms,Mot,WV 〉, is a
tuple 〈V,D〉 where:
– V represents the current view of the world as given by WV ,
– D = {CSM1 , ..., CSMn} where each, CSMi , is a tuple 〈D,L, S〉, representing

the current state of the module Mi, where D is its current decision, as given
by its argumentation theory, Ti, L is the level of commitment on D and
S ∈ {keep, abandon} is the current status of the decision D.

The level of commitment and status of a module’s decision are maintained by
the intra-agent control, IAC theory of the module, as we see in the next section.
Feasibility arguments. In deciding the status of a decision it is useful to make
a distinction between feasibility arguments and optimality arguments that an
agent can have against a given decision. Feasibility arguments attack the fea-
sibility of a given decision based on current world view information (e.g., the
agent may learn that the server it tries to connect to is down), while optimality
arguments are situation independent arguments for the value of a given decision
(e.g., the agent may prefer servers whose storage capacity of the server is above
a certain threshold). Part of the world-view module will then enable feasibil-
ity arguments specific to the “reality of the situation” for the current decision.
Typically, feasibility arguments will parameterize decisions as being: available,
currently unavailable (the current world-view discards this decision but it may
be available again later on), or unavailable (the world-view discards this decision
for ever). These new arguments, Afea(V ), for (or mostly) against the current de-
cision, enabled in the new world view V of the agent, will affect the (meta-level)
decision of the IAC theory to keep or abandon the module’s decision.

4 Intra-agent Control

The intra-agent control (IAC) of an ABA agent is effected through a communi-
cation protocol that governs the interaction between the different modules of the
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agent. Through this protocol the modules pass messages between them (from
parent to child and vice-versa) that in effect determine a distributed flow of con-
trol of the agent. For example, the Goal Decision module when it has decided
on a new preferred goal it would send a message to its child module of Plan
Decision, so that it would start the process of finding a preferred plan for it.
Similarly, when a current (preferred) plan becomes untenable then the Plan
Decision module would either decide on a new plan or inform the Goal De-
cision module thus prompting it to reevaluate and perhaps abandon this goal.
As such there is no central control per se, except a mechanism for noting in
the world view of the agent the passage of time and the changes in its external
environment and distributing this to the other modules.

The IAC communication protocol is realized by endowing each of its modules
its own ABA argumentation theory, IAC, responsible for governing its commu-
nication with the other modules. The basis of each of these IAC theories is
(i) to decide when to reconsider, in the light of new information coming from
the external environment either directly by a change in the current world view
or indirectly through messages from other modules, the current decision of the
module; and (ii) to decide how to reconsider these decisions, examining whether
to abandon or keep them. Hence, the IAC as a whole, is responsible for updating
the set D of current decisions in the internal state 〈V,D〉 of the agent as its world
view, V , changes. The IAC theories are argumentation theories of the following
form.

Definition 6 (IAC Argumentation Theory). The intra agent control the-
ory of a module, M , is a tuple 〈TL, PStatus〉 where:
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– TL is a theory for defining the commitment level, L, for the (object-level)
decisions in M ,

– PStatus is an ABA argumentation theory for the options Keep(D) or Abandon(D),
with D a decision in M , that uses the commitments levels of TL as parame-
ters of its arguments.

The levels of commitment, given by TL, form (part of) the parametric space
for the intra-agent control argumentation theory, PStatus, of the module. The
arguments in PStatus for keeping or not a decision can be annotated (or even
expressed) in terms of relative changes in these levels of commitment as time
passes and new information from the external environment is acquired. The
specific parameter space for the commitment levels and the type of theory TL

that assigns these are open to the designer. Nevertheless, the argumentation
basis of an ABA agent under which its decisions are taken by its modules in the
first place, allows us to define a natural form of commitment as follows.

Definition 7. Let D be a decision of a module and T (V ) denote the module’s
argumentation theory T grounded on the current world view V . Then the current
commitment level for D is given as follows:
– Level 5, iff D is uniquely sceptically preferred by T (V ), i.e. D holds in all

maximal acceptable extensions of T (V )
– Level 4, iff D is credulously preferred by T (V ), i.e. D holds in one but not

all maximal acceptable extension of T (V )
– Level 3, iff D does not hold in any acceptable extension of T (V ) but there

exists a basic argument for D
– Level 2, iff D does not have a basic argument in T (V )
– Level 1, iff neither D nor any other alternative decision D′ hold in any

maximal acceptable extension of T (V )

Hence the commitment level is a measure of the degree of acceptance (or opti-
mality) of the decision with respect to the agent’s optimality arguments for and
against this decision in the argumentation theory T of the module. As the world
view of the agent changes the structure of the module’s argumentation theory,
T , changes since different arguments and a different subset of the parameters
that annotate the arguments are applicable. This then changes the degree of
acceptance of the decision and hence its commitment level.

When and how to reconsider? The reconsideration of the commitment level of
the current decision in a module every time that we apply the PStatus theory
can be computationally non-effective. Under the above definition of commitment,
the argumentation reasoning needed to reexamine the degree of acceptance of a
decision can in general be costly. Hence to make the operation of PStatus more
practical we can layer its decision process into two stages. In the first stage
we apply a lightweight Decision Reconsideration policy that efficiently tells us
whether we indeed need to reconsider the current decision. Only if the result from
this is affirmative we continue to consider the full PStatus reasoning for deciding
the fate of the current decision. Otherwise, we keep the current decision. The
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Decision Reconsideration policy can be effectively constructed by considering
a set of testing conditions that can trigger the possibility for a change in the
level of commitment or degree of acceptance when this forms the commitment
level. To be more specific, the degree of acceptance of a decision, D, in a module
might decrease if new optimality arguments either against D, or in favour of
another decision D′ are enabled by V . Reconsideration should also be sensitive
to the fact that a new feasibility argument against D, in Afea(V ), generated
by a new world view, V , occurs. Likewise, the disabling in V of an argument in
favour of D may lead to a reconsideration, and similar conditions for priority
arguments can be specified. The cautiousness level specifies to which of these
inputs the agent triggers the reconsideration process. Other factors may be used
in this policy, in particular the time elapsed, denoted by t, from the time, t0, that
a decision was taken initially, with two important thresholds: tα before which
we have enough time to replace the decision and tβ after which it is too late
to replace the decision (t0 < tα < tβ). This allows us to design ABA agents
with different characteristics whose operational behaviour can vary across the
whole spectrum of “open” to “blind” BDI like agents and whose operation can
be dynamically adapted to external changes. An “open” agent would be given
by setting tα = tβ = ∞ whereas a “blind” agent by setting tα = tβ = t0.

The role then of the argumentation theory component, PStatus, of the IAC
theory, is to decide whether to keep or abandon the current (task) decision of
the module by reexamining its commitment level or in effect by reexamining
its degree of acceptance in the face of new information. The basic arguments of
PStatus (denoted by Arg([Keep|Abandon], D, level1, level2) can be built using
the following underlying form:
– keep(D) if the level of commitment of D is the same or increases
– abandon(D) if its level of commitment decreases.

Example 4. The following arguments may define the default behaviour of a mod-
ule of Alice: [Arg(Keep,D,5,4)] for keeping a decision D when its commitment
level has fallen from 5 to 4 (since the decision is still acceptable in the module’s
theory) or an argument [Arg(Abandon,D,any,3)] for abandoning a decision when
its commitment level falls to level 3 (as the decision is now not acceptable). Note
though that there can be special circumstances, e.g. special types of decisions or
extreme cases of the world view, when the opposite arguments might apply.

The argumentation reasoning of PStatus also depends on the current rele-
vant feasibility arguments. For example, a child module may inform its par-
ent module that the child’s current decision is now at commitment level 1, i.e.
that it can find no solution to the current problem that the parent module
has sent it. This may be the result of information that the child module has
received from the environment and/or from other modules. Thus a new feasi-
bility argument is enabled in the parent module’s PStatus theory, denoted by
[Arg(Abandon,D, c − unavailable)], for giving up its current decision D, for
which it is informed that currently it cannot be effected in any way. The newly
enabled feasibility arguments in PStatus can then be compared, via priority ar-
guments in PStatus, with the other arguments based on the commitment level
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reexamination considered above. For example, should a module abandon its de-
cision when it is informed by a child module that this cannot be (currently)
achieved, even if its commitment level for this decision remains at the highest
level? In other words, which is the stronger argument amongst the two basic ar-
guments of [Arg(Keep,D,5,5)], which is based on the subjective evaluation of D,
and [Arg(Abandon,D,c-unavailable)] based on objective information and under
what conditions this is so? The preference structure of PStatus addresses such
questions so that the IAC can weight up such different factors.

Example 5. We may capture the (default) preference to abandon currently unattain-
able decisions but not so when they are still optimally the most preferred ones
with the priority arguments: [Pr1-Arg(Abandon,Keep)]: [Arg(Abandon,D, c-unavailable)]
Â [Arg(Keep,D,L1,L2)] if L2 6= 5 and [Pr2-Arg(Keep,Abandon)]: [Arg(Keep,D,L1,5)]
Â [Arg(Abandon,D, c-unavailable)]. Of course, we may want to condition the
second priority on the condition that there is still enough time for the world to
change and make the decision D available again, e.g. for a collaborating agent
to change its mind and make itself available.

With such priority arguments and the preference structure that follows from
them, the designer of an ABA agent can give it a general strategy of operation, a
characteristic of how to behave when the agent realizes that the implementation
of its decisions in the external world has difficulties. Various factors relating to
the cost or feasibility of replacing a decision can also be taken into account.
For instance, the default argument to abandon decisions when they become
relatively sub-optimal can be counter-balanced using another default argument
for keeping decisions (as we want to also minimize loss of effort already done),
such as: [Arg(keep,D, default)]: keep(D) if expensive(D), where expensive(D)
is application dependent designating which (types of) decisions are costly to
discard.

Example 6. To illustrate the various features of the IAC consider again the Alice
example and suppose that Alice finds out that Dave has lost all his money and so
W will not be in Dave’s profile anymore. This disabling of an argument in favour
of Dave can trigger the reconsideration, in the IAC theory of her Collabora-
tion module, of her current decision for Dave. The decision to abandon or keep
this decision depends on whether there are still acceptable arguments, w.r.t. the
module’s (task) argumentation theory, for Dave assigning commitment level at
least 4 now, or whether there is no acceptable argument for Dave any more as-
signing commitment level 3 to him. Other feasibility arguments, e.g. arguments
related to the time left before dinner, can also play a role in this decision. Should
Alice decide to abandon Dave and the Collaboration module has no other
choice of partner with an acceptable argument, then the parent module, i.e. the
Plan module, will be notified which in turn will reconsider its current choice
of plan using its own IAC theory. Similarly, this may eventually lead to Goal
Decision module, to re-evaluate its current choice of goal and perhaps abandon
this for a new goal to have a cheap dinner, or eat at home.
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In general, the reconsideration of decisions and how this is communicated
amongst the different parent and children modules of the agent will give an
emergent behaviour on the operation of the agent. Under an ideally suited envi-
ronment we expect that the IAC theory will induce a given pattern of operation
on the agent, as we find in many of the proposed agent architectures, e.g. the
fixed ”Observe-Think-Act” cycle or the more general dynamic cycles given by
the cycle theories of the KGP agents defined in [14]. In non-ideal conditions the
particular operational behaviour of the ABA agent will be strongly dependent
on these IAC theories in its modules.

The communication between modules based on the reconsideration of their
decisions and subsequent messages that they send and receive between them
can be defined as a form of an internal dialogue policy between the modules. In
general, these control dialogue policies can be relatively simple. Nevertheless, it
is important that the dialogues generated conform to several required properties
of the operation of the agent, e.g. that there is no deadlock (where one module
is waiting for a response from another module). We can then draw from the
large literature on agent dialogue to ensure such consistency properties of the
internal module dialogues. In particular, many of these approaches, e.g. [20, 4]
are themselves based on argumentation and hence the link can be made more
natural.

5 Properties of ABA Agents

ABA agents are designed so that their operation is based on informed decisions.
The working hypothesis that underlies their operation is that the argumenta-
tion policies in an agent’s different modules capture optimal solutions of the
respective decision problems. The argumentation reasoning that they apply in
taking their various decisions is such that agents evaluate the current alternatives
against each other by comparing the reasons for and against these alternative
choices. The acceptable choices in any module are meant to capture the best
solutions available at the time. Hence the main property that an ABA agent
must satisfy in its operation is that indeed this follows these informed choices.
This is the central soundness property of an ABA agent in that it follows the
intended design as captured in the decision policies of its modules.

In this section we define such desirable properties and indicate how we can
design ABA agents (in particular their IAC theories) that would satisfy them.

Property 1. An ABA agent such that for any state,
〈V,D〉, of its operation, every decision D ∈ D holds in a maximal accept-
able extension of the argumentation theory, T (V ), of the corresponding module
grounded in the state V , (i.e. D is optimal w.r.t. the policy in its module in the
world state V ), is called a strongly sound agent.

A strongly sound agent is therefore one whose decisions are not only optimal
at the time that they are taken but remain optimal at any subsequent situation
where its view of the world may have changed. It is easy to see that we can
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build such ABA agents by fixing their cautiousness at the highest level and
designing their IAC to abandon decisions as soon as their commitment level
falls below level 4 in the course of action and the passage of time. Indeed, let us
choose the commitment level of a module’s decisions to be given by the degree of
acceptance of the decisions according to its (object level) expert policy theory as
given in Definition 7. Then the high-level nature of the IAC theory allows us to
specify, in the PStatus theory part of IAC, an argument: [Arg(abandon,D, low)]:
abandon(D) if commitment level(D,V,C), C < 4.

By giving, in the PStatus theory, to this argument higher-priority than any
other argument (for keeping a decision) in PStatus we ensure that the IAC argu-
mentation theory will always decide sceptically to abandon any decision when
this is no longer preferred in the module’s policy for choosing its decisions. In
practice though in some applications this may be too strong to require as it may
mean that decisions are abandoned too often. This can be mitigated, e.g., by
taking the cost induced by discarding this decision into account, or by requir-
ing a weaker form of soundness where only some of the decisions are optimal
throughout the operation of the agent. In particular, the higher level decisions
in the ”hierarchy” of modules, such as the goal decisions should remain optimal.
Moreover, whenever any one of its goals is achieved (i.e. holds in the current
state) then this should be optimal.

Property 2. An ABA agent such that for any state,
〈V,D〉, of its operation, every goal decision, G, in D is acceptable in the state
V , i.e. it holds in a maximal acceptable extension of the argumentation theory
of the Goal Decision module grounded in the state V , is called a sound agent.
Moreover, if whenever G holds in the current view of the world, V , the goal G
is acceptable in the state V , then the agent is called a sound achieving agent.

Here we are assuming that once goals are achieved (as perceived by the
agent in its world view) they are then immediately deleted from the state of the
agent and that only goals that do not currently hold are added to the state.
Achieved goals may later become suboptimal but this is beyond any reasonable
requirement on the operation of an agent.

In effect all these properties of soundness are properties which require adapt-
ability of the agent as it operates in an unknown environment. They require that
the operation of the agent adapts to the new circumstances of the environment
by changing its decisions accordingly. This high level of adaptability is facilitated
in the ABA agents by the high level nature of their intra-agent control which
allows them to recognize the changing status of decisions.

The above properties do not emphasize the overall internal coherency of the
ABA agents as they are concerned with the individual internal decisions in each
module. These individual choices need to be coherent with each other and give
some overall sense to the agent’s operations. This is given by the Motivations
and Needs policy of the agent: the agent must operate in accordance to its
current high-level desires and needs. We can therefore (re)formulate properties
of soundness of the agent based on its motivations/desires.
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Property 3. A soundly motivated ABA agent is an agent such that for any
state, 〈V,D〉, of its operation, and for every decision, D, in D, D is acceptable
in the state V with respect to the Motivations and Needs policy of the agent,
whenever this policy is applicable to the corresponding module of D. In partic-
ular, its goal decisions in any state are always acceptable with respect to the
Motivations and Needs policy of the agent.

Therefore a soundly motivated agent always operates according to the underlying
motivations and needs policy that generates the agent’s current desires. We can
build such agents by suitably defining their IAC in a similar way to that of
building sound agents, as shown above, where now instead of referring to the
status of the decisions wrt object-level policy of the module we refer to the
Motivations and Needs policy of the agent when this relates to the decision at
hand. Indeed, we note that the soundly motivated property is essentially the
only global consistency requirement that makes sense in an ABA agent, as there
is no other global or explicit control of the agent.

6 Conclusions

The link between argumentation and multi-agent systems was originally viewed
essentially as a way to manage the potentially conflicting knowledge bases of in-
dividual agents. With time this link has become much stronger covering several
features of modern agency theories, e.g. negotiation, decision-making, commu-
nication. We have proposed an agent architecture uniformly based on argumen-
tation with a highly modular structure. The focus is on a high-level architecture
mainly concerned with managing the currently available best options for the
agent’s constituent tasks in a way that provides a coherent behaviour, with a
focus of purpose, for the agent. This focus of purpose is governed to a certain ex-
tend by the agent’s internal argumentation theory for its Motivations and Needs
that gives the currently preferred high-level desires of the agent which in turn
affect other decisions of the agent.

An important distinguishing characteristic of an ABA agent is that the
agent’s decisions are not rigid but rather they are decisions for currently preferred
options or choices that its argumentation reasoning produces. These results of
argumentation can be different under a different view of the world. This means
that the agent is flexible and versatile in a changing environment, able to adapt
graciously to changes in the agent’s current situation, without the heavy need
for an explicit mechanism of adaptation.

The aim of our work has been to present a high-level architecture based uni-
formly on argumentation which could then be used as a basis for developing such
agents. This architecture and its argumentation basis does not depend critically
on any specific argumentation framework but only requires some quite general
properties of any such framework to be used. Different realizations can be de-
veloped by adopting anyone of the many concrete frameworks of argumentation
that are now available, such as [23, 5, 13, 16, 2, 12], particularly those which are
preference based. Also aspects from different approaches to argumentation can
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be exploited together within the ABA architecture. For example, the recent work
of [11, 6] can be useful for the modular and distributed nature of the argumen-
tation theories of the agent in its various modules. Moreover, the significant
progress, over the recent years, in the study of the computational models of
argumentation, e.g [13, 10, 3, 19], can provide a platform for the practical con-
struction of ABA agents. Nevertheless, our work constitutes a first step in the
proposal to build agents uniformly based on argumentation. A proper validation
of the proposed ABA architecture can only be achieved by developing specific
applications with ABA agents and evaluating their performance both in terms
of capturing desirable properties of the agents and the approach as a whole and
in terms of its computational viability.
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Abstract. We exploit the Justification Logic capabilities of reasoning
about justifications, comparing pieces of evidence, and measuring the
complexity of justifications in the context of argumentative agents. Not
knowing all of the implications of their knowledge base, agents use jus-
tified arguments for reflection and guidance.

1 Introduction

During argumentation, agents express relevant parts of their knowledge
through communicative acts, which are contextualized to the cognitive
state of the other party in order to be effective. The minimal framework
in which all the elements of the vector

〈Knowledge,Dialog ,Reasoning about partner〉

can be found is given by dynamic epistemic logic.

The role of knowledge in argumentation was stressed by Walton [18], who
concludes that ”argumentation theory lacks a workable notion of knowl-
edge”. One of the situations when argumentation occurs is due to the fact
that the agents are not omniscient, which does not favor epistemic logic.
Moreover, some implications can be triggered only by rational reflection
or guidance [18]. In this study, the constructivist semantics of justifi-
cation logic is exploited in order to overcome the omniscience problem:
an agent cannot claim a formula without having actually constructed a
proof term for it.

Argumentation theory did not pay much attention to modeling a men-
talist approach of the interlocutor cognitive state [16]. In order to be
effective, the content and the form of the conveyed communicative acts
should be adapted to the other party. An agent can use its available evi-
dence to persuade the other part about the issue in hand. Consequently,
a means of describing ”how evidence dynamics can be brought about as
a result of communication” is needed [17]. To have proof-based evidence
can be seen [17] as synonym to having deductive argumentation.
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2 Distributed Justification Logic

This section extends the existing preliminary work regarding the appli-
cation of justification logic to multi-agent systems [20, 17], by focusing
on the expressiveness provided by the language in a multi-agent environ-
ment.

Justification Logic combines ideas from epistemology and the mathemat-
ical theory of proofs. It provides an evidence-based foundation for the
logic of knowledge, according to which ”F is known” is replaced by ”F
has an adequate justification”. Simply, instead of ”X is known” (KX )
consider t : X , that is, ”X is known for the explicit reason t” [7]. The
multi-agent version extends justified logic by introducing an index to
designate agents. Consequently t :i F is read as ”based on the piece of
evidence t the agent i accepts F as true”. The minimum justification
logic is axiomatized by axioms A0 and A1 in figure 1. The reflection
axiom A1 is logically equivalent with ¬F → ¬t :i F , meaning that no
justification t exists for a false argument.

Definition 1. The language L 0 contains proof terms t ∈ T and formulas
ϕ ∈ F

t ::= c | x | t • t | t + t |!i t |?i t | t ≻ t
ϕ ::= γ | ϕ∗ϕ | ¬ϕ | t ≫i ϕ | t :i ϕ

A0 classical propositional axioms
A1 t :i F → F (weak reflexivity)
A2 s :i (F → G) → (t :i F → (s • t) :i G) (application)
A3 s :i F → (s + t) :i F (sum)
A4 t :i F →!t :i (t :i F ) (proof checker)
A5 ¬t :i F →?t :i (¬t :i F ) (negative proof checker)

Fig. 1. Axioms of Justification Logic.

Evidence represents a piece of knowledge which may come from com-
munication, perception, or from a agent’s own knowledge base. Follow-
ing [17], we distinguish two notions of evidence: the weaker notion of
admissible, relevant justification t ≫i ϕ, in which the agent i admits
that t is an evidence for ϕ, and the stronger notion of probative or fac-
tive evidence t :i ϕ, in which t is strong enough making the agent i to
assert ϕ as a fact.

Proof terms t are abstract objects that have structure. They are built
up from axiom constants c, proof variables x , and agent i ’ operators
on justifications •, +, !,?, described in figure 1. Such an evidence-based
knowledge system (EBK) is based on the following assumptions: i) all
formulas have evidence (F → t :i F ), ii) evidence is undeniable and im-
plies individual knowledge of the agent (A1); iii) evidence is checkable
(A4 and A5); iv) evidence is monotone, new evidence does not defeat
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existing one (A3) [2]. In order to adapt an EBK framework to an argu-
mentative multi-agent system, considerations should be taken regarding
the axioms A1 and A3, as follows.

Firstly, note that formula F is global in the multi-agent system; it is not
related to any agent. In other words, if an agent a ∈ A considers t as
relevant evidence to accept F , it means F should be taken as true by
all the agents in A. This not the case in real scenarios, where a different
agent j might have different evidence that the opposite formula holds:
s :j ¬F .

Secondly, observe that the axiom A3 in figure 1 encapsulates the notion
of undefeasibility: if t :i F , then for any other piece of evidence s, the
compound evidence t + s is still a justification for F . Our work regards
weakening this constraint, by allowing agents to argue based on evidence
with respect to the validity of a formula in a multi-agent system. This is
in line with [18, 10], according to whom knowledge is incomplete and it
remains open to further argument. The proposed distributed justification
logic is axiomatised in figure 2.

A0 classical propositional axioms
A′

1 t :E F → F (e-reflexivity)
A′

2 s :i (F → G) → (t :j F → (s • t) :k G) (distributed application)
A′

4 t :i F →!j t :i (t :i F ) (positive proof checker)
A′

5 ¬t :i F →?j t :i (¬t :i F ) (negative proof checker)
A′

6 s :i F ∧ t :j F → (s + t) :i F , s + t ≻ t (accrual)
A′

7 F → t :i F (internalization)

Fig. 2. Distributed Justification Logic.

E-reflexivity. A given justification of F is factive (or adequate) if it
is sufficient for an agent i to conclude that F is true: t :i F → F .
Knowing that the weak reflexivity property has its merits when proving
theorems in justification logic, we argue it is too strong in a multi-agent
environment due to:

– if the agent i has evidence t for F it does not necessarily mean that
F is a fact, for other agents may provide probative reasons for the
contrary;

– the agents accept evidence based on different proof standards: whilst
a credulous agent can have a ”scintilla of evidence” standard, its
partner accepts justification based on the ”behind reasonable doubt”
standard.

– the same evidence is interpreted differently by the agents in the
system.

In our approach, a formula F is considered valid if all the agents in the
system have justifications for F (their own or transferred from the other
agents). The E − reflexivity axiom is read as: if every agent in the set E
has justifications for F , F is a fact.

46



Distributed Application. In justified logic, the application operator
takes a justification s of an implication F → G and an evidence t of
its antecedent F , and produces a justification s • t of the consequent
G [4]. In the existing multi-agents versions, the i index is introduced to
represent the agent i , with the obvious meaning: if the agent i accepts
the implication F → G based on s and F based on t , then agent i ac-
cepts G based on evidence s • t (axiom A1). In a multi-agent setting,
agents can construct their arguments based on justifications or evidence
provided by their partners. Reasoning can also be performed based on
the fact that the other agents rely their knowledge on a specific piece of
evidence. The proposed generalized application operator A′

1 allows agent
k to construct its own evidence s • t based on the facts i) that the agent i
has accepted the justification s as probative for F → G and ii) the agent
j has accepted the evidence t to be sufficient to accept F .

Example 1. Assuming that agent a after some symptoms visits the physi-
cian p. Based on the consultation c, the physician decides there is evi-
dence for the disease G and requests some analysis t to investigate F ,
which is needed to confirm the hypothesis (F → G). Agent a gets con-
firmation from the laboratory expert e. Consequently, he has the jus-
tification c • t to confirm G. The distributed application operator is
instantiated as follows:

c :p (F → G) → t :e F → (c • t) :a G

From the functional programming perspective, assuming that → is right
associative, the distributed application operator has the following mean-
ing: when an agent p provides a justification for F → G, a function is
returned which waits for the evidence t confirming F in order to output
the justification c • t for G.

Recall, that t :i ϕ represents strong evidence, opposite to weak evidence
t ≫i ϕ. Consider that the laboratory analysis t confirming F may be
contaminated, so the agent e accepts only as admissible the piece of
evidence t . The corresponding expressiveness holds: ”If you provide me
defeasible evidence about F , I will have only admissible evidence about
G:

c :p (F → G) → t ≫e F → (c • t) ≫k G

The subjectivity about evidence can be also expressed: what is admissible
for one agent is probative for the other one. In this case the agent a
considers t as strong enough for F , the evidence transfer being modeled
as

t ≫e F → t :a F

Assuming that the agent p is the same with e in A′
2, a simple justification

based dialog takes place: ”I have a justification for F → G. When you
provide me evidence or symptom of F , I will have a justification for G” .

s :i (F → G) → t :j F → (c • t) :i G
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Positive proof checker. Justifications are assumed to be verifiable. A
justification can be verified for correctness, by the other agents or by
the agent who conveyed it. t :i F →!j t :i (t :i F ) is read as: if t is a
justification for F accepted by the agent i , the agent j can check that
piece of evidence. In case the agent checks itself (j = i) we have positive
introspection: t :i F →!i t :i (t :i F ). It assumes that given evidence t for
F , the agent i is able to produce a justification !t ii for t :i F . Thus, each
justification has its own justification.

From the dialogical perspective, the positive proof checker is used to
request for details why a formula is accepted based on a specific piece of
evidence. The term !j t describes the agents i ’s evidence justifying t :i F .
Often, such meta-evidence has a physical form, such as a reference or
email. Observe that the justification can be adapted to the agents who
requested them: !j t :i (t :i F ) 6=!k t :i (t :i F ). Here, the terms used by
the agent i to describe the justification t for accepting F may not be
equal !j t 6=!k t .

Negative proof checker. The negation in our framework is interpreted
as follows:

¬t :i F ∼ t is not a sufficient reason for agent i to accept F

If t is not sufficient evidence for agent i to accept F , given by ¬t :i F ,
the agent should have a justification for this insufficiency: ∃ q ∈ Ti such
that

¬t :i F → q :i ¬t :i F

The operation ? gets a proof t and a formula F , and outputs a proof q
justifying why p is not admissible evidence for F : ? : prof ×proposition →
proof . In case the agent checks itself (j = i) we have negative introspec-
tion: ¬t :i F →?i t :i (¬t :i F )

Accrual. The axiom A′
6 says that if agent i has proved s for F and

another agent j has evidence t for the same F , the joint evidence s + t is
a stronger evidence for the agent i to accept F , modeled by the preference
relation ≻ over justifications: t + s ≻ t . When i = j , the same agent has
different pieces of evidence supporting the same conclusion.

Internalization. The internalization property assumes that formulas
should be verifiable. It says that if F is valid, then there is a at least
one agent i , which has accepted F based on the evidence t . From the
argumentation viewpoint, every argument should have a justification in
order to be supported. Consequently, self defending arguments are not
allowed.

Note that, if F is a formula and t is an acceptable justification for agent
i then t :i F is a formula. Thus, relative justifications of the form s :i
(t :j F ) are allowed, where agent i has evidence s that agent j has
evidence t for F . Similarly, the formula t :i F → s(t)iG says that: if t is
agent i ’s justification for F , then s(t) is agent i ’s evidence for G, where
the argument t is inserted in the right place of argument s(t). This
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proof-based evidence for G is similar to have deductive argumentation
supporting G [17].
Two rules of inference hold
F ,F → G ⊢ G (Modus Ponens)
⊢ c : A (Axiom Internalization)
where A is an axiom and c is a constant. Similarly to [20] we assume
that axioms are common knowledge.

3 Argumentation Framework

Firstly, one has to stress that having evidence for something is different
from convincing someone of that issue. The justified claim can be rejected
if it is too discrepant with the agent knowledge base or due to the lack
of understanding of the evidence.
An argument A is consistent with respect to an evidence t if A does not
contradict any evidence in t . We say that a piece of evidence t does not
defeat evidence s of an agent i if s :i F → (s + t) :i F .

Definition 2 (Undercutting defeater). The evidence t is an under-
cutting defeater for F justified by s if the joint evidence s + t does not
support F any more. Formally: s :i F → ¬(s + t) :i F.

Corollary 1 (Justified undercutting defeater). Note that the un-
dercutting defeater is an implication, which is a formula in justified logic.
So, based on the internalisation axiom A′

7, it should have a justification:
q :i (s :i F → ¬(s + t) :i F ). Informally, q is agent’s i justification why
the piece of evidence t attacks evidence s in the context of F formula.

(m1) Adam: The movie is a comedy. We should go.
(m2) Eve: I like comedies. We can go.

How do you know that is it a comedy?
(m3) Adam John told me.
(m4) Eve: Then we should consider something else.
(m5) Adam: Why?
(m5) Eve: You know John, he laughs from everything.
(m6) Adam: This usually happens. But it is not the case here.
(m7) Eve: How is that?
(m8) Adam: John told me the plot and it is really funny.
(m9) Eve: You convinced me. Let’s go then.

Fig. 3. Justified undercutting defeater.

Example 2. Consider the dialogue in figure 3. Here, m1 represents Adam’s
justification for going to the movie: m1 :A Go. This information (m1)
combined by Eve with the fact that she likes comedies (m2) is strong
enough for Eve to accept the invitation: (m1 + m2) :E Go. However, she
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checks for evidence that movie is a comedy: !Em1 :A m1 :A Go. For Eve,
the new evidence m3 is the undercutting defeater for the m1 justification:

(m1 + m2) :E Go → ¬(m1 + m2 + m4) :E Go

Adam requests some justification, where the complete formulation ”Why,
given that you like comedies, the movie is a comedy you decided to come,
but when you found that John told me this you have changed your mind?”
is represented as

!Aq :E (m1 + m2) :E Go → ¬(m1 + m2 + m4) :E Go

where q = (m1 +m2) :E Go → ¬(m1 +m2 +m4) :E Go is the justification
that should be provided by Eve to Adam for the above implication. Eve’s
justification comes from the m5 message:

m5 :E (m1 + m2) :E Go → ¬(m1 + m2 + m4) :E

Next, Adam confirms that this usually happens

m5 :A (m1 + m2) :E Go → ¬(m1 + m2 + m4 ≫E

but he does not consider the justification m5 as strong enough:

¬m5 :A (m1 + m2) :E Go → ¬(m1 + m2 + m4) :E

On Eve’s request for justification, Adam provides the m8 message:

m8 :A ¬m5 :A (m1 + m2) :E Go → ¬(m1 + m2 + m4) :E Go

which is eventually accepted by Eve:

m8 :E ¬m5 :A (m1 + m2) :E Go → ¬(m1 + m2 + m4) :E Go.

According to axioms A′
1 and

m8 :E ¬m5 :A (m1 + m2) :E Go → ¬(m1 + m2 + m4) :E Go.

one can state that:

¬m5 :A (m1 + m2) :E Go → ¬(m1 + m2 + m4) :E Go

which means that everybody agrees the evidence m5 is not strong enough
to defeat the Go formula supported by m1 and m2.

Definition 3 (Rebutting defeater). The evidence t is a rebutting de-
feater for F if it is accepted as a justification for ¬F.

Example 3. Consider the dialogue in figure 4. Here, Eve accepts as joint
evidence m1 and m2 for the possibility to go: (m1 + m2) ≫Eve Go. The
evidence m3 is a rebuttal defeater for attending the movie: m3 :E ¬Go.
When Adam asks for clarifications (?Am3 :E m3 :E : ¬Go) the m5 message
is provided: m5 :E m3 :E ¬Go, which is not considered by Adam as
strong enough ¬m5 :A (m3 :E ¬Go). When asking for evidence ?E¬m5 :A
¬m5 :A (m3 :E ¬Go), the m8 justification is given: m8 :A (¬m5 :A (m3 :E
¬Go)), which is accepted by Eve too: m8 :E (¬m5 :A (m3 :E ¬Go)).
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(m1) Adam: The movie is a comedy. We should go.
(m2) Eve: I like comedies. We might go. When does it start?
(m3) Adam At 6’o clock.
(m4) Eve: We cannot then.
(m5) Adam: But why?
(m5) Eve: I have to be home at 9’o clock.
(m6) Adam: This is not a problem.
(m7) Eve: How is that?
(m8) Adam: The movie takes only 2 hours.
(m9) Eve: Perfect. Let’s go then.

Fig. 4. Justified rebutting defeater.

The following definition follows the Walton’s [18] formalisation of knowl-
edge.

Definition 4. Knowledge represents justified acceptance of a proposition
based on evidence and supported by rational argumentation to a specified
standard of proof.

This definition is accommodated in our framework by introducing an
index representing the active standard of proof during the debate:

t :βi F ≃ i accepts F based on the evidence t under the standard of proof β

An example of such standards occurs in trials: scintilla of evidence, pre-
ponderance of evidence, clear and convincing evidence, or behind reason-
able doubt.

Example 4. Consider two standards of proof scintilla of evidence (α) and
preponderance of evidence (β). The piece of evidence false alibi :αj Guilty
is accepted by the judge j as a justification for Guilty when the active
standard of proof is α, but the same justification is not enough to support
guiltiness under the β standard: ¬false alibi :βj Guilty .

4 Argumentative Agents

We assume that: justifications are abstract objects which have structure,
and agents do not lose or forget justifications [4].

The omniscience problem. The agents cannot always be expected to
follow extremely long or complex argumentation chains [18], even if argu-
mentation formalisms such as hierarchical argumentation frameworks [12],
or the AIF ontology [14] do not specify any constraint on the size of ar-
gument. A constraint is imposed on proof terms that are too complex
with respect to the number of symbols or nesting depth. In justification
logic, the complexity of a term is determined by the length of the longest
branch in the tree representing this term. The size of terms is defined in
a standard way: | c |=| x |= 1 for any constant c and any variable x ,
| (t • s) |=| (t + s) |=| t | + | s | +1, |!t |=| t | +1.
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Lemma 1. For each justified argument conveyed by agent i to agent j ,
agent j has a justification for accepting the argument or a justification
for rejecting the argument:

t :i A → s :j A ∨ r :j ¬A

Preference over justifications. Agent i prefers evidence t1 over t2 to
justify F is represented as t1 ≻ t2 :i F . It follows that at least t1 should
be an acceptable justification for F .

(t1 ≻ t2) :i F → t1 :i F

The piece of evidence t2 can be connected to F in the following ways: i)
t2 is also an accepted justification of F (t2 :i F ), ii) t2 is justification for
the opposite formula ¬F , iii) t2 is independent of the claim F .
Agent j can check why does his partner i prefer t1 over t2 to justify F :

!(t1 ≻ t2) :j (t1 ≻ t2) :i F

Agent i prefers justification t1 over t2 in the context of F based on
evidence s:

s :i (t1 ≻ t2) :i F

Agent i has a justification s why his partner j prefers evidence t1 over
t2 as justification for F :

s :i (t1 ≻ t2) :j F

Preference change over evidence can not be expressed without temporal-
ity. Based on the accrual axiom the following implications hold:

s :i F ∧ t :i F → t + s ≻ t :i F , s :i F ∧ t :i F → t + s ≻ s :i F

Assume that x is i ’s justification of A, whilst y is j ’s evidence regarding
B .

Lemma 2. A distributed proof term s(x , y) can be constructed repre-
senting common justification accepted by the two agents to prove the in-
tersection between A and B. Formally:

x :i A ∧ y :j B → s(x , y) :ij (A ∧ B)

Communication of justifications. The following proof terms can be
joined to express complex argumentative debates:
– Agent j has a justification r proving that agent i is inconsistent:

r :j (t :i F ∧ s :i ¬F ).
– Agent j has evidence showing that two agents disagree: r :j (t :i

F ∧ s :k ¬F ).
– The piece of evidence t does not defeat agent’s i evidence s about

F : s :i→ (s + t) :i F .
– Evidence conversion: t :i F → t :j F . In other words, agent j trusts

agent i ’s evidence regarding F .
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5 Running scenario

The proof of concept scenario is a debate regarding the issue ”It is reason-
able to accept the theory of evolution”1. Sets of arguments are exchanged
during rounds between the instigator i and the contender c. Most of the
burden of proof is carried by the instigator, however, the contender must
defend his position that evolution is untrue (¬Evolution).

Round 1. The instigator starts by stating the claiming formula, noted
as Evolution. Based on the axiom A′

7 agent i should have evidence t
to support his claim, under the standard of proof ”preponderance of
evidence” (p). Formally,

Evolution → t :pi Evolution

The contender accepts the challenge by stating his position ”Evolution
doesn’t exist, but can you convince me?. This two pieces of information
are formalized in distributed justified logic as ”¬Evolution, respectively

!ct :i : t :i Evolution

in which the agent c requests agent i to provide justifications.

Round 2. The instigator develops his speech by stating that: ”As an
anthropology student, interested in human evolution, I have some ed-
ucation in this subject”, coded as m1 :i (AntStud → Education) and
m2 :i AntStudent . Based on the application operator, a justification is
derived from the sentence Education:

m1 :i (AntStud → Education) → m2 :i AntStud → (m1•m2) :i Education

where the compound justification m1 • m2 is an instance of the argu-
ment from position to know. Then, he continues by pointing towards
several categories of evidence and their bibliographic references: ”Evolu-
tion is well supported by evidence gathered from multiple fields of study:
fossils, comparative anatomy, time and space distribution, computer sim-
ulations, and observation (2)(3)(4)(5)(6)”.
(2) :i fossils :i Evolution
(3) :i comp anat :i Evolution
(4) :i time space dist :i Evolution
(5) :i simulations :i Evolution
(6) :i obs :i Evolution
in order to strengthen the idea that ”Large amount of evidence support
for evolution” (LAEE). A justification for it is constructed by applying
the accrual axiom and checking the complexity of the resulting joint
evidence.

(fossils + comp anat + time space dist + simulations + obs) :i LAEE ,

1 Adapted from http://www.debate.org/debates/It-is-reasonable-to-accept-the-
theory-of-evolution/1/
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where large amount of evidence is a criterion to support evolution (LAEE →
Evolution). Note that the justification logic does not permit to include
the evidences (2)− (6) in the joint evidence, due to the right associativ-
ity of the operator (:) which gets a proof and a formula and returns a
formula. The combination (2) :i fossils would not be a proper proof term
of the language.
In addition, ”The theory of evolution successfully predicts results in ev-
erything from fossils to psychology (9)(10)(13).” is noted as:

((9) + (10) + (13)) :i fitsPrediction :i Evolution

The last conveyed argument by the instigator in this round stresses the
”lack of a better theory”and changes the burden of proof on the contender
regarding this issue: ”Can my opponent name a better theory?”

!iq :c q :c (X ≻ Evolution)

The link between preferred terms and preferred formulas can be:

(t1 ≻ t2) → (t1 : F ≻ t2 : F )

The contender starts by clarifying that ”Having evidence for something
is different from convincing someone of something”, denoted by

¬[(t ≫i F → t :i F ) ∧ (t :i F → t ≫i F )]

The justification for the above formula (refereed from now on as G)
follows: ”for one, they might not like what they hear and two, they might
lack understanding”:

don ′tLike :c G ∨ don ′tUnderstand :c G

One example of attacking the arguments posted by the instigator follows:
regarding fossils, the contender considers that ”fossils are facts, and they
are down for interpretation like all facts are. The fossils are not evident
for evolution.”: fossilsAreFacts :c ¬fossils :c Evolution.

6 Discussion and Related Work

There are many logics used to model argumentation: classical logic [5],
defeasible logic [6], FOL [13], possibilistic logic [1], fuzzy logic [11], modal
logic [8]. Modal logics lack the capacity to express the agents reasons for
holding or changing their beliefs [17] and fail to represent the epistemic
closure principle [4]. In our approach the complexity of the argumentation
chain is limited by the complexity of the proof terms in justification logic.
Yavorskaya’s work [20] investigates certain interactions between the terms
of different agents, such as ”agent j can check agent i ’s evidence”or”agent
j trusts agent i ’s evidence”. Evidence accepted by the two agents are dis-
tinct: evidence terms are constructed from agent’s own atomic evidence
(only constants and variables), assuming that the operations on terms
are the same, atomic evidence comes from its own vocabulary or ontol-
ogy. In the current proposal, the agents have a common set of pieces of
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evidence T they can use to prove formulas, but the decision how to inter-
pret these terms is left to each agent. Thus, the same piece of evidence
t ∈ T can be probative for one agent (ti : F ) and of no importance for
the other (¬t :j F ).
Patterns of human reasoning are captured as argumentation schemes [19],
whose structure consists of a set of premises, a conclusion, and a set of
critical questions which can block the derivation of the consequent. Be-
cause justifications are abstract objects which also have structure, they
can model such structured argumentation schemes. In this line, convey-
ing a critical question can be seen as a justification for the fact that the
set of premises are not enough evidence for supporting the consequent.
Rebutting the issue raised by the critical question would be a valid jus-
tification for accepting the conclusion. We argue that the undercutting
defeater formalized within the framework of justification logic handles the
defeasible nature of the argumentation schemes. Moreover, the dialecti-
cal nature of the argumentation schemes [15] in the justification-based
dialogues is exemplified here.
The link between epistemic logic and justification logic is stressed by the
Platon’s viewpoint of knowledge as justified true belief. By connecting
justification logic with epistemic logic [3] epistemic schemes like: argu-
ment from common knowledge, argument from position to know, popular
opinion (everybody knows), argument from ignorance (from lack of evi-
dence) can be represented as structured proof terms in our framework.
When representing agent knowledge with ontologies, justifications are
seen as the smallest set of premises that are sufficient for the entailment
to hold and used as a mean to signal inconsistencies or to explain entail-
ments to a broader audience of knowledge consumers [9]. In this context,
justifications highlight only relevant knowledge in order to support the
reasoning mechanism.
Our approach meets the requirements for initial conditions of knowledge
in argumentation: i) knowledge bases are incomplete and inconsistent, ii)
knowledge is defeasible, iii) knowledge is the result of a process of inquiry,
iv) asserting something as knowledge depends on the current standard
of proof.

7 Conclusion

This paper presents preliminary work on arguing based on justification
logic. Even in its infancy, justification logic seems the adequate technical
instrumentation to respond to the observations raised by Walton in [18].
The proposed framework extends Evidence Based Knowledge (EBK) sys-
tems, which are obtained by augmenting a multi-agent logic of knowledge
with a system of evidence assertions [2], by including argumentation.
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6. Cohen, A., Garćıa, A.J., Simari, G.R.: Extending delp with attack
and support for defeasible rules. In: Morales, Á.F.K., Simari, G.R.
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Abstract. In this paper, we describe a novel approach to the syncretic
argumentation, which allows agents with different epistemology to en-
gage in argumentation, taking into account the Golden Rule in the ethics
of reciprocity and Confucius’ Golden Rule. We address this new argu-
mentation framework in two ways. One is by introducing the lattice ho-
momorphism on truth-values (epistemic states) of propositions, and the
new definitions of arguments justified under syncretized knowledge base.
For the other, we first devise a new way of fusing two lattices through
the lattice product, and then give a syncretic argumentation framework
in which argumentation is done under the fused lattice.

1 Introduction

Various kinds of argumentation frameworks have been proposed so far in their
own right or for a fundamental interaction mechanism for multi-agents [1][2].
They, however, are basically frameworks using two-valued knowledge base, or
simply a fixed multi-valued one [3]. And agents engaging in argumentation have
been assumed to have knowledge bases in the common knowledge representa-
tion language for argumentation. This assumption is not natural since even the
world of agents is not homogeneous, having their own world recognition, that is,
epistemology.

In this paper, we make a clean break with such a past assumption, direct-
ing to a more natural but complex settings of argumentation named ”syncretic
argumentation”. By the term ”syncretic argumentation”, it is meant to be such
an argumentation that each agent can have its own knowledge base, based on
its own epistemology, and engage in argumentation with it. Back to the ancient,
let us consider such a scene that Aristotle and Lao Tzu encounter, and argue
about a proposition p. Perhaps, Aristotle might say p is definitely true with his
two-valued epistemology T WO = {f, t}, and Lao Tze might say p may hold
with truth degree ⊥ under his four-valued epistemology FOUR = {⊥, t, f,>}.
In this setting, they turn out to find that they can not communicate with each
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other. This is not just a matter of difference of knowledge, but difference of a
way of recognizing things (epistemology), world-view, logic, and so on. In this
paper, we are interested in how agents can communicate with each other and
attain an agreement among agents with different epistemology.

We address ourself to this problem by setting it on the ring of our own Logic
of Multiple-valued Argumentation (LMA) [4] since its knowledge representation
language for argumentation is Extended Annotated Logic programming (EALP)
[4] that allows to represent various epistemology for propositions as truth-values.
In EALP, agent epistemology is to be captured as truth-values and associated
with a literal as in p : µ, for example. Thus the annotation µ represents a
mode of truth or epistemic state of the proposition p [4]. It should be noted
that we use the term epistemology with a slightly different meaning from the
ordinary philosophical one. We think that annotations assume epistemology of
agents from the perspectives of the truth-values of propositions. Put it differently,
truth-values is an apparatus for recognizing things or propositions.

We syncretize different agent epistemology in two ways and construct the
syncretic argumentation frameworks. One is by introducing the lattice homo-
morphism on truth-values (epistemic states) of propositions, and the new def-
initions of arguments justified under syncretized knowledge base. The reasons
for that are twofold. One is that annotations have a lattice structure that comes
from the EALP construction [4]. The other is that the lattice homomorphism
is a mapping which can yield an equal, fair and bilateral epistemological fusion
in our context. This reflects an attitude against unilateralism, so that one can
avoid a one-sided view of the world. For the other, we devise the new notions:
the lattice fusion operator and fusion lattice that are induced through the lattice
product, and can be considered as providing an alternative but amalgamative
way towards syncretizing the difference of epistemic states of propositions. In
either way, we hold such a standpoint that the total truth may be derived from
the integration of all different epistemic viewpoints.

LMA on top of EALP is an argumentation framework that allows agents to
participate in uncertain argumentation under uncertain knowledge bases if once
the common annotation is shared among agents. It has various sorts of attack
such as rebuttal, undercut, defeat, etc. that were defined reflecting multiple-
valuedness. Now that the epistemological fusion has been finished, LMA can
promote an argumentation among agents as usual [4].

The paper is organized as follows. In Section 2, we describe the syncretic
argumentation framework by introducing the lattice homomorphism. This part
constitutes an extension of our previous work [8] to multi-agents. In Section
3, we give a new theory on the lattice fusion and fusion lattice construction
that are to provide another approach to the syncretic argumentation. In Section
4, we describe the basic ideas and advantages of the syncretic argumentation
by the lattice fusion through a simple example of argumentation in LMA, and
compare it with the method by the lattice homomorphism in Section 3. In the
final section, we argue about some implications of the approach to the syncretic
argumentation and future directions to further work.
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2 Syncretic Argumentation by Lattice Homomorphism

In this section, we present a first approach to syncretic argumenttion that al-
lows agents to participate in argumentation even if they have knowledge bases
with their own annotations as truth-values that reflect agents’ epistemic states
of propositions. In the Logic of Multiple-valued Argumentation (LMA) [4], the
annotation is a complete lattice. Naturally, we introduce the mathematical no-
tion of a homomorphism between lattices. Such a homomorphism enjoys the
order-preserving property, so that it guarantees agents to retain agents’ epis-
temic structure when embedding one lattice to the other. We also consider the
bi-directional homomorphism on lattices since it allows for a fair, unbiased and
pluralistic argumentation, prohibiting unilateral one.

Then, we describe the new definitions to characterize the set of justified
arguments, under the knowledge base reconstructed by the homomorphism on
lattices.

2.1 Homomorphisms on complete lattices

Definition 1 (Homomorphism [5]). Let < L,∨L,∧L,≤L> and < K,∨K ,∧K ,
≤K> be complete lattices. A map h : L→ K is said to be a homomorphism if h
satisfies the following conditions: for all a, b ∈ L,

– h(a ∨L b) = h(a) ∨K h(b)
– h(a ∧L b) = h(a) ∧K h(b)
– h(0L) = 0K for the least element
– h(1L) = 1K for the greatest element

For simplicity, we omit the suffix denoting a lattice from here on if no confusion
arises in the context.

Example 1. Let us consider two typical lattices: the two-valued complete lattice
T WO and the four-valued one FOUR. The former is typical in the West, and the
latter in the early philosophical literature and text of Buddhism [6]. T WO =<
{f, t},∨,∧,≤>, where f ≤ t in Fig. 1, and FOUR =< {⊥, t, f,>},∨,∧,≤>,
where ∀x, y ∈ {⊥, t, f,>} x ≤ y ⇔ x = y ∨ x = ⊥ ∨ y = > in Fig.
2. Note that we associate the suffix with annotations to avoid ambiguity of
the same annotation names, that is, t2 represents the annotation t in T WO
and t4 represents the annotation t in FOUR, for example. For these lattices,
there can be two possible homomorphisms as shown in Fig. 3 and 4. Naturally,
homomorphism 1 is a reasonable choice in this case, from the original meanings
of the annotations t and f . The selection, however, usually depends on various
factors such as argument purposes, argument domains and so on.

Given two lattices, there can be many lattice homomorphisms in general, and
also there can be no lattice homomorphism. In the latter case, it turns out that
agents can not syncretize their knowledge bases, resulting in no argumentation
among them. In order to resolve this situation, we will turn to alternative lattice
operations such as lattice product [5], or fusion in the next section.
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Fig. 1. 2-valued lattice Fig. 2. 4-valued lattice

Fig. 3. Homomorphism 1 Fig. 4. Homomorphism 2

2.2 Syncretically justified arguments

With the lattice homomorphism above, we will illustrate how agents who have
their own epistemology can reach an agreement and accept arguments through
the grounded semantics or the dialectical proof theory of LMA [4].

Example 2. Suppose two agents A and B have the following knowledge bases
respectively.

KA = { a : t2 ←, ∼ b : t2 ←, c : t2 ←, ∼ d : t2 ← }
KB = { ∼ a : t4 ←, b : t4 ←, ∼ c : >4 ←, d : ⊥4 ←,

e : t4 ← g : f4, g : t4 ← }

Then the agents A and B can make the following set of arguments ArgsKA

and ArgsKB from their knowledge bases respectively. (See [4] for the precise
definition of arguments in LMA.)

ArgsKA = { [a : t2 ←], [∼ b : t2 ←], [c : t2 ←], [∼ d : t2 ←] }
ArgsKB = { [∼ a : t4 ←], [b : t4 ←], [∼ c : >4 ←], [d : ⊥4 ←],

[g : t4 ←] }

The agents first assimilate their knowledge bases above to each other by the
lattice homomorphism 1 in Fig. 3, and compute justified arguments from them
using the grounded semantics or the dialectical proof theory [4], in each direction
of the homomorphism as follows.

[1] Lattice homomorphism h1: T WO → FOUR (simply written as T → F)
h1(KA) = { a : >4 ←,∼ b : >4 ←, c : >4 ←,∼ d : >4 ←}
KB = { ∼ a : t4 ←, b : t4 ←,∼ c : >4 ←, d : ⊥4 ←, e : t4 ← g : f4, g : t4 ← }
Argsh1(KA) = { [a : >4 ←], [∼ b : >4 ←], [c : >4 ←],
[∼ d : >4 ←] }
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ArgsKB = { [∼ a : t4 ←], [b : t4 ←], [∼ c : >4 ←],
[d : ⊥4 ←], [g : t4 ←] }

Note that Argsh1(KA) = h1(ArgsKA) since the homomorphism preserves the
lattice ordering. From these argument sets, the agents can have the following
set of justified arguments (see [4] for the definition of justified arguments).
Justified ArgsT→F = { [∼ b : >4 ←], [∼ d : >4 ←],
[b : t4 ←], [d : ⊥4 ←], [g : t4 ←] }

[2] Lattice homomorphism h2: FOUR → TWO (simply written as F → T )
KA = { a : t2 ←,∼ b : t2 ←, c : t2 ←,∼ d : t2 ← }
h2(KB) = { ∼ a : t2 ←, b : t2 ←, ∼ c : t2 ←, d : f2 ←, e : t2 ← g : f2,

g : t2 ← }
ArgsKA = { [a : t2 ←], [∼ b : t2 ←], [c : t2 ←], [∼ d : t2 ←] }
Argsh2(KB) = { [∼ a : t2 ←], [b : t2 ←], [∼ c : t2 ←],

[d : f2 ←], [g : t2 ←], [e : t2 ← g : f2, g : t2 ←] }
Note that Argsh2(KB) 6= h2(ArgsKB ) in case of the homomorphism h2 since
[e : t2 ← g : f2, g : t2 ←] has been qualified as an argument by h2 although
its original form [e : t4 ← g : f4, g : t4 ←] in KB is not an argument.
From these argument sets, the agents can have the following set of justified
arguments.
Justified ArgsF→T = { [∼ d : t2 ←], [d : f2 ←],
[g : t2 ←], [e : t2 ← g : f2, g : t2 ←] }

Through the two-way homomorphism, we had two different sets of justified
arguments: Justified ArgsT→F and Justified ArgsF→T . Next, we are inter-
ested in defining a set of justified arguments as a ”common good” that is accept-
able for both agents. In what follows, we present three kinds of agent attitudes
or criteria to chose it from among two different sets of justified arguments.

Definition 2 (Skeptically justified arguments). Skeptical justification is
defined for each argument a in ArgsK as follows.

– An argument a in ArgsKA
is skeptically justified iff a ∈ Justified ArgsF→T

and h1(a) ∈ Justified ArgsT→F .
– An argument a in ArgsKB

is skeptically justified iff a ∈ Justified ArgsT→F
and h2(a) ∈ Justified ArgsF→T .

This is a fair and unbiased notion of justified arguments in the sense that
the both sides can attain a perfect consensus by the two-way homomorphism.
Morally, it reflects such a compassionate attitude that agents look from the other
agents’ viewpoint, or place themselves in the other agents’ position.

Example 3 (Example 2 cont.). The skeptically justified arguments in Example 2
are:

Skeptically Justified Args = { [∼ d : t2 ←], [d : ⊥4 ←],
[g : t4 ←] }

A weaker version of skeptically justified arguments is the following. This
criterion is not uninteresting since it gives a useful information on arguments
which are not rejected completely.
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Definition 3 (Credulously justified arguments). Credulous justification is
defined for each argument a in ArgsK as follows.

– An argument a in ArgsKA
is credulously justified iff either a ∈ Justified ArgsF→T

or h1(a) ∈
Justified ArgsT→F .

– An argument a in ArgsKB
is credulously justified iff either a ∈ Justified ArgsT→F

or h2(a) ∈
Justified ArgsF→T .

Example 4 (Example 2 cont.). The credulously justified arguments in Example
2 are:

Credulous Justified Args = { [∼ b : t2 ←], [∼ d : t2 ←],
[b : t4 ←], [d : ⊥4 ←], [g : t4 ←]}

The third criterion is somewhat deviant reflecting a unilateral attitude, but
it can be seen in our daily life often.

Definition 4 (Self-centeredly justified arguments). Self-centered justifica-
tion is defined for each argument a in ArgsK as follows.

– An argument a in ArgsKA is self-centeredly justified iff a ∈ Justified ArgsF→T .
– An argument a in ArgsKB

is self-centeredly justified iff a ∈ Justified ArgsT→F .

Example 5 (Example 2 cont.). The self-centeredly
justified arguments in Example 2 are:

Self − centerdly Justified Args = { [∼ d : t2 ←], [b : t4 ←],
[d : ⊥4 ←], [g : t4 ←] }

Which criteria are the most suitable to argument-based agent computing
depend on agent purposes, agent attitudes, and so on. Here we just mention
only a relationship of those criteria as follows. The proof is straightforward from
the definitions.

Proposition 1. Skeptically Justified Args ⊆ Self−centerdly Justified Args
⊆ Credulously Justified Args

2.3 Created arguments

In the example 3, the argument [e : t2 ← g : f2, g : t2 ←] is included in
Justified ArgsF→T , but its original [e : t4 ← g : f4, g : t4 ←] is not in ArgsKB

.
That is, a new argument has been created in the new world by F → T . We single
out for special treatment such arguments to distinguish from the preexisted
arguments.

Definition 5 (Created arguments). Arguments are created through the lat-
tice homomorphism as follows.

– An argument a is said to be a creatively justified argument if a /∈ ArgsKB

and a ∈ Justified ArgsF→T .
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– An argument a is said to be a creatively justified argument iff a /∈ ArgsKA

and a ∈ Justified ArgsT→F .

Example 6 (Example 2 cont.). The creatively justified arguments in Example 2
are:

Creatively Justified Args = { [e : t2 ← g : f2, g : t2 ←] }

Specifying ”Creatively justified arguments” is not trivial since they reveal
indiscernible arguments in ourselves by standing on each other’s positions and
ways of thinking. We also sometimes change our thinking or notice new ideas by
standing on the opposite side of an argumentation in our daily life. It, however,
leads to expanding the range of argumentation.

Creatively justified arguments turn to have only the property of the credu-
lously justified arguments.

Proposition 2.

– If an argument a ∈ Justified ArgsF→T is a creatively justified argument,
h1(a) /∈ Justified ArgsT→F .

– If an argument a ∈ Justified ArgsT→F is a creatively justified argument,
h2(a) /∈ Justified ArgsF→T .

So far, we have given those definitions in a way specialized to the lattices
T WO and FOUR for brevity of explanation. They can be carried on to any two
lattices in a similar manner.

2.4 For more than 2 agents

We have described the first approach to syncretic argumentation undertaken by
2 agents. The method can be easily extended to the case of more than 2 agents.
For example, in addition to the homomorphism between T WO and FOUR in
Figure 3, let us consider the lattice FIVE =< {⊥, t, f1, f2,>},∨,∧,≤>. Then,
we need to set up the following homomorphisms:

– h1: T WO ] FIVE → FOUR
– h2: FOUR ] FIVE → T WO
– h3: T WO ] FOUR → FIVE

based on the possible homomorphisms listed in Figure 5, 6, 7 and 8 plus the
homomorphism in Figure 3, where ] stands for disjoint union, and each least
and greatest element in each lattice are mapped to those of the target lattice
respectively. With these h1, h2 and h3, the new knowledge bases, argument sets
and sets of justified arguments are to be constructed. Under these preparations,
we can obtain skeptically justified arguments and credulously justified arguments
as the results of the syncretic argumentation for the 3 agents society. We also
can define a new notion of justification proper to multi-agents. For example,
we can define that an argument A is democratically justified in the lattice field
(such as {T WO,FOUR,FIVE}) iff it is justified in more than or equal to the
half number of the size of the lattice field. In either way, such an extension is a
desideratum in the argumentation in more than 2 agents society.
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3 Lattice Fusion

In this section, we assume that agents have their own epistemology that is repre-
sented by annotation with a complete lattice structure as in the previous section,
and consider how two different lattices can be fused by way of the lattice product
[5]. In addition, we consider complete lattices as finite sets for the time being.

3.1 Product of complete lattices

Let L and K be ordered sets. The Cartesian product L ×K can be made into
an ordered set by imposing the coordinate-wise order defined by
(x1, y1) ≤L×K (x2, y2) iff x1 ≤L x2 and y1 ≤K y2 for xi ∈ L and yi ∈ K(i = 1, 2).

Definition 6 (Product [5]). Let < L,∨L,∧L,≤L> and < K,∨K ,∧K ,≤K>
be lattices. For the product L×K, we define ∨L×K and ∧L×K as follows.

– (l1, k1) ∨L×K (l2, k2) = (l1 ∨L l2, k1 ∨K k2)
– (l1, k1) ∧L×K (l2, k2) = (l1 ∧L l2, k1 ∧K k2)

It should be noted that the product L×K is a lattice, < L×K,∨L×K ,
∧L×K ,≤L×K> [5].

Example 7. Let us again consider two typical lattices: the two-valued complete
lattice T WO and the four-valued one FOUR in Fig. 1 and Fig. 2 respectively.
Then we have the product lattice as depicted in Fig. 9.

The product is a form of the combination of two different lattices: one com-
ponent of an ordered pair from one lattice and another component from another
lattice. The T WO×FOUR lattice consists of 8 (= 2× 4) elements. Then, each
element of T WO is associated with four elements of T WO × FOUR and each
element of FOUR is associated with two elements of T WO × FOUR. For ex-
ample, t2 ∈ T WO is associated with (t2,>4), (t2, t4), (t2, f4) and (t2,⊥4), and
t4 ∈ FOUR is associated with (t2, t4) and (f2, t4).
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Fig. 9. Product of T WO and FOUR

3.2 Fusion of complete lattices

The lattice product itself, however, can not be said to be a genuine fusion of
lattices since it simply yields an ordered pair of two lattices, and even worse,
agents do not have knowledge annotated by the product lattice. So we turn to
devise a method that allows for a new lattice construct towards an intrinsic fusion
of lattices, using the amount of the order information of the lattice product.

Definition 7. Let L and K be lattices, and L1, . . . , Lm and K1, . . . ,Kn be el-
ements of L and K respectively. Then, we define the ordering relation ≤L⊗K

in-between an element of L,Li (1 ≤ i ≤ m) and an element of K, Kj (1 ≤ j ≤ n).

– Kj ≤L⊗K Li iff | {(Ls,Kr) | (Li,Kr) ≤L×K (Ls,Kj), 1 ≤ r ≤ n, 1 ≤ s ≤
m} | ≤ | {(Ls,Kr) | (Ls,Kj) ≤L×K (Li,Kr), 1 ≤ r ≤ n, 1 ≤ s ≤ m} |

– Li ≤L⊗K Kj iff | {(Ls,Kr) | (Li,Kr) ≥L×K (Ls,Kj), 1 ≤ r ≤ n, 1 ≤ s ≤
m} | ≤ | {(Ls,Kr) | (Li,Kr) ≤L×K (Ls, Kj), 1 ≤ r ≤ n, 1 ≤ s ≤ m} |

We use the notations ≤L⊗K and ≥L⊗K interchangeably, and omit the suffix
L⊗K or L×K if no confusion arises.

Definition 8. Li =L⊗K Kj iff Li ≤L⊗K Kj and Kj ≤L⊗K Li.

Definition 9. Let L and K be lattices. A tuple < L∪K,≤L⊗K> is a fusion of
L and K, denoted by L⊗K, where L∪K is a set in which Li ∈ L and Kj ∈ K
such that Li =L⊗K Kj are identified, and the original order relations ≤L and
≤K are preserved but with those order relations renamed to ≤L⊗K .

Example 8 (Example 9 cont.). Let us consider the order between t2 in T WO
and >4 in FOUR. We first pick up the ordered pairs including t2 or >4, and
compare them with each other as follows. We will write T × F and T ⊗ F for
T WO ×FOUR and T WO ⊗FOUR respectively.

– (t2,>4) = (t2,>4)
– (t2, t4) ≤ (t2,>4)
– (t2, f4) ≤ (t2,>4)
– (t2,⊥4) ≤ (t2,>4)

– (t2,>4) ≥ (f2,>4)
– (t2, t4) ? (f2,>4)
– (t2, f4) ? (f2,>4)
– (t2,⊥4) ? (f2,>4)
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Note that the order relations: =,≤,≥ above have the suffix T × F . From Defi-
nition 7, we have t2 ≤T ⊗F >4 since
| {(f2,>4)} | ≤ | {(t2, t4), (t2, f4), (t2,⊥4)} |. Similarly, we can obtain the order
for all other elements as follows.

– t2 ≤ >4

– t2 ≥ t4

– t2 ≥ f4

– t2 ≥ ⊥4

– f2 ≤ >4

– f2 ≤ t4

– f2 ≤ f4 – f2 ≥ ⊥4

Note that the order relations: =,≤,≥ above have the suffix T ⊗ F .
The Hasse’s diagram of these relationship is shown in Fig. 10.

Fig. 10. Fusion of T WO and FOUR

The ordering relation of Definition 7 is construed in a more lucid way as
follows.

Proposition 3. Let L and K be complete lattices, and L1, . . . , Lm and K1, . . . , Kn

be elements of L and K respectively. For any Li ∈ L(1 ≤ i ≤ m) and Kj ∈
K(1 ≤ j ≤ n),

– Kj ≤L⊗K Li iff
| {Ls | Ls ≥L Li, 1 ≤ s ≤ m} | × | {Kr | Kr ≤K Kj , 1 ≤ r ≤ n} | ≤
| {Ls | Ls ≤L Li, 1 ≤ s ≤ m} | × | {Kr | Kr ≥K Kj , 1 ≤ r ≤ n} |

– Li ≤L⊗K Kj iff

| {Ls | Ls ≤L Li, 1 ≤ s ≤ m} | × | {Kr | Kr ≥K Kj , 1 ≤ r ≤ n} | ≤
| {Ls | Ls ≥L Li, 1 ≤ s ≤ m} | × | {Kr | Kr ≤K Kj , 1 ≤ r ≤ n} |

Proof. Refer to [7] for the proof.

Example 9 (Example 9 cont.). Let us examine the order between t2 in T WO
and >4 in FOUR by Proposition 3.

– {Ls | Ls ≥TWO t2, 1 ≤ s ≤ 2} = {t2}
– {Kr | Kr ≤FOUR >4, 1 ≤ r ≤ 4} = {>4, t4, f4,⊥4}
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– {Ls | Ls ≤TWO t2, 1 ≤ s ≤ 2} = {t2, f2}
– {Kr | Kr ≥FOUR >4, 1 ≤ r ≤ 4} = {>4}

Therefore, we have t2 ≤T ⊗F >4 since | {t2, f2} | × | {>4} | ≤ | {t2} | × |
{>4, t4, f4,⊥4} |.

We have the following property when the fusion is a lattice. The proof is
straightforward from Proposition 3.

Proposition 4. Let L and K be complete lattices. Let 0L, 0K and 0L⊗K be the
least elements of L, K and L⊗K respectively, and 1L, 1K and 1L⊗K be the
greatest elements of them respectively.

– 0L⊗K = 0L and 1L⊗K = 1L iff | L | ≥ | K |
– 0L⊗K = 0K and 1L⊗K = 1K iff | L | ≤ | K |

Proof. The proof is straightforward from Proposition 3.

Example 10. In Fig. 11, the case of the fusion of 3-valued lattice and 5-valued
lattice is illustrated. These lattices represent the linear order of the grade points
in a different way. Obviously, 5-valued-lattice allows for a finer grade than 3-
valued-lattice. According to Definition 7 and Proposition 4, we have the fusion in
which the greatest (least) element of 5-valued lattice, 5 (1) is located at the higher
(lower) position than the greatest (least) element of 3-valued lattice, good(bad)
respectively. And 3 and normal are located at the same position since 3 =3⊗5

normal. The resulting fusion gives a vivid account of the difference between
fine and coarse recognition for the grade and a goodness of our amalgamation
method.

Fig. 11. Fusion of 3-valued-lattice and 5-valued-lattice

However, the problems of the fusion are two-fold. One is that the original
orders of L and K are not necessarily preserved in the fusion of L and K.
(Fortunately in Example 8 and 9, the fusion kept the order-preserving.) In this
paper, we take such a standpoint that each agent should maintain their own
epistemology since they have their own knowledge bases and arguments on the
basis of their epistemology. The other is that the fusion does not always produce
a lattice.
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Fig. 12 illustrates the fusion of 4-valued lattice and 8-valued lattice in which
the original orders of those lattices break down. In fact, the elements g and l
in 8-valued lattice are non-comparable, but they turn out to be in the ordering
relation g ≥ l in the fusion of two lattices. Furthermore, the fusion is not even
a lattice. So we will consider a method to restore the fusion so that it preserves
the original order and yields a (complete) lattice.

Fig. 12. Fusion of 4-valued lattice and 8-valued lattice

Definition 10. Let L and K be lattices, and L ⊗K = < L ∪K,≤L⊗K> be a
fusion of L and K, where L∪K is a set in which Li ∈ L and Kj ∈ K such that
Li =L⊗K Kj are identified. Then, the lattice L ◦K = < L ∪K,∨,∧,≤L◦K> is
said to be fusion lattice, where ≤L◦K= S∪ ≤L ∪ ≤K with S ⊆≤L⊗K and | S |
being a maximum.

The basic idea to restore the fusion to the fusion lattice so that it preserves
the original order and yields a (complete) lattice is as follows. We first inherit
the original orders of L and K in L ◦K (≤L ∪ ≤K) since the fusion contains all
elements of the original lattices, and then we prune some ordered pairs that were
newly produced by 9, so that lub and glb are guaranteed for any two elements
in L◦K and at the same time non-preexistent ordered pairs that were produced
by the fusion are nullified. We employ the resulting fusion lattices that were
obtained in the least steps of such a untangling pruning.

Proposition 5. Let L and K be any lattice, and L⊗K = < L∪K,≤L⊗K> be
the fusion of L and K. Then, the fusion lattice L ◦K can be constructed from
L⊗K.

Proof. Refer to [7] for the proof of the construction procedure and its correctness.

Example 11. Given the fusion in Figure 12, we can have four fusion lattices as the
result of the restoration as shown in Figure 13. In the fusion lattices, the order
relation ≤4◦8 is S ∪ ≤4 ∪ ≤8 such that S = ≤4⊗8 −{b(d) ≤4⊗8 k, d(b) ≤4⊗8

g, b ≥4⊗8 i, d ≥4⊗8 i, b(d) ≥4⊗8 l, d(b) ≥4⊗8 h} or S = ≤4⊗8 −{b(d) ≤4⊗8

k, d(b) ≤4⊗8 g, b ≤4⊗8 f, d ≤4⊗8 f, b(d) ≥4⊗8 l, d(b) ≥4⊗8 h}. For these two
cases, | S |=|≤4⊗8| − 6 = 32 − 6 = 26 and | S | is the maximum under the
condition that S is compatible with the order relation ≤4 and ≤8. The choice
from among two Ss is left to users’ preferences.
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Fig. 13. Fusion lattices of 4-valued lattice and 8-valued lattice

3.3 Fusion lattice construction for infinite sets

So far we have restricted lattices to be fused to finite ones for the sake of easy
construction. There can be some ways to remove them so that annotations may
be infinite sets like a unit interval of reals <[0, 1]. Fortunately, the fusion ⊗ yields
the fusion lattice ◦ for such an infinite lattice. The following definition of the
fusion lattice is for two infinite lattices with different intervals of reals, R1[a1, b1]
and R2[a2, b2].

Definition 11. Let x1 ∈ R1[a1, b1] and x2 ∈ R2[a2, b2]. The ordering ≤R1⊗R2

between x1 and x2 is defined in a similar way to the previous Definition 7, 8 and
Proposition 3 as follows.

– x1 ≤R1⊗R2 x2 iff d(a1, x1)× d(x2, b2) ≤ d(x1, b1)× d(a2, x2)

– x2 ≤R1⊗R2 x1 iff d(x1, b1)× d(a2, x2) ≤ d(a1, x1)× d(x2, b2)

where d(x, y) stands for the distance or segment between x and y on the real number

line.

Figure 14 depicts the fusion lattice T ⊗R of T WO and <[0, 1].

Fig. 14. Fusion lattice T ⊗R of T WO and <[0, 1]
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3.4 Advantages of the fusion and fusion lattice construction

Let L and K be lattices. We summarize characteristics and advantages of the
fusion L⊗K and fusion lattice L ◦K as follows.

– Majority rule: The fusion reflects a sort of majority rule for the agent epis-
temology by annotation as can be seen in Definition 7.

– Order preserving: The fusion ⊗ gives an ordering between the elements of
L and those of K. The original orders of L and K are untouched by the
fusion operator ◦. (See our former paper [8] for the contrary case by lattice
homomorphism.)

– Commutativity: The products L×K and K ×L determine the same fusion
since L × K and K × L can be order-isomorphic. This is a most superior
property of the fusion and hence lattice fusion since our fusion construction
turns out yield an equal and fair argumentation among agents.

4 Syncretic Argumentation by Lattice Fusion

In this section, we illustrate the basic ideas and advantages of the syncretic
argumentation by the lattice fusion through a simple example of argumentation
in LMA, and compare it with the method by the lattice homomorphism in
Section 2.

4.1 An example of the syncretic argumentation by the lattice fusion

Let us look at an argument about the plan of one day. Assume that the com-
plete lattices of truth values of two agents’ knowledge bases are the power sets
P({A.M., P.M.}) and P({morning, daytime, evening}) ordered by set inclu-
sion ⊆ respectively. This means they have a different sense of time in a day.
The result of the lattice fusion is shown in Fig. 15, where m, d, and e stand for
morning, daytime, and evening respectively. The construction of these lattices
are basically the same as that in Fig. 13. Here we use two lattice fusions which
preserve the lateral position relation of original lattices as in Fig. 15 since the
original lattices are constructed in such a way that the elements which repre-
sents an earlier time in a day are positioned in the left side and the ones which
represents a later time in a day are positioned in the right side. Thus we may
need to choose a meaningful fusion lattice, in addition to the least restoration
process. In this example, the result of the argumentation is the same by employ-
ing either fusion (the left one or the right in Fig. 15). In the both lattice fusions,
the information of the node {A.M., P.M} includes the information of the nodes
{morning, daytime} and {daytime, evening}, and {morning, daytime} includes
{A.M.}. However, {daytime, evening} does not include {A.M.}.

Under these complete lattices, agents b and c have the following sets of knowl-
edge bases respectively.
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Fig. 15. Fusion lattices of P({A.M., P.M.}) and P({m, d, e})

KBb = { leave(a) :{P.M.} ← wake up(a) :{A.M.}&
not plan(a) :{P.M.},

wake up(a) :{A.M.} ←,
∼ plan(a) :{A.M., P.M.} ←,
∼ weak(a) :{A.M.} ← }

KBc = { ∼ wake up(a) :{morning} ← weak(a) :{morning},
weak(a) :{morning} ←,
plan(a) :{daytime, evening} ← }

wherein the annotated atom plan(a) : {daytime, evening} reads “Agent a has
a plan in the daytime and the evening”, and ∼ plan(a) : {A.M., P.M.} reads
“Agent a does not have a plan both in the morning and in the afternoon (perhaps
agent a has a plan either in the morning or the afternoon)”.

As the result of the argumentation based on these knowledge bases, we know
that the argument which has the conclusion leave(a) :{P.M.} (“Agent a should
leave in the afternoon”) is not justified by the dialectical proof theory [4] as
shown in Fig. 16.

Fig. 16. A dialogue tree of the argumentation

In the dialogue tree, agents b and c are arguing about agent a’s plan. Agent b
begins with saying “Agent a will leave in the afternoon because he wakes up be-
fore noon and does not have a plan in the afternoon”. Then agent c defeats it by
saying “He can’t usually wake up in the morning”, and also undercuts by saying
“He has a plan in the daytime and the evening”. However, for these counter-
arguments by agent c, agent b can not put forward further counter-arguments
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such as “a can wake up before noon” and “a does not have a plan in the morn-
ing and the afternoon” since {morning} ≤ {A.M.} and {daytime, evening} ≤
{A.M., P.M.}. To be more specific, the argument “plan(a) :{daytime, evening} ←”
by agent c does not atack the argument “∼ plan(a) :{A.M., P.M.}
←” by agent b since although agent c says just about a’s plan in the daytime

and the evening, agent b’s argument is the negation of a’s all-day plan. Conse-
quently, the first argument of agent b is not justified in this argumentation. All
the justified arguments we have in this syncretic argumentation is as follows.

Justified Args = {
[∼ plan(a) :{A.M., P.M.} ←], [∼ weak(a) :{A.M.} ←],
[weak(a) :{morning} ←], [plan(a) :{daytime, evening} ←]}

The complete lattice of truth values used in this example is irregular differ-
ently from the ones used in previous section. It allows for a temporal reasoning
by argumentation. The example showed that our method have a due effect on
the syncretic argumentation by the lattice fusion on various truth values as well.

4.2 Comparison to the syncretic argumentation by the lattice
homomorphism

There is no work similar to this paper. So we compare the approach in this paper
with our former work [8] by the lattice homomorphism, using the example of this
section.

The possible bi-directional homomorphisms between the lattices 4 =< P
({A.M., P.M.}),≤4> and 8 =< P({m, d, e}),
≤8> are shown in Fig. 17 and 18.

Fig. 17. P(4 )→ P(8 ) Fig. 18. P(8 )→ P(4 )

Then, four types of justified arguments are calculated under the knowledge
base embedding by the lattice homomorphisms according to the definition of [8]
as follows.

Skeptically Justified Args = {
[∼ plan(a) :{A.M., P.M.} ←], [plan(a) :{daytime,

evening} ←] }
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Credulously Justified Args = {
[∼ plan(a) :{A.M., P.M.} ←], [∼ weak(a) :{A.M.} ←],
[weak(a) :{morning} ←], [plan(a) :{daytime, evening}
←] }

Self − centerdly Justified Args = {
[∼ plan(a) :{A.M., P.M.} ←], [weak(a) :{morning} ←],
[plan(a) :{daytime, evening} ←] }

Creative Justified Args = φ

The fusion lattice contains more elements than the lattice targeted by the lat-
tice homomorphism since the fusion lattice consists of all elements of the original
lattices. Therefore, from the property of LMA, arguments are harder to defeat
other arguments and more arguments will be justified in the argumentation by
lattice fusion. In fact, the set of justified arguments of the argumentation by
lattice fusion is equivalent to the set of Credulously justified arguments of the
argumentation by lattice homomorphism which is maximal set in three kinds of
justified arguments.

The lattice homomorphism h is weakly order-preserving in that for any
a and b ∈ L, a ≤ b implies h(a) ≤ h(b), while the lattice fusion is strongly
order-preserving in that the ordering and non-ordering relations are strictly pre-
served. Which approach we should use in the argumentation depends on the
situation and the purpose of the argumentation. If agents do not so much em-
phasize their sense of value and can accept opponents’ attitudes, they may use
the lattice homomorphism. On the other hand, if they insist on their sense of
value and epistemology, they may use the lattice fusion.

5 Concluding Remarks and Future Work

In this paper, we have undertaken two attempts to a new argumentation frame-
work named syncretic argumentation. Actually, we presented two complemen-
tary approaches to it: the syncretic argumentation by lattice homomorphism
and by the lattice fusion. The former in particular allows to syncretize the agent
epistemology even for more than 2 agents.

Agents have to live in the multi-cultural computer-networked virtual society
as well as humans living in the global multi-cultural society. This implies that
agents also get involved in arguing about issues of mutual interest on the basis of
their own belief and knowledge. But, if they insisted only on their epistemology,
we would lose chances to interact or communicate with each other. The enter-
prise in this paper is an attempt to avoid such a cul-de-sac appearing even in
argument-based problem solving.

There has been no work on argumentation frameworks in which each agent
has its own knowledge representation language, its own epistemology, and its
own argumentation framework. They have been all common to agents who par-
ticipate in argumentation. Our work goes to the polar opposite direction from
the perspective of the past works. In the area of ontology mapping [9], they claim
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that a single ontology is no longer enough to support the tasks envisaged by a
distributed environment like the Semantic Web, and multiple ontologies need to
be accessed from several applications. In a very general sense, our work might
deal with issues similar to those in the ontology mapping, but we have not found
any technical relationship to the ontology mapping in which epistemology map-
ping like in this paper is not concerned with. We have not considered a morphism
of ontological signatures (vocabulary), which we think is needed for realizing a
full-fledged syncretic argumentation.

In the near future, we will undertake mainly two major works: (i) introducing
other types of lattice operations such as sum, and a common ground like the unit
interval of reals [0, 1] to which every lattice is mapped by the homomorphism, in
order to produce more versatile and well-rounded arguments, (ii) extending the
syncretic argumentation to the case of more than two agents, such as L◦K ◦M ,
and the case of infinite sets of annotations such as the unit interval of reals
[0, 1]. It is expected that the incorporation of the syncretism into LMA as well
as the past argumentation systems could allow to expand application domains
extensively.
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Abstract. Trust is an approach to managing the uncertainty about autonomous
entities and the information they store, and so can play an important role in any
decentralized system. As a result, trust has been widely studied in multiagent
systems and related fields such as the semantic web. Here we introduce a simple
approach to reasoning about trust with logic, describe how it can be combined
with reasoning about beliefs using logic, and demonstrate its use on an example.
The example highlights a number of issues related to resolving weighted argu-
ments.

1 Introduction

Trust is an approach to managing the uncertainty about autonomous entities and the
information they deal with. As a result, trust can play an important role in any decen-
tralized system. As computer systems have become increasingly distributed, and control
in those systems has become more decentralized, trust has become steadily more im-
portant within Computer Science [4, 18].

Thus, for example, we see work on trust in peer-to-peer networks, including the
EigenTrust algorithm [22] — a variant of PageRank [34] where downloads from a
source play the role of outgoing hyperlinks and which is effective in excluding peers
who want to disrupt the network — and the work in [1] that prevents peers from ma-
nipulating their trust values to get preferential downloads. [52] is concerned with ma-
nipulation in mobile ad-hoc networks, and looks to prevent nodes from getting others
to transmit their messages while refusing to transmit the messages of others.

The internet, as the largest distributed system of all, is naturally a target of much
of the research on trust. There have been studies, for example, on the development of
trust in ecommerce [31, 43, 51], on mechanisms to determine which sources to trust
when faced with multiple conflicting sources [10, 39, 50], on mechanisms for identify-
ing which individuals to trust based on their past activity [2, 20, 27], and on the manip-
ulation of online recommendation systems [25]. The work we have just cited can be
thought of as helping agents to decide who is worthy of trust. A development from a
slightly different perspective — that of making it possible to trust individuals who might
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otherwise be deemed untrustworthy — is the idea of having individuals indemnify each
other by placing some form of financial guarantee on transactions that others enter into
[8, 9]. Thus I might indemnify you against a third party that I trust, thus making you
feel comfortable doing business with them.

Trust is an especially important issue from the perspective of autonomous agents
and multiagent systems [48]. The premise behind the multiagent systems field is that of
developing software agents that will work in the interests of their owners, carrying out
their owners’ wishes while interacting with other entities. In such interactions, agents
will have to reason about the amount that they should trust those other entities, whether
they are trusting those entities to carry out some task, or whether they are trusting those
entities to not misuse crucial information. As a result we find much work on trust in
agent-based systems [45, 49], including work that identifies weaknesses in some of the
major trust models [46].

In the work in this area, it is common to assume that agents maintain a trust network
of their acquaintances, which includes ratings of how much those acquaintances are
trusted, and how much those acquaintances trust their acquaintances, and so on. One
natural question to ask in this context is what inference is reasonable in such networks.
The propagation of trust — both the transitivity of trust relations [44, 49] and more
complex relationships like “co-citation” [19] — has been studied. In many cases this
work has been empirically validated [19, 23, 24].

In a previous paper [37], we suggested that, given the role that provenance plays in
trust [16, 17], argumentation — which tracks the origin of data used in reasoning —
might play a role. We have developed a graph-based model to explore the relationship
between argumentation and trust [47]. Here we explore a different direction, discussing
how the usual approach to dealing with trust information can be captured in logic, how
it can be integrated with argumentation-based reasoning about beliefs, and how it might
be used in a combined system.

2 Trust

We are interested in a finite set of agents Ags and how these agents trust one another.
Following the usual presentation (for example [23, 44, 49]), we start with a trust rela-
tion:

τ ⊆ Ags×Ags
which identifies which agents trust one another. If τ(Agi, Agj), whereAgi, Agj ∈ Ags,
then Agi trusts Agj . This is not a symmetric relation, so it is not necessarily the case
that τ(Agi, Agj)⇒ τ(Agj , Agi).

It is natural to represent this trust relation as a directed graph, and we define a trust
network to be a graph comprising, respectively, a set of nodes and a set of edges:

T = 〈Ags, {τ}〉

where Ags is a set of agents and {τ} is the set of pairwise trust relations over Ags so
that if τ(Agi, Agj) is in {τ} then {Agi, Agj} is a directed arc from Agi to Agj in T
indicating that Agi trusts Agj .
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john
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Fig. 1. An example trust graph. The solid lines represent direct trust relations, and the dashed lines
represent derived trust. The link between john and jane and the link between john and dave
are the result of direct propagation. The link between mary and paul is the result of co-citation
(see below).

In this graph, the set of agents is the set of vertices, and the trust relations define
the arcs. A directed path between agents in the trust network implies that one agent
indirectly trusts another. For example if:

〈Ag1, Ag2, . . . Agn〉
is a path from agent Ag1 to Agn, then we have:

τ(Ag1, Ag2), τ(Ag2, Ag3), . . . , τ(Agn−1, Agn)

and the path gives us a means to compute the trust that Ag1 has in Agn. The usual
assumption in the literature is that we can place some measure on the trust relation,
quantifying the trust that one agent has in another, so we have:

tr : Ags×Ags 7→ <
where tr gives a suitable trust value. In this paper, we take this value to be between 0,
indicating no trust, and 1, indicating the greatest possible degree of trust. We assume
that tr and τ are mutually consistent, so that:

tr(Agi, Agj) 6= 0⇔ (Agi, Agj) ∈ τ
tr(Agi, Agj) = 0⇔ (Agi, Agj) 6∈ τ

Now, this just deals with the direct trust relations encoded in τ . It is usual in work on
trust to consider performing inference about trust by assuming that trust relations are
transitive. This is easily captured in the notion of a trust network. The notion of trust
embodied here is exactly Jøsang’s “indirect trust” or “derived trust” [21] and the process
of inference is what [19] calls “direct propagation”. If we have a function tr, then we
can compute:

tr(Agi, Agj) =
tr(Agi, Agi+1)⊗tr tr(Agi+1, Agi+2)⊗tr . . .⊗tr tr(Agj−1, Agj) (1)
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for some operation ⊗tr. Here we follow [49] in using the symbol ⊗, to stand for this
generic operation.1 The superscript distinguishes this from a similar operation ⊗bel on
belief values which we will meet below.

Sometimes it is the case that there are two or more paths through the trust network
betweenAgi andAgj indicating thatAgi has several opinions about the trustworthiness
of Agj . If these two paths are

〈Agi, Ag
′
i+1, . . . Agj〉 and 〈Agi, Ag

′′
i+1, . . . Agj〉

and

tr(Agi, Agj)′ = tr(Agi, Ag
′
i+1)⊗tr . . .⊗tr tr(Ag′j−1, Agj)

tr(Agi, Agj)′′ = tr(Agi, Ag
′′
i+1)⊗tr . . .⊗tr tr(Ag′′j−1, Agj)

then the overall degree of trust that Agi has in Agj is:

tr(Agi, Agj) = tr(Agi, Agj)′ ⊕tr tr(Agi, Agj)′′ (2)

Again we use the standard notation⊕ for a function that combines trust measures along
two paths [49]. Clearly we can extend this to handle the combination of more than two
paths.

As an example of a trust graph, consider Figure 1 which shows the trust relationship
between john, mary, alice, jane, paul and dave. This is adapted from the example
in [23] by normalizing the values to lie between 0 and 1 and adding paul. The solid
lines are direct trust relationships and the dotted lines are indirect links derived from
the direct links. Thus, for example, john trusts jane and dave because he trusts mary
and mary trusts jane and dave.

The standard approach in the literature on trust is to base the computation of derived
trust values on the the trust graph, for example using a path algebra [44]. Our aim in
this paper is to demonstrate how we might use logic, and in particular argumentation, to
propagate trust values. In other words we want an argumentation-based approach that
john can use to determine that he has a reason to trust dave, and then use to combine
this trust with his other knowledge to make decisions.

3 Reasoning about trust

We will start by considering how to capture reasoning about trust in logic. We will
assume that every agent Agi has some collection of information about the world, which
we will call ∆i, that is expressed in logic. ∆i is made up of a number of partitions, one
of which, ∆tr

i , holds information about the degree of trust Agi has in other agents it
knows. For example, the agent john from the above example might have the following
collection of information:

∆tr
john (t1 : trusts(john,mary) : 0.9)

(t2 : trusts(mary, jane) : 0.7)
(t3 : trusts(mary, dave) : 0.8)
(t4 : trusts(alice, jane) : 0.6)
(t5 : trusts(alice, paul) : 0.4)

1 [19, 23, 44, 49], among others, provide different possible instantiations of this operation.
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where the elements of ∆tr
john are the kind of triples that we have discussed in earlier

work [35]. Each element has the form:

(〈index〉 : 〈data〉 : 〈value〉)

The first is a means of referring to the element, the second is a formula, and here the
third is the degree of trust between the individuals mentioned in the trust relation.

From ∆tr
john we can then construct arguments mirroring the trust propagation dis-

cussed above. Rules for doing this are given in Figure 2.2 For example, using the first
two rules, from Figure 2, Axtr and dp, we can construct the argument:

∆tr
john `tr (trusts(john, jane) : {t1, t2} : {Axtr, Axtr, dp} : t̃)

where all arguments in our approach take the form:

(〈conclusion〉 : 〈grounds〉 : 〈rules〉 : 〈value〉)

The 〈conclusion〉 is inferred from the 〈grounds〉 using the rules of inference 〈rules〉
and with degree 〈value〉. In this case the argument says john trusts jane with degree
t̃ (which is 0.9⊗tr 0.7), through two applications of the rule Axtr and one application
of the rule dp to the two facts indexed by t1 and t2.3

The rule Axtr says that if some agent Agi has a triple:

(t1 : trusts(john,mary) : 0.9)

in its∆tr
i then it can construct an argument for trusts(john,mary) where the grounds

are t1, the degree of trust is 0.9, and which records that the Axtr rule was used in its
derivation.

The rule dp captures direct propagation of trust values. It says that if we can show
that trusts(x, y) holds with degree d̃ and we can show that trusts(y, z) holds with
degree ẽ, then we are allowed to conclude trusts(x, z) with a degree d̃⊗tr ẽ, and that
the conclusion is based on the union of the information that supported the premises, and
is computed using all the rules used by both the premises.

Why is this interesting? After all, it does no more than trace paths through the trust
graph.

Well, one of the strengths of argumentation, and the reason we are interested in us-
ing argumentation to handle trust, is that we want to record, in the form of the argument
for some proposition, the reasons that it should be believed. Since information on the
source of some piece of data, and the trust that an agent has in the source, is relevant,
then it should be recorded in the argument. This is easier to achieve if we encode data
about who trusts whom in logic.

2 Note that the consequence relation in Figure 2 is not intended to be comprehensive. There are
many other ways to construct arguments about trust — for some examples see [36] — which
could be included in the definition of `tr .

3 There are good reasons for using the formulae themselves in the grounds and factoring the
whole proof into the set of rules (as we do in [37]) to obtain structured arguments like those in
[15, 41]. However, for simplicity, here we use the relevant indices.
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One of the nice things that this approach allows us to do is to track the application of
the rules for propagating trust. When we just use direct propagation, this is not terribly
interesting (though it does allow us to distinguish between the bits of information used
in the formation of arguments, which may be a criterion for preferring one argument
over another [28]), but it becomes more obviously useful when we start to allow other
rules for propagating trust. For example, [19] suggests a rule the authors call co-citation,
which they describe as:

For example, suppose i1 trusts j1 and j2 and i2 trusts j2. Under co-citation, we
would conclude that i2 should also trust j1.

In our example (see Figure 1), therefore, co-citation suggests that since alice trusts
jane and paul, and mary trusts jane, then mary should trust paul. (Presumably the
idea is that since alice and mary agree on the trustworthiness of jane, mary should
trust alice’s opinion about paul). [19] also tells us how trust values should be combined
in this case —mary’s trust in paul is just the combination of trust values along the path
from mary to jane to alice to paul.

This form of reasoning is captured by the rule cc in Figure 2, and the rule also takes
care of the necessary bookkeeping of grounds, proof rules and trust values. Combining
the application of cc with dp as before allows the construction of the argument:

∆tr
john `tr (trusts(john, paul) : {t1, t2, t4, t5} : rules1 : r̃)

indicating that john trusts paul, where rules1 is:

{Axtr, Axtr, Axtr, Axtr, cc, dp}
and r̃ is 0.9⊗tr 0.7⊗tr 0.6⊗tr 0.4.

Now, when we have several rules for propagating trust, keeping track of which
rule has been used in which derivation is appealing, especially since one might want
to distinguish between arguments that use different rules of inference. For example,
one might prefer arguments, no matter the trust value, which only make use of direct
propagation over those that make use of co-citation.4

4 Reasoning with trust

What we have presented so far explains how agent Agi can reason about the trust-
worthiness of its acquaintances. The reason for doing this is so Agi can use its trust
information to decide how to use information that it gets from those acquaintances. To
formalize the way in which Agi does this, we will assume that, in addition to ∆tr

i , Agi

has a set of beliefs about the world∆bel
i (which we assume come with some measure of

belief), and some information ∆j
i provided by each of its acquaintances Agj , and that:

∆i = ∆tr
i ∪∆bel

i ∪
⋃

j

∆j
i

4 Though [19] shows that propagation based on co-citation matches empirical results for the way
people propagate trust, our experience is that people also often find the notion of co-citation
somewhat unconvincing when they are first exposed to it.
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Axbel
(n : θ : d̃) ∈ ∆bel

i

∆i `bel (θ : G : {Axbel} : d̃)

Trust
∆tr

i `tr (trusts(i, j) : G : R : d̃) and ∆j
i `bel (θ : H : S : ẽ)

∆i `bel (θ : G ∪H : R ∪ S ∪ {Trust} : ttb(d̃)⊗bel ẽ)

∧-I
∆i `bel (θ : G : R : d̃) and ∆i `bel (φ : H : S : ẽ)

∆i `bel (θ ∧ φ : G ∪H : R ∪ S ∪ {∧-I} : d̃⊗bel ẽ)

→-E
∆i `bel (θ : G : R : d̃) and ∆i `bel (θ → φ : H : S : ẽ)

∆i `bel (φ : G ∪H : R ∪ S ∪ {→-E}) : d̃⊗bel ẽ)

Fig. 3. Part of the bel consequence relation

All of this information can then be used, along with the consequence relation from
Figure 3, to construct arguments that combine trust and beliefs.

The proof rules in Figure 3 are based on those we introduced in [30]. The rule
Axbel, as in the previous set of proof rules, bootstraps an argument from a single item
of information, while the rules ∧-I and→-E are typical natural deduction rules — the
rules for introducing a conjunction and eliminating implication — augmented with the
combination of degrees of belief, and the collection of information on which data and
proof rules have been used. (The full consequence relation would need an introduction
rule and elimination rule for every connective in the language, and the definition of
these is easy enough — we omit them here in the interest of space.)

The key rule in Figure 3 is the rule named Trust. This says that if it is possible to
construct an argument for θ from some ∆i

j , indicating that the information comes from
Agj , and Agi trusts Agj , then Agi has an argument for θ. The grounds of this argument
combine all the data that was used from ∆i

j and all the information about trust used
to determine that Agi trusts Agj , and the set of rules in the argument record all the
inferences needed to build this combined argument. Finally, the belief that Agi has in
the argument is the belief in θ as it was derived from ∆i

j combined with the trust Agi

has in Agj . We carry out this last combination by first turning the trust value into a
belief value using some suitable function ttb(·).

In other words, this rule sanctions the use of information from an agent’s acquain-
tances, provided that the degree of belief in that piece of information is modified by
the agent’s trust in that acquaintance. Thus one agent can only import information from
another agent if the first agent can construct a trust argument that determines it should
trust the second (and so trigger the Trust rule).

5 Example

To see how this combined system might work, consider the rest of the example from
[23] that goes with Figure 1 (suitably modified to provide an example of co-citation,
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which is not considered in the original). The trust network from [23] is based on data
from the FilmTrust site5 which features social networks centered around the exchange
of information about films.

In the example, john has the following information, where x is a universally quan-
tified variable, almodovar is the director Pedro Almodovar, and hce is an abbreviation
for the 2002 film Hable con ella (Talk to her):

∆bel
john (j1 : SpanFilm(hce) : 1)

(j2 : DirBy(almodovar, hce) : 1)
(j3 : Comedy(x)→ ¬Watch(x) : 0.8)

We take this to mean that john thinks that hce is a Spanish language film, and that it
is directed by Almodovar. In addition, he doesn’t much like to watch comedies. john
also has some information from FilmTrust connections:

∆mary
john (jm1 : IndF ilm(hce) : 1)

∆jane
john (jj1 : IndF ilm(x) ∧ SpanFilm(x)→ ¬Watch(x) : 1)

∆dave
john (jd1 : DirBy(x, almodovar)→Watch(x) : 1)

∆paul
john (jp1 : Comedy(hce) : 0.6)

Thus john hears from mary that hce is an independent film, from jane that her advice
is to not watch Spanish independent films, from dave who says any of Almodovar’s
films are worth seeing, and from paul who points out that he thinks hce is a comedy.

Now, we have already seen how john can construct arguments for trusting jane and
paul, though we did not say what ⊗trwas so that we could not compute the degrees of
trust. For now, we follow [44] in taking ⊗trto be minimum, thus giving us:

∆tr
john `tr (trusts(john, jane) : {t1, t2} : {Axtr, Axtr, dp} : 0.7)

and
∆tr

john `tr (trusts(john, paul) : {t1, t2, t4, t5} : rules1 : 0.4)

john can also infer:

∆tr
john `tr (trusts(john, dave) : {t1, t3} : {Axtr, Axtr, dp} : 0.7)

in exactly the same way as he infers trust about jane. He can also construct the follow-
ing argument for trusting mary:

∆tr
mary `tr (trusts(john,mary) : {t1} : {Axtr} : 0.9)

Each of the arguments can then be used with `bel (Figure 3) to construct arguments that
are relevant to the question of whether john should watch hce. Using information from
jane he can determine:

∆john `bel (¬Watch(hce) : {t1, t2, jj1, jm1, j1} : rules2 : b̃)
5 http://trust.mindswap.org/FilmTrust/
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where
rules2 = {Axtr, Axtr, dp, T rust, T rust, Axbel,∧-I,→-E}

This shows that after the derivation of information about trusting jane, the proof of
¬Watch(hce) requires the application of Trust to establish a degree of belief in jane’s
information, Trust to import jm1 from mary, an application of Axbel to create an
argument from j1, the use of ∧-I to combine the data from j1 and jm1, and then→-E
to get the conclusion.

To establish b̃, we need to determine what the function ⊗bel is, and how to convert
trust values to beliefs using ttb(·). For our purposes here, the choice doesn’t matter
greatly — we aren’t arguing that any particular combination of operations for trust
combination, belief combination and ttb(·) is best, just that if we have these operations
then john can use information in a way that seems to be useful. For now we handle
beliefs using possibility theory [5] — which is basically equivalent to the approach
adopted by [3] to handle variable strength arguments — and interpret the degree of
trust in an agent to be a degree of belief that what the agent says is true [14, 32], so that
ttb(·) is just the identity. All of this means that b̃ = 0.7.

john can also construct the following arguments as a result of information from,
respectively, paul and dave, in much the same way as the argument above. First we
have:

∆john `bel (¬Watch(hce) : {t1, t2, t4, t5, jp1, j3} : rules3 : 0.4)

where
rules3 = {Axtr, Axtr, Axtr, Axtr, dp, cc, T rust, Axbel,→-E}

and second we have:

∆john `bel (Watch(hce) : {t1, t3, jd1, j1, j2} : rules4 : 0.6)

where
rules4 = {Axtr, Axtr, dp, T rust, Axbel, Axbel,→-E}

This means that john has three arguments that bear on his decision about whether to
watch hce, one in favor and two against.

6 Using trust values

At this point in the example, we have arguments for opposing conclusions — john
should watch hce and john should not watch it. To reach a decision about hce, john
needs to choose between these conclusions. There are a number of different approaches
to using the trust information to do this, and in this section we discuss some of them,
showing how they affect the example. The aim here is not to provide a definitive answer
but to explain some of the options — as we hope that these examples will demonstrate,
it is not immediately clear which is the best approach.
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6.1 Flattening

The first approach is for john to proceed by combining the arguments for the formula
¬Watch(hce) (what [35] calls “flattening” the arguments) and seeing if the resulting
combination outweighs the argument for Watch(hce). We have three arguments to
consider:

A1 (¬Watch(hce) : {t1, t2, jj1, jm1, j1} : rules2 : 0.7)
A2 (¬Watch(hce) : {t1, t2, t4, t5, jp1, j3} : rules3 : 0.4)
A3 (Watch(hce) : {t1, t3, jd1, j1, j2} : rules4 : 0.6)

Flattening combines the two beliefs, 0.7 and 0.4 for ¬Watch(hce), to get a combined
measure. Given that we are taking the values to be possibility values, it makes sense
to combine them using max, thus getting a combined value of 0.7 for ¬Watch(hce).
This is greater than the 0.6 for Watch(hce), and so under this scheme, john would
conclude that he should not watch hce.

Given the choice of combination operator for flattening, this approach is very simple
— the choice supported by the strongest single argument will always win. It also largely
ignores conflicts between the arguments. In the example so far, we just have arguments
that rebut one another, and the result of flattening seems very reasonable. But what if
we have more conflicts? Consider extending the example so that john has additional
information:

∆bel
john (j1 : SpanFilm(hce) : 1)

(j2 : DirBy(almodovar, hce) : 1)
(j3 : Comedy(x)→ ¬Watch(x) : 0.8)
(j4 : DirBy(almodovar, x)→ ¬IndF ilm(x) : 1)

so john is now certain that anything directed by Almodovar is not an independent film.
This gives him an additional argument:

A4 (¬IndFilm(hce) : {j2, j4} : {Axbel, Axbel,→-E} : 1)

Thus john now has a strong argument against hce being an independent film, and this
clearly conflicts with A1 since it contradicts the information from mary about hce
being an independent film. A4 however, is ignored by flattening, and this doesn’t seem
very reasonable.

6.2 Acceptability analysis

Of course, handling this kind of conflict is exactly what Dung’s acceptability semantics
[11] and subsequent variations on this theme [6, 12] are intended to do. Let’s examine
what they tell john in this scenario. [11] starts from the position of knowing which
arguments conflict, assuming a relation that specifies:

attacks(An, Am)

for all conflicts between arguments. Since we are starting from a less abstract position,
we need to define what constitutes this relation in our example. The notion of conflict
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A1 A3 A2A4

Fig. 4. The argumentation graph for the film example when the strengths of arguments are not
taken into account.

between arguments used in [3] translates into our formulation of an argument as saying
that (c : G : R : v) attacks (c′ : G′ : R′ : v′) if there is some g ∈ G′ such that
c ≡ ¬g. That is one argument attacks another by disputing the truth of one of its
grounds, “undercutting” it in the usual terminology.6 ([3] also places some constraints
on the strengths of the arguments v and v′, but we will leave those for now.)

We will extend this notion of attack to include arguments rebutting each other, so
that for our purposes (c : G : R : v) attacks (c′ : G′ : R′ : v′) if either c ≡ ¬c′ or there
is some g ∈ G′ such that c ≡ ¬g. With this definition we have:

attacks(A1, A3)
attacks(A3, A1)
attacks(A2, A3)
attacks(A3, A2)
attacks(A4, A1)

and the argument graph is that of Figure 4. What john concludes from this depends
on the way that he computes which arguments are acceptable. However, none of the
different approaches from [11] will help him decide what to watch. If he applies the
grounded semantics, the only acceptable argument is A4, which doesn’t tell him what
to watch. If he applies the complete, preferred or stable semantics, they will all tell him
that A4 is acceptable along with A2 or A3, but give no further guidance. As a result,
while in other scenarios this analysis may suffice, in this case it leaves john no wiser
about whether he should watch hce or not.7

Since the basic acceptability analysis is not very informative, and since we have
a degree of belief associated with each argument, we can incorporate the degrees of
belief into the analysis. To do this, we extend our notion of attack with the mechanism
that [3] uses to handle strength of arguments. Broadly speaking (and counting rebutting
as well as undercutting arguments), what [3] says is that (c : G : R : v) attacks
(c′ : G′ : R′ : v′) if either c ≡ ¬c′ or there is some g ∈ G′ such that c ≡ ¬g, and
v ≥ v′. Thus if an argument has a conflict with a strictly stronger argument, that conflict
is ignored in establishing the attacks relation. With this definition we have:

6 The term “undercutting” was originally used by Pollock, for example in [40], to refer to the
situation in which one argument attacked an inference in another, but in the computer science
community the term was rapidly co-opted to mean the kind of attack we describe here [3, 7,
42].

7 The grounded semantics can’t untangle the rebutting conflict between A2 and A3, while the
other semantics tell john that the rebutting means one of the arguments is acceptable, but they
can’t make a choice between the arguments. All the semantics determine that A4 makes A1

unacceptable, and hence unable to have any effect on the conflict between A2 and A3.
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A1 A3 A2A4

Fig. 5. The argumentation graph for the film example when the strengths of arguments are taken
into account.

attacks(A1, A3)
attacks(A3, A2)
attacks(A4, A1)

and the argument graph is that of Figure 5. This time, any of the standard semantics
from [11] tells john that the acceptable arguments areA3 andA4, and so his conclusion
using this approach is that he should watch hce.

The approaches we have discussed up to now are direct applications of existing
approaches to using arguments with some form of belief value, and only use the trust
information as a mechanism to establish arguments about beliefs. Our investigation is
also considering three other approaches, in which we use the trust value directly. We
will discuss these next.

6.3 Trust thresholds

The first of these new approaches is the use of trust thresholds. The formal model we
are using here considers an agent to have information from a number of acquaintances,
each of which has some trust rating that is applied to the information from that agent.
A natural approach to using the trust rating is to specify a threshold value below which
information from an agent is disregarded.

In the case of our film example, john might set his trust threshold to 0.5, thus not
accepting information from any acquaintance y for which he cannot infer:

(trusts(john, y) : G : R : v)

for some v > 0.5. (One might formulate this as an additional condition in the Trust
rule in the `bel relation.) Doing this would rule out any information from paul, and
hence john would only have A1, A3 and A4. Of course, using the threshold doesn’t
answer john’s question on its own — he still has arguments for and against watching
hce, so he will have to use a method like those outlined above to resolve the conflict.
If, for example, john chooses to use the acceptability semantics without considering
the strengths of the arguments, this time he will find that all the standard semantics
say that A3 is acceptable and so he should watch(hce). (The outcome of the two other
approaches are not affected by the threshold, but it does mean that there are fewer
arguments to consider.)

A number of questions arise about the use of thresholds. To what extent, for exam-
ple, does imposing such a threshold on the information from its acquaintances protect
an agent from using untrustworthy information? In other words, does excluding in-
formation from acquaintances with a trust value below some α mean that all of the
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agent’s conclusions will be more trustworthy than α? Or are there circumstances under
which less trustworthy conclusions could be reached even if data from agents below the
threshold is excluded? We have shown that under some circumstances the trust thresh-
old will give us this protection [38], but in case of our example, it won’t. Imagine that
the threshold is set to 0.65, ruling out data from any agent except mary and jane, so
john has just A4 and A1 (and so no opinion about whether to watch hce because the
only attack is that of A4 on A1 which makes A1 unacceptable). Can this be altered by
information below the threshold, say from mary, who is highly trusted, but maybe has
some low belief information about the watchability of hce? It might. If mary has in-
formation that leads to an argument A5 with conclusion watch(hce) and a belief of 0.5
say, it won’t be excluded by the threshold (which only applies tomary not to data from
mary), and A5 will be acceptable (because the attacking argument A1 is itself attacked
by A4), giving the conclusion watch(hce). Our current work is trying to establish what
are reasonable levels of protection that may be provided by trust thresholds, and for
which combinations of interpretations for trust and belief values the levels of protection
hold.

Now, given an arbitrary threshold, there may be no arguments for or against watch-
ing hce for which the grounds are all above the threshold — meaning that john has
no arguments to consider — but many arguments with elements of their grounds just
below the threshold — meaning that john would consider them if the threshold was
lower. For such cases john might want to consider altering the threshold, and so we are
interested in how the protection offered by the threshold is altered when the threshold
moves.

Another interesting question is to examine the interaction between thresholds and
propagation in the trust network. What correspondence is there between imposing a
trust threshold and pruning the acquaintances from the network? Clearly when we com-
bine trust values along a path through the network using min, a threshold will rule out
trusting any agent downstream of an agent below the threshold, but this may not nec-
essarily be the case when trust values are computed in different ways. Again, this is a
matter that we are currently investigating.

6.4 Trust budget

The second new approach is, in some ways, an extension of the first. Using a trust
threshold rules out acquaintances — or alternatively conclusions that are supported by
information from those acquaintances — when the level of trust in an acquaintance
drops below a particular level. Thus very untrustworthy acquaintances, and the infor-
mation they provide, are ruled out. But equally, information from sources above the
threshold is ruled in, along with conclusions based on it, even if a given conclusion de-
pends upon lots of items of information that came from sources close to the threshold,
and so might be considered more suspect than others based on sources further from the
threshold.

The notion of a trust budget is intended to deal with this situation. A trust budget
specifies the total amount of distrust that is permitted in the sources of data that lead
to a single conclusion. In situations where trust values are, as in our example, between
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0 and 1, we can compute the “cost” of Agi accepting information from a series of
acquaintances Agj as: ∑

j

1− tr(i, j)

To illustrate this idea on the example, let us first imagine that john sets the trust budget
to 1. Given the levels of trust that john has in his acquaintances, this allows him to ac-
cept information from at most any three of jane (cost to the trust budget of 0.3), paul
(0.6), dave (0.3) and mary (0.1). For example, john might spend the whole trust bud-
get and accept information from jane, paul and mary, giving him the conclusion that
he should not watch hce. Or he might spend part of the budget accepting information
from jane, dave and mary, from which he would conclude that he should watch hce.

Given a specific budget, john can identify which conclusion or conclusions that fit
within the budget have the highest belief (here it is ¬watch(hce)). Alternatively john
might consider slowly increasing his trust budget from 0 until he reaches a conclusion
about the question he is interested in — here he would have to “spend” at least 0.3
to get a conclusion (in this case to not watch hce, based on A1 obtained by accepting
information from jane). Another approach to using the trust budget would be to have
john establish what he needs to “spend” in order to find a conclusion he wants. In
the context of the example, let’s imagine he is interested in watching hce but wants to
know how trusting he has to be to decide that it is a good idea. The minimum budget
necessary to establishwatch(hce) as a conclusion is 0.6, the cost of trusting paul, since
it only takes information from paul to construct an argument for watch(hce) (in more
complex examples it might be necessary to trust several agents to reach an interesting
conclusion).8

In general, the questions to ask about a trust budget are similar to those for a trust
threshold, identifying how well-behaved this notion is, and what protection an agent
gets by imposing such a budget. These questions are, like those for trust thresholds,
subjects of our ongoing research. Furthermore, as suggested by [13], in the context of
the related notion of an “inconsistency budget”, and [26], in the context of optimal trust
path selection, the kinds of uses we are seeking to make of the trust budget are uses that
will require considerable computation. This is another topic we are considering.

6.5 Meta-argumentation

The previous two approaches are concerned with handling the values derived from the
trust network. These values are then used to make decisions about which piece of infor-
mation, and thus which arguments (since arguments are derived from the information)
are considered by an agent. The final approach we are looking at leans more towards the
kind of structural analysis described by Loui [28], where heuristic patterns of evidence
and argument structure are used to decide which arguments are preferred. An example
is the preference for arguments using only data from agents that are directly trusted by
Agi over arguments that use data from agents that Agi trusts by co-citation. The aim of

8 We are mainly interested in incorporating trust into planning, where the concept of establishing
how much trust it “costs” to build an argument (plan) makes more sense than in the domain of
the example.
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this approach is to identify general heuristics for dealing with trust data, and to verify
the plausibility, or otherwise, of the kinds of inference that they sanction.

7 Summary

In this paper, we have outlined work on reasoning about trust using a form of argu-
mentation which, as the paper demonstrated, can be integrated with a system of argu-
mentation that uses the conclusions about trust. A notable feature of the system for
reasoning about trust is its flexibility — new approaches to propagating trust can easily
be added (or, indeed, removed) by altering the proof rules that are used in propagation.
The combined system was illustrated with an example, and current directions sketched.

Clearly the systems we have described are work in progress. Neither of the formal
systems is complete as presented — both are missing much of the proof mechanism
and a proper description of the syntax at the very least — and neither is rigorously eval-
uated. Our aim was simply to illustrate the basic ideas captured in the systems, and to
illustrate the possibilities that they offer. We have also completely ignored the compu-
tational aspects of implementing a software system that employs these approaches. Our
future work will, in due course, fill in the details that are missing here, more completely
relate this work to approaches with similar aims, such as [29, 33], and provide an im-
plementation. However, we believe that the work we have presented here has value in
describing an area of research that we think is interesting and identifying some new
approaches to handling it.
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Abstract. Most work done in argumentation theory or argumentation
based approaches only consider a single set of sentences. However, in a
Multiagent System (MAS) setting, each agent can have a di�erent per-
spective and proper (generally incomplete) knowledge base. As a con-
sequence, it might be hard for a single agent to build an admissible
position to argue with others about a given issue. We believe that, in
such situations, a group of agents might be able to collaboratively build
good arguments or, in any other situation, provide more complex admis-
sible sets of arguments than a single agent. In this paper, we defend the
collaborative construction of admissible positions by groups.

Keywords: Abductive Logic Programming, Argumentation, Joint Deliberation

1 Position

We consider an admissible position as a set of arguments that is internally con-
sistent (con�ict-free) and able to defend itself from all attackers (mutually de-
fensive), such as in [5,1,6,8]. In some settings, however, an agent might not be
able to build an admissible position on its own. On top of that, in MAS, agents
usually have incomplete knowledge. We believe that, in such cases, a group of
agents can bene�t of deliberation in order to cooperatively build a group admis-
sible position as a set of arguments provided by di�erent agents. Some related
work include a framework for agents to consider the conclusions of other agents
as context to their own reasoning [2], to individually build inductive arguments
for group learning [7] or persuasion [12] and for agents to choose a group position
through judgment aggregation [3,9]. Alternative arguments for deliberation in
face of incomplete information has been addressed in [6]. There is also work in
argumentation based deliberation [8], but none, as far as our knowledge goes, fo-
cused in collaboratively building such positions in groups. In any case, we would
like to motivate and encourage more work and discussion in that direction.

2 A Possibility

Abductive reasoning is usually taken as inference to the best explanation of a
certain data. An abductive explanation is a set of conditions enough to make
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the observed data consistent to a theory. On its turn, logic programs have been
used in a number of approaches to argumentation such as in [6,10] or even
defended to be a form of argumentation [5]. Abductive logic programming (ALP)
[4,11], brings the power of abductive reasoning to logic programs. Abductive
explanations can be used to build conditionally admissible arguments as they
provide a set of conditions enough for a program to prove a goal it could otherwise
not.

We study the use of ALP as a mean for groups of agents to deliberate and
build admissible positions. In this approach, the agents produce conditional ar-
guments based on explanations to support an observation or point of view. Other
agents propose rewrites of such arguments by adding rules and facts to satisfy
some of the conditions, while possibly adding new ones (helping to build the ar-
gument), or criticizing a path of thought (attacking the argument as it is being
built). A position admissible to the group is a conditional argument with zero
conditions. For this purpose, we use the abductive framework presented in [11],
as it also considers falsifying parts of a program to explain data. This di�erence
adds expressibility to explanations and allows di�erent kinds of arguments and
attacks to arguments. Our higher goal is to enable group decision making to
be taken as the result of discussion in a group of agents collaboratively seeking
consensus. This is an ongoing research.
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Abstract. This paper explores the application of argumentation dia-
logues to an Interactive Learning System (ILS). The goal of an ILS is to
provide an adaptive learning experience for a student within a particu-
lar domain, where the system adjusts dynamically as the student makes
mistakes and learns from them. The system needs to be able to repre-
sent beliefs about the student’s knowledge, and to update these beliefs
as the student learns. The system also needs to have models of the do-
main and of an expert’s actions within the domain, in order to compare
and evaluate the student’s actions. Finally, the system needs to provide
appropriate feedback to the student, in such a way as to encourage learn-
ing. The work presented here describes a framework for such a system,
built upon our earlier work on education dialogues.

1 Introduction

We explore the application of argumentation dialogues to an Interactive Learning
System (ILS). The goal of an ILS is to provide an adaptive learning experience
for a student within a particular domain, where the system adjusts dynamically
as the student makes mistakes and learns from them. The system needs to be able
to represent beliefs about the student’s knowledge, and to update these beliefs
as the student learns. The system also needs to have models of the domain and
of an expert’s actions within the domain, in order to compare and evaluate the
student’s actions. Finally, the system needs to provide appropriate feedback to
the student, in such a way as to encourage learning. The work presented here
describes a framework for such a system.

Our model builds on earlier work in which we introduced the notion of an
education dialogue [28]. Proposed for use in an interactive learning environment,
an education dialogue is derived from previous work in the argumentation di-
alogue field [11, 20, 33]. Dialogues for education take place between two agents,
each having specific roles: a Tutor, T , and a Learner, L. We focus on two types
of interactions between these agents: T → L and L → T , where the agent on
the left side of the arrow initiates the dialogue, which is directed to the “target”
agent on the right side of the arrow. Note that here we will not discuss T → T
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or L → L interactions, which, while possible in a general education dialogue, are
not relevant for the specific instance discussed here.

Education dialogues are similar to information seeking dialogues [19, 33], but
there are some key differences. When one agent asks another agent a question in
an information seeking dialogue, the initiating agent does not know the answer
and assumes that the target agent does. If the target agent does indeed know the
answer, then she responds with the answer. However, in an education dialogue,
there are reasons for the initiating agent to ask a question to which she already
knows the answer and reasons for the target agent to not simply supply an
answer she knows. Two such reasons are outlined below.

First, consider an education dialogue where the Tutor is the initiator, repre-
sented as T → L. The Tutor actually does know the answer to the question she is
posing. A good Tutor, pedagogically speaking, will ask a question that builds on
the Learner’s knowledge and coaxes him to learn; the answer will be something
that the Tutor believes the Learner has the ability to find3. The Tutor is also
refining her beliefs about the Learner’s knowledge. Here, the Tutor is seeking
information that is not the direct answer to the question, but rather she is seek-
ing meta-level knowledge about the Learner—to see if the Learner knows the
answer—instead of seeking the direct answer to her question (which, as stated,
she already knows). Note that we make the assumption in the T → L interaction
that the Learner will supply the answer if he knows it. There is a sizable liter-
ature from the educational psychology community on student motivation that
explores reasons why a student might not answer a teacher’s question correctly
even if he knows the answer, but this avenue is outside the scope of the work
discussed in this paper.

Second, consider an education dialogue where the Learner is the initiator,
represented as L → T . The Learner does not know the answer to the question
she is posing (just like in a normal information seeking dialogue). If the Tutor
knows the answer to the question, she may answer the question directly (as
in an information seeking dialogue); or she may not provide the answer to the
Learner, even though she knows it (unlike an information seeking dialogue).
Since the Tutor’s goal is to coax the learner to progress, she may decide to
answer the Learner’s question by providing more information about the answer,
without providing the answer itself—to engage him in a thinking process that
results in him learning.

The remainder of this paper is organized as follows. Section 2 discusses the
specifics of education dialogues, reviewing some key components and introduc-
ing some new locutions. Section 3 briefly reviews the field of interactive learning
systems, and focuses on highlighting components that are relevant to our frame-
work. Section 4 describes our framework. Section 5 closes with a summary and
discussion of future work.

3 Note that for the remainder of this paper, we have arbitrarily chosen to use feminine
pronouns to refer to the Tutor and masculine pronouns to refer to the Learner.
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2 Education Dialogue Theory

The components of an education dialogue are as follows [22, 28]:

– Σi represents the knowledge base, or beliefs of each agent i. Thus, the Tutor’s
knowledge base is ΣT and the Learner’s knowledge base is ΣL. The term Σ
loosely refers to all the beliefs of an agent.

– An argument (S, p) is a pair, where p is the conclusion and S is the support
for that conclusion. p is a logical consequence of S, and S is a minimal subset
of Σ from which p can be inferred.

– A(Σ) is the set of all arguments that can be made from Σ.

– S(Σ) is the set of all acceptable arguments in Σ. Arguments that are ac-
ceptable are those that an agent has no reason to doubt: there are either no
arguments that undercut them, or all the arguments that undercut them are
themselves undercut by an acceptable argument.

– An agent’s commitment store, CS ∈ Σ, refers to statements that have been
made in the dialogue and which the agents are prepared to defend. CST

refers to the Tutor’s commitment store (statements the Tutor has made),
and CSL refers to that of the Learner. We can think of Σ as the agent’s
private knowledge base—all of the agent’s beliefs—whereas CS is the agent’s
public knowledge base—all the beliefs that the agent has discussed in public
(i.e., with other agents).

Parsons et al. [22] show how these simple elements can be used to construct
common dialogues, such as information seeking dialogues.

In our earlier work [28], we introduced a new type of knowledge, which we
call meta-knowledge. This is knowledge about the other agent(s) engaged in the
dialogue, as perceived by each agent. We represent this meta-knowledge using
Γ , which is a partition of Σ, in the same way that CS is. (Later, we will see
that it is convenient to maintain these separate partitions of Σ.) We use the
term Γi(j) to refer to the meta-knowledge held by agent i about agent j. So,
ΓT (L) refers to the Tutor’s beliefs about the Learner’s beliefs, i.e., what the
Tutor believes is in the Learner’s knowledge base, ΣL. In addition, we use the +
modifier, as in ΓT (L+), to refer to the Tutor’s beliefs about what the Learner
can acquire. There is a vast literature on modeling the knowledge of learners,
which is formally called student modeling (or user modeling in the more general
sense) [21, 32]. Such models typically are designed for a specific domain, often in
conjunction with the development of a particular tutoring system. Here we are
not concerned with the precise details of individual student models, but rather
use the concept abstractly in order to refer to the Tutor’s meta-knowledge about
the Learner—the Tutor’s beliefs about what the Learner knows.

We can also use ΓL(T ) to refer to the Learner’s beliefs about the Tutor. This
concept is useful, for example, for considering the Learner’s motivation to learn
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and his emotional state, both of which are discussed as important aspects for
understanding human learners [16] and have been used in agent-based models
of human behavior [30]. If the Learner does not believe that the Tutor knows
the (correct) answers to questions about the Learner’s domain, then he may
be less motivated to progress when interacting with the Tutor. Take a real-
world example: when students evaluate faculty members at the end of a term,
it is common to ask the students to rate their professor’s knowledge of the
subject (the domain) covered in the course they just completed. Such a question
assumes that the students form an opinion (acquire a model) of their professor’s
knowledge of (beliefs about) the domain. Elaboration on this aspect is beyond
the scope of this paper, so here we will limit our discussion of Γ to refer only to
the Tutor’s beliefs about the Learner, ΓT (L).

2.1 Fundamental interactions

Below, we describe the fundamental steps in an interaction taking place be-
tween a Tutor and a Learner. The interaction is illustrated in Figure 1. Five
fundamental steps and seven locutions are depicted. The goal is to arrive at the
knowledge acquisition state in step 4. As noted below, some of the locutions are
taken or derived from earlier work, primarily [1] and [23]. The operational se-
mantics for each locution are detailed below (in boxes), in the order in which the
locutions appear in the dialogue. The exchange is assumed to be a synchronized,
turn-taking interaction that starts with the Tutor.

step 1.

step 2.

step 3.

step 4.

step 5.

T->L:quiz(p)

L->T:respond(p)

T->L:assert(p) T->L:assert(not p)

L->T:acquire(p) L->T:shrug() L->T:challenge(p)

T->L:assert(S)

Fig. 1. Interaction sequence between a Tutor (T) and a Learner (L).

100



1. First, T poses a question to L about the verity of a proposition, p:

T → L : quiz(p)

T is seeking to determine if the proposition p is in L’s belief set. The Tutor
knows the answer to the question, but does not know whether the Learner
knows the answer. The goal of this dialogue is for the Tutor to determine if
the Learner knows the answer.

quiz
Locution: T → L : quiz(p)

Pre-conditions: 1. p ∈ ΣT

2. (S, p) ∈ S(ΣT )
3. (S, p) ∈ S(ΣT ∪ CSL)
4. p ∈ ΓT (L+)
5. (S, p) ∈ S(ΓT (L+))

Post-conditions: 1. CST,i = CST,i−1 ∪ {p} (update)
2. CSL,i = CSL,i−1 (no change)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
5. ΓT (L)i = ΓT (L)i−1 (no change)

Note that this is semantically different from question(p) in an information
seeking dialogue [1] because T already knows the answer to the quiz and
so the purpose of the locution is to determine if L knows the answer. Al-
though the format is similar to question(p), the pre and post conditions
are sufficiently different that we have defined this new locution, quiz(p). A
post-condition adds p to CST , even though p ∈ ΣT , because this provides
an explicit means for the Tutor to keep track of which propositions she has
already discussed with the Learner. For convenient comparison, the opera-
tional semantics for question are listed in the Appendix at the end of this
paper.
Also note the use of ΓT (L+) which represents the Tutor’s belief that the
Learner can find the answer to the question posed. The Tutor does not
know for sure that p ∈ ΓT (L), but this notation permits the locution to be
uttered and a reason for T believing that L can respond correctly.

2. Then, L responds to T ’s question:

L → T : respond(p)

The Learner may or may not know the “right” answer—the correctness will
be determined later in the dialogue by the Tutor. But in order to utter p, the
Learner must possess some knowledge about p, either in its own knowledge
base, ΣL (meaning that the Learner has acquired p at some point), or in
the Tutor’s commitment store, CST (meaning that the Learner has not yet
acquired p in its own knowledge base, ΣL, but has the opportunity to do so,
because it has heard p uttered by T at some earlier point in the dialogue
and thus p ∈ CST ).
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respond
Locution: L → T : respond(p)

Pre-conditions: 1. p ∈ (ΣL ∪ CST )
Post-conditions: 1. CST,i = CST,i−1 (no change)

2. CSL,i = CSL,i−1 ∪ {p} (update)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
5. ΓT (L)i = ΓT (L)i−1 (no change)

The respond locution differs from the assert locution, discussed below, be-
cause it puts fewer requirements in the pre-conditions of the uttering agent.
In order to be able to use assert(p), the agent must believe p (p ∈ Σ)
and must be able to support p ((S, p) ∈ Σ); whereas in order to be use
respond(p), the agent must either believe p or have heard the other agent
state p: p ∈ (Σ ∪CS).

3. The locution uttered by the Tutor in the next step depends on the correct-
ness of the response given in the previous step.

(a) If L has responded with the “correct” answer (i.e., T believes p), then T
provides positive feedback, asserting p as described in [1]:

T → L : assert(p)

assert(p)
Locution: T → L : assert(p)

Pre-conditions: 1. p ∈ ΣT

2. (S, p) ∈ S(ΣT ∪ CSL)
Post-conditions: 1. CST,i = CST,i−1 ∪ {p} (update)

2. CSL,i = CSL,i−1 (no change)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
5. ΓT (L)i = ΓT (L)i−1 (no change)

(b) If L has responded with the “incorrect” answer, (i.e., T believes ¬p),
then T provides negative feedback by asserting ¬p:

T → L : assert(¬p)

The operational semantics of assert(¬p) are the same as above, by con-
sistently substituting ¬p for p.

4. The next step depends on the Tutor’s response in the previous step, described
above.

(a) If L receives feedback from T that L understands, then L acknowledges
that feedback and adds p (in the case of positive feedback) or ¬p (in the
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case of negative feedback) to its knowledge base4:

L → T : acquire(p)

We leave discussion of how exactly the model of the Learner’s knowledge
base is updated to future work, and refer to [23] for the basis of that dis-
cussion.

acquire
Locution: L → T : acquire(p)

Pre-conditions: 1. p ∈ (ΣL ∪ CST )†

2. (S, p) ∈ S(ΣL ∪CST )
Post-conditions: 1. CST,i = CST,i−1 (no change)

2. CSL,i = CSL,i−1 ∪ {p} (update)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 ∪ {p} (update)
5. ΓT (L)i = ΓT (L)i−1 ∪ {p} (update)

†We note that it is not standard to allow an agent to utter p when p is
not in its knowledge base (Σ), but this is not exactly the case here. In
this case, the implementation of the locution includes processing steps in
which the uttering agent (L) first adds p to ΣL and then confirms that
acquisition by uttering (essentially, reiterating) p.

(b) If L receives feedback from T that he does not understand, then L can
pose a follow-up request for clarification. The appropriate locution is
challenge(p), as outlined in [1], because the goal of L is to make T
subsequently state her arguments in support of p:

L → T : challenge(p)

challenge
Locution: L → T : challenge(p)

Pre-conditions: 1. p ∈ CST

Post-conditions: 1. CST,i = CST,i−1 (no change)
2. CSL,i = CSL,i−1 (no change)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
5. ΓT (L)i = ΓT (L)i−1 (no change)

(c) If L receives feedback from T that he does not understand and L is so
confused that he does not know what to say next, then he can shrug:

L → T : shrug()

shrug
Locution: L → T : shrug()

Pre-conditions: none
Post-conditions: none

4 For simplicity, we use p in the operational semantics description, but ¬p could also
be substituted, as long as the substitution was consistent.
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This locution simply serves as a “no-op” (null operation) in order to be
consistent with the turn-taking synchronized interaction in the imple-
mentation of our interactive learning framework (discussed in Section 4).

5. A final, optional, step occurs if the Learner does not understand the Tutor’s
feedback and has replied with a shrug or challenge locution in the previous
step. In both cases, the Tutor responds by providing an explanation for p,
using the assert(S) locution described in [1]:

T → L : assert(S)

assert(S)
Locution: T → L : assert(S)

Pre-conditions: 1. p ∈ ΣT

2. (S, p) ∈ S(ΣT )
Post-conditions: 1. CST,i = CST,i−1 ∪ (S, p) (update)

2. CSL,i = CSL,i−1 (no change)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
5. ΓT (L)i = ΓT (L)i−1 (no change)

3 Interactive Learning Systems

Intelligent Tutoring Systems (ITS) are a type of Interactive Learning System
that provide users with opportunities to learn by interacting with a computer
[26]. Unlike traditional computer-aided instruction, ITSs are not static, pre-
programmed systems; rather, they adapt to students’ responses. ITSs interject
methodologies from artificial intelligence (AI) to manage that adaptivity, dy-
namically orchestrating users’ learning experiences. An ITS uses a range of AI
techniques to make decisions about which problem or information to present to
a learner, and when and how to intervene if the learner makes mistakes.

Beck et al. [5] identify five major components in an ITS:

– The domain model contains the essential knowledge representation of the
instructional domain. Both the pedagogical module and the student model
(below) use the domain knowledge module to interpret a student’s solution
and track her skills.

– The student model records information about a student’s performance with
or misconception of the materials being taught. The idea is to build up a
representation of a student’s knowledge and skill set, updating this repre-
sentation over time, as the student interacts with the system.

– The pedagogical module, or tutor, is the instructional, or teaching, component
[27] which contains a set of rules about how to control and influence the
student’s learning process. The tutoring system uses this module to guide
the student through the knowledge domain [29].
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– The expert model contains knowledge about the cognitive structures and
solution strategies underlying expertise in that particular domain. By using
this model, the tutor can compare the student’s solution with the expert’s
solution in order to figure out where learners have difficulties.

– The communication module provides the interface between the user and the
tutor.

Classic ITS systems include the LISP Tutor [3, 8] for teaching the LISP program-
ming language, and the Andes tutor [31] for teaching physics. Each is described
briefly below.

The LISP Tutor [3, 8] incorporates ACT*, a psychological theory of skill
acquisition [2] and uses production rules and model tracing to model the tu-
tor. Model tracing models errors that students make at each step on the basis
of known misconceptions. By comparing the students’ responses to the set of
possible legal actions and the set of known wrong actions, the tutor is able to
recognize whether the student is on a correct solution path, or appears be suf-
fering from known misconceptions, or something unrecognizable. The student
model in the LISP Tutor is partly descriptive and partly prescriptive. It is based
on the authors’ observations of students learning LISP and from the analysis
of the required knowledge for LISP programming, as well as good programming
styles. Procedural knowledge of how to write LISP code is modeled by a set of
production rules.

Andes uses Bayesian networks for its student modeling component [7, 10,
18]. Every time the student selects a new problem, a Bayesian network is au-
tomatically generated. The structure of the the network is taken directly from
a solution graph embedded in the system. The network contains five kinds of
nodes:

– Context-Rule nodes model the ability to apply a rule in a specific problem-
solving context in which it may be used. Each Context-Rule corresponds to
a rule in Andes’ ruled-based problem solver.

– Fact nodes represent the probability that the student knows a fact that is
part of the problem solution.

– Goal nodes represents the probability that the student has been pursuing a
goal that is part of the problem solution.

– Strategy nodes correspond to points where the student can choose among
alternative plans to solve a problem.

– Rule-Application nodes represent the probability that the student has ap-
plied a piece of physics knowledge represented by a context-rule to derive a
new fact or goal.

The Bayesian networks in Andes encode two kinds of knowledge: domain-general
knowledge, which holds information about general concepts and procedures that
define proficiency in Newtonian physics, and task-specific knowledge, which holds
information related to student performance on a specific problem or example.
Andes constitutes a probabilistic student model that provides long-term knowl-
edge assessment, plan recognition, and prediction of students’ actions during
problem solving.
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Over the last three decades, an extensive number of ITSs have been built
using a range of techniques. Bayesian networks have been employed in multi-
ple systems [6, 13]. Many have branched out to incorporate other techniques,
such as object-oriented architectures (e.g., [34]). Various methodologies have
been explored for emulating human best teaching practices, such as coached
program planning [15], which helps students decompose problems. Some sys-
tems use natural language dialogues for interacting with students (e.g., [14]).
An increasing number of systems take advantage of agent-based and multi-agent
architectures [25]. Some incorporate intelligent interface components such as ped-
agogical agents [12]. However, to the best of our knowledge, no ITS system uses
an argumentation-based framework or the education dialogues we have described
above.

4 The ArgILS Framework

In this paper, we are concerned with the student model (the Learner), and
the Tutor. Section 2 explained how to represent the Learner’s knowledge (ΣL),
the expert’s knowledge (ΣT )5, and the Tutor’s knowledge about the Learner
(ΓT (L)); and provided an interaction structure for using that knowledge. This
section introduces our ArgILS framework, which we have designed as a means
for applying argumentation-based education dialogue theory to an interactive
learning system. We describe our framework and ground it with an example.

The interaction sequence illustrated in Figure 1 and detailed in Section 2.1
outlines the fundamental series of steps in a theoretical education dialogue. This
sequence is reasonable for interacting about declarative (factual) knowledge,
where p can represent a fact and step 1 can be the Tutor asking the Learner
if p is true. But the theory needs to be expanded in order to handle procedural
knowledge. We need to provide a mechanism to communicate procedural infor-
mation that cannot be expressed simply as a single proposition p. For example,
the Tutor may ask the Learner how to execute a particular task, to which the
Learner should be able to respond by uttering a series of propositions that all
belong to a sequential procedure.

We represent a procedural sequence, −→p as:

−→p = {p0, p1, p2, . . . , pn−1}

Such a procedural sequence can be integrated into the interaction steps shown
in Figure 1 in multiple ways. The first step, in which the Tutor puts forth a
question to the Learner, remains essentially unchanged, with the substitution of−→p for p:

L → T : quiz(−→p )

The second step, in which the Learner responds, however, will necessarily change.

5 We make the assumption that the Tutor is the “expert”.
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Because the procedural knowledge is broken down into a number of pieces,
there is a choice about redefining step 2 to:

L → T : respond(−→p ) (1)

where −→p represents all steps in the procedural sequence, or

L → T : respond({pi, pi+1, . . . , pj−1, pj}) (2)

where {pi, pi+1, . . . , pj−1, pj} represents some number of steps in the sequence,
or

L → T : respond(pi) (3)

where pi represents one step in the procedural sequence.
One of the architecture decisions that arises in building an interactive learn-

ing system concerns feedback : when should the tutoring system provide help to
the Learner? Equations 1 and 2 represent delayed feedback, where the Learner
completes all or part of the task before receiving any feedback from the Tutor.
Equation 3 represents immediate feedback, where the Learner completes only one
step in the task before receiving feedback from the Tutor.

step 1.

step 2.

step 3.
initial

feedback

step 4.

step 5.
follow-up
feedback

T->L:quiz(p)

L->T:respond({p_i,p_i+1,...,p_j-1,p_j})

T->L:assert(p_k) T->L:assert(not p_k)

L->T:acquire(p_k) L->T:shrug() L->T:challenge(p_k)

T->L:assert(S_k)

Fig. 2. Interaction sequence for delayed feedback.

Figure 2 illustrates an interaction sequence with delayed feedback. The first
step is the same as in Figure 1, with the Tutor asking about the entire proce-
dural sequence. The difference from Figure 1 lies in the second step, which is
highlighted by the dashed line that leads from the first to the second step. In
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the second step, the Learner responds with some number of propositions in the
procedural sequence, as in equation 2. This can also correspond to equation 1,
if i = 0 and j = n− 1 (i.e., equation 1 is just a specialized case of equation 2).
The third step is the initial feedback step, where the Tutor comments on one of
the propositions posited by the Learner, where i ≤ k ≤ j. The fourth, follow-up
step and the fifth, follow-up feedback step proceed the same as in Figure 1, in
response to the proposition pk chosen by the Tutor in step 3. Note that the Tutor
must decide which pk to provide feedback for. Indeed, it is possible for the Tutor
to comment on multiple pk’s; though for simplicity here, we only consider situ-
ations where the Tutor comments on one pk at a time, and leave simultaneous
commenting on multiple pk’s to future work.

Figure 3 illustrates an interaction sequence with immediate feedback. The
picture is almost identical to that of Figure 1, with the difference being that the
Tutor starts with quiz(p), asking about the entire procedural sequence, and the
Learner answers with a single step in the procedure: respond(pi). The dashed
line from the first step to the second step highlights this difference.

step 1.

step 2.

step 3.
initial

feedback

step 4.

step 5.
follow-up
feedback

T->L:quiz(p)

L->T:respond(p_i)

T->L:assert(p_i) T->L:assert(not p_i)

L->T:acquire(p_i) L->T:shrug() L->T:challenge(p_i)

T->L:assert(S_i)

Fig. 3. Interaction sequence for immediate feedback.

Figures 2 and 3 illustrate the interactions over some portion of the procedural
sequence. Unless the Learner provides the entire −→p and delayed feedback is em-
ployed and the Learner’s response is entirely correct, some amount of iteration
must occur before the Learner has received feedback on the entire procedural
sequence. Figure 4 illustrates abstractly the differences in iteration patterns be-

108



tween delayed feedback and immediate feedback. With immediate feedack, every
time the Learner makes an utterance, the Tutor replies immediately. With de-
layed feedback, the Tutor waits for the Learner to make several utterances, and
then replies. The timing of the reply on the part of the Tutor in a delayed feed-
back system is another open area of research, and is something we will examine
in future work. The important observation to make here is that we can model
these differences in our ArgILS framework.

T0 L0 T1 L3L1 L2 etc.

(a) delayed feedback

T0 L0 T1 L1 T2 L2 etc.

(b) immediate feedback

Fig. 4. Iterative sequences

Finally, we introduce one more locution, for use in iterative situations, as
above, where the system is using immediate feedback—requiring that the Tutor
respond immediately to every action on the part of the Learner. However, once
the Learner acquires a proposition in the procedural sequence, he continues by
positing the next step, without the Tutor reiterating the initial question. For
just this case, in order to maintain the synchronized turn-taking in the iterative
process, we introduce a “no-op” for the Tutor, which we call nod:

T → L : nod()

nod
Locution: T → L : nod()

Pre-conditions: none
Post-conditions: none

4.1 An example interaction

Below we enumerate an example using our Human-Robot Tutoring System
(HRTS) in which a Learner is trying to acquire knowledge about how to program
a robot. Our HRTS is called RoboLite [4], and is based on the popular RoboLab
[9, 24] programming interface originally designed for LEGO Mindstorms RCX
robots [17].

In the first step, the Tutor utters:

T → L : quiz(−→p ) (step 1.)
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where p = “How do you program a robot to go forward for 2 seconds and then
stop?” Our system uses a graphical interface, where each command given to
control the robot is represented as a building block icon. The expert’s solution
to the question is shown below:

→ → → →
p0 p1 p2 p3 p4

In the second step, the Learner posits an icon. Let’s say that the Learner starts
with the correct icon, represented here by proposition p0, so the Learner utters:

L → T : respond(p0) (step 2.)

In an immediate feedback system, the Tutor would immediately reply with pos-
itive feedback:

T → L : assert(p0) (step 3a.)

Since this is correct and the Learner’s belief is confirmed, the Learner updates
his knowledge base: ΣL = ΣL ∪ p0, and reiterates with:

L → T : acquire(p0) (step 4a.)

This is where the null operation is needed for the Tutor, to maintain the turn-
taking pattern, but without reiterating any propositions unnecessarily or intro-
ducing anything new. Thus, the Tutor indicates that the Learner should proceed
by uttering:

T → L : nod()

Now the Learner adds another icon. Let’s say he makes a mistake and enters p4:

L → T : respond(p4) (step 2.)

so his partial solution would look like this:

→
p0 p4

Again, in an immediate feedback system, the Tutor would reply immediately.
The Tutor compares the Learner’s sequence, {p0, p4}, with the expert sequence,
{p0, p1, . . .}, and detects an anomaly with the second proposition in the sequence.
So this time, the Tutor comments with negative feedback:

T → L : assert(¬p4) (step 3b.)

The Learner does not understand why his sequence is incorrect, so he requests
clarification by uttering:

L → T : challenge(¬p4) (step 4b.)
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whereby the Tutor responds by providing the reasons why p4 is the incorrect
proposition in the sequence:

T → L : assert((S,¬p4)) (step 5.)

An alternative to the Tutor providing a negative assertion (as in step 3b,
above) is for the Tutor to provide the Learner with the right answer by uttering:

T → L : assert(p1) (step 3a.)

If the Learner does not understand, then he would again ask for clarification:

L → T : challenge(p1) (step 4b.)

and the Tutor would supply the reasons why p1 is the correct proposition in the
sequence:

T → L : assert((S, p1)) (step 5.)

In a delayed feedback system, the Tutor would wait until the Learner had
entered several icons before commenting. The questions of when to respond and
how to respond are areas of future research to be addressed in the development
of our implemented system. The ArgILS provides a solid framework in which to
model the possibilities.

5 Summary

We have described an extended education dialogue system, expanding on our
earlier work and that of others in the argumentation dialogue community. We
have introduced ArgILS, our general framework for an interactive learning sys-
tem in which interactions between a Tutor and a Learner can be modeled. An
example was provided, demonstrating the use of ArgILS in the development of
our work-in-progress Human-Robot Tutoring System. Multiple avenues of fu-
ture work have been identified, such as the Tutor’s choice of which proposition
to comment on in a delayed feedback system for procedural knowledge and when
to provide comments in a delayed feedback system.

Appendix

Below are the operational semantics of the question locution, adapted from [1].
A question is posed when the initiating agent, T in the description below, asks a
question of another agent, L in the description below. In the case of a question, it
is assumed that the asking agent does not know the answer to the question, p in
the description below. In addition, the asking agent does not know whether the
target agent knows the answer or not. (This is revealed in the choice of response
locution subsequently executed by the target agent.)
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question
Locution: T → L : question(p)

Pre-conditions: 1. (S, p) 6∈ S(ΣT )
2. (S,¬p) 6∈ S(ΣT )

Post-conditions: 1. CST,i = CST,i−1 (no change)
2. CSL,i = CSL,i−1 (no change)
3. ΣT,i = ΣT,i−1 (no change)
4. ΣL,i = ΣL,i−1 (no change)
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Abstract. This paper presents a semantics for dynamic argumentation
frameworks. A dynamic argumentation system involves the concept of
execution of an argumentation affecting subsequent arguments. Although
such dynamic treatment is necessary to grasp the behavior of actual
argumentation, semantics proposed so far can only handle the static
aspects of argumentation. Here, we present a new semantics that fits
dynamic argumentation. We discuss what properties hold and explain
how to compute changes in the set of acceptable arguments, depending
on the presenting order of arguments.

1 Introduction

Argumentation is a powerful tool that enables the formal treatment of interac-
tions, such as negotiation and agreement, among agents. There have been lots
of studies on argumentation systems [4, 21].

An argumentation framework is usually defined as a pair 〈Args,Atts〉, where
Args is a set of arguments, and Atts is a binary relation over Args that indicates
an attack by one argument on another. Most argumentation systems developed
to date analyze a given argumentation framework statically. They regard an ar-
gumentation theory as fixed or focus on the selection of a specific argumentation
theory that will result in a particular proposals being accepted. These systems
are based on the assumption that arguing agents have a common knowledge base
and can survey all possible arguments. However, knowledge bases actually dif-
fer between agents, so as each argument is presented, new information is added
to modify the subsequent argumentation. We developed a dynamic argumenta-
tion system, “the Argumentation Procedure with Knowledge Change (APKC),”
in which argumentation theory changes depending on the execution [19], and
its extended version, APKC2 [20]. Our goal was to capture more precisely the
behavior of actual argumentation. The proposed system is based on the concept
of “execution” of an argument. We investigated the phenomenon in which new
information is added by a presented argument, and this generates a new attack.

In APKC2, an argumentation continues over multiple branches. We demon-
strated that the results may differ depending on the order of execution. We also
proposed a judgment algorithm, JC, which can determine which agent wins with-
out actually simulating each execution individually [20]. Although this previous
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work investigated simulation and judgment in dynamic argumentation, it did not
clarify the meaning of each execution and the relationships between executions.
In this paper, we present a new semantics to fit the dynamic argumentation
system.

A semantics for an argumentation system is usually given with the notion
of extension [11], i.e., a set of arguments that can be accepted together within
a given argumentation framework. However, in dynamic argumentation, argu-
ments and attacks change. Therefore, a semantics in which acceptability is de-
fined for a static argumentation is not suitable for dynamic argumentation. In
this paper, we present a separate extension for each execution as an acceptable
set of arguments for that execution. An extension for a dynamic argumenta-
tion system is defined as the set of these individual extensions. Additionally,
we discuss how these extensions are changed as argumentation proceeds and
investigate their interrelationships and properties.

This paper is organized as follows. In section 2, we explain the need for
dynamic argumentation. In section 3, after presenting basic concepts such as
argumentation frameworks, we present a dynamic argumentation system. In sec-
tion 4, we define the semantics for a dynamic argumentation frameworks, and
show the rules by which the revision of extensions is computed. In section 5,
we compare our approach with those used in related studies and discuss the
effectiveness of our semantics. Finally, in section 6, we present our conclusions.

2 Informal Description for Dynamic Argumentation

In general, argumentation involves two agents taking turns presenting arguments
to attack their respective opponent’s argument until one is no longer able to at-
tack. Finally, the loser accepts the winner’s proposal. This process is usually
represented in the form of a tree [1, 13]. The root node is a proposal statement,
and each branch corresponds to a single argumentation line, i.e., a sequence of
arguments. In a dynamic argumentation system [20], an argumentation proceeds
along each branch. Once an argument is presented, the corresponding node is
marked as “executed” and never reappears in the series of argumentation. If
there is no executable node in the current branch, another branch that has an
executable node is then selected. Finally, the agent that cannot make a counter-
argument loses the argumentation. An important feature of this system is the
concept of a “threat.” This refers to a case in which the execution of an ar-
gument results in the creation of a new counterargument to another argument.
Intuitively, a threat is an argument that may provide information advantageous
to the opponent. It acts to change the argumentation and affects the win/loss
outcome of the argumentation.

For example, consider the argumentation tree shown in Figure 1(1). If we
execute the argumentation from the left branch, after P0, C1, P1 are executed,
C2, P2 are executed, and P wins. If we execute from the right branch, after P0,
C2, P2 are executed, C1, P1 are executed, and P also wins. Now, consider the
argumentation tree shown in Figure 1(2), which has a threat from C1 to C2. It
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means that the execution of C1 causes the creation of P2, a new counterargument
to C2. If we execute an argumentation from the left branch, after P0, C1, P1 are
executed, P2 is generated. Then, C2, P2 are executed and finally, the execution
terminates with P winning. In contrast, if we execute the argumentation from
the right branch, after P0, C2 are executed, the execution terminates because C
has the next turn, but no branch is available that can start by C’s argument. In
this case, C wins. Note that P2 does not occur until C1’s execution. This example
illustrates two important issues that need to be addressed: (i) the winner of an
argumentation differs depending on the order of execution of the branches, and
(ii) it is not appropriate to handle a revised tree in the same way as one that
consists of the same nodes and edges without a threat.

Fig. 1. Example of argumentation trees

3 Basic Concepts

3.1 Dynamic argumentation framework

In a dynamic argumentation agents of a proposer (P) and a defeater (C) have
their own knowledge bases, which may have common elements. We construct a
dynamic argumentation framework from given knowledge bases of agents and
preference [19]. Preference is defined in advance for each formula in the knowl-
edge base. The preference of each argument can be computed so that attack is
possible only from an argument with a high preference to an argument with a
lower preference. In this paper, we do not explain the construction process from
knowledge bases and preference, but we assume that an argumentation frame-
work with threats is given, and we treat a dynamic argumentation at an abstract
level.
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Definition 1 (argumentation framework) An argumentation framework is
defined as a triple AF = 〈ArgP , ArgC , Atts〉, where ArgP and ArgC are sets of
P’s arguments and C’s arguments, respectively, Atts is a binary relation called
attack over ArgP ∪ ArgC , where for each (A,B) ∈ Atts, either A ∈ ArgP , B ∈
ArgC , or A ∈ ArgC , B ∈ ArgP holds. For each pair of arguments A,B, both
(A,B) and (B,A) are never contained in Atts at the same time.

Definition 2 (argumentation tree) Let ϕ be a proposal statement, and let P
and C be a proposer and a defeater of ϕ, respectively. Let AF be an argumenta-
tion framework 〈ArgP , ArgC , Atts〉. Then, an argumentation tree for AF on ϕ
is defined as follows [1].

– This is a finite, directed tree whose root node corresponds to a pro-argument
to ϕ 1.

– Every node corresponds to an argument in ArgP ∪ArgC .
– Every edge from node N to M corresponds to an attack from an argument

corresponding to N to that corresponding to M .

Here, we call a path from the root node to a leaf node a branch. P’s argument
and C’s argument appear in turn in each branch. The same arguments may be
present in different branches, which follows that each node has a unique parent
node. There is no loop in each branch due to the constraint of preference.

Definition 3 (win of a branch) If the leaf of a branch D is P ’s argument,
then it is said that P wins D; otherwise, P loses D.

Definition 4 (candidate subtree) A candidate subtree is a subtree of an ar-
gumentation tree that selects only one child node for each node corresponding
to C’s argument in the original tree and selects all child nodes for each node
corresponding to P’s argument.

Definition 5 (solution subtree) A solution subtree is a candidate subtree in
which P wins all of the branches in the tree.

In most argumentation systems, the win/loss of an argumentation is defined
by handling each branch independently. But in a dynamic argumentation system,
another branch may continue to be executed after all arguments of one branch
are executed. In this case, arguments disclosed so far in one line affect arguments
in another line. This may create a new argument and change the winner of the
argumentation. This is the most characteristic feature of dynamic argumentation
system.
1 In general, there may exist multiple arguments whose sentence is ϕ with different

grounds in ArgP . Therefore, precisely speaking, the root is regarded as an empty
argument, and the arguments to support ϕ should be regarded as its child nodes [19].
However, to simplify, we consider a simple version by assuming that there exists only
one such argument and taking it as the root node.
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3.2 Execution of an argumentation

Here, we present a dynamic argumentation system.
We first introduce a concept of the “execution” of an argumentation.
Both agents have their own knowledge bases. A set of all the formulas con-

tained in all arguments given so far is stored in a commitment store [15]. We
also prepare histories for each agent P and C, respectively, to preserve the co-
herence of each agent’s arguments. First, for a given argumentation framework,
we construct an initial argumentation tree. An argumentation starts by select-
ing a branch of an initial argumentation tree. It proceeds along the branch, and
when the execution reaches the leaf node, the branch is suspended. At that time,
the commitment store is updated, and agents can make new arguments using
the commitment store in addition to their own knowledge bases. Therefore, the
number of a set of arguments and that of a set of attacks increase in accordance
with the execution of each branch. New nodes are added to the argumentation
tree if new arguments are generated. Next, another branch is selected. In the
execution procedure, the executed node is marked, and the branch containing
unmarked nodes can be selected. The suspended branch may be resumed if a
new unmarked node is added to it. Upon the selection of a branch, the utterance
turns should be kept. This means that if one branch is suspended at the node
that corresponds to one agent’s argument, then the next branch should start
with the node that corresponds to the other agent’s argument.

Definition 6 (executable node) For a node Mi (1 ≤ i ≤ n) in a branch
D = [M1, . . . ,Mn] and a current turn t, if M1, . . . ,Mi−1 are marked, Mi, . . . ,Mn

are unmarked, and Mi is t’s argument, then the node Mi is said to be executable.

Let D = [M1, . . . ,Mn] be a branch, HP and HC be histories for P and C,
respectively, and K be the commitment store. Figure 2 shows an execution of D
from Mi (1 ≤ i ≤ n).

Execution of a branch D from a node Mi

1. Mark Mi, . . . , Mn.
2. Update K by adding all the formulas contained in arguments Mi, . . . , Mn.
3. if Mn is P’s argument,

then set the current turn to C and update HP by adding all the formulas
contained in P’s arguments in D.

if Mn is C’s argument,
then set the current turn to P and update HC by adding all the formulas
contained in C’s arguments in D.

Fig. 2. Execution of a branch

Definition 7 (suspend/resume) After the execution of all nodes in a branch,
D is said to be suspended. For a suspended branch D, if an executable node is
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added to its leaf on the modification of a tree and D is selected, then D is said
to be resumed.

Definition 8 (threat) Let A and A′ both be arguments in ArgP or in ArgC .
If A generates more than one new argument that attacks A′, then it is said that
A is a threat to A′, and that ArgP /ArgC contains a threat. A and A′ are said
to be a threat resource and a threat destination, respectively, and this is denoted
by threat(A,A′).

Intuitively, a threat is an argument that may provide information advanta-
geous to the opponent. An argument may be a threat to another argument in
the same branch.

We present a formal definition of the execution of an argumentation in Fig-
ure 3.

Argumentation Procedure with Knowledge Change (APKC2)

Let AF = 〈ArgP , ArgC , Atts〉 be an argumentation framework, and ϕ be a proposed
statement.

[STEP 1 (initialization)]
Set K = ∅, HP = ∅, HC = ∅. Construct an initial argumentation tree for AF on ϕ
with all nodes unmarked.

[STEP 2 (execution of an argumentation)]
if no branch has an executable node,

if turn=P, then terminate with P’s loss.
else turn=C, then terminate with P’s win.

else select a branch and execute it from the executable node to the leaf node.

[STEP 3 (modification of a tree)]
For a pair of arguments A, A′ ∈ ArgP /ArgC such that threat(A, A′) holds,
if A is marked,

then add a new argument B to ArgC/ArgP , respectively,
and add a new attack (B, A′) to Attsa.

if the nodes N and M are identical, and N is marked while M is unmarked,
then mark M .

go to STEP 2.

a In fact, threats are derived from a set of formulas contained in the arguments in
the marked nodes [20].

Fig. 3. Argumentation Procedure with Knowledge Base (APKC2)

In APKC2, both agents present arguments in turn, and the agent that cannot
give a counterargument loses the argumentation. An execution based on a certain
order of selecting branches corresponds to an argumentation pattern.
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Proposition 1 [19] (1) Any execution of APKC2 terminates in a finite time,
and its winner is decidable.

(2) The number of executions for an argumentation tree is finite.

Definition 9 (win/loss execution) If APKC2 along an execution terminates
with P’s win/loss, then it is said that P wins/loses the execution.

Definition 10 (execution tree) For an argumentation framework AF , a sub-
tree of a tree finally obtained as a result of APKC2 along an execution exec,
which consists of the marked nodes and the edges between them, is said to be an
execution tree for exec. It is denoted by Texec.

Definition 11 (continuous candidate subtree) For a candidate subtree CT ,
if more than one candidate subtree is generated by the addition of nodes, then
these subtrees are said to be continuous candidate subtrees of CT .

Definition 12 (dynamic solution subtree) Let CT be a candidate subtree
of an initial argumentation tree. For any execution order of branches of CT , if
APKC2 terminates with P’s win or CT has a continuous candidate subtree such
that P wins, then CT is said to be a dynamic solution subtree.

Definition 13 (dynamic win of an argumentation) If an argumentation tree
has a dynamic solution subtree, then P dynamically wins the argumentation tree;
otherwise, P dynamically loses it.

Let Tinit and Tfinal be the initial argumentation tree and the final argumen-
tation tree appeared in APKC2 for AF = 〈ArgP , ArgC , Atts〉, respectively. If
there is no threat in ArgP and ArgC , then for any execution exec, Texec ⊆ Tinit

and Tfinal = Tinit hold.

4 Semantics

4.1 Extensions

Following the definition set out by Dung [11], we can define the following concepts
related to arguments.

Definition 14 (conflict-free, admissible) For an argumentation framework
AF = 〈ArgP , ArgC , Atts〉, let A ∈ ArgP ∪ArgC and S ⊆ ArgP ∪ArgC .
(1) S is conflict-free iff there are no elements A, B ∈ S such that A attacks B.
(2) S defends A iff S attacks each argument that attacks A. The set of arguments
that S defends is denoted by F(S). F is called the characteristic function of an
argumentation framework 〈ArgP , ArgC , Atts〉.
(3) S is admissible iff S is conflict-free and defends all the elements.

There are several definitions of acceptability, and different extensions exist
for each acceptability.
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Definition 15 (extensions) Let E ⊆ ArgP ∪ArgC .
(1) E is a preferred extension iff E is maximal w.r.t. ⊆ admissible set.
(2) E is a grounded extension iff E is the least fixed point w.r.t. ⊆ of the char-
acteristic function F .
(3) E is a stable extension iff E is conflict-free and attacks each argument that
is not included in E.

The following relations hold among these extensions.

Proposition 2 [11, 10] (1) There is at least one preferred extension, always a
unique extension, and there may be zero, one, or many stable extensions.
(2) If there is no cyclic structure in an argumentation framework, then there is
a unique stable extension, and the three extensions coincide.

4.2 Dynamic extension

Here, for simplicity, we assume that there is no threat whose resource and des-
tination belong to different candidate subtrees.

For an argumentation framework AF = 〈ArgP , ArgC , Atts〉, let Texec be
an execution tree for an execution exec. Let Arg′P and Arg′C be a set of P’s
and C’s arguments in Texec, respectively, and Atts′ be a set of attacks between
these arguments. Then, Texec is an argumentation tree for an argumentation
framework AFexec = 〈Arg′P , Arg′C , Atts′〉. We call such AFexec an argumentation
framework for exec.

Definition 16 (dynamic extension) For an argumentation framework AF
and its execution exec, let AFexec be an argumentation framework for exec.
Then, the preferred extension for AFexec is said to be dynamic extension for
exec of AF , and a set of all the dynamic extensions for executions of AF is said
to be the dynamic extension for AF .

Example 1 In Figure 1(2), let exec1 be an execution in which the left branch is
executed first and exec2 be an execution in which the right branch is executed first.
Then, the argumentation framework for exec1 is AFexec1 = 〈{P0, C1, P1, C2, P2},
{(C1, P0), (P1, C1), (C2, P0), (P2, C2)}〉, and the dynamic extension for exec1 is
Eexec1 = {P0, P1, P2}. Those for exec2 are AFexec2 = 〈{P0, C2}, {(C2, P0)}〉 and
Eexec2 = {C2}, respectively. The dynamic extension for AF is E = {E1, E2}.

Definition 17 (minimal dynamic extension) Let E1 . . . , En be dynamic ex-
tensions for executions of AF . If Ei such that Ei ⊂ Ej (i 6= j) does not exist,
then Ej is said to be a minimal dynamic extension for AF .

The following subsections present dynamic extensions for each pattern of an
initial argumentation tree.
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4.3 Case in which no threat exists

First, we explain the case in which both ArgP , ArgC contain no threats.
Let AF = 〈ArgP , ArgC , Atts〉 be an argumentation framework and T be a

candidate subtree of an initial argumentation tree for AF .
Let DP and DC be sets of branches in which the leaf nodes are P’s nodes

and C’s nodes, respectively. Let |DP | = n and |DC | = m. APKC2 proceeds by
selecting a branch with an executable node from DP ∪DC in an arbitrary order.

Considering that APKC2 proceeds by turn of P and C, we can classify argu-
mentation trees into three types by focusing on the leaf nodes.

(1) All leaf nodes are P’s nodes.
In this case, all branches D1

P , . . . , Dn
P (1 ≤ j ≤ n) in DP can be executed

in an arbitrary order. Then, dynamic extensions for all executions consist of all
of P’s nodes appearing in T , and they coincide with each other. Therefore, a
dynamic extension for AF is a singleton that is a set including the root node.

(2) All leaf nodes are C’s nodes.
In this case, only one branch Di

C (1 ≤ i ≤ m) in DC can be executed. Then,
a dynamic extension for each execution Ei consists of all of C’s nodes in Di

C .
Therefore, a dynamic extension for AF is E = {E1, . . . , Em} Each Ei contains
only C’s nodes and is a minimal dynamic extension. Moreover, their intersection
is an empty set.

(3) Leaf nodes consists of both P’s nodes and C’s nodes.
In this case, after executing several branches D1

P , . . . , Dk
P (1 ≤ k ≤ n) in

DP , a branch Di
C (1 ≤ i ≤ m) in DC is executed. Then, a dynamic extension

for each execution Eik consists of all of C’s nodes in DC and all of P’s nodes
in D1

P ∪ . . . ∪ Dk
P that are not in DC , irrespective of the execution order of

D1
P , . . . , Dk

P . Therefore, a dynamic extension for AF is E = E1 ∪ . . . ∪ Em where
each Ei is a set of extentions for all possible combinations of selecting k elements
from DP .

Proposition 3 For the above three cases, the number of minimal dynamic ex-
tensions can be defined as follows.
(1) There exists a unique minimal dynamic extension.
(2) There exist |DC | number of minimal dynamic extensions.
(3) There exist |DC | number of minimal dynamic extensions.

Moreover, since an argumentation tree P wins is only the case (1), the fol-
lowing property holds.

Proposition 4 If there is no threat, there is no case in which P wins in one
execution and loses in another execution.

123



4.4 Computing update of dynamic extension for an execution

For an argumentation framework AF = 〈ArgP , ArgC , Atts〉, if at least one of
ArgP and ArgC contains a threat, the threat affects the outcome of an argu-
mentation. We can explore the effect in detail by investigating how the dynamic
extension of an argumentation with a threat and the dynamic extension of an ar-
gumentation without a threat differ in each pattern of the initial argumentation
tree.

First, we will set out the rules for computing a dynamic extension for an
execution tree and the properties it satisfies.

To simplify the problem, we can assume that an initial argumentation tree
has only two branches: D1, which includes a threat resource, and D2, which
includes a threat destination. The procedure shown here is applicable to an
arbitrary argumentation tree insofar as it has no threat over multiple candidate
subtrees.

The notations used are presented below.

T0: a candidate subtree of initial argumentation tree for AF
exec1: execution along the order D1D2

exec2: execution along the order D2D1

Ti: execution tree for execi

Ei: dynamic extension for execi

E : the dynamic extension for AF

For a given execution tree for an execution exec, we can construct a dynamic
extension Eexec for exec. For each node, we determine whether it is included in
a dynamic extension by exploring the execution tree from the leaf nodes in a
bottom-up manner using the following rule.

Judgment for inclusion of a dynamic extension for each node
(1) A leaf node is in Eexec.
(2) The node whose all child nodes are not in Eexec is in Eexec.
(3) The node whose child nodes include at least one node that is in Eexec is not
in Eexec.

Proposition 5 Let T1 and T2 be execution trees for executions exec1 and exec2

in AF , respectively, and E1 and E2 be dynamic extensions for exec1 and exec2,
respectively. If T1 is a subtree of T2 such that T1 6= T2, then E1 ⊂ E2.

Proof) Let D1 and D2 be branches in an argumentation tree for AF . Also, let
exec1 be an execution in which branches are executed in the order of D1, D2,
and let exec2 be an execution in the order of D2, D1. Assume that the number
of nodes included in D1 except for the root node is even. Then, the leaf node of
D1 is P’s node. Therefore, after D1 is executed, D2 should be executed. In this
case, T1 should not be a subtree of T2. Then, the number of nodes included in
D1 is odd. Therefore, E2 does not include the root node, but includes its child
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nodes. If at least one child node is judged to be included in E , then its parent
node is judged to be not included in E . Therefore, E1 does not include the root
node. Moreover, for any node N in D1 other than the root node, it is obvious
that if N ∈ E1, then N ∈ E2 holds. Thus, E1 ⊂ E2.

Next, we examine how extensions are changed by the effect of a threat and
investigate their relationships and properties.

A new node N is added either to the leaf node or a mid-node of a branch D.
by a threat, and a maximal admissible set for D is changed. All upper nodes in
D including N and the root node are judged using the above rule of judgment for
inclusion of a dynamic extension for each node, which results in the outcome of
the revised maximal admissible set. This outcome is denoted by UPDATE(D).

4.5 The effect of a threat from P to P

Next, we focus on the case in which a threat from P to P is contained in AF .
Let Pr and Pd be a threat resource and a threat destination, respectively,

and let C ′ be a new node generated by this threat.
We can apply the following notation.

T0: a candidate subtree of the initial argumentation tree for AF
D1, D2: branches in T0

exec1: execution along the order D1D2

exec2: execution along the order D2D1

Ti: execution tree for execi without a threat
E : the dynamic extension for AF without a threat
Ai: maximal admissible set of which each element corresponds to a node in Di

T ′
i : execution tree for execi

E ′i : dynamic extension for execi

E ′: the dynamic extension for AF

Fig. 4. The effect of P’s threat
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We can derive E ′ from T0 and threat(Pr, Pd). First, we compare execution
trees with and without a threat.

(P1) All leaf nodes in T0 are P (Figure 4(1))
T ′

1 = T1 ∪ {C ′}. T ′
2 = T2 ∪ {C ′}.

Note that T1 = T2 holds. T ′
2 is the same as T ′

1 due to the suspend/resume
mechanism.

Let Pl be the lowest node that belongs to both D1 and D2, and uppereq(Pl)
denote the nodes upper than or equivalent to Pl.

There may be two cases of extensions, depending on the position of Pd.
(i) Pd is a leaf node.
C ′ is added as a leaf of D2

E ′1 = A1\uppereq(Pl)∪UPDATE(D2). E ′2 = A1\uppereq(Pl)∪UPDATE(D2).
E ′ = {E ′1}.

(ii) Pd is a mid-node.
C ′ is added as a child node of Pd to generate a new branch D3.

E ′1 = A1\uppereq(Pl)∪UPDATE(D3). E ′2 = A1\uppereq(Pl)∪UPDATE(D3).
E ′ = {E ′1}.

(P2) All leaf nodes in T0 are C (Figure 4(2))
C ′ is added as a child node of Pd, and a new branch D3 is added.
As for the dynamic extension, E ′ = E .

(P3) D1’s leaf node is P, D2’s leaf node is C (Figure 4(3))
C ′ is added as a child node of Pd, and a new branch D3 is added. Let

lower(Pd) denote the nodes lower than Pd in D2. A new execution exec3 is
generated. Let Pl be the lowest node that belongs to both D1 and D2, and
uppereq(Pl) denote the nodes upper than or equivalent to Pl.

T ′
1 = T1. T ′

2 = T2. T ′
3 = T1 \ lower(Pd) ∪ {C ′}.

In this case, the dynamic extensions are as follows.
E ′1 = A1 ∪ A2. E ′2 = A2. E ′3 = A1 \ uppereq(Pl) ∪ UPDATE(D3).
E ′ = {E ′1, E ′2, E ′3}.
Note that the selected branch must be executed as far as possible, and a node

in the other branch cannot be executed at any time.

(P4) D1’s leaf node is P, D2’s leaf node is C (Figure 4(4))
There are two possible cases, depending on the position of Pd: (i) Pd is a leaf

node and (ii) Pd is a mid-node.
With regard to the dynamic extension, E ′ = E in either case.

4.6 The effect of a threat from C to C

Next, we focus on the case in which a threat from C to C is contained in AF .
Let Cr and Cd be a threat resource and threat destination, respectively, and

let P ′ be a new node generated by this threat.
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Fig. 5. The effect of C’s threat

(C1) All the leaf nodes in T0 are P (Figure 5(1))
P ′ is added as a child node of Cd to generate a new branch D3. Let lower(Cd)

denote the nodes lower than Cd in D2. Let Pl be the lowest node that belongs
to both D1 and D2, and uppereq(Pl) denote the nodes upper than or equivalent
to Pl.

T ′
1 = T1. T ′

2 = T2. T ′
3 = T1 \ lower(Pd) ∪ {C ′}.

In this case, a new execution exec3 is generated, and the dynamic extensions
are as follows.

E ′1 = E ′2 = A1 ∪ A2. E ′3 = A1 \ uppereq(Pl) ∪ UPDATE(D3).
E ′ = {E ′1, E ′3}

(C2) All leaf nodes in T0 are C (Figure 5(2))
There are two possible cases, depending on the position of Pd: (i) Cd is a leaf

node, and (ii) Cd is a mid-node.
With regard to the dynamic extension, E ′ = E in either case.

(C3) D1’s leaf node is P, D2’s leaf node is C (Figure 5(3))
There are two possible cases, depending on the position of Pd.
Let Pl be the lowest node that belongs to both D1 and D2, and uppereq(Pl)

denote the nodes upper than or equivalent to Pl.
(i) Pd is a leaf node.
C ′ is added as a leaf of D2

T ′
1 = T1. T ′

2 = T2. T ′
3 = T1 \ lower(Cd) ∪ {P ′}.

With regard to the dynamic extensions,
E ′1 = A1 \ uppereq(Pl) ∪ UPDATE(D2). E ′2 = A2.
E ′ = {E ′1, E ′2}.

(ii) Pd is a mid-node.
C ′ is added as a child node of Pd to generate a new branch D3.

T ′
1 = T1 ∪ {P ′}. T ′

2 = T2. T ′
3 = T1 \ lower(Cd) ∪ {P ′} .
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With regard to the dynamic extensions,
E ′1 = A1 \ uppereq(Pl) ∪ UPDATE(D3). E ′2 = A2.
E ′3 = A1 \ uppereq(Pl) ∪ A2 ∪ UPDATE(D3).
E ′ = {E ′1, E ′2, E ′3}.

(C4) D1’s leaf node is C, D2’s leaf node is P (Figure 5(4))
P ′ is added as a child node of Cd, and a new branch D3 is added.
With regard to the dynamic extension, E ′ = E .

Example 2 Consider the example shown in Figure 6.
Figure 6(1) shows an argumentation tree T0 without a threat. The maximal

admissible sets of each branch are A1 = {P1} and A2 = {C2, C3}, respectively.
T1 and T2 show execution trees for executions without a threat (Figure 6(3)).
The former corresponds to an execution in which the left branch is executed
first, while the latter corresponds to an execution in which the right branch is
executed first.

In contrast, Figure 6(2) shows an argumentation tree with a threat from C1 to
C3 to generate a new node P ′. This is an example of case (C3)(i). T ′

1 and T ′
2 show

execution trees (Figure 6(4)). E ′1 is obtained by updating D2. UPDATE(D2) =
{P0, P2, P

′}.
Therefore, the dynamic extension is E ′ = {E ′1, E ′2}, where E ′1 = {P0, P1, P2, P

′},
E ′2 = {C2, C3}.

4.7 Properties

It is not sufficient simply to consider updating each branch when changes in
extensions are considered. The interesting point is that even if a new node is
added by a threat, it does not always affect the extension. This is due to the
constraint of turn keeping and the fact that a new branch is not executed until
all the executable nodes in the current branch are executed.

The following relation holds between a dynamic extension and the win/loss
of an argumentation.

Let E1, . . . , En be dynamic extensions for executions for an argumentation
framework AF and E be a dynamic extension for AF .

1. If each Ei consists of only P’s arguments, P dynamically wins. In this case,
E1, . . . , En coincide and include the root node.

2. If each Ei consists of only C’s arguments, every one of P’s arguments in an
argumentation framework is attacked in any execution.

3. If each Ei consists of both P’s and C’s arguments, P loses the argumentation.
In this case, Ei does not contain the root node, and a minimal dynamic
extension that consists of all of C’s nodes exists.
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Fig. 6. Example of changing extensions
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5 Related Works

The abstract argumentation framework proposed by Dung does not put orders
of arguments and not include the idea of win/loss of an argumentation. It is rep-
resented as a graph structure in which nodes and edges correspond to arguments
and attacks, respectively. On the other hand, in several works on dialogue or di-
alect, argumentation was represented in a tree form that identified the proposal
statement as the root node, gave an order to arguments, and defined a concept
of win/loss of an argumentation. Amgoud et. al regarded an argumentation as
a dialogue game that could be represented as an AND/OR tree and gave a se-
mantics to indicate whether the argument corresponding to the root node was
accepted [1]. They defined a win as that situation where a solution subtree ex-
ists in which all the leaves are P’s nodes. Dunne proposed a “dispute tree” on
which subsequent execution of all branches is considered [10]. However, the revi-
sion of an agent’s knowledge base was not considered there, allowing presented
arguments to add new information to the opponent’s knowledge base. Garćıa
et al. also represented an argumentation framework as a tree, called a dialecti-
cal tree [13]. An argumentation formalism was given based on defeasible logic
programming (DeLP) to decide between contradictory goals. They presented an
algorithm to judge whether an argument corresponding to the root node is self-
defendable. Such an argument is called “warranted.” The win in argumentation
in APKC2 is identical to the concept of “warranted.” Later, Modgil proposed the
Extended Argumentation Framework, an extension of an argumentation frame-
work that introduced the concept of a meta-attack, that is, an attack to an
attack, and discussed its semantics [16].

Moguillansky et al. considered the treatment of DeLP by an argumentation
framework [17]. Their treatment made belief change theory suitable for an
argumentation system based on DeLP. They gave an algorithm for judging which
rules are selected from a given set of defeasible rules such that an argument
corresponding to the root node is warranted. Their work can be considered as
one handling argument theory change because an argumentation framework is
changed depending on the set of rules that are selected. However, the aim of
their work was to construct an argumentation framework that makes the root
node warranted, not to consider the effect(s) of the execution of an algorithm.
For this reason, they did not consider the timing of applying addition/deletion
of rules. In contrast, in our dynamic argumentation framework, we introduce
the concept of an execution tree and insist that the execution does create a new
argument.

While in the approaches based on DeLP new arguments and attacks are
determined by formulas included in the rules, Cayrol et al. investigated argument
theory change at a more abstract level by treating only the addition of nodes in
an argumentation graph [5]. They investigated how acceptable arguments are
changed when an argument is added. The aim of their research was a formal
analysis of changes to argumentation; the contents of the additional arguments
and the reasons for their addition were beyond its scope. Cobo et al. proposed
an argumentation framework in which available arguments change depending on
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time intervals [8]. In their work, these intervals are given in advance, they did
not consider the mechanism by which an argument causes to generate a new
argument. In contrast, we focus specifically on the effect of knowledge gained
from presented arguments, which is essential in actual argumentation.

Several studies have been conducted on argumentation semantics. Dung pro-
vided a semantics for a given abstract argumentation framework based on ac-
ceptability [11]. He defined several acceptable sets, depending on the range of
strength against an attack. Coste-Morquis et al. argued that it is controversial
to include both agents’ arguments in an extension because this would indicate
an indirect attack [9]. They defined a new semantics, called “prudent seman-
tics,” which does not allow such controversial cases, and compared this with
Dung’s semantics. Other semantics have also been proposed, such as ideal se-
mantics [12], semi-stable semantics [6], and others. Boroni et al. compared these
types of semantics from the viewpoint of skepticism [3].

All these semantics involved argumentation systems from a static viewpoint,
whereas our proposed semantics is suitable for a dynamic argumentation system.

6 Conclusion

In this paper, we defined a new semantics that can fit a dynamic argumentation
framework. We defined a dynamic extension for each execution of an argumen-
tation and defined the dynamic extension for an argumentation framework as
a set of these extensions. Additionally, we discussed how these extensions are
changed by the effect of a threat and investigated their relationships and prop-
erties. Interestingly, a threat does not always affect the outcome of an extension
it changes. Although we restricted our analysis to the case in which a threat
exists in only a single candidate subtree, it should be straightforward to extend
the semantics to include cases in which a threat occurs over multiple candidate
subtrees. We are currently formalizing this extended version.

We are also investigating the relationship of this system to the JC algorithm
that we proposed previously [20]; this is an algorithm for judging the win/loss
of an argumentation.
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14. A.Garćıa, C.Chesnevar, N.Rotstein, and G.Simari: An abstract presentation of
dialectical explanations in defeasible argumentation, ArgNMR07, pp.17-32, 2007.

15. C.Hamblin: Fallacies, Methuen, 1970.
16. S.Modgil: Reasoning about preferences in argumentation frameworks, Artificial

Intelligence, 173(9-10), pp.901-1040, 2009.
17. M.O.Moguillansky, et al.: Argument theory change applied to defeasible logic pro-

gramming, AAAI2008, pp.132-137, 2008.
18. H.Prakken: Combining skeptical epistemic reasoning with credulous practical rea-

soning. COMMA 2006, pp.311-322, 2006.
19. K.Okuno and K.Takahashi: Argumentation system with changes of an agent’s

knowledge base, IJCAI2009, pp.226-232, 2009.
20. K.Okuno and K.Takahashi: Argumentation System Allowing Suspend/Resume of

an Argumentation Line ArgMAS2010, pp.145-162, 2010.
21. I.Rahwan, and G.Simari (eds.): Argumentation in Artificial Intelligence, Springer,

2009.

132



Argumentation Patterns

Serena Villata1 and Guido Boella1 and Leendert van der Torre2

1 Dipartimento di Informatica, University of Turin
{villata,boella}@di.unito.it

2 Computer Science and Communication, University of Luxembourg
leendert@vandertorre.com

Abstract. Argumentation patterns are general reusable solutions to
commonly occurring problems in the design of argumentation frame-
works, such as the relation between claim and data in the Toulmin
scheme. We introduce a formal approach for the semantics of argumenta-
tion patterns describing relationships and interactions among arguments,
without instantiating the involved abstract arguments. Argumentation
patterns are a multi-labeling of a set of arguments, together with con-
straints on this labeling. Constraints express the relations among the
labels of the arguments of the pattern when they interact with other ar-
guments. Moreover, we define argumentation patterns using a two sorted
argumentation framework where focal arguments are distinguished from
auxiliary arguments, and we show how to compute their semantics by
reusing a semantics introduced by Dung. We show how patterns are ap-
plied to design conjunction and disjunction of arguments, accrual, proof
standards, and second-order attacks.

1 Introduction

An argumentation framework [9] is composed by a set of elements called argu-
ments and a binary relation over the arguments called attack. A core issue in
argumentation theory is the relation between abstract arguments. In modelling
argumentation frameworks, this relation has been investigated following differ-
ent lines [3, 1, 5, 13, 8, 6]. In this paper, we propose to reuse software engineering
ideas like patterns to investigate the relation between abstract arguments.

Our context deals with situations where argumentation frameworks are not
generated from a knowledge base, but where the knowledge engineer has to
directly design the arguments and attacks. In many cases, for the engineer is
easier to reuse parts of existing frameworks, so a methodology for representing
abstractions facilitating such reuse and for defining their meaning is needed. As
methodology we introduce argumentation patterns. Argumentation patterns are
visual descriptions for how to solve design problems of argumentation frame-
works, that can be used in many situations.

Argumentation patterns are sets of arguments related to each other in such
a way that they cannot be expressed directly with the basic attack relation.
For example, assume that a modeler believes that the argument “Jones is not
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liable” is attacked if both “Jones has a contract” and “Jones has breached the
contract” are acceptable. Then how to relate these three arguments such that
this property holds? This is an instance of the conjunctive attack pattern: the
former argument is attacked only if each of the latter is accepted. To express
situations like this one the usual solution is to define extended argumentation
frameworks, i.e., introducing a conjunctive attack relation with its own seman-
tics. However, when more solutions must be put together it becomes problematic
to unify everything into a single extended argumentation framework. This is why
we propose patterns.

Our challenge to define argumentation patterns leads to the following re-
search questions:

1. How to visualize argumentation patterns?
2. How to define argumentation patterns?
3. Which argumentation patterns can be identified in the literature?

First, the problem of finding a good visualization for argumentation patterns
is not trivial. We mainly focus on the existing well-known visualizations such as
boolean gates and transistors, and we provide the argumentative counterpart of
such visualizations. In particular, we use the logic gate AND for visualizing the
conjunctive pattern where each “input” argument needs to be acceptable to get
the “output” argument unacceptable (or acceptable), and the OR gate for visual-
izing the disjunctive pattern, where at least one of the “input” arguments needs
to be acceptable to get the “output” argument unacceptable (or acceptable). We
introduce transistors to represent the second-order pattern where the collector
is the attacking argument, the emitter is the attacked argument, and the base
is the argument raising the second-order attack. Transistors can be composed
to visualize the higher-order pattern. Transistors are used also to visualize part
of the Toulmin scheme where the data is the collector, the claim is the emitter,
and the warrant is the base.

Second, there are many ways to define argumentation patterns. Formal tech-
niques are needed since the visualization may be ambiguous, and, in particular,
not expressive enough to define how to combine argumentation patterns. For-
mal semantics is needed to define patterns and their use, and a formal syntax is
needed to embed them in the overall argumentation framework. We consider two
dimensions. First, the perspective of the designer, who knows the meaning of the
pattern and how it behaves once inserted in a larger framework. We define an
argumentation pattern as a set of arguments together with the specification of
their behavior, which is not simply a set of attacks among the arguments of the
pattern. We express the meaning of the pattern with a multi-labeling function
and a set of propositional formulas called constraints. The multi-labeling shows
the values assigned to the arguments in the pattern while the constraints express
relations between these values. In particular, constraints allow to compute the
labels of the arguments in the pattern, in case they are attacked by arguments
outside the pattern. The multi-labeling, instead, restricts the possible labels of
the arguments in the pattern, independently of attacks by arguments outside
the pattern. The second dimension concerns the semantics of a framework which
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DATA CLAIM

WARRANTBACKING REBUTTAL

unless
since

because

thus

Fig. 1. The Toulmin scheme.

includes patterns. We could define an extended argumentation framework with
an ad hoc semantics to cope with all the allowed patterns. Instead, we decide
to flatten the patterns to abstract argumentation frameworks, by adding, when
necessary, auxiliary arguments and suitable attacks. The flattening is driven
by the definition of the pattern in terms of multi-labeling and constraints. The
advantage of our solution is that it allows to reuse standard semantics, and to in-
troduce further patterns without having to revise the semantics like in extended
argumentation frameworks.

Third, the formal framework must be able to model argumentation patterns
discussed in the literature. Fig. 1 visualizes the well-known Toulmin scheme [15].
The arrows represent unspecified relations between the elements, e.g., the war-
rant connects the data and the claim and it is supported with some backing,
the rebuttal indicates circumstances in which the authority of the warrant has
to be set aside. The framework has to be able to give a formal meaning to these
relations – there may even be competing semantics of the Toulmin scheme, e.g.,
the claim is accepted only if the rebuttal is not accepted and if the warrant is
supported by a backing.

Whereas most research in argumentation theory is driven by theoretical con-
cerns, the work reported in this paper is driven by practical concerns. Even if
ultimately arguments must be instantiated, in our experience of modeling argu-
mentation [5, 3, 4], there is a need at the abstract level to define argumentation
patterns. Our work raises also theoretical questions, but in this paper we restrict
ourselves to concepts and examples.

This paper follows the research questions and it is organized as follows. Sec-
tion 2 introduces the visualization, syntax and semantics of argumentation pat-
terns, and how they are used. Section 3 defines patterns from the argumentation
literature. Related work and conclusions end the paper.

2 Formal framework

2.1 Dung’s abstract argumentation

We express Dung’s [9] complete semantics of abstract argumentation using Jakobovits-
Vermeir-Caminada’s three valued labelings [11, 7], where an argument a can be
labeled in, out or undecided. To define the meaning of patterns, we must be able
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to express whether arguments are in, out or undecided, and which is the label of
an argument given the label of other arguments.

We write the fact that an argument can have one of the three labels by means
of propositions a∈, a6∈, and a?, meaning, respectively, that argument a is in, out
or undecided. Given this notation we can express the relation between labelings
and extensions in the following way. A labeling corresponds to the extension
{a | a∈}, and given an extension E ⊆ A of argumentation framework 〈A,→〉,
the corresponding labeling is given by a∈ iff a ∈ E, a6∈ iff a 6∈ E and ∃b ∈ E such
that b→ a, and a? otherwise. A simple example to start with is the equivalence
between two arguments which can be expressed as a∈ ≡ b∈ ∧ a6∈ ≡ b6∈. We
write ⇒ for material implication.

Definition 1 (Complete semantics). Let U be a set of arguments called the
universe of arguments. For any finite set of arguments A ⊆ U , a three valued
labeling function l : A→ {∈, 6∈, ?} is a complete function that partitions a set of
arguments into the in (∈), out ( 6∈) and undecided (?) arguments. An acceptance
function ε is a function that associates with every argumentation framework
〈A,→〉 with A ⊆ U and →⊆ A × A, the set of three valued labelings of A
satisfying the following conditions:

– ∀a, b ∈ A : a→ b⇒ ¬(a∈ ∧ b∈): an extension is conflict free.
– ∀b ∈ A : b∈ ⇔ ∀a : a → b ⇒ a6∈: an argument is in, if and only if all its

attackers are out.
– ∀b ∈ A : b 6∈ ⇔ ∃a : a → b ∧ a∈: an argument is out, if and only if at least

one of its attackers is in.

We call these labelings the complete labelings of argumentation framework 〈A,→〉.

The following example due to Caminada [7] illustrates the complete semantics
and our notation.

Example 1 (Two cycles). Fig. 2 visualizes the argumentation framework 〈A,→〉
with A = {a, b, c, d, e} and→= {a→ b, b→ a, b→ c, c→ d, d→ e, e→ c},where
a=“Jones is a spy”, b=“Jones is not a spy” c=“Mary says that Jones lies”,
d=“Jones says that Harry lies,” and e=“Harry says that Mary lies.” This figure
must be read as follows: a circle visualizes an argument, and an arrow visualizes
an attack. The complete semantics is given by three labelings: a∈∧b6∈∧c?∧d?∧e?,
a?∧b?∧c?∧d?∧e?, a 6∈∧b∈∧c 6∈∧d∈∧e 6∈. Other semantics return other labelings,
for example the grounded semantics returns only a?∧b?∧c?∧d?∧e?, the maximal
number of undecided arguments, whereas the preferred or stable semantics only
return a6∈ ∧ b∈ ∧ c 6∈ ∧ d∈ ∧ e 6∈, the minimal number of undecided arguments.

2.2 Semantics of argumentation patterns

An argumentation pattern is a multi-labeling (i.e., a set of labels for each ar-
gument) of a set of arguments, together with propositional constraints on the
labeling. Roughly, the multi-labeling contains the labelings of the arguments

136



a cb

e

d

OUTINOUT OUTComplete Labeling3 IN 
Complete Labeling2 ? ????
Complete Labeling1 ??IN ?OUT

edcba

Fig. 2. Two cycles (Example 1)

when none of the arguments of the pattern is attacked by arguments not in
the pattern, and the constraints represent an invariant expressing the properties
which always hold between the labels of the arguments of the pattern, regardless
whether the arguments are attacked by other arguments or not. The constraints
are expressed in terms of propositions x∈, x 6∈, and x? for all x ∈ A which repre-
sent if an argument is in, out or undecided. Note that this is a possible choice,
but other choices are possible too, as we discuss in the conclusion. One criterion
to decide is the expressive power of the pattern language.

Definition 2 (Argumentation pattern). An n-ary argumentation pattern is
a triple 〈A,M,C〉 where A ⊆ U is a sequence of n arguments, M : A→ 2{∈, 6∈,?} a
function from the arguments to the powerset of the labels (called a multi-labeling)
and C is a propositional formula on signature x∈, x 6∈, and x? for all x ∈ A. The
labelings of an argumentation pattern are the labelings where the label of each
argument is one of its multi-labels, and that satisfy the constraints of the pattern.

At first sight it may seem that the multi-labeling is a constraint too, namely
the constraint that the label of the argument contains one of the values of the
multi-label. However, the multi-label expresses the values the arguments can
have when the pattern is not attacked by other arguments, and the constraints
express the relations between the values of the arguments, whether they are
attacked by other arguments or not. Both the multi-labeling and the constraints
are needed for the case in which patterns are used in a larger argumentation
framework, and when they are combined with other argumentation patterns, as
explained in Examples 7 and 8.

Example 2 illustrates the definition of semantics of argumentation patterns
by maybe the simplest patterns, namely conjunction and disjunction. We express
the patterns as patternName: constraints, e.g., ∧n+1(a1, . . . , an, b) is the name
of the conjunction pattern.

Example 2 (Conjunction and disjunction). Both patterns are defined by multi-
labeling M(a1) = . . . = M(an) = M(b) = {∈}, together with respectively:

∧n+1(a1, . . . , an, b) : (a∈1 ∧ . . . ∧ a∈n ⇐ b∈) ∧ (a6∈1 ∨ . . . ∨ a6∈n ⇒ b6∈)

∨n+1(a1, . . . , an, b) : (a∈1 ∨ . . . ∨ a∈n ⇐ b∈) ∧ (a6∈1 ∧ . . . ∧ a6∈n ⇒ b6∈)

Fig. 3 visualizes a1=“Jones has a contract”, a2=“Jones has breached the con-
tract” and b=“Jones is liable” with ∧3 and ∨3, together with an additional
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Fig. 3. Conjunction and disjunction (Example 2)

argument c=“Jones did not sign the contract” attacking a1. In the figures, we
visualize in grey accepted arguments. In Fig. 3, the whole component is called
b, and the two incoming ports are called a1 and a2. Attacking a1 is attacking
the port of the component. In the former case we have that Jones is not liable,
because a6∈1 ∧ a∈2 ∧ b6∈ ∧ c∈ is the unique labeling, in the latter case we have that
Jones is liable, because a6∈1 ∧ a∈2 ∧ b∈ ∧ c∈ is the unique labeling. Notice that
the labels of the pattern are different from the multi-labeling defined above.
The multi-labeling assigns to each argument the label ∈, but the existence of
argument c attacking the argument of the pattern a1, leads to a change in the
labels. Given the presence of this external argument c we cannot assign the label
defined by the multi-labeling to the arguments of the pattern, thus we have to
satisfy the constraints posed by the patterns.

We have to underline that a multi-label is assigned to an argument if there is
the presence of a cycle in the pattern, otherwise, as in the example above, only
a single label is assigned. Example 3 illustrates that some extended argumenta-
tion frameworks can also be represented by argumentation patterns, by defining
second-order attacks as an argumentation pattern. Roughly, second-order at-
tacks “disconnect” the attack relations among the arguments.

Example 3 (Second-order attack). The pattern is given by the multi-labeling
M(a) = M(b) = M(c) = {∈}, because the attack relation among a and c is
attacked by the second order attack, together with the constraint

#3(a, b, c) : (a6∈ ∨ b∈ ⇐ c∈) ∧ (a∈ ∧ b 6∈ ⇒ c 6∈)

Fig. 4 visualizes the second-order attack as a transistor where the collector is
the attacking argument, the emitter is the attacked argument, and the base is
the argument raising the second-order attack. The arguments can be read as
a=“Jones was honored at a special ceremony”, b=“Intelligence wants to study
Jones’s behaviour” and c=“Jones is a spy”.

We now have to consider the behavior of the pattern when it belongs to
a wider argumentation framework. For example, consider what happens when
argument d attacks the different arguments composing the pattern. We have
the following possible situations a∈ ∧ b∈ ∧ c∈ ∧ d∈, and respectively d → a,
a6∈ ∧ b∈ ∧ c∈ ∧ d∈, d→ b, a∈ ∧ b 6∈ ∧ c 6∈ ∧ d∈, d→ a∧ d→ b, a6∈ ∧ b 6∈ ∧ c∈ ∧ d∈. So
we have c 6∈ only if a∈ and thus d does not attack a, together with b6∈ and thus
d attacks b.
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Fig. 4. Second-order attack (Example 3)

2.3 Syntax of argumentation patterns

In the previous section we described how to express the meaning of an argumen-
tation pattern for the designer. It remains to define the structure of the patterns
when they appear in an argumentation framework. Rather than proposing an
extended argumentation framework with an ad hoc semantics to cope with all
the allowed patterns, we decide to flatten the argumentation patterns to abstract
argumentation frameworks, by adding auxiliary arguments and suitable attacks.
In this paper, we are interested in argumentation patterns that can be expressed
as a two sorted argumentation framework, distinguishing between auxiliary and
focal arguments.

Definition 3 (Two sorted AF ). A two sorted argumentation framework is a
triple 〈A,B,→〉 with A ⊆ B ⊆ U and →⊆ B × B, where A are called the focal
arguments, and B\A the auxiliary arguments.

We have to consider two directions. First, an argumentation pattern can be
flattened into a two sorted AF by respecting the multi-labeling and constraints.
Second, a two sorted argumentation framework induces an argumentation pat-
tern. This direction is more complicated, since we have to abstract away the
auxiliary arguments. Moreover, given the constraints on the two sorted AF cor-
responding to the attack relations, we have to abstract away the propositions
concerning the labeling of auxiliary arguments. This abstraction process means
that we have to forget the variables referring to arguments which we abstract
away, in the technical sense of forgetting defined by Lang and Marquis [12].
Generally, it is sometimes the case that ignoring a small set of propositional
atoms of the formulas from an inconsistent set renders it consistent. Lang and
Marquis [12] define a framework for reasoning from inconsistent propositional
bases, using forgetting as a basic operation for weakening formulas. Belief bases
are viewed as finite vectors of propositional formulas, conjunctively interpreted.
Forgetting a set X of atoms in a formula consists in replacing it by its logi-
cally strongest consequence which is independent of X, in the sense that it is
equivalent to a formula in which no atom from X occurs. The key notion is
that of recoveries, which are sets of atoms whose forgetting enables restoring
consistency. Forgetting is defined by Lang and Marquis [12] as follows. For more
details about forgetting, see [12].
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Definition 4 (Forgetting [12]). Let φ be a formula from PROPPS and V ⊆
PS. The forgetting of V in φ, noted ∃V.φ, is a formula from PROPPS that is
inductively defined up to logical equivalence as follows:

– ∃∅.φ ≡ φ;
– ∃{x}.φ ≡ φx←0 ∨ φx←1;
– ∃({x} ∪ V ).φ ≡ ∃V.(∃{x}.φ);

where PROPPS denotes the propositional language built up from a finite set
PS of atoms, the Boolean constants > and ⊥, and the standard connectives
and φx←0 (resp. φx←1) denotes the formula obtained by replacing in φ every
occurrence of symbol x by ⊥ (resp. >).

Definition 5. The argumentation pattern 〈A,M,C〉 induced by the two sorted
argumentation framework 〈A,B,→〉 is given by the constraint that takes the
conjunction of the constraints given in Definition 1 for the auxiliary arguments,
i.e.:

∀b ∈ B \A : b∈ ⇔ ∀a : a→ b⇒ a 6∈

∀b ∈ B \A : b 6∈ ⇔ ∃a : a→ b ∧ a∈

and then forgetting the variables referring to the arguments from which we have
abstracted away.

The following two examples illustrate how the argumentation patterns for
conjunction, disjunction and second-order attacks are induced by the two sorted
argumentation framework.

Example 4 (Conjunction and disjunction).
ANDn+1=〈A,B,→〉 with

A = {a1, . . . , an, b}, B = A ∪ {x1, . . . , xn}

a1 → x1, . . . , an → xn, x1 → b, . . . , xn → b

ORn+1=〈A,B,→〉 with

A = {a1, . . . , an, b}, B = A ∪ {x}

a1 → x, . . . , an → x, x→ b

The patterns ANDn+1 and ORn+1 are visualized in Fig. 5. It can be verified that
ANDn+1 induces ∧n+1(a1, . . . , an, b) and that ORn+1 induces ∨n+1(a1, . . . , an, b)
by:

1. The multi-labeling of the pattern is that a1 to an are not attacked so they
are in, and therefore the auxiliary arguments are out, and therefore b is in;
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Fig. 5. Conjunction and disjunction (Example 4).

2. The constraint of conjunction is that if either one of the ai is out, then xi

is in. The reason is that xi is an auxiliary argument, and therefore, if it is
not attacked by ai, it is not attacked at all. If xi is in, then b is out. vice
versa, if b is in, then the xi are out, and thus the ai are in. The constraint of
disjunction is that if all of the ai are out, then x is in. If x is in, then b is out.
Vice versa, if b is in, then x is out, and thus one of the ai is in. By trying out
all possibilities, it can be checked that these are the only constraints that
hold.

Example 5 (Second-order attack).
ATTACK3=〈A,B,→〉 with

A = {a, b, c}, B = A ∪ {x, y}

a→ x, x→ y, y → c, b→ y

The pattern ATTACK3 is visualized in Fig. 6. It can be verified that ATTACK3

induces #3(a, b, c) by

1. The multi-labeling of the pattern is that a and b are not attacked so they
are in, and therefore the auxiliary arguments are out, and therefore c is in;

2. The constraint of second-order attacks is that if a is in, then x is out. More-
over, if b and x are out, then y is in. If y is in, then c is out. The converse can
be checked in the same way. By trying out all possibilities, it can be checked
that this is the only constraint that holds.

Example 6 (Equivalence).
EQUIV2=〈A,B,→〉 with

A = {a, b}, B = A ∪ {z1, z2}

a→ z1, z1 → b, b→ z2, z2 → a

. It can be verified that EQUIV2 induces ≡2 (a, b) : a∈ ≡ b∈ ∧ a6∈ ≡ b 6∈.

Examples 7 and 8 illustrate the difference between the multi-label and the
constraints.
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Fig. 6. Second-order attack pattern (Example 5).

Example 7. Consider the argumentation pattern 〈A,M,C〉, visualized in Fig. 7.a,
where A = {b, d}. The pattern is given by multi-labeling M(b) = M(d) = {∈
, 6∈, ?} together with an empty set of constraints. The two sorted argumentation
framework is 〈A,B,→〉 with

A = {b, d}, B = A ∪ {a, c}

a→ b, b→ a, c→ d, d→ c

Consider now another pattern, represented in Fig. 7.b, where A = {b, d}. The
pattern is given by multi-labeling M(b) = M(d) = {∈, 6∈, ?} together with the
following constraint:

(d∈ ⇐ b 6∈) ∧ (b∈ ⇐ d6∈)

Consider now the introduction of argument e which is attacked by the two
arguments b, d of the pattern. In the first case, argument e can have any label
{∈, 6∈, ?} while in the second case, it cannot be ∈, since b and d cannot both be 6∈,
as given by the constraint of the pattern. Fig. 7 shows in the tables the labelings
allowed for each pattern. The two patterns have the same set of arguments and
the same multi-labeling but distinct constraints. Notice that only a subset of the
labelings satisfying the constraints of the first pattern satisfies the constraints
of the second pattern.

Example 8. Consider the two two-sorted AF:

1. a single focal argument a, no attacks,
2. a single focal argument a and an auxiliary argument b which attack each

other.

Moreover, consider the use of this pattern. The first should say that a is in,
the second that a is either in, out or undecided. The constraints induced by
the two multi-sorted AFs are the same (empty constraint), but the difference is
represented by the multi-label.

In the context of flattening, Gabbay [10] discusses the notion of critical sub-
sets. Given two argumentation frameworks where the set of arguments S1 of the
first AF is a subset of the set S2 of the second AF , Gabbay [10] claims that S2

is a critical subset of S1 if and only if every Caminada labeling on S2 can be
extended uniquely to a labeling on S1. This means that the additional arguments
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Fig. 7. Two patterns with the same multi-labeling and different constraints.

of S1 only help in clarifying what is going on in S2 and do not add any addi-
tional information. Critical subsets may recall the notion of actual arguments,
whose labels are assigned, and depending on them, the labels of the auxiliary
arguments are assessed.

2.4 Combining patterns

Patterns can be combined, just like boolean operators. For example, we can
combine ∧2 to ∧3 and ∧4. Since attack works as a negation, we can form all
kind of propositional combinations. For example, we can combine conjunction
and attack to a combined conjunctive attack, known as accrual.

Example 9 (Accrual). Consider the following accrual attack pattern:

#n+1(a1, . . . , an, b) : (a6∈1 ∨ . . . ∨ a6∈1 ⇐ b∈) ∧ (a∈1 ∧ . . . ∧ a∈1 ⇒ b6∈)

This is ∧n+1(a1, . . . , an, c) extended with an attack b→ c. Here, the latter attack
acts as a kind of negation.

When combining two patterns, we can identify some of their arguments, and
then abstract these arguments away. The definition of patterns’ combination is
left for further research.

3 Patterns

In this section, we present how to define the argumentation patterns of well-
known extended argumentation frameworks and structures.
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3.1 The Toulmin scheme

Dung’s argumentation framework introduces a unique binary relation among ar-
guments, called attack relation. The notion of support is rather controversial in
argumentation theory. Here, without taking a position in the debate about the
representation of this notion, we present an argumentation pattern for model-
ing support which we adopt in the Toulmin pattern. Our support pattern idea
is driven by structured argumentation where argument a supports argument b
if a attacks those arguments contradicting b’s conclusion, i.e., undercutting b.
We move this case to abstract argumentation and the two-sorted argumentation
framework in Figure 8 models support with the auxiliary argument ¬b with the
meaning that a 6∈ implies b 6∈. This interpretation of support in abstract argumen-
tation has been proposed by Cayrol and Lagasquie-Schiex [8] and we represent
it by means of patterns.

Example 10 (Support). The support pattern is defined by multi-labelingM(c1) =
. . . = M(cn) = {∈} and M(a) = M(b) = {6∈}, together with:

.n+2(a, b, c1, . . . , cn) : ((c∈1 ∧ . . . ∧ c∈n)⇒ b6∈ ∧ a6∈)∧

((a∈ ∧ (c6∈1 ∧ . . . ∧ c 6∈n))⇐ b∈)

Consider .4 a=“Jones was born in England”, b=“Jones is a British citizen”,
c1=“Jones does not have a British passport” and c2=“Jones has a dutch accent”.
Now consider the pattern together with argument d. We have the following
situation: d = “Mary says she saw Jones’ British passport and he has no dutch
accent”, so d→ c1∧c2, leading to the labeling d∈∧c6∈1 ∧c 6∈2 ∧b∈∧a∈. If d = “Jones’
birth certificate is Bermudian”, so d→ a, with the labeling d∈∧c∈1 ∧c∈2 ∧b6∈∧a6∈.
SUPPORTn+2=〈A,B,→〉 with

A = {a, c1, . . . , cn}, B = A ∪ {b,¬b}

a→ ¬b,¬b→ b, c1 → b, . . . , cn → b, c1 → a, . . . , cn → a

a b

≡
cnc1 . . . 

cn

c1

. 

. 

. 
a b¬b

Fig. 8. The support pattern (Example 10).

Notice that the support pattern includes all attackers ci of b. This means
that we embed them in the pattern and argument b cannot be attacked by any
argument external to the pattern. Thus b is an auxiliary argument which cannot
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be attacked, but it still can attack other arguments. Argument b is an “output”
node of the pattern. Another approach to support has been introduced by Boella
et al. [4], but in this case a deductive model of support is provided where the
label out of argument a does not imply the same label for argument b.

The Toulmin scheme, in Fig. 1, is one of the most famous patterns in ar-
gumentation theory. There is not a unique model for representing the Toulmin
scheme, there are many versions in which the warrant and the rebuttal sup-
port and attack different elements of the scheme. We provide a possible pattern
but many other patterns are suitable for this scheme. Consider the following
well-known example about the British citizenship.

Example 11 (Toulmin scheme). Jones tries to convince Mary that he is a British
citizen. The claim is “I am a British citizen”. Then Jones can support his claim
with the data “I was born in Bermuda”. In order to move from the data to
the claim, Jones has to supply a warrant to bridge the gap between them with
the rule “A man born in Bermuda will legally be a British citizen”. If Mary
does not deem the warrant as credible, Jones should supply the legal provisions
as backing statement to show that it is true that the rule holds. Finally, the
rebuttal of Mary is exemplified as follows “A man born in Bermuda will legally
be a British citizen, unless he has betrayed Britain and has become a spy of
another country.”

In Example 11, the warrant, which can be modeled as a strict rule in struc-
tured argumentation, connects the data and the claim and it is supported by
the backing. Moreover, the warrant is attacked by the rebuttal. We model the
rules, i.e., the warrant, in the Toulmin pattern following the example of Wyner
et al. [16] for the strict rule where z → c. Moreover we have to model the support
given by the backing to the warrant and finally, the attack from the rebuttal to
the warrant and the claim. Note that the Toulmin scheme is the combination of
patterns we defined thus far, as shown in Fig. 9. It combines a transistor where
the collector is the data, the emitter is the claim, and the base is the warrant, a
support pattern, and a conjunctive pattern.

Example 12 (Continued). The Toulmin pattern is defined by multi-labelingM(d) =
{∈}, M(r) = {∈} and M(b) = M(w) = M(c) = {6∈}, together with:

TS(d, c, w, b, r) : (r 6∈ ∧ (w∈ ∧ b∈)⇐ c∈) ∧ (d 6∈ ⇒ w 6∈ ∧ c6∈)

The pattern is visualized in Fig. 9. Now consider the pattern together with
argument e. We have the following situation: e = “Mary lies asserting that
Jones is a spy”, so e→ r, the labeling is e∈∧r 6∈∧b∈∧d∈∧w∈∧c∈. The labeling
satisfies the invariant expressed by the constraints. TS=〈A,B,→〉 with

A = {d, c, w, b, r}, B = A ∪ {¬z, z,¬c,¬w, x1, x2, y1, y2}
z → ¬z,¬z → z,¬z → w,w → ¬c, d→ ¬z,¬c→ c, c→ ¬c,

r → x1, r → x2, x1 → y1, x2 → y2, y1 → c, y2 → w, y2 → b, b→ ¬w,¬w → w

Notice that the relation between b and w is a support relation as modeled above
where the attacker ci is identified by auxiliary argument y2.
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Fig. 9. The Toulmin pattern (Example 12).

3.2 Patterns for higher-order attacks

In Section 2, we introduced the pattern for second-order attacks where we follow
the model of Boella et al. [3] for the multi-sorted argumentation framework.
However, Modgil and Bench-Capon [13] and Baroni et al. [1] propose another
way to model second-order attacks. Using patterns, we can shows that the three
models are equivalent from the point of view of multi-labeling and constraints
while they differ for the two sorted argumentation frameworks which induce the
pattern.

Example 13 (Second-order patterns). The two patterns of Modgil and Bench-
Capon [13] and Baroni et al. [1] are given by the same multi-labeling of Example 3
M(a) = M(b) = M(c) = {∈}, together with the same constraints:

#3(a, b, c) : (a6∈ ∨ b∈ ⇐ c∈) ∧ (a∈ ∧ b 6∈ ⇒ c 6∈)

Fig. 4 visualizes the multi-sorted AF s proposed by [13], ATTACK3
1, and [1],

ATTACK3
2, which are formalized as follows: ATTACK3

1=〈A,B,→〉 with

A = {a, b, c}, B = A ∪ {r-c, r-a, a-def-c, b-def-(a-def-c), r-b}
a→ r-a, r-a→ a-def-c, a-def-c→ c, c→ r-c, b→ r-b,

r-b→ b-def-(a-def-c), b-def-(a-def-c)→ a-def-c

ATTACK3
2=〈A,B,→〉 with A = {a, b, c}, B = A ∪ {α, β}

α→ β, β → c

Now consider the pattern, where arguments have the same meaning as in
Example 3, together with argument d = “In the Intelligence’s documents there
is nothing about controlling Jones”, such that d → b, as visualized in Fig. 10.
We have the following situation for the first pattern [13]: a∈ ∧ d∈ ∧ b6∈ ∧ c 6∈, and
the same holds for the second pattern [1]. Notice that the two patterns are the
same pattern as the one of Example 3, and only the two-sorted argumentation
framework which induces the pattern differs. This means that they differ only in
the choice of the auxiliary arguments and the constraints which hold for these
auxiliary arguments.
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Fig. 10. Second-order attack pattern (Example 13).

3.3 Patterns for Proof Standards

In everyday reasoning and in legal reasoning, proof standards play a relevant
role in those situations in which, involving risk, we apply higher standards rather
than in cases where there is not much to loose. Two standards of proof have been
recently analyzed by Brewka and Woltran [6] using the acceptability conditions
of the abstract dialectical frameworks. The proof standards we consider are: (i)
argument s is labeled ∈ if the set of arguments R contains no node attacking s
and at least one node supporting s and, (ii) s is labeled ∈ if R contains all nodes
supporting s and no node attacking s.

Example 14 (Proof standards). The patterns for proof standards are given by
the same multi-labeling M(t1) = . . . = M(tn) = M(s) = {∈} and M(r1) =
. . . = M(rm) = {6∈}, together with different constraints:

PS1n+m+1(t1, . . . , tn, r1, . . . , rm, s) :

(t∈i ∧ (r 6∈1 ∧ . . . ∧ r 6∈m)⇐ s∈) ∧ ((t 6∈1 ∧ . . . ∧ t 6∈n) ∨ r∈i ⇒ s6∈)

PS2n+m+1(t1, . . . , tn, r1, . . . , rm, s) :

((t∈1 ∧ . . . ∧ t∈n) ∧ (r 6∈1 ∧ . . . ∧ r 6∈m)⇐ s∈) ∧ (t 6∈i ∨ r∈i ⇒ s6∈)

Fig. 11 visualizes the two-sorted AF s which induce these patterns.
PS1n+m+1=〈A,B,→〉 with

A = {t1, . . . , tn, r1, . . . , rm}, B = A ∪ {s,¬s,¬r1, . . . ,¬rm}

t1 → ¬s, . . . , tn → ¬s,¬s→ s,

r1 → s, . . . , rm → s,¬r1 → r1, . . . ,¬rm → rm

PS2n+m+1=〈A,B,→〉 with

A = {t1, . . . , tn, r1, . . . , rm}, B = A ∪ {s, x1, . . . , xn}
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t1 → x1, . . . , tn → xn, x1 → s, . . . , xn → s, r1 → s, . . . , rm → s

¬r1 → r1, . . . ,¬rm → rm

Notice that, in the two sorted argumentation framework, we avoid to have
argument s attacked by other arguments external to the pattern because we
consider every argument ri attacking s.
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Fig. 11. Proof standards (Example 14).

4 Related work

Argumentation patterns may recall to mind the structure of syllogisms, rules as
modus ponens or argumentation schemes. Reed et al. [14] explain argumentation
schemes as argument forms that represent inferential structures of arguments
used in everyday discourse, and in special contexts like legal argumentation and
artificial intelligence. Besides forms of reasoning like modus ponens, some of the
most common schemes are neither deductive nor inductive, but defeasible and
presumptive. One of the issues which brings argumentation theory and computer
science closer together is the need to diagram such arguments [14]. Diagramming
is of interest both to those in argumentation as a tool in the analytical toolbox,
and to computer scientists as a precursor to implementable formalization. We
agree about the relevance of diagrams in representing the relationships of the
arguments but, as we have shown in the paper, it is not precise enough to define
all the relations among the arguments.

Our patterns together with their multi-labeling and constraints can be com-
pared to the abstract dialectical frameworks, defined by Brewka and Woltran [6],
and their acceptance functions. They provide a generalization of Dung’s argu-
mentation framework. Such a framework is defined as a tuple D = (S,L,C)
where S is a set of nodes, L ⊆ S × S is a set of links and C is an acceptance
condition associated to each node. Cs specifies the exact conditions under which
argument s is accepted. Summarizing, if for some R ⊆ par(s), where par(s) are
the parents of node s, we have Cs(R) = in then s will be accepted provided
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the nodes in R are accepted. We can express the acceptability condition with
a conjunction pattern where the set R contains the arguments a1, . . . , an and
argument s corresponds to our argument b. An advantage in using patterns is
that we can compose them together to form a larger pattern while Brewka and
Woltran [6] need to define the acceptance function from scratch.

5 Conclusions

The success criteria of argumentation patterns lies for the 90% in the proposed
visualization. The contribution of this paper with respect to visualization is to
use transistors for second-order attack patterns, and introduce visualizations for
the conjunction and disjunction patterns inspired by visualizations of AND and
OR gates in boolean circuits. Moreover, we show how these visualizations can
be combined, as in the case of the Toulmin scheme.

Argumentation patterns are reusable solutions to common problems in argu-
mentation theory, and are driven by practical rather than theoretical concerns.
We define argumentation patterns by a multi-labeling, i.e., the labels of the argu-
ments inside the pattern, together with a set of constraints showing the relations
among the arguments, even if some of them are attacked by arguments external
to the pattern.

We identify, among others, the following patterns in the argumentation liter-
ature, and formalize them in our framework: the support relation, the Toulmin
scheme, second-order attacks, accrual, and the standards of proof. Patterns avoid
us to define extended argumentation frameworks ad hoc for particular applica-
tion domains.

Two main points emerge from this initial exploration of how to visualize
and formalize argumentation patterns. First, the language has to distinguish the
description of the behaviour of the pattern as standalone framework, and it has
to contain a description of how the behaviour of the pattern changes when it is
attacked from outside the framework. In this paper, we use multi-labelling for
the former, and constraints for the latter. The general point is that a pattern
definition has to provide the definition of part of an argumentation framework, or
an argumentation framework in an environment. The SCC recursive scheme [2]
can bring some inspiration since here also Dung’s semantics are associated to a
context to define the base function. The second technical issue which is emerged
is the soundness and completeness proofs needed for patterns. We define the
semantics of patterns in terms of multi-labelling and constraints, then the syntax
in terms of flattening. We need to show now that they are equivalent. All this is
left as future work.
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Abstract. Agents that have different knowledge bases and preferences
over arguments can use dialogues to exchange information and explana-
tions. In order for the dialogue to be useful, agents need to utilize the
other participants’ knowledge fully while being resistant against manip-
ulation. Furthermore, the information they exchange can be objective
but also subjective such as what goals an agent wants to achieve. To
understand why another agent draws a certain conclusion it is necessary
to understand and communicate preferences over arguments. This paper
proposes an ASPIC-based meta-level argumentation logic for reasoning
about preferences over arguments. Extended argumentation frameworks
are used to determine what arguments are justified. Prakken’s dialogue
framework is then adapted for meta-level arguments and a protocol is
proposed that explicitly distinguishes between objective and subjective
topics. Several mechanisms for using other agents’ knowledge have been
proposed in the literature. This paper proposes to use different accep-
tance attitudes with respect to claims made in a dialogue and to store the
source of those claims on a meta-level. In the meta-level, agents can then
reason about the effect of other agents’ claims on the conclusive force of
arguments. This makes agents more robust against manipulation and
able to handle new information better.

1 Introduction

The following dialogue illustrates what motivated this paper. In this example,
agent β tries to persuade agent α to eat a healthy salad rather than a pizza.

1. α claims: I want to eat pizza quattro formaggi because I like gorgonzola
2. β questions a premise: why do you like gorgonzola?
3. α answers: I don’t know
4. β claims: you should eat salad because salad is healthier than pizza
5. β claims: health is more important than taste
6. α questions a premise: why is salad healthier?
7. β claims: salad contains less calories than pizza.
? The research reported here is part of the Interactive Collaborative Information Sys-

tems (ICIS) project, supported by the Dutch Ministry of Economic Affairs, grant
nr: BSIK03024.
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In move 2, β asks α to justify a subjective statement. Asking why a subjective
statement is true is different than asking why an objective statement is true, be-
cause only the agent himself can determine whether the subjective statement is
true. In contrast to an objective statement, questioning or giving a counterargu-
ment for a subjective statement should not attack the statement. Furthermore,
in move 5, β claims that move 4’s claim is stronger than move 1’s claim, which
only makes the attack of move 4’s argument on move 1’s argument successful.

Preferences between arguments describe what argument has more conclusive
force and determine what attacks are successful [12, 6, 10]. Therefore it is im-
portant to be able to discuss preferences over arguments. Preferences between
arguments may differ per agent and are therefore subjective, but disputable.
Because preferences may have a significant effect on what arguments are accept-
able, it is important to discuss them in a dialogue. Extended Argumentation
Frameworks (EAFs) have been proposed to argue about preferences between
arguments [6]. However, in dialogue frameworks such as [8] it is not possible for
agents to discuss their preferences between arguments. In this paper, a dialogue
framework is proposed that enables participants to discuss preferences between
arguments.

In dialogues with argumentation, participants make claims about the truth
of statements and justify those claims with a supporting argument. We dis-
tinguish between claims whose truth can be established objectively and claims
whose truth can only be established subjectively. For example, whether salad is
healthier than pizza can be established objectively whereas whether agent α likes
gorgonzola only α himself can establish. Other examples of subjective statements
are the values and goals of an agent, but also the conclusive force of arguments
for an agent because the trustworthiness of others may be used to establish this.
Existing dialogue frameworks such as [8] do not distinguish between objective
and subjective statements. This means that α’s claim that he likes gorgonzola
is attacked by β’s question why he likes it. This paper distinguishes between
subjective and objective statements and introduces a protocol where the bur-
den of proof and production of each participant depends on whether a certain
statement is subjective or objective.

If agent α makes a claim whose truth β cannot establish (e.g. that α likes
gorgonzola), then β should reason about whether β should accept α’s claim to
be true. Several existing approaches introduce agent types that treat incoming
arguments differently. For example, in [11], one agent type simply puts every
argument in his knowledge base, whereas another agent type only puts an ar-
gument in his knowledge base if he has no attacking arguments. In [7], three
different so-called acceptance attitudes are proposed that treat incoming argu-
ments differently. This paper introduces a general argumentation-based approach
in which different ‘acceptance strategies’ can be implemented.

Section 2 describes the ASPIC argumentation framework of [10] and extends
it by adding meta-level argumentation and showing its relation to extended
argumentation frameworks. Next, Section 3 adapts the dialogue framework of
[8] to allow discussing preferences between arguments. Furthermore, a protocol
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is proposed in which the burden of production and the burden of proof depends
on whether a statement is objective or subjective. Section 4 describes a general
argumentation-based approach that agents can use to reason about what to do
with arguments they receive from other agents. This paper is ended with some
conclusions and discussion in Section 5.

2 Argumentation

To represent arguments, the ASPIC+ abstract framework for structured argu-
mentation is used, which provides an abstract account of the structure of argu-
ments, the nature of attack and the effect of preferences between arguments on
what attacks are successful [10]. The conclusive force of arguments (also called
preferences between arguments) determines what attacks are successful. In the
introduction example, agent β claims that health is more important than taste,
which means that the argument to eat salad has more conclusive force than the
argument to eat pizza. Consequently, only the salad argument’s attack on the
pizza argument is successful.

ASPIC+ does not provide means to reason about the conclusive force of argu-
ments. In [5], ASPIC+ is further developed to define attacks on attacks using an
abstract function, which defines when an argument or a set of arguments attacks
an attack. Because this function is abstract, Section 2.2 proposes a more specific
approach to argue about conclusive force by using meta-argumentation. Also,
Section 4 describes a meta-argumentation system to reason about an agent’s
commitments in a dialogue, his beliefs and how that influences the conclusive
force of object-level arguments.

2.1 ASPIC+: Structured Argumentation

The ASPIC abstract framework for structured argumentation integrates work
on rule-based argumentation with Dung’s abstract approach [2]. The notion
of an argumentation system extends the familiar notion of a proof system by
distinguishing between strict and defeasible inference rules. The informal reading
of a strict inference rule is that if its antecedent holds, then its conclusion holds
without exception. The informal reading of a defeasible inference rule is that
if its antecedent holds, then its conclusion tends to hold. A strict rule is an
expression of the form φ1, . . . , φm → φ and a defeasible rule is an expression of
the form φ1, . . . , φm ⇒ φ, with m ≥ 0.

Definition 1 (Argumentation System). An argumentation system is a tuple
AS = 〈L,R, cf〉 with

– L the language of predicate logic,
– R = Rs ∪ Rd such that Rs is a set of strict and Rd is a set defeasible
inference rules, and

– cf a contrariness function from L to 2L.
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For φ ∈ L, it is always the case that ¬φ ∈ cf(φ) and φ ∈ cf(¬φ). Also for
φ, ψ ∈ L, if φ ∈ cf(ψ) and ψ 6∈ cf(φ), then φ is called the contrary of ψ. If
φ ∈ cf(ψ) and ψ ∈ cf(φ), then φ and ψ are called contradictory.

Arguments are defined following [12] and can be thought of as inference trees.

Definition 2 (Argument). An argument A in an argumentation system AS =
〈L,Rs ∪Rd, cf〉 is:

– φ if φ ∈ L with premises(A) = φ; conc(A) = φ; sub(A) = {A}; lastRule(A) =
undefined.

– A1, . . . , An →/⇒ φ if A1, . . . , An are arguments in AS such that there is a
strict / defeasible inference rule conc(A1), . . . , conc(An)→/⇒ φ in Rs/Rd.
Furthermore,
• premises(A) =

⋃n
i=1 premises(Ai)

• conc(A) = φ

• sub(A) = {A} ∪⋃n
i=1 sub(Ai)

• lastRule(A) = conc(A1), . . . , conc(An)→/⇒ φ

The set of all arguments in an argumentation system AS is denoted as Args(AS).
Arguments are constructed by applying inference rules to some knowledge base
in an argumentation system. A knowledge base is a set of formulae consisting of a
set of axioms and a set of ordinary premises. An argument A can be constructed
from a knowledge base K if all A’s premises are contained in K.

Following [10], the following kinds of attack can be distinguished.

Definition 3 (Attack). Let A,B ∈ Args(AS) be two arguments. Argument A
attacks B iff A rebuts, undermines or undercuts B, where:

– A rebuts B if A’s conclusion is the contrary of the conclusion of some de-
feasible inference rule that was applied in B,

– A undermines B if A’s conclusion is the contrary of one of B’s premises,
– A undercuts B if A concludes an exception to a defeasible inference rule that

was applied in B.

Following [8], we will look at when an argument extends another argument,
because this is useful in dialogues where agents may first give an argument
A and later an argument B that justifies a premise of A. If the conclusion of
argument A is the premise of argument B, then we say that A extends B.

Definition 4 (Extended Argument). Let A,B ∈ Args(AS). We say that
A extends B on B′ if and only if B has an atomic argument B′ such that
conc(A) = conc(B′). Furthermore, if A extends B on B′, then A ⊕B′ B is an
argument with

– conc(A⊕B′ B) = conc(B),
– premises(A⊕B′ B) = premises(A) ∪ (premises(B) \ {conc(A)}),
– lastRule(A⊕B′ B) = lastRule(B),
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– sub(A⊕B′ B) = sub(A) ∪ (sub(B) \ {B′})

Please note that extending an argument has nothing to do with extended argu-
mentation frameworks. Further note that if A,B ∈ Args(AS), then the extended
argument A⊕B′ B is also in Args(AS).

2.2 Meta Argumentation

In a meta-argumentation system, arguments are constructed with respect to
an (object-level) argumentation system. To reason about the conclusive force
of (object-level) arguments, meta-argumentation systems are required to have a
special predicate � that compares the conclusive force of object-level arguments.
For example, if A is the argument that α should eat pizza because it is tasty
and B that α should eat salad because it is healthy, then A � B denotes that B
has as much or more conclusive force as A. Extended argumentation frameworks
will be constructed using the predicate �.

Definition 5 (Meta-Argumentation System). A Meta-Argumentation Sys-
tem (MAS) on the basis of argumentation system AS = (L,R, cf) is an argu-
mentation system AS ′ = (L′,R′, cf ′) such that

– each formula in L, rule in R and argument in Args(AS) is a constant in L′,
– the functions on arguments (see Definition 2) are function symbols in L′,
– � is a binary predicate in L′.

The predicate � denotes conclusive force. The predicate ≺ denotes strictly more
conclusive force and is defined in the usual way.

A number of meta-argumentation systems can be stacked upon an argumen-
tation system. This results in what we call a ‘tower of argumentation systems’.
In [15], logical languages are stacked in a similar way resulting in a tower or hi-
erarchy of languages. Our approach is similar except that a meta-argumentation
system AS ′ can only refer to its object argumentation system AS and not to
argumentation systems that are below AS.

Definition 6 (Tower Of Argumentation Systems). A tower of argumen-
tation systems of level 1 ≤ n is a set {AS1, . . . ,ASn} such that:

– AS1 is an argumentation system and
– for each 2 ≤ i ≤ n: ASi is a meta-argumentation system based on ASi−1.

Given a tower of argumentation systems and a knowledge base for each argu-
mentation system in the tower, we consider meta-argumentation theories.

Definition 7 (Meta-Argumentation Theory). A Meta-Argumentation The-
ory (MAT) is a tuple 〈TAS , {K1, . . . ,Kn}〉 such that

– TAS = {AS1, . . . ,ASn} is a tower of argumentation systems of level n, and
– for each 1 ≤ i ≤ n: Ki is a knowledge base in argumentation system ASi
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– for 2 ≤ i ≤ n: Ki contains axioms for reflexivity and transitivity of the
predicate �.

If we say that MAT is a meta-argumentation theory of level n, then MAT =
〈TAS , {K1, . . . ,Kn}〉 with TAS = {AS1, . . . ,ASn} a tower of argumentation sys-
tems of level n.

Attack between arguments in a meta-argumentation system can be defined
according to Definition 3. However, we also want that arguments in a MAS can
attack the attacks between arguments in the AS on which the MAS is based.
For this, the notion of meta-attack is introduced.

Definition 8 (Meta-Attack). Let AS be an argumentation system, AS ′ be
a meta-argumentation system on the basis of AS, and A1, A2 ∈ Args(AS) and
B ∈ Args(AS ′). Argument B meta-attacks that A1 attacks A2 if and only if
conc(B) = A1 ≺ A2 and A1 attacks A2 according to Definition 3.

2.3 Argumentation Frameworks

An Argumentation Framework (AF) is a tuple 〈Args,R〉 where Args is a set
of arguments and R a binary attack relation between those arguments [2]. A
dialectical calculus can be used to evaluate what arguments are justified and
rejected under different semantics.

Extended Argumentation Frameworks (EAFs) extend AFs with an attack
relation between an argument and an attack between two arguments [6], a so-
called pref-attack. An EAF is a tuple 〈Args,R,D〉 with 〈Args,R〉 an AF and
D ⊆ Args×R the pref-attack relation. Bounded hierarchical EAFs (bhEAFs) is
a class of EAFs that are stratified so that attacks at some level only are only
pref-attacked by arguments in the next level up. [5] uses bhEAFs to link ASPIC+
with EAFs.

In meta-argumentation systems as defined in Definition 5, there is a binary
predicate � to express preference between arguments in the object argumenta-
tion system. Because a tower of meta-argumentation system stratifies arguments
neatly into different levels, meta-attack as defined in Definition 8 can be used to
initialize the pref-attack relation in a bounded hierarchical EAF.

Definition 9 (Structured EAF). Let MAT be a meta-argumentation system
of level n. A Structured EAF on the basis of MAT is a bounded hierarchical EAF
{(Args1,R1,D1), . . . , (Argsn−1,Rn−1,Dn−1), (Argsn,Rn, ∅)} such that

– Argsi a set of arguments on the basis of ASi such that each argument can be
constructed from Ki, i.e. for each A ∈ Argsi: premises(A) ⊆ Ki,

– for each A,B ∈ Argsi: (A,B) ∈ Ri if A attacks B according to Definition 3,
– for each A,B ∈ Argsi and C ∈ Argsi+1: if (A,B) ∈ Ri and C meta-attacks

that A attacks B according to Definition 8, then (C, (A,B)) ∈ Di.

In [6], the definitions can be found for when an argument is acceptable with re-
spect to complete, preferred, stable, and grounded semantics. If S is a semantics,
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then we say that a formula φ is (1) justified under S if in each S-extension, there
is an argument concluding φ; (2) defensible under S if φ is not justified under S,
but there is an S-extension with an argument concluding φ; and, (3) overruled
under S if there is no S-extension with an argument concluding φ.

3 Dialogue Framework

Because how an agent prefers arguments has a significant effect on what argu-
ments he finds acceptable, it is important that agents can give and discuss their
preferences between arguments in a dialogue. Furthermore, when discussing top-
ics like what to do, the distinction between subjective and objective information
has an effect on the participants’ burden of persuasion.

The previous section proposed how to argue about the conclusive force of ar-
guments. Section 3.1 adapts the dialogue framework in [8] such that preferences
between arguments can be expressed and discussed in a dialogue. Section 3.2
describes and formalizes the distinction between objective and subjective state-
ments. Finally, Section 3.3 proposes a protocol that is tailored for discussing
objective and subjective statements.

3.1 Communication Language, Dialogue Moves and Dialogues

The participants of a dialogue use a communication language to communicate.
The communication language depends on the topic language, which in this paper
consists of a tower of argumentation systems so that the conclusive force of
arguments can be discussed. For convenience, the communication language is
split into a communication language for each argumentation system on each
level.

Definition 10 (Communication Language). Let TAS = {AS1, . . . ,ASn} be
a tower of argumentation systems of level n with ASi = 〈Li,Ri, cf〉 for each
ASi ∈ TAS . A communication language for TAS is a set LC = LC1 ∪ . . . ∪ LCn

such that for 1 ≤ i ≤ n:

– for all A ∈ Args(ASi): claimi(A) ∈ LC i

– for all φ ∈ Li: whyi(φ), concedei(φ), retracti(φ) ∈ LC i

Because every argument on every level of a tower of ASs can be communicated,
this communication language can be used to express preferences between argu-
ments. Note that [8] distinguishes between claiming a formula and claiming an
argument. In contrast, this definition does not distinguish between these two
claims. Rather, if a participant just wants to claim a formula, then he should
claim an atomic argument concluding that formula.

In a dialogue, agents can make dialogue moves. A dialogue move is made by
an agent and can target previously made dialogue moves. Each dialogue move
has an identifier.
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Definition 11 (Dialogue Move). Let LC be a communication language and
P a set of agents. The set of dialogue moves w.r.t. LC and P is defined as
N× P × LC × 2N.

If m = 〈i, α, l,X〉 is a dialogue move, then (a) id(m) = i denotes the identifier
of move m; (b) pl(m) = α denotes the agent that made move m; (c) loc(m) = l
denotes the locution of move m; and, (d) target(m) = X denotes the set of move
identifiers at which m is targeted.

In contrast to [8], a dialogue move targets a set of dialogue moves. This is
necessary because if move m1 claims argument A, move m2 replies to m1 by
claiming argument B and move m3 claims that A is preferred to B, then m3 is
targeted at both m1 and m2. If a dialogue move m’s target is ∅, then m does not
reply to any dialogue move. Also, if m and m′ are dialogue moves in a dialogue
such that id(m′) ∈ target(m), then we say that move m replies to move m′.

Definition 12 (Dialogue). A dialogue is a tuple 〈LC ,P,M〉 such that LC is
a communication language, P a set of participants and M is a finite non-empty
set {m1, . . . ,mn} of dialogue moves w.r.t. LC and P such that for each mi ∈M :
(1) id(mi) = i, and (2) for each j ∈ target(mi): 0 < j < id(mi).

The first condition ensures that every dialogue move in a dialogue has a unique
identifier. The second condition ensures that every dialogue move must reply to
0 or to a dialogue move that has been made earlier in that dialogue, i.e. one
with a lower identifier. Note that the second condition also ensures that there
the first dialogue move always has target ∅.

If there is only a single dialogue move in a dialogue d that does not reply to
any dialogue move, i.e. there is only one dialogue move with ∅ as target, then
we say that dialogue d is a single-topic dialogue. Otherwise, the dialogue is also
called a multi-topic dialogue.

In a dialogue, the participants can claim arguments. If a premise of a claimed
argument is questioned, then an argument that extends the original argument
can be given to answer that question. The following definition collects all argu-
ments that have been uttered in a dialogue taking into account that arguments
might extend other arguments.

Definition 13 (Arguments In A Dialogue). Let d = 〈δ,M〉 be a dialogue.
The arguments of level i in d is the set Argsi(d) such that for all m ∈ M such
that loc(m) = claimi(A):

– if there is no m′ ∈M such that loc(m′) = claimi(B) with B extending A on
some A′, then A ∈ Argsi(d),

– if there is a B ∈ Argsi(d) that extends A on A′, then B ⊕A′ A in Argsi(d)

The first condition ensures that all arguments that have been claimed but not
extended are contained in Argsi(d). The second condition ensures that if an
argument is extended, then the extended argument is contained in Argsi(d) by
using the possibly extended argument that is already in Argsi(d).
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3.2 Subjective and Objective Statements

We say that a statement φ is subjective to agent α if only agent α can determine
whether φ is true. Otherwise it is called objective. In the introduction example,
‘α likes gorgonzola’ and ‘α finds health more important than taste’ are subjective
statements, whereas ‘salad is healthier than pizza’ is an objective statement. It
is important to distinguish between subjective and objective statements because
objective statements can be attacked by everyone whereas subjective statements
cannot. A subjective statement can merely be challenged. This is important for
the protocol and for the conclusive force of arguments. If a formula is subjective
to an agent, then the negation of that formula is also subjective to that agent.

Definition 14 (Subjectivity Mapping). Let Agents be a set of agents and L
a logical language. A subjectivity mapping for L is a function s : Agents → 2L

that maps an agent to the set of formulae that are subjective to that agent such
that φ ∈ s(α) if and only if ¬φ ∈ s(α).

If φ ∈ s(α), then we say that formula φ is subjective for agent α. If a formula
φ ∈ L is not subjective for any agent, i.e. φ not in s(α) for all α in Agents,
then φ is called objective. Note that a formula is subjective to multiple agents
if there are multiple agents α such φ ∈ s(α). For example, the formula ‘α likes
gorgonzola and β likes gorgonzola’ is subjective to both α and β.

3.3 Protocol

Protocols regulate dialogues by specifying what dialogue moves are legal. Some
protocols distinguish between subjective and objective statements [1], but others
do not. Statements like an agent’s goals but also an agent’s preferences between
arguments are subjective because they are internal to that agent. Questioning
or giving a counterargument for a subjective statement like that you like gor-
gonzola is different than questioning or giving a counterargument for an objective
statement like that salad is healthier than pizza because the truth of a subjective
statement can only be determined by the agent himself. In this section, we adapt
[8]’s set of protocol rules to treat subjective and objective statements differently.
The most important adaptation is that dialogues moves cannot be attacked on
subjective claims they make.

[8] proposes the following five rules in order to capture the lower bound on
coherent dialogues. Let d = 〈LC ,P,M〉 be a dialogue. Dialogue move m is legal
in d if it obeys the following rules:

– R1: pl(m) ∈ P (only d’s participants are allowed to make dialogue moves)
– R2: d must be single-topic
– R3: if m replies to m′ ∈M , then pl(m) 6= pl(m′)
– R4: there is no m′ ∈M with the same target and content (i.e. no repetition)
– R5: for any m′ ∈ M that surrenders to a dialogue move in target(m), m is

not an attacking counterpart of m′.
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We will use these rules as a basis, except for rule R3. Rule R3 states that a
participant is never allowed to reply to one of his own dialogue moves. Suppose
that during a dialogue, a participant α claims argument A. After a while, the
other participants have not attacked α’s claim, but α has learned new facts and
now also has constructed argument B which successfully attacks A. Because of
the rule that participants cannot reply to their own dialogue moves, participant
α cannot attack nor retract his own claim.

To determine the outcome of a dialogue, [8] considers two dialogical statuses
of dialogue moves: warranted and unwarranted (this is called ‘in’ and ‘out’).
Furthermore, it is defined when a dialogue move attacks another dialogue move
and when a dialogue move surrenders to another dialogue move. A move m’s
dialogical status is then determined using the dialogue statuses of the dialogue
moves that attack and surrender to m. Because intuitively a statement subjective
to some agent cannot be attacked by other agents, the definitions of when a
dialogue move attacks another dialogue move need to be adapted.

If argument A undercuts B, then A concludes that there is an exception such
that a defeasible inference rule in B cannot be applied. Because the application of
an inference rule cannot be subjective, a dialogue move mi claiming argument
A attacks another dialogue move mj claiming argument B if A undercuts B.
Rebutting and undermining attacks do concern statements and therefore depend
on whether the statement in question is subjective or objective. Therefore, if a
dialogue move mi questions or attacks a statement of mj that is not subjective
to the speaker of mj , then mi attacks mj . On the other hand, if participant α
first makes dialogue move mi claiming argument A and later finds out that A
is not justified, then α’s dialogue move mj of retracting his claim A attacks mi.
Finally, answering a why-question attacks the why-question.

Definition 15 (Attacking Dialogue Moves). Let m and m′ be two dialogue
moves. Dialogue move m′ attacks m if and only if m′ replies to m and

– loc(m) = claimi(A) and loc(m′) = claimi(B) such that either
• B undercuts A,
• B rebuts A on A′ ∈ sub(A) s.t. conc(A′) is not subjective to pl(m), or
• B undermines A on a premise that is not subjective to pl(m)

– loc(m) = claimi(A) and loc(m′) = whyi(φ) such that φ is a premise of A and
is not subjective to pl(m)

– loc(m) = claimi(A), pl(m) = pl(m′) and loc(m′) = retracti(conc(A))
– loc(m) = whyi(φ) and loc(m′) = claimi(B) with conc(B) = φ

Note that subjective statements cannot be attacked. In contrast to [8], because
participants can reply to their own dialogue moves, they can retract a claim
without the necessity of another participating agent having to question the claim
first.

If a participant does not agree with a claim, then attacking that claim makes
clear why he does not agree. This furthers the dialogue because now the other
participants have more information and can respond appropriately. On the other
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hand, if participant α agrees with a claim of another participant, then α can
concede that claim, which sets the claim’s dialogical status to ‘warranted’.

Definition 16 (Meta-Attacking Dialogue Moves). Let m1,m2,m3 be dia-
logue moves. Dialogue move m3 meta-attacks m2 if and only if

– loc(m1) = claimi(A), loc(m2) = claimi(B), and m2 attacks m1, and
– target(m3) = {m1,m2} and loc(m3) = claimi+1(C) with conc(C) = B ≺ A

Definition 17 (Dialogical Status). Let d = 〈LC ,P,M〉 be a dialogue. The
dialogical status of mi ∈ M is warranted if and only if all attacking replies are
not warranted or if there is a m′ ∈M that replies to m such that pl(m) 6= pl(m′)
and loc(m′) = concedei(conc(A)).

The notion of dialogical status is convenient to define rules in protocols. To keep
the dialogue coherent, a notion of relevancy is required. First we will define when
an argument is related to a dialogue, which depends on whether it is an object-
level or meta-level argument. An object-level A is related only if A attacks or
has the same conclusion an argument that has been uttered before. A meta-level
argument B is related to d if the object-level arguments, formulae or inference
rules to which B have been used before in the dialogue d or if B attacks or has
the same conclusion as a meta-level argument that has been uttered before.

Definition 18 (Related Arguments). Let d be a dialogue and Argsi(d) the
arguments of level i in d. Argument A ∈ Args(ASi) is related on level i to
dialogue d if

– either A attacks an argument in Argsi(d) or A has the same conclusion as
some argument in Argsi(d), and

– if i > 1, then all terms in A that refer to elements in the argumentation
system of level i− 1 must have been used previously in dialogue d

To enforce the coherency of dialogues, a protocol could only allow claiming
related arguments. Furthermore, a protocol could only allow dialogue moves
that change the status of a previously uttered dialogue move. A result of this
is that participants cannot give alternative arguments for the same conclusion
because they do not change the status. This may stimulate that the participants
give the most important argument first, which may promote the efficiency of
the dialogue. However, there are also several disadvantages of such a protocol
rule. Suppose agent α has been persuaded by agent β of φ being true in a
dialogue. After the dialogue ended, α learns new information that overrules
φ being true. However, if α would have gotten β’s alternative arguments in
favor of φ, then α may not have changed his belief w.r.t. φ. Furthermore, if
more information is exchanged by allowing agents to give alternative arguments,
then agents may discover new interesting arguments that could not have been
constructed if agents were not allowed to give alternative arguments. Finally,
in a deliberation or decision support dialogue, it is important that agents can
describe all important aspects of their motivation so that other agents can find
better joint actions or support their decision better. In a protocol that forbids
alternative arguments these things are not possible.
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4 Treating Incoming Arguments

Communicating is exchanging information, but if agents do not do anything with
the information they get, communication is useless. A result of communication
is that agents can get information from different sources, which may differ in
reliability. In the introduction example, agent β may have learned that α likes
gorgonzola and α may have learned from β that salad is healthier than pizza.
However, α may have heard from another agent that pizza is just as healthy.

In existing approaches such as [11] and [7], the way how agents deal with
incoming information is independent from its source. Furthermore, once some
statement is added to the agent’s knowledge base, it is impossible to trace back
where it came from. This section proposes that the source information is stored
on a meta-level where the agent can reason about the effect of the source on the
conclusive force of arguments.

Section 4.1 proposes to represent the commitments and beliefs of agents
in the meta-argumentation systems proposed in Section 2.2. Several argument
schemes are proposed and formalized to infer what an agent believes from his
commitments and to compare the conclusive force of arguments. This enables
using epistemic approaches like the one in [3] for sophisticated reasoning about
what other agents believe. Section 4.2 then proposes how an agent’s knowledge
base should be updated if he observes another agent making a dialogue move.
Finally, Section 4.3 describes how an agent can select dialogue moves.

4.1 Meta Argumentation System
In this section, we will explain how the meta-argumentation systems we have
proposed can be used by agents to reason about the conclusive force of argu-
ments that they receive from other arguments. For this, several elements will be
introduced. The binary predicates cm and b will be used in meta-argumentation
systems to represent to what agents are committed to and what they believe.
The predicate cm(α, φ) denotes that agent α is committed towards the object-
level formula φ being true and the predicate b(α, φ) denotes that agent α believes
that φ is true. The unary predicate axiom(φ) denotes that φ is an axiom in the
object-level argumentation system.

First, several inference rules are proposed to reason about beliefs and how
the conclusive force of arguments compares. Then, a tower of argumentation
systems is tailored for the envisioned dialogues by including these predicates
and inference rules.

In general it will be the case that agents believe to what they commit them-
selves. The following argument scheme describes this intuition informally.

Argument Scheme 1: Commitment to Belief
Agent α is committed to that formula φ is true,

therefore, presumably, α believes that φ is true.

Critical questions for this argument scheme could question whether the agent
has lied and whether the agent only has this commitment for the sake of the
argument.
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Several factors influence the conclusive force of an argument, e.g. the cer-
tainty of the premises, the strength of the inferences, or the reliability of the
sources that are used. These different factors can be seen as criteria that con-
tribute to the conclusive force of an argument. Therefore, how the conclusive
force of arguments compares can be seen as a multi-criteria problem. The dif-
ferent criteria that contribute to an argument’s conclusive force are typically
incommensurable and therefore hard to combine. In [14, 13], an argumentation-
based approach is proposed to combine incommensurable criteria.

Because each agent is the expert with respect to what is subjective to him,
it should not be the case that the arguments of other agents that conflict with
the agent’s preferences have more conclusive force.

Argument Scheme 2: Subjectivity
Statement φ is subjective to agent α,
α believes φ is true,
β believes ψ is true which conflicts with φ,

therefore, presumably, the φ has more conclusive force than ψ.

Argument Scheme 1 is formalized with the defeasible inference rule dcm2b. The
constant me is used to denote the agent himself. Because an agent knows what he
believes himself, this rule should only be used on other agents. The critical ques-
tions could be modeled by rules that undercut an application of this defeasible
inference rule. Defeasible inference rule rsbj formalizes Argument Scheme 2.

rcm2b :α 6= me, cm(α, φ)⇒ b(α, φ)
rsbj :φ ∈ s(α), b(α, φ), b(β, ψ), ψ ∈ cf(φ) ⇒ ψ � φ

We will now introduce a tower of argumentation systems that is tailored for dia-
logues by including the proposed predicates and inference rules. The set Agents
is used to denote the set of all agents and always contains the special element
me which denotes the agent itself.

Definition 19 (Tower For Dialogues). Let TAS = {AS1, . . . ,ASn} be a
tower of argumentation systems and Agents the set containing all agents. We say
that TAS is a tower for dialogues if for each 1 < i ≤ n and ASi = 〈Li,Ri, cf〉:

– each agent in the set Agents is a constant in Li,
– Li contains the unary predicate axiom and the binary predicates cm and b,
– Ri contains the defeasible inference rules rcm2b and rsbj.

We want the ordering of arguments by conclusive force to be what is called
‘admissible’, i.e. arguments that are firm and strict have strictly more conclu-
sive force than defeasible or plausible arguments, and a strict inference cannot
increase the conclusive force of an argument.

Definition 20 (MAT For Dialogues). Let TAS be a tower for dialogues of
level n and MAT = 〈TAS , {K1, . . . ,Kn}〉 a meta-argumentation theory. We say
that MAT is a Meta-Argumentation Theory for dialogues if for 1 < i ≤ n:
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– Ki contains the axioms that ensure � is admissible,
– if b(me, φ) ∈ Ki, then φ ∈ Ki−1, and
– if φ is an axiom of level i− 1, then axiom(φ) ∈ Ki.

The first constraint ensures that the axioms with respect to the conclusive force
of arguments are in every MAT for dialogues. The second constraint ensures
consistency between what the agent believes and what is in his knowledge base.

4.2 Observing Dialogue Moves

If an agent observes a dialogue move of another agent, then his knowledge base
should be updated. This can be done in several ways. In [7], three so-called accep-
tance attitudes are proposed: (1) if α is credulous, then it accepts the conclusion
of any sub-argument of previously asserted arguments; (2) if α is cautious, then it
only accepts the conclusions of sub-arguments of previously asserted arguments
if α has no attacking argument that is stronger; and, (3) if α is skeptical, then
it only accepts conclusions of sub-arguments of previously asserted argument if
that sub-argument would be acceptable.

If the agent observes another agent claiming an argument A of level i, then
these different acceptance attitudes dictate whether the premises of A are added
to the agent’s knowledge base of level i. If the premises of argument A are added,
then the agent can construct A for itself and possibly other new arguments. An
EAF can then be built to determine what arguments are acceptable.

Regardless of whether the premises of the argument are added to the agent’s
knowledge base, the agent can update the speaker’s commitments in the agent’s
meta-level knowledge base. Following [8], agents use the following commitment
rules to update their knowledge bases when receiving a new dialogue move m. In
contrast to [8], the commitments of agents are stored in the agent’s knowledge
base. For example, if the agent observes agent β claim argument A of level i,
then the agent adds to his knowledge base of level i+ 1 that β is committed to
A’s premises and A’s conclusion.

Definition 21 (Updating Commitments). Let the agent’s meta-argumentation
theory be MAT = 〈TAS , {K1, . . . ,Kn}〉. If the agent observes dialogue move m
on level 1 ≤ i < n, then MAT is updated to

〈
TAS , {K1, . . . ,K′i+1, . . . ,Kn}

〉
such

that:

– if loc(m) = claimi(A), then K′i+1 = Ki+1 ∪ {cm(pl(m), φ) | φ ∈ premises(A)} ∪
{cm(pl(m), conc(A)}

– if loc(m) = whyi(φ), then K′i+1 = Ki+1, i.e. nothing changes
– if loc(m) = concede(φ), then K′i+1 = Ki+1 ∪ {cm(pl(m), φ)}
– if loc(m) = retract(φ), then K′i+1 = Ki+1 \ {cm(pl(m), φ)}

Note that because we have a tower of finite ‘height’, commitments concerning
formulae of the highest level argumentation system cannot be added because
there is no argumentation system on top.
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Using the defeasible inference rule from commitment to belief, the agent can
construct arguments with respect to what the other agent believes. Furthermore,
if the premises of the argument are added to the knowledge base, then the agent
can reconstruct the received argument. Consequently, this argument will be in
the updated argumentation framework of the agent. The arguments on the meta-
level concerning the conclusive force of object-level arguments then have an effect
on what arguments the agent accepts and rejects.

Example 1 (Pizza versus Salad). Consider the introduction example. The tower
of dialogues is 3 high. We have the following statements on level 1: φ1 denotes
that agent α likes gorgonzola, φ2 that α wants to eat pizza, φ3 that salad is
healthier than pizza, φ4 that α wants to eat salad, and φ5 that salad has less
calories than pizza. Note that φ1, φ2 and φ4 are subjective to α.

A1 =
φ1

φ2 A2 =
φ3

φ4 A3 =
φ5

φ3

Because α can only choose one action, φ2 and φ4 are contradictory. Consequently,
A1 and A2 attack each other. Furthermore, meta-level statement A1 ≺ A2 de-
notes that argument A2 is stronger than A1. Agent β starts with object-level
knowledge base {φ3, φ5} and meta-level knowledge base {A1 ≺ A2}. The dia-
logue is as follows: (1) m1 = 〈1, α, claim1(A1), ∅〉, (2) m2 = 〈2, β,why1(φ1), {1}〉,
(3) m3 = 〈3, α, claim1(φ1), {2}〉, (4) m4 = 〈4, β, claim1(A2), {1}〉, (5) m5 =
〈5, β, claim2(A1 ≺ A2), {1, 4}〉, (6) m6 = 〈6, α,why1(φ3), {4}〉, and (7) m7 =
〈7, β, claim1(A3), {6}〉 Note that move m5’s claim is related to the dialogue,
but it does not change the status of any move. Table 1 shows how agent β’s
knowledge base is updated during the dialogue, where Ki denotes the object-
level knowledge base after dialogue move i, K′i the meta-level knowledge base
and K′′i the meta-meta-level knowledge base.

Table 1. Updating the Knowledge Base in a Dialogue

K K′ K′′

K0 = {φ3, φ5} K′0 = {A1 ≺ A2, b(β, φ3), b(β, φ5)} K′′0 = b(β,A1 ≺ A2)
K1 = K0 ∪ {φ1, φ2} K′1 = K′0 ∪ {cm(α, φ1), cm(α, φ2} K′′1 = K′′0
K2 = K1 K′2 = K′1 K′′2 = K′′1
K3 = K2 K′3 = K′2 K′′3 = K′′2
K4 = K3 K′4 = K′3 ∪ {cm(β, φ3), cm(β, φ4} K′′4 = K′′3
K5 = K4 K′5 = K′4 K′′5 = K′′4 ∪ {cm(β,A1 ≺ A2)}
K6 = K5 K′6 = K′5 K′′6 = K′′5
K7 = K6 K′7 = K′6 ∪ {cm(β, φ5)} K′′7 = K′′6

After dialogue move 1, both arguments A1 and A2 can be constructed. How-
ever, because A1 ≺ A2 is in the meta-knowledge base, A1’s attack on A2 is
unsuccessful. Because the meta-level knowledge base stores what β believes and
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other agents’ commitments, β can use all this information to reason about the
relative strength of object-level arguments. If later β finds out that α was lying
about whether he likes gorgonzola, then the relative strength of arguments using
this automatically changes.

4.3 Dialogue Move Selection
Given a dialogue, the protocol determines what dialogue moves are legal, but
a participating agent should also determine what moves are interesting for him
to make. If at a given point in the dialogue multiple dialogue moves are inter-
esting, then the agent should be able to make a decision about what dialogue
move to make. In the introduction example, after α made the initial claim, β
had to decide between asking why α likes gorgonzola or immediately giving the
counterargument of eating the salad. If the agent can select from multiple argu-
ments that he could claim, then an argument selection mechanism like the one
proposed in [13] could be used.

In [7], three different kinds of so-called assertion attitudes are proposed,
which agents can use to determine whether they will assert a proposition in a
dialogue. These attitudes can be adapted to the formalism in this paper w.r.t.
a semantics S as follows: (1) if the agent is confident, then he can claim any
argument he can construct; (2) if the agent is careful, then he can claim any
argument that is defensible or justified under S; and, (3) if the agent is thoughtful,
then he can claim any argument that is justified under S.

Suppose that the agent is participating in dialogue d and that the agent
has updated its meta-argumentation theory and corresponding EAF with all
the dialogue moves that have been made. Using Definition 13, the agent can
extract the set of arguments in d. For each of those arguments, the agent can
compare the argument’s status in the dialogue to the argument’s status in his
own argumentation framework. If these statuses of an argument correspond, then
the dialogue and the agent agree on A. If these statuses of an argument do not
correspond, then there is a need for the agent to make a dialogue move. Table 2
shows the differences between the dialogical status of a dialogue move claiming
an argument A and A’s status in the agent’s EAF.

Table 2. Dialogical Status versus the Status in an Agent’s EAF

Justified Defensible Overruled Invalid

Warranted Agree Weakly agree Disagree Disagree
Not Warranted Disagree Weakly disagree Agree Agree

Depending on the agent’s acceptance attitude, it is possible that an agent
cannot reconstruct an argument that has been claimed in the dialogue because
its premises are not in the agent’s knowledge base. Such an argument is then
invalid for the agent. For each premise φ of an invalid argument, if the agent has
no argument concluding φ, then the dialogue move of asking why φ is interesting.
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If another participant has claimed argument A and A’s conclusion is justified
under S in the agent’s EAF, then the dialogue move of conceding with A’s
conclusion is interesting. If the agent himself is committed to φ, but φ is an
overruled conclusion under S in the agent’s EAF, then the dialogue move of
retracting φ is interesting. If the agent is careful, then he should also retract a
formula if it is a defensible conclusion under S in his EAF.

Let m be an uttered dialogue move that claims argument A. If the agent’s
EAF and the dialogical status of m disagree, then dialogue moves that attack m
are interesting. If the agent’s EAF and the dialogical status weakly agree, then
a confident agent should be interested in moves attacking m and a thoughtful
agent should not reply to m.

5 Conclusion

In this paper we have presented an abstract formalism for reasoning about pref-
erences between arguments using the commitments that other agents make in
dialogue moves. Furthermore, a dialogue framework is proposed in which pref-
erences between arguments can be discussed.

In [5], ASPIC+ is further developed to define attacks on attacks using an ab-
stract function. The meta-argumentation approach of Section 2.2 can be seen as
an instantiation of this abstract function. Section 3 extends the dialogue frame-
work of [8] such that agents can give meta-arguments and a protocol is proposed
that treats subjective and objective statements differently. Agents can discuss
their preferences between arguments using meta-arguments. Finally, Section 4
proposed to represent the sources of information on a meta-level such that agents
can argue about the reliability of sources and its impact on the conclusive force
of arguments. This approach is more robust against manipulation because the
agent can reason about trustworthiness of sources and its effect on arguments.
Also, if new information is obtained or if an agent retracts a claim, then it is
straightforward to update the knowledge base.

In many domains it is common that there are multiple arguments with the
same conclusion. For example, when making a decision, there may be multiple
arguments in favor and against a decision, or when determining the conclusive
force of an argument, there may be multiple sources that believe some premise.
In such cases, arguments need to be accrued. Several approaches such as [9] and
[4] address the accrual of arguments, which needs to be added to our framework.

By using towers of argumentation systems, there is a risk that a tower of
infinite height is required because it is always possible to reason about preferences
between arguments on a higher level. This issue should be addressed. In this
paper we have only addressed comparing the conclusive force of arguments, but
meta-argumentation systems could also be used to reason about whether an
argument has an acceptable amount of conclusive force (a proof standard) to be
even considered. Adding this requires that meta-arguments can attack object-
arguments. The effect of this is that the resulting EAF is not hierarchical.

167



Bibliography

[1] K. Atkinson, T. Bench-Capon, and P. McBurney. Computational represen-
tation of practical argument. Synthese, 152(2):157–206, 2006.

[2] P.M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77(2):321–358, 1995.

[3] J.-J. Ch. Meyer and W. Van Der Hoek. Epistemic logic for AI and computer
science. Cambridge Univ Pr, 2004.

[4] S. Modgil and T. Bench-Capon. Integrating Dialectical and Accrual Modes
of Argumentation. In 3rd International Conference on Computational Mod-
els of Argument (COMMA 2010), 2010.

[5] S. Modgil and H. Prakken. Reasoning about preferences in structured ex-
tended argumentation frameworks. In Giacomin & Simari Baroni, Cerutti,
editor, Computational Models of Argument. Proc. of COMMA 2010, pages
347–358. IOS Press, 2010.

[6] Sanjay Modgil. Reasoning about preferences in argumentation frameworks.
Artificial Intelligence, 173(9-10):901 – 934, 2009.

[7] S. Parsons, M. Wooldridge, and L. Amgoud. Properties and complexity
of some formal inter-agent dialogues. Journal of Logic and Computation,
13(3):347–376, 2003.

[8] H. Prakken. Coherence and flexibility in dialogue games for argumentation.
Journal of Logic and Computation, 15(6):1009, 2005.

[9] H. Prakken. A study of accrual of arguments, with applications to evidential
reasoning. In Proceedings of the 10th International Conference on A.I. and
Law, pages 85–94. ACM NY, USA, 2005.

[10] H. Prakken. An abstract framework for argumentation with structured
arguments. Argument and Computation, 1(2):93–124, 2010.

[11] C. Sierra, N. Jennings, P. Noriega, and S. Parsons. A framework for
argumentation-based negotiation. Intelligent Agents IV Agent Theories,
Architectures, and Languages, pages 177–192, 1998.

[12] G.A.W. Vreeswijk. Abstract argumentation systems. Artificial Intelligence,
90(1-2):225–279, 1997.

[13] T. L. van der Weide, F. Dignum, J.-J. Ch. Meyer, H. Prakken, and
G. Vreeswijk. Multi-criteria argument selection in persuasion dialogues.
In Stone Yolum, Turner and Sonenberg, editors, Proc. of 10th Int. Conf. on
Autonomous Agents and Multiagent Systems (AAMAS 2011), to appear.

[14] T.L. van der Weide, F. Dignum, J.-J. Ch. Meyer, H. Prakken, and G. A. W.
Vreeswijk. Arguing about preferences and decisions. In Proc. of the 7th Int.
Workshop on Argumentation in Multi-Agent Systems (ArgMAS 2010), 2010.

[15] M. Wooldridge, P. McBurney, and S. Parsons. On the meta-logic of argu-
ments. In Argumentation in Multi-Agent Systems 2005, volume 4049/2006
of LNCS, pages 42–56. Springer Berlin / Heidelberg, 2005.

168


