
Harmonic Analysis of Boolean Functions, and applications in CS

Lecture -8
April 28, 2008

Lecturer: Guy Kindler Scribe by: Shira Kritchman Updated: May 11, 2008

Last lecture we finished proving Kalai’s theorem, and started to talk about codes and
code testing. This lecture we continue talking about codes. More specifically, we define the
Hadamard code and examine the linearity test for it. Finally, we define the notion of testing
constraints, and suggest a test for equality on the Hadamard code.

1 The long code - Revision

In this section we mostly revise material from the previous lecture. We define the notions
of code family and code testing, and we learn about the long code.

Definition 1 (Code and code family) A code is a set of strings over some alphabet Σ
(in this course Σ = {±1}). A code family is a set of codes with unbounded size (where size
refers to the number of words in a code).

We will refer to an element of a code as a code word. To a general string we will sometimes
refer as just word.

Note that usually we speak of a family of codes without explicitly indexing each member.
That is, we discuss some code C which implicitly depends on n, and should be properly
denoted C(n).

Definition 2 (Code tester) A q-query code tester for a code C, with completeness para-
meter c and soundness parameter s, is a random procedure T , which reads q locations from
a string f and either accepts or rejects the string, and satisfies:
(completeness) f ∈ C ⇒ Pr[T faccepts] > c
(soundness) Pr[T faccepts] > s ⇒ ”There exists a reasonable decoding for f”.

Note that ’reasonable decoding’ wasn’t well defined. It can mean that the word is very close
to some unique code word, or that it has high correlation with some code word and with
not too many code words, or even more generally, that there is a not too long list of code
words which are somehow related to f .

In theoretical computer science, code testers are important as a tool often used in the
analysis of hardness of approximation.

The first code that we define is the long code. The strings in the set {±1}2n
can be

understood as truth tables describing all the Boolean functions on n variables. The long
code is the set of all f ∈ {±1}2n

that describe dictatorships:

Definition 3 (Long code)

C = {χi}i∈[n] ⊆ {±1}2n

-8-1

We now describe a test for a code similar to the long code - the set of all dictatorships
and minus dictatorships,

C̃ = {χi}i∈[n] ∪ {−χi}i∈[n]

Before we describe the test, we should recall some more definitions.

Definition 4 (The Not All Equal function) NAE is the boolean function on {±1}3

which equals −1 on (x, y, z) iff x = y = z.

Definition 5 (The set ψ) ψ is the set of all legal votes,

ψ =
{

(x,y, z) ∈ ({±1}n)3
∣∣∣∀i NAE(xi, yi, zi) = 1

}

We are now ready to define the NAE test for the code C̃.

Definition 6 (NAE test) Given f ∈ {±1}, pick uniformly at random x,y, z ∈ ψ, and
accept iff NAE (f(x), f(y), f(z)) = 1.

Denote the test by TNAE . Clearly, the NAE test has completeness c = 1:

(Completeness) f ∈ C̃ ⇒ Pr[T f
NAE accepts] = 1.

From Kalai’s theorem (which we phrased in lecture #7 and proved in lectures #7 and #8),
we know that if Pr[T f

NAE accepts] > 1 − ε then f is kε-close to a code word. From this it
follows easily that:

(Soundness) ∀δ there exists s(δ) such that if Pr[T f
NAE accepts] > s(δ) then ∃i ∈ [n] for

which
∣∣∣f̂(i)

∣∣∣ > 1− δ.

Note that if f̂(i) > 1− δ, then f is close to the dictatorship function χi:

||f − χi||22 =
∑

S 6={i}
f̂(S)2 + (f̂(i)− 1)2 = 1− f̂(i)2 + (f̂(i)− 1)2 = 2− 2f̂(i) ≤ 2δ

and thus the Hamming distance between f and χi is small:

Pr
x

[f(x) 6= χi(x)] =
||f − xi||22

4
≤ δ

2

(similarly, if −f̂(i) > 1− δ, then f is close to −χi).

2 The Hadamard code

In this section we define the Hadamard code and examine the linearity test for it.
The Hadamard code is the set of all Boolean functions on n variables which are charac-

ters:

-8-2

Definition 7 (Hadamard code)

C = {χs}s⊆n ⊆ {±1}2n

We suggest testing it using the 3-query linearity test:

Definition 8 (Linearity test) Given f : {±1}n → {±1}, pick uniformly at random
x,y ∈ {±1}n, and accept iff f(x)f(y) = f(xy).

We now discuss the properties of the linearity test. We denote it by Tlin. Clearly, the
linearity test has completeness c = 1:

(Completeness) f is a character ⇒ Pr[T f
lin accepts] = 1.

As usual, we have to work harder to show soundness.

(Soundness) Here we wish to say something about f given that the probability of ac-
cepting f is high. We consider two cases: Pr[T f

lin accepts] > 1 − δ, where δ is small, and
Pr[T f

lin accepts] ≥ 1
2 + δ. We present two soundness lemmas dealing with the two cases.

Lemma 9 (Soundness lemma I for linearity test) If Pr[T f
lin accepts] > 1 − δ then

∃S ⊆ [n] such that f̂S > 1− δ.

Proof We wish to represent the acceptance probability as a function of the Fourier
coefficients. Note that the test accepts iff f(x)f(y)f(xy) = 1. Thus,

E[f(x)f(y)f(xy)] = Pr[T f
lin accepts]− Pr[T f

lin rejects] = 2 Pr[T f
lin accepts]− 1

Repeating what we have seen in the second exercise,

Ex,y[f(x)f(y)f(xy)] = Ex,y

{[∑

S

f̂(S)χS(x)

] [∑

T

f̂(T)χT (y)

][∑

R

f̂(R)χR(xy)

]}

=
∑

S,T,R

f̂(S)f̂(T)f̂(R)E[χS(x)χT (y)χR(xy)]

=
∑

S

f̂(S)3

Thus, if Pr[T f
lin accepts] > 1 − δ then

∑
S f̂(S)3 = 2Pr[T f

lin accepts] − 1 > 1 − 2δ. Since∑
S f̂(S)3 ≤ maxS{f̂(S)} ·∑S f̂(S)2 = maxS{f̂(S)}, we get that if the acceptance proba-

bility is higher than 1− δ, then there exists S ⊆ [n] such that f̂(S) > 1− 2δ.
Note that if δ is small (smaller than

(
1− 1/

√
2
)
/2 = 0.146), then S is unique. In this

case χS provides a unique decoding for f .

Lemma 10 (Soundness lemma II for linearity test) If Pr[T f
lin accepts] > 1

2 + δ then
∃S ⊆ [n] such that f̂(s) > 2δ.

-8-3

Proof This follows immediately from the previous lemma: Pr[T f
lin accepts] ≥ 1

2 + δ =
1− (

1
2 − δ

)
and hence maxS{f̂(S)} ≥ 1− 2

(
1
2 − δ

)
= 2δ.

It seems that the second soundness lemma doesn’t say much - when δ is small, there
could be many Fourier coefficients greater than 2δ. But since

∑
S f̂(S)2 = 1, there could

be no more than 1
4δ2 such coefficients. To each χS such that f̂(S) ≥ 2δ we call a reasonable

decoding. The list of reasonable decodings provides a list decoding - a non-empty yet not
too long list of reasonable decodings.

Remark What if we know that Pr[T f
lin accepts] ≤ 1

2 − δ? Then Pr[T−f
lin accepts] =

1− Pr[T f
lin accepts] ≥ 1

2 + δ, hence ∃S ⊆ [n] such that −f̂(S) > 2δ.

In exercise #4 we will see an interesting code which has a 2-query test.

3 Testing constraints

In this section we define the notions of constraint and constraint tester, and suggest a test
for equality on the Hadamard code.

Definition 11 (Constraint) A constraint between two codes C1 and C2 is a relation R
between them as sets. That is, f ∈ C1 and g ∈ C2 satisfy the constraint if fRg.

A simple example for a constraint is C1 = C2 = C the Hadamard code, and f, g ∈ C
satisfy the constraint if f = g.

Intuitively, a constraint tester is a procedure that receives as input two strings f and g,
and checks whether (1) f ∈ C1, (2) g ∈ C2 and (3) fRg. Therefore, a constraint tester is
similar to a Kind(l)er egg. To define things more rigorously, we need a few more definitions.

Definition 12 (Constraint collection) A constraint collection on two codes C1 and C2

is a set of relations over C1 and C2,

R = {Rλ}λ∈Λ

(again, we have an implicit dependence on n. That is, Ci is C
(n)
i , and R is R(n)).

Definition 13 (Decoding scheme) A decoding scheme for a code C is a map D such
that for any string f , D(f) is a distribution over C ∪ {⊥}.

We are now ready to define the notion of a constraint tester.

Definition 14 (Constraint tester) A q-query constraint tester for codes C1 and C2 and
a constraint family R = {Rλ}λ∈Λ, with completeness parameter c and soundness parameter
s, is a random procedure T , which reads λ ∈ Λ and q locations from strings f and g, and
either accepts or rejects, and satisfies:
(completeness) f ∈ C1, g ∈ C2 and fRλg ⇒ Pr[T f,g(λ)accepts] > c

-8-4

(soundness) T has soundness s = s(δ) for δ-satisfaction rate, if there exist decoding schemes
D1, D2 for C1, C2 such that

Pr
randomness of T

[T f,g(λ) accepts] ≥ s ⇒ Pr
f ′∼D1(f),g′∼D2(g)

[f ′Rg′] ≥ δ.

We now construct a 3-query test for identity between Hadamard words. That is, given
f and g, we want to test if they are characters, and if f = g, reading only three bits.

Definition 15 (Testing linearity between Hadamard words) Given f and g pick uni-
formly at random x,y ∈ {±1}n, and accept iff f(x)f(y) = g(xy).

We now discuss the properties of this test. We denote it by Teq. Clearly, the test has
completeness parameter c = 1:

(Completeness) f, g ∈ C and f = g ⇒ Pr[T f,g
eq accepts] = 1.

As for soundness, we show the following:

(Soundness) If Pr[T f,g
eq accepts] > 1 − δ then there exist (reasonable) decoding schemes

D1 and D2 such that (when δ is small enough) Prf ′∼D1,g′∼D2 [f
′ = g′] is ’large’.

Proof Suppose Pr[T f,g
eq accepts] > 1− δ, then

∑

S

f̂(S)2ĝ(S) = E[f(x)f(y)g(xy)] = 2 Pr[T f,g
eq accepts]− 1 > 1− 2δ

This is a weighted mean of the coefficients of g, and hence there exists some S ⊆ [n] such
that ĝ(S) > 1− 2δ. If δ is small enough, then S is unique and we denote it S∗. Let D2 be
the decoding scheme which returns χS∗ . As for f , we suggest two different decoding schemes:

(1) Note that by the Cauchy-Schwarz inequality,
∑

S

∣∣∣f̂(s)ĝ(S)
∣∣∣ ≤ ||f2|| · ||g2|| = 1, and

therefore

max
S
{f̂(S)} ≥ max

S
{f̂(S)}

∑

S

∣∣∣f̂(S)ĝ(S)
∣∣∣ ≥

∑

S

f̂(S)2ĝ(S) > 1− 2δ

So again, if δ is small enough, ∃!S∗∗ such that f̂(S∗∗) > 1−2δ. Hence, let D1 be the decod-
ing scheme which returns χS∗∗ . If δ is small enough then we must have S∗ = S∗∗ (because
otherwise

∑
S f̂(S)2ĝ(S) is too small). Hence we get that Prf ′∼D1(f),g′∼D2(g)[f ′Rg′] = 1.

(2)
∑

S f̂(S)2 = 1, hence it defines a probability distribution over 2[n]. Let D1 be the
decoding scheme returning χS with probability f̂(S)2. Then

Pr
f ′∼D1,g′∼D2

[f ′ = g′] = Pr[f ′ = χS∗] = f̂(S∗)2

-8-5

This is large since ĝ(S∗) > 1 − 2δ, and therefore maxS 6=S∗{ĝ(S)} <
√

1− (1− 2δ)2 =
2
√

δ − δ2, and therefore

f̂(S∗)2ĝ(S∗) > 1− 2δ −
∑

S 6=S∗
f̂(S)2ĝ(S) ≥ 1− 2δ − max

S 6=S∗
{ĝ(S)} > 1− 2δ − 2

√
δ − δ2.

This gives

Pr
f ′∼D1,g′∼D2

[f ′ = g′] = f̂(S∗)2 >
1− δ − 2

√
δ − δ2

ĝ(S∗)
≥ 1− 2δ − 2

√
δ − δ2.

-8-6

