Harmonic Analysis of Boolean Functions, and applications in CS

Lecture 4
March 1, 2008
Lecturer: Guy Kindler
Scribe by: Ofira Burstein
Updated: April 6, 2008

At a previous lecture there was shown that for each function over a discrete cube there exists a single way to represent it as polynomial.

That's: $\forall \mathrm{f}:\{ \pm 1\}^{n} \rightarrow \Re \exists \mathrm{f}(\mathrm{x})=\sum \hat{f} \prod_{x \in S^{\mathrm{x}}}$ That means that: $\mathrm{I}(\mathrm{f})=\left\|\frac{f-\sigma i f}{2}\right\|_{2}^{2}$ - directly from computation Looking at the above formula makes a lot of sense. It generalizes the Influence formula of boolean function. In case of boolean function it is probability that $\mathrm{f}(\mathrm{x}) \neq \mathrm{f}\left(\mathrm{xe}_{i}\right)$

$$
\begin{equation*}
\sigma_{i} x_{s}=\underbrace{x_{s} i \notin S,-x_{s} i \in S} \tag{1}
\end{equation*}
$$

σ_{i} is linear operator. Thus,

$$
\begin{equation*}
I_{i}(f)=\left\|\frac{f-\sigma i f}{2}\right\|_{2}^{2}=\left\|\sum_{s: i \in S} f(s) \chi_{s}\right\|_{2}^{2}=\sum_{i \in S} \hat{f}(s)^{2} \tag{2}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
I i(f)=\sum_{S \subseteq[n]}|s| \hat{f}(s)^{2} \tag{3}
\end{equation*}
$$

Thus, if $V(f)=I(f)$ then f is linear:

$$
\begin{equation*}
f=\hat{f}(\phi)+\sum \hat{f}(i) \chi_{i} \tag{4}
\end{equation*}
$$

From here it is understandable:

$$
\begin{equation*}
f(x)=a_{0}+\sum_{n}^{i=1} a_{i} x_{i} \tag{5}
\end{equation*}
$$

Claim 1 If \boldsymbol{f} is Boolean linear function, then \boldsymbol{f} is a dictatorship. This keeps also for almost linear case, and the proof will lead us to it.

Remark

$$
\begin{equation*}
\chi_{\phi}=\prod_{x \in \phi} x_{i}=1 \tag{6}
\end{equation*}
$$

Proof Write

$$
\begin{equation*}
f=a_{0}+\sum_{\chi_{i}(x)=x_{i}} a_{i} x_{i} \tag{7}
\end{equation*}
$$

We want to pick one \mathbf{i} item from it and prove that all other are zeros. We will choose for it i with the highest weight. Assume without loss of generality that:

$$
\begin{equation*}
\left|a_{1}\right|>\left|a_{2}\right|>\ldots \geq\left|a_{n}\right| \tag{8}
\end{equation*}
$$

We should prove that $a_{2}=0$, and then $a_{3}, a_{4}, \ldots=0$ also. If $a_{2} \neq 0$ (otherwise we are done) then $\left|a_{2}\right| \leq \frac{1}{\sqrt{2}}$ That's because:

$$
\begin{equation*}
\|f\|_{2}^{2}=\sum a_{i}^{2}+a_{0}^{2}=1 \tag{9}
\end{equation*}
$$

(Because it's 2-norm of \mathbf{f} and \mathbf{f} is boolean. So according to Parseval's theorem the above equality keeps). In particular $a_{1}^{2}+a_{2}^{2} \leq 1$ and $a_{1}^{2}>a_{2}^{2}$. Thus, $a_{2}^{2} \leq \frac{1}{2}$. Thus, $\left\|a_{2}\right\| \leq$ $\frac{1}{\sqrt{2}}$. Hence, for every $x \in\{ \pm 1\}^{n}$ either $\mathrm{f}(\mathrm{x})$ is non-boolean, or $\mathrm{f}(\mathrm{x})$ is boolean, but then: $f\left(x e_{2}\right)=f(x)-2 x_{2} a_{2}$ is not boolean. Remark $\mathrm{f}(\mathrm{x})$ is some $a_{i} x_{i}$ For every x either $\mathrm{f}(\mathrm{x})$ or $f\left(x e_{i}\right)$ is "'far"' from Boolean. The best hope is that a_{2} is small number, so that $f\left(x e_{2}\right) \approx f(x) \quad\|f(x)-\operatorname{sign}(f(x))\| \geq c\left\|a_{2}\right\|$ or $\left\|f\left(x e_{2}\right)-\operatorname{sign}\left(f(x) e_{2}\right)\right\| \geq c\left\|a_{2}\right\|$. This is a contradiction $\Rightarrow a_{2}=\ldots=a_{n}=0 \Rightarrow \chi_{\phi}=\prod_{x \in \phi} x_{i}=1$
Corollary 2 Thus, if $a_{2} \neq 0$, then a distance from boolean function is at least a_{2}.
Remark Since $f=\sum \hat{f}(s) \chi_{s}$, we define $f \leq k=\sum_{s,|s| \leq k} \hat{f}(s) \chi_{s}$ - k-head of f and $f^{>k}=$ $\sum_{s,|s|>k} \hat{f}(s) \chi_{s}$ - k-tail of f . Hence, $f=f^{\leq k}+f^{>k}$

$$
\begin{equation*}
\left\|f^{>k}\right\|_{2}^{2}+\left\|f^{\leq k}\right\|_{2}^{2}=\|f\|_{2}^{2} \tag{10}
\end{equation*}
$$

This holds because low-degree part and high-degree part are orthogonal. To verify it we can write Parseval's equality and check it. If k -tail is small, then most of the weight of \mathbf{f} is in k-head. \mathbf{f} is 'close' to deg-k if $\left\|f^{>k}\right\|_{2}^{2}$ is small.

Theorem 3 The FKN(Friedqut, Kalai, Naor) theorem: There exists global const C_{0} with the following property: If $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ has $\left\|f^{>1}\right\|^{2}<\epsilon<0.000001$ (i.e. \boldsymbol{f} is almost linear) then \boldsymbol{f} is close to dicatatorship $\left\|f-\left(\hat{f}(\phi)+\hat{f}\left(i^{*} \chi_{i^{*}}\right)\right)\right\|_{2}^{2} \leq C_{0} \epsilon$, when i^{*} is selected such that $\left|\hat{f}\left(i_{*}\right)\right|=\max _{i}|\hat{f}(i)|$

Remark The question is if there is another dictatorship to which \mathbf{f} is close. The answer is negative, and it can be proved using Parseval. On the other hand, $\|f\|_{2}^{2}=1$.If we have 2 dictatorships close to \mathbf{f}, they will weight both close to 1 . Thus, we have 2 different functions with weight close to 1 . It can happen only if the constant coefficient $\left(a_{0}\right)$ is close to 1 . But it means that both dictatorships are the same.

Remark Question: Is there a transitive boolean function \mathbf{f} with $\|f=1\|_{2}^{2}>$ const >0 ? Is there really a threshold here ? Answer: Yes! $\left\|M a j^{=1}\right\|_{2}^{2}=$ const $>0 \Rightarrow\left\|M a j^{>1}\right\|_{2}^{2}=$ 1 - const.

Remark When $\left\|f^{=1}\right\|_{2}^{2} \nearrow 1\left\|f^{>1}\right\|_{2}^{2} \searrow 0$. Small weight of $f^{>1}$ forces us to particular structure of the function.

Proof Let M=Maj. Then:

$$
\begin{equation*}
\hat{M}(1)=\left\langle M, \chi_{1}\right\rangle=E_{x}\left[M(x) \chi_{1}\right]=E_{x-1}\left[E_{x_{1}}\left[M(x) \chi_{1}\right]\right] \tag{11}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
E_{x-1}\left[E_{x_{1}}\left[M(x) \chi_{1}\right]\right]=E_{x-1}[\underbrace{\frac{1}{2} M(1, x-1)}_{\text {casex }_{1}=1}-\underbrace{\frac{1}{2} M(-1, x-1)}_{\text {casex } 1=-1}] \tag{12}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
E_{x-1}[\underbrace{\frac{1}{2} M(1, x-1)}_{\text {casex } 1=1}-\underbrace{\frac{1}{2} M(-1, x-1)}_{\text {casex }_{1}=-1}]=\operatorname{Pr}_{x-1}[M(1, x=1) \neq M(-1, x-1)] \tag{13}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\operatorname{Pr}_{x-1}[M(1, x=1) \neq M(-1, x-1)]=\operatorname{Pr}_{x}\left[M(x) \neq M\left(x e_{1}\right)\right]=I_{1}(M) \tag{14}
\end{equation*}
$$

The above is correct because of monotoness of Maj function. Since Maj is monotone, $\underbrace{\frac{1}{2} M(1, x-1)}_{\text {case } x_{1}=1}-\underbrace{\frac{1}{2} M(-1, x-1)}_{\text {casex } x_{1}=-1}$ is 0 when $\mathrm{M}(1, \mathrm{x}-1)=\mathrm{M}(-1, \mathrm{x}-1)$, and 1 otherwise.

Corollary 4 We proved that for \boldsymbol{f} Boolean and monotone, $\hat{f}(i)=I_{i}(f) \hat{M}(1)=I_{1}(M)=$ $\frac{\text { const }}{\sqrt{n}}$ - From homework Therefore: $\sum_{i} \hat{M}(i)^{2}=\left\|M^{=1}\right\|_{2}^{2}=(\text { const })^{2}>0$
Proof [Proof of closeness to boolean dictatorship] Will not be done fully in this lesson, but some parts of it will be collected.

Claim $52 *|a| *|b| \leq a^{2}+b^{2}$
Proof Trivial

$$
\begin{equation*}
\|f+g\|_{2}^{2}=\langle f+g, f+g\rangle=\langle f, f\rangle+\langle g, g\rangle+2\langle f, g\rangle=\|f\|_{2}^{2}+\|g\|_{2}^{2}+2\langle f, g\rangle \tag{15}
\end{equation*}
$$

By Cauche-Shcwarts:

$$
\begin{equation*}
\|f\|_{2}^{2}+\|g\|_{2}^{2}+2\langle f, g\rangle \leq\|f\|_{2}^{2}+\|g\|_{2}^{2}+2\|f\|\|g\| \tag{16}
\end{equation*}
$$

By claim above:

$$
\begin{equation*}
\|f\|_{2}^{2}+\|g\|_{2}^{2}+2\|f\|\|g\| \leq 2\|f\|_{2}^{2}+\|g\|_{2}^{2} \tag{17}
\end{equation*}
$$

Corollary $6\|f+g\|_{2}^{2} \leq 2\|f\|_{2}^{2}+\|g\|_{2}^{2}$
Using this corrolary we get:
$f-\operatorname{sign}\left(\left\|\hat{f}(\phi)+\hat{f}\left(i^{*} \chi_{i^{*}} \|_{2}^{2}\right) \leq 2\right\| f-\left(\hat{f}(\phi)+\hat{f}\left(i^{*}\right) \chi_{i^{*}}\right)\left\|_{2}^{2}+2\right\| \hat{f}(\phi)+\chi_{i^{*}}-\operatorname{sign}\left(\hat{f}_{i^{*}}(\phi)+\hat{f} i^{*} \chi_{i^{*}}\right) \|_{2}^{2}\right.$
If f Boolean then $\forall g\|g-\operatorname{sign}(g)\|_{2}^{2} \leq\|g-f\|_{2}^{2}$
$2\left\|f-\left(\hat{f}(\phi)+\hat{f}\left(i^{*}\right) \chi_{i^{*}}\right)\right\|_{2}^{2}+2\left\|\hat{f}(\phi)+\chi_{i^{*}}-\operatorname{sign}\left(\hat{f}_{i^{*}}(\phi)+\hat{f} i^{*} \chi_{i^{*}}\right)\right\|_{2}^{2} \leq 4\left\|f-\hat{f}(\phi)+\hat{f}\left(i^{*}\right) \chi_{i^{*}}\right\|_{2}^{2}$
Forgetting $f^{>1}$

$$
\begin{equation*}
\left\|f-\left(a_{0}+a_{i} \chi_{i}\right)\right\|_{2}^{2} \leq 2\left\|f-f^{\leq 1}\right\|_{2}^{2}+2\left\|f^{\leq 1}-\left(a_{0}+a_{i} \chi_{i}\right)\right\|_{2}^{2} \tag{20}
\end{equation*}
$$

Since $2\left\|f-f^{\leq 1}\right\|_{2}^{2}=2\left\|f^{>1}\right\|_{2}^{2}<\epsilon$, it is enough to show that $2\left\|f \leq 1-\left(a_{0}+a_{i} \chi_{i}\right)\right\|_{2}^{2} \leq C_{0} \epsilon$

$$
\begin{equation*}
\left\|f_{\leq 1}-\operatorname{sign}\left(f_{\leq 1}\right)\right\|_{2}^{2} \leq\left\|f_{\leq 1}-f\right\|_{2}^{2}=\|f\|_{2}^{2}<\epsilon \tag{21}
\end{equation*}
$$

To prove the theorem it's enough to prove the following sub-theorem:
Theorem 7 If $f_{\leq 1}=a_{0}+\sum a_{i} x i, \sum a_{i}^{2} \leq 1$, and $\left\|f_{\leq 1}-\operatorname{sign}\left(f_{\leq 1}\right)\right\|_{2}^{2} \leq \epsilon$, then $\left.\| f_{\leq 1}-\left(a_{0}+a_{i^{*}} \chi_{i^{*}}\right)\right) \|_{2}^{2}<$ $\epsilon(1+\Theta(\epsilon))$

