Harmonic Analysis of Boolean Functions, and applications in CS

Lecture 4							
March 1, 2008							
Lecturer: Guy Kindler	Scribe by: Ofira Burstein	Updated: April 6, 2008					

At a previous lecture there was shown that for each function over a discrete cube there exists a single way to represent it as polynomial.

That's: $\forall f: \{\pm 1\}^n \to \Re \exists f(x) = \sum \hat{f} \prod_{x \in S} x$ That means that: $I_i(f) = \left\| \frac{f - \sigma_i f}{2} \right\|_2^2$ - directly from computation Looking at the above formula makes a lot of sense. It generalizes the Influence formula of boolean function. In case of boolean function it is probability that $f(x) \neq f(x_i)$

$$\sigma_i x_s = \underbrace{x_s i \notin S, -x_s i \in S}_{(1)}$$

 σ_i is linear operator. Thus,

$$I_{i}(f) = \left\| \frac{f - \sigma_{i}f}{2} \right\|_{2}^{2} = \left\| \sum_{s:i \in S} f(s)\chi_{s} \right\|_{2}^{2} = \sum_{i \in S} \hat{f}(s)^{2}$$
(2)

Thus,

$$I_i(f) = \sum_{S \subseteq [n]} |s| \,\hat{f}(s)^2 \tag{3}$$

Thus, if V(f)=I(f) then f is linear:

$$f = \hat{f}(\phi) + \sum \hat{f}(i)\chi_i \tag{4}$$

From here it is understandable:

$$f(x) = a_0 + \sum_{n=1}^{i=1} a_i x_i$$
(5)

Claim 1 If f is Boolean linear function, then f is a dictatorship. This keeps also for almost linear case, and the proof will lead us to it.

Remark

$$\chi_{\phi} = \prod_{x \in \phi} x_i = 1 \tag{6}$$

Proof Write

$$f = a_0 + \sum_{\chi_i(x)=x_i} a_i x_i \tag{7}$$

We want to pick one \mathbf{i} item from it and prove that all other are zeros. We will choose for it \mathbf{i} with the highest weight. Assume without loss of generality that:

$$a_1| > |a_2| > \ldots \ge |a_n| \tag{8}$$

We should prove that $a_2 = 0$, and then $a_3, a_4, \ldots = 0$ also. If $a_2 \neq 0$ (otherwise we are done) then $|a_2| \leq \frac{1}{\sqrt{2}}$ That's because:

$$||f||_2^2 = \sum a_i^2 + a_0^2 = 1 \tag{9}$$

(Because it's 2-norm of **f** and **f** is boolean. So according to Parseval's theorem the above equality keeps). In particular $a_1^2 + a_2^2 \leq 1$ and $a_1^2 > a_2^2$. Thus, $a_2^2 \leq \frac{1}{2}$. Thus, $||a_2|| \leq \frac{1}{\sqrt{2}}$. Hence, for every $x \in \{\pm 1\}^n$ either f(x) is non-boolean, or f(x) is boolean, but then: $f(xe_2) = f(x) - 2x_2a_2$ is not boolean. **Remark** f(x) is some a_ix_i For every x either f(x) or $f(xe_i)$ is "far" from Boolean. The best hope is that a_2 is small number, so that $f(xe_2) \approx f(x) ||f(x) - sign(f(x))|| \geq c ||a_2||$ or $||f(xe_2) - sign(f(x)e_2)|| \geq c ||a_2||$. This is

a contradiction $\Rightarrow a_2 = \ldots = a_n = 0 \Rightarrow \chi_{\phi} = \prod_{x \in \phi} x_i = 1$

Corollary 2 Thus, if $a_2 \neq 0$, then a distance from boolean function is at least a_2 .

Remark Since $f = \sum \hat{f}(s)\chi_s$, we define $f^{\leq k} = \sum_{s,|s| \leq k} \hat{f}(s)\chi_s$ - k-head of f and $f^{>k} = \sum_{s,|s|>k} \hat{f}(s)\chi_s$ - k-tail of f. Hence, $f = f^{\leq k} + f^{>k}$

$$\left\|f^{>k}\right\|_{2}^{2} + \left\|f^{\leq k}\right\|_{2}^{2} = \|f\|_{2}^{2}$$
(10)

This holds because low-degree part and high-degree part are orthogonal. To verify it we can write Parseval's equality and check it. If k-tail is small, then most of the weight of **f** is in k-head. **f** is 'close' to deg-k if $||f^{>k}||_2^2$ is small.

Theorem 3 The FKN(Friedqut, Kalai, Naor) theorem: There exists global const C_0 with the following property: If $f : \{\pm 1\}^n \to \{\pm 1\}$ has $||f^{>1}||^2 < \epsilon < 0.000001$ (i.e. f is almost linear) then f is close to dicatatorship $||f - (\hat{f}(\phi) + \hat{f}(i^*\chi_{i^*}))||_2^2 \leq C_0\epsilon$, when i^* is selected such that $|\hat{f}(i_*)| = \max_i |\hat{f}(i)|$

Remark The question is if there is another dictatorship to which **f** is close. The answer is negative, and it can be proved using Parseval. On the other hand, $||f||_2^2 = 1$. If we have 2 dictatorships close to **f**, they will weight both close to 1. Thus, we have 2 different functions with weight close to 1. It can happen only if the constant coefficient (a_0) is close to 1. But it means that both dictatorships are the same.

Remark Question: Is there a transitive boolean function **f** with $||f^{=1}||_2^2 > const > 0$? Is there really a threshold here ? Answer: **Yes!** $||Maj^{=1}||_2^2 = const > 0 \Rightarrow ||Maj^{>1}||_2^2 = 1 - const.$ **Remark** When $||f^{-1}||_2^2 \nearrow 1 ||f^{>1}||_2^2 \searrow 0$. Small weight of $f^{>1}$ forces us to particular structure of the function.

Proof Let M=Maj. Then:

$$\hat{M}(1) = \langle M, \chi_1 \rangle = E_x \left[M(x)\chi_1 \right] = E_{x-1} \left[E_{x_1} \left[M(x)\chi_1 \right] \right]$$
(11)

Thus,

$$E_{x-1}\left[E_{x_1}\left[M(x)\chi_1\right]\right] = E_{x-1}\left[\underbrace{\frac{1}{2}M(1,x-1)}_{casex_1=1} - \underbrace{\frac{1}{2}M(-1,x-1)}_{casex_1=-1}\right]$$
(12)

Thus,

$$E_{x-1}\left[\underbrace{\frac{1}{2}M(1,x-1)}_{casex_1=1} - \underbrace{\frac{1}{2}M(-1,x-1)}_{casex_1=-1}\right] = Pr_{x-1}\left[M(1,x=1) \neq M(-1,x-1)\right]$$
(13)

Thus,

$$Pr_{x-1}\left[M(1,x=1) \neq M(-1,x-1)\right] = Pr_x\left[M(x) \neq M(xe_1)\right] = I_1(M)$$
(14)

The above is correct because of monotoness of Maj function. Since Maj is monotone, $\underbrace{\frac{1}{2}M(1,x-1)}_{casex_1=1} - \underbrace{\frac{1}{2}M(-1,x-1)}_{casex_1=-1}$ is 0 when M(1, x-1) = M(-1, x-1), and 1 otherwise.

Corollary 4 We proved that for **f** Boolean and monotone, $\hat{f}(i) = I_i(f)$ $\hat{M}(1) = I_1(M) = \frac{const}{\sqrt{n}}$ - From homework Therefore: $\sum_i \hat{M}(i)^2 = ||M^{-1}||_2^2 = (const)^2 > 0$

Proof [Proof of closeness to boolean dictatorship] Will not be done fully in this lesson, but some parts of it will be collected. \blacksquare

Claim 5 $2 * |a| * |b| \le a^2 + b^2$

Proof Trivial

$$\|f + g\|_{2}^{2} = \langle f + g, f + g \rangle = \langle f, f \rangle + \langle g, g \rangle + 2 \langle f, g \rangle = \|f\|_{2}^{2} + \|g\|_{2}^{2} + 2 \langle f, g \rangle$$
(15)

By Cauche-Shcwarts:

$$\|f\|_{2}^{2} + \|g\|_{2}^{2} + 2\langle f, g \rangle \leq \|f\|_{2}^{2} + \|g\|_{2}^{2} + 2\|f\|\|g\|$$
(16)

By claim above:

$$|f||_{2}^{2} + ||g||_{2}^{2} + 2||f|| ||g|| \le 2||f||_{2}^{2} + ||g||_{2}^{2}$$
(17)

Corollary 6 $||f + g||_2^2 \le 2 ||f||_2^2 + ||g||_2^2$

Using this corrolary we get:

$$f-sign(\left\|\hat{f}(\phi) + \hat{f}(i^*\chi_{i^*}\right\|_2^2) \le 2\left\|f - (\hat{f}(\phi) + \hat{f}(i^*)\chi_{i^*})\right\|_2^2 + 2\left\|\hat{f}(\phi) + \chi_{i^*} - sign(\hat{f}_{i^*}(\phi) + \hat{f}i^*\chi_{i^*})\right\|_2^2$$
(18)

If f Boolean then $\forall g \|g - sign(g)\|_2^2 \le \|g - f\|_2^2$

$$2\left\|f - (\hat{f}(\phi) + \hat{f}(i^*)\chi_{i^*})\right\|_2^2 + 2\left\|\hat{f}(\phi) + \chi_{i^*} - sign(\hat{f}_{i^*}(\phi) + \hat{f}_{i^*}\chi_{i^*})\right\|_2^2 \le 4\left\|f - \hat{f}(\phi) + \hat{f}(i^*)\chi_{i^*}\right\|_2^2$$
(19)

Forgetting $f^{>1}$

$$\|f - (a_0 + a_i\chi_i)\|_2^2 \le 2 \|f - f^{\le 1}\|_2^2 + 2 \|f^{\le 1} - (a_0 + a_i\chi_i)\|_2^2$$
(20)

Since $2 \|f - f^{\leq 1}\|_2^2 = 2 \|f^{>1}\|_2^2 < \epsilon$, it is enough to show that $2 \|f^{\leq 1} - (a_0 + a_i\chi_i)\|_2^2 \le C_0\epsilon$

$$\|f_{\leq 1} - sign(f_{\leq 1})\|_2^2 \le \|f_{\leq 1} - f\|_2^2 = \|f\|_2^2 < \epsilon$$
(21)

To prove the theorem it's enough to prove the following sub-theorem:

Theorem 7 If $f_{\leq 1} = a_0 + \sum a_i x_i$, $\sum a_i^2 \leq 1$, and $||f_{\leq 1} - sign(f_{\leq 1})||_2^2 \leq \epsilon$, then $||f_{\leq 1} - (a_0 + a_{i^*}\chi_{i^*}))||_2^2 < \epsilon(1 + \Theta(\epsilon))$