Harmonic Analysis of Boolean Functions, and applications in CS
Lecture 13
June 2, 2008
Lecturer: Guy Kindler
Scribe by: Ora Hafets
Updated: September 15, 2008

In the privious lecture we saw the Bonami-Beckner transform and some corollaries. Today we will see some more related theorems, like Freidgut's theorem, KKL and BKKKL.

But first - a reminder of a corollary we want to use,
Corollary 1 If $1 \leq p \leq 2 \leq q<\infty$ then

$$
\begin{gathered}
\left\|f^{\leq k}\right\|_{q} \leq(q-1)^{k / 2}\|f\|_{2} \\
\left\|f^{\leq k}\right\|_{2} \leq(p-1)^{-k / 2}\|f\|_{p}
\end{gathered}
$$

Now we can state the following corollary:
Corollary 2 Let $g:\{ \pm 1\}^{n} \rightarrow\{ \pm 1,0\}$. Then $\left\|g^{\leq k}\right\|_{2}^{2} \leq 2^{k}\left(\|g\|_{2}^{2}\right)^{4 / 3}$.
Proof Corollary 1 with $p=\frac{3}{2}$ implies $\left\|g^{\leq k}\right\|_{2}^{2} \leq 2^{k}\|g\|_{3 / 2}^{2}$. Since g gets only the values $\{ \pm 1,0\},\|g\|_{3 / 2}^{3 / 2}=\|g\|_{2}^{2}$, so we have $2^{k}\left(\|g\|_{3 / 2}^{2}\right)=2^{k}\left(\|g\|_{2}^{2}\right)^{4 / 3}$.

This corollary helps us in proving an important theorem that says that low influence functions are juntas,
Theorem 3 (Freidgut '95) Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$ s.t. $I(f) \leq k$. Then f is a $\left(4 \varepsilon, \frac{8 k^{2} 2^{\frac{6 k}{\varepsilon}}}{\varepsilon^{3}}\right)$ junta.

Proof Define $t=\frac{\varepsilon^{3}}{8 k^{3}} 2^{-\frac{6 k}{\varepsilon}}, J=\left\{i \in[n] \mid I_{i}(f) \geq t\right\}$. Then obviously $|J| \leq \frac{k}{t}=\frac{8 k^{2} 2^{\frac{6 k}{\varepsilon}} \varepsilon^{3}}{}$.
Define $g=\sum_{S \subseteq J} \hat{f}(S)_{\chi_{S}}$. It's enough to prove $\|f-g\|_{2}^{2} \leq \varepsilon$, because it implies: $\|f-\operatorname{sign}(\mathrm{g})\|_{2}^{2} \leq 4 \varepsilon$, which gives the theorem.

We prove $\|f-g\|_{2}^{2} \leq \varepsilon$ in two parts, first for low frequencies and then for high frequen-
cies:

$$
\begin{aligned}
\sum_{\substack{S \backslash J \neq \emptyset \\
|S| \leq \frac{2 k}{\varepsilon}}} \hat{f}(S)^{2} & \leq \sum_{\substack{S \backslash J \neq \emptyset \\
|S| \leq \frac{2 k}{\varepsilon}}}|S \backslash J| \hat{f}(S)^{2} \\
& =\sum_{i \in[n] \backslash J}\left\|f_{i}^{f_{i}^{2 k}}\right\|_{2}^{2} \\
& \leq 2^{\frac{2 k}{\varepsilon}} \sum_{i \in[n] \backslash J}\left(\left\|f_{i}\right\|_{2}^{2}\right)^{\frac{4}{3}} \quad \text { (By corollary Z2) } \\
& \leq 2^{\frac{2 k}{\varepsilon}} \cdot \max _{i \in[n] \backslash J}\left\{I_{i}(f)^{\frac{1}{3}}\right\} \cdot \sum_{i} I_{i}(f) \\
& \leq 2^{\frac{2 k}{\varepsilon}} \cdot \max _{i \in[n] \backslash J}\left\{I_{i}(f)^{\frac{1}{3}}\right\} \cdot I(f) \\
& \leq 2^{\frac{2 k}{\varepsilon}} \cdot t^{\frac{1}{3}} \cdot k \quad\left(\text { recall that } J=\left\{i \in[n] \mid I_{i}(f) \geq t\right\}\right) \\
& \leq \frac{\varepsilon}{2}\left(\text { follows from } t=\frac{\varepsilon^{3}}{8 k^{3}} 2^{-\frac{6 k}{\varepsilon}}\right)
\end{aligned}
$$

We now deal with the high frequencies:

$$
\begin{aligned}
\sum_{S \backslash J \neq \varnothing|S|>\frac{2 k}{\varepsilon}} \hat{f}(S)^{2} & \leq \sum_{|S|>\frac{2 k}{\varepsilon}} \hat{f}(S)^{2} \\
& \leq \frac{\varepsilon}{2 k} \sum_{S}|S| \hat{f}(S)^{2} \\
& \leq \frac{\varepsilon}{2 k} \cdot k \\
& \leq \frac{\varepsilon}{2}
\end{aligned}
$$

From the two inequalities above we have $\|f-g\|_{2}^{2}=\sum_{S \backslash J \neq \emptyset} \hat{f}(S)^{2} \leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$, as we wanted.

The next result is that $\exists \delta_{0}>0$ such that the following holds,
Theorem 4 (KKL) Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}, 0<\delta<\delta_{0}$. If

$$
\begin{equation*}
I(f) \leq \frac{1}{20}\left(\left(1-\hat{f}(\emptyset)^{2}\right) \log \frac{1}{\delta}\right) \tag{1}
\end{equation*}
$$

then $\exists i$ s.t. $I_{i}(f)>\delta$.
If f is constant then the theorem is obvious, so we assume that f is balanced.
Proof The function f is balanced, so $\hat{f}(\emptyset)^{2} \neq 1$. Define $k=\frac{2 I(f)}{1-\hat{f}(\emptyset)^{2}}$. Then:

$$
\begin{equation*}
\sum_{|S|>k} \hat{f}(S)^{2} \leq \frac{1}{k} \cdot \sum_{|S|>k}|S| \hat{f}(S)^{2} \leq \frac{1}{k} \cdot \sum_{S}|S| \hat{f}(S)^{2}=\frac{I(f)}{k}=\frac{1-\hat{f}(\emptyset)^{2}}{2} \tag{2}
\end{equation*}
$$

Now:

$$
\begin{align*}
\frac{1-\hat{f}(\emptyset)^{2}}{2} & =1-\hat{f}(\emptyset)^{2}-\frac{1-\hat{f}(\emptyset)^{2}}{2} \\
& \leq \sum_{|S|>0} \hat{f}(S)^{2}-\sum_{|S|>k} \hat{f}(S)^{2} \\
& =\sum_{0<|S| \leq k} \hat{f}(S)^{2} \\
& \leq \sum_{|S| \leq k}|S| \hat{f}(S)^{2} \\
& =\sum_{i \in[n]}\left\|f_{i}^{\leq k}\right\|_{2}^{2} \\
& \leq 2^{k} \sum_{i \in[n]}\left(\left\|f_{i}^{\leq k}\right\|\right)^{\frac{4}{3}} \quad \text { (By corollary Z) } \\
& \leq 2^{k} \cdot \max _{i}\left\{I_{i}(f)^{\frac{1}{3}}\right\} \cdot I(f) \quad \text { (similar to the privious proof) } \\
& \leq\left(\frac{1}{\delta}\right)^{10} \cdot \max _{i}\left\{I_{i}(f)^{\frac{1}{3}}\right\} \cdot I(f) \quad \text { (Because } 2^{k} \leq 2^{\frac{\log \frac{1}{\delta}}{10}} \text {) } \\
& \left.\leq\left(\frac{1}{\delta}\right)^{10} \cdot \max _{i}\left\{I_{i}(f)^{\frac{1}{3}}\right\} \cdot \frac{1-\hat{f}(\emptyset)^{2}}{20} \cdot \log \frac{1}{\delta} \quad \text { (By } \mathbb{1}\right)
\end{align*}
$$

Therefore:

$$
\max _{i}\left\{I_{i}(f)\right\} \geq 8000 \cdot \delta^{\frac{3}{10}} \cdot\left(\frac{1}{\log \frac{1}{\delta}}\right)^{3}>\delta
$$

If $\delta=\frac{\log n}{n}$, then the theorem implies the following two corollaries,
Corollary 5 If f is balanced and $I(f)<C \log n$, then $\exists i$ s.t. $I_{i}(f)>\frac{\log n}{n}$.
Corollary 6 If f is boolean, balanced and transitive, then $I(f) \geq C \log n$.
We want to state another interesting result, but to do that we need the following definition,
Definition 1 Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}$.

$$
\begin{gathered}
I_{i}^{\prime}(f)=\operatorname{Pr}_{x \backslash i}\left(f(x) \text { non constant on } x_{i}\right) \\
I^{\prime}(f)=\sum_{i} I_{i}^{\prime}(f)
\end{gathered}
$$

Theorem 7 (BKKKL) Let $f:\{ \pm 1\}^{n} \rightarrow\{ \pm 1\}, t=E(f)$. Then $\exists i$ s.t. $I_{i}^{\prime}(f) \geq C(1-$ $\left.t^{2}\right) \frac{\log n}{n}$.

We will talk more about this theorem in our next class.

