Harmonic Analysis of Boolean Functions, and applications in CS

May 26, 2008

Scribe by: Ori Gurel-Gurevich

Updated: June 2, 2008

So far, we used elementary techniques. Today we will do something less elementary, for the first time.

Reminders and Preliminaries

Definition 1 The L_p -norm of a function $f : \{\pm 1\}^n \to \mathbb{R}$ is

$$||f||_p = (\mathbb{E}[|f(x)|^p])^{1/p}$$

for $1 \leq p < \infty$ and

Lecturer: Guy Kindler

$$||f||_{\infty} = \max_{x \in \{\pm 1\}^n} |f(x)|$$

We already proved monotonicity: if p < q then $||f||_p \le ||f||_q$. We also have continuity in p: $\lim_{p\to q} ||f||_p = ||f||_q$. This includes the case $q = \infty$.

Definition 2 $R : \mathbb{R}^{\{\pm 1\}^n} \to \mathbb{R}^{\{\pm 1\}^n}$ is a linear transformation if for any $f, g \in \{\pm 1\}^n$ and $\lambda \in \mathbb{R}$ we have

$$R(f+g) = R(f) + R(g)$$

and

 $R(\lambda f) = \lambda R(f)$

Definition 3 *R* is *p*-contractive if for all $f \in \mathbb{R}^{\{\pm 1\}^n}$ we have

 $||R(f)||_p \le ||f||_p$

Definition 4 R is $p \to q$ -hypercontractive if for all $f \in \mathbb{R}^{\{\pm 1\}^n}$ we have

 $||R(f)||_q \le ||f||_p$

 $p \to p$ -hypercontractivity is just *p*-contractivity. If R is $p \to q$ -hypercontractive then for any $p \leq p' \leq q' \leq q$ we have that R is $p' \to q'$ -hypercontractive, since, by monotonicity $\|R(f)\|_{q'} \leq \|R(f)\|_q \leq \|f\|_p \leq \|f\|_{p'}$.

Definition 5 Given an indexed set of real numbers $A = \{a_S\}_{S \subset [n]}$ define the transform

$$T_A(f) = \sum_S a_S \hat{f}(S) \chi_S$$

If for all S we have $|a_S| \leq 1$ then T_A is 2-contractive, but not necessarily p-contractive for $p \neq 2$, as we have seen in the exercise. An interesting question is for which A and which p, q is T_A (hyper)contractive.

Example 1 If we take $a_S = 1$ if $|S| \le k$ and 0 otherwise, we get that $T_A(f) = f^{\le k}$.

We already used this transformation.

Example 2 The Rademacher projection is the transform

$$Rad(f) = f^{=1} = \sum_{i} \hat{f}(i)\chi_i$$

Theorem 6 For all $2 \le p$ we have

$$||Rad(f)||_p \le \sqrt{p-1} ||f||_2$$

If we replace $\sqrt{p-1}$ by \sqrt{p} , and require p to be even, then what we get follows from part 3 of exercise 3.

The Bonami-Beckner Transform

Definition 7 For $0 \le \delta \le 1$ the Bonami-Beckner Transform is defined by

$$T_{\delta}(f) = \sum_{S} \delta^{|S|} \hat{f}(S) \chi_{S}$$

For which δ is T_{δ} (hyper)contractive?

Claim 8 T_{δ} is p-contractive for all $0 \leq \delta \leq 1$ and all $p \geq 1$.

Proof Consider the transform

$$T'_{\delta}(f) = \mathbb{E}_{z \sim \mu^{(n)}_{(1-\delta)/2}}[f(zx)]$$

A straightforward computation reveals that

$$T'_{\delta}(f)(x) = \sum_{S} \hat{f}(S)\chi_{S}(x)\mathbb{E}_{z \sim \mu^{(n)}_{(1-\delta)/2}}[\chi_{S}(z)] = \sum_{S} \hat{f}(S)\chi_{S}(x)\delta^{|S|} = T_{\delta}(f)(x)$$

so these two transforms are one. T_{δ}' can also be written as

$$T'_{\delta}(f) = \mathbb{E}_{z \sim \mu^{(n)}_{(1-\delta)/2}}[\sigma_z(f)]$$

where σ_z is the shift by z on the hypercube.

Since $\|\sigma_z(f)\|_p = \|f\|_p$ for any z and $\|\cdot\|_p$ is convex we have

$$\|T'_{\delta}(f)\|_{p} = \|\mathbb{E}_{z \sim \mu_{(1-\delta)/2}^{(n)}} [\sigma_{z}(f)]\|_{p} \le \mathbb{E}_{z \sim \mu_{(1-\delta)/2}^{(n)}} \|\sigma_{z}(f)\|_{p} = \|f\|_{p}$$

Theorem 9 (Bonami 72', Beckner 73') For $1 \le p \le q$ and $\delta \le \sqrt{\frac{p-1}{q-1}}$ we have

 $||T_{\delta}(f)||_q \le ||f||_p$

We will not prove this theorem, but it can be done by induction on n. However, even the base case (n = 1) is far from trivial. Instead, we will see what can be done with it.

Corollary 10 If $1 \le 2 \le q < \infty$ then

$$\|f^{\leq k}\|_q \leq (q-1)^{k/2} \|f\|_2$$
$$\|f^{\leq k}\|_2 \leq (p-1)^{-k/2} \|f\|_p$$

Proof We prove the second inequality, the first is similar.

Take $\delta = \sqrt{p-1}$. Then,

$$\|f\|_{p} \ge \|T_{\delta}(f)\|_{2} = \sqrt{\sum_{S} \delta^{2|S|} \hat{f}^{2}(S)} \ge \sqrt{\sum_{|S| \le k} \delta^{2|S|} \hat{f}^{2}(S)} \ge \sqrt{\sum_{|S| \le k} \delta^{2k} \hat{f}^{2}(S)} = \delta^{k} \|f^{\le k}\|_{2}$$

Next, we use the corollary to prove some cool stuff about the influence of low degree functions.

Corollary 11 Let $f : \{\pm 1\}^n \to \{\pm 1\}$ be a Boolean function of degree at most k. Then for each i either

$$I_i(f) = 0 \qquad or \qquad I_i(f) \ge 8^{-k}$$

Proof Define

$$f_i(x) = \frac{f(x) - f(\sigma_i x)}{2} \; .$$

Since f is Boolean, we have $|f_i(x)| = 1$ if $f(x) \neq f(\sigma_i x)$ and 0 otherwise. Therefore, for every $1 \leq p$

$$||f_i||_p^p = I_i(f)$$
.

By corollary 10, taking p = 3/2, we have

$$||f_i||_2 \le 2^{k/2} ||f_i||_{3/2}$$
.

Putting these together yields

$$I_i(f) \le 2^k ||f_i||_{3/2}^2 = 2^k (I_i(f))^{4/3}$$

so either $I_i(f) = 0$ or we can divide by it getting

$$I_i(f) \ge 8^{-k} .$$

Since $\sum_{i} I_i(f) = \sum_{S} |S| \hat{f}^2(S) \le k$ we get one final corollary.

Corollary 12 Let $f : \{\pm 1\}^n \to \{\pm 1\}$ be a Boolean function of degree at most k. Then the number of influencing variables is at most $k8^k$.

note: one can actually get a better exponent basis in this bound, but some exponent is necessary (exercise).