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So far, we used elementary techniques. Today we will do something less elementary, for
the first time.

Reminders and Preliminaries

Definition 1 The Lp-norm of a function f : {±1}n → R is

‖f‖p = (E[|f(x)|p])1/p

for 1 ≤ p < ∞ and
‖f‖∞ = max

x∈{±1}n
|f(x)|

We already proved monotonicity : if p < q then ‖f‖p ≤ ‖f‖q.
We also have continuity in p: limp→q ‖f‖p = ‖f‖q. This includes the case q = ∞.

Definition 2 R : R{±1}n → R{±1}n
is a linear transformation if for any f, g ∈ {±1}n and

λ ∈ R we have
R(f + g) = R(f) + R(g)

and
R(λf) = λR(f)

Definition 3 R is p-contractive if for all f ∈ R{±1}n
we have

‖R(f)‖p ≤ ‖f‖p

Definition 4 R is p → q-hypercontractive if for all f ∈ R{±1}n
we have

‖R(f)‖q ≤ ‖f‖p

p → p-hypercontractivity is just p-contractivity. If R is p → q-hypercontractive then
for any p ≤ p′ ≤ q′ ≤ q we have that R is p′ → q′-hypercontractive, since, by monotonicity
‖R(f)‖q′ ≤ ‖R(f)‖q ≤ ‖f‖p ≤ ‖f‖p′ .

Definition 5 Given an indexed set of real numbers A = {aS}S⊂[n] define the transform

TA(f) =
∑
S

aS f̂(S)χS
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If for all S we have |aS | ≤ 1 then TA is 2-contractive, but not necessarily p-contractive
for p 6= 2, as we have seen in the exercise. An interesting question is for which A and which
p, q is TA (hyper)contractive.

Example 1 If we take aS = 1 if |S| ≤ k and 0 otherwise, we get that TA(f) = f≤k.

We already used this transformation.

Example 2 The Rademacher projection is the transform

Rad(f) = f=1 =
∑

i

f̂(i)χi

Theorem 6 For all 2 ≤ p we have

‖Rad(f)‖p ≤
√

p− 1‖f‖2

If we replace
√

p− 1 by
√

p, and require p to be even, then what we get follows from
part 3 of exercise 3.

The Bonami-Beckner Transform

Definition 7 For 0 ≤ δ ≤ 1 the Bonami-Beckner Transform is defined by

Tδ(f) =
∑
S

δ|S|f̂(S)χS .

For which δ is Tδ (hyper)contractive?

Claim 8 Tδ is p-contractive for all 0 ≤ δ ≤ 1 and all p ≥ 1.

Proof Consider the transform

T ′δ(f) = E
z∼µ

(n)
(1−δ)/2

[f(zx)]

A straightforward computation reveals that

T ′δ(f)(x) =
∑
S

f̂(S)χS(x)E
z∼µ

(n)
(1−δ)/2

[χS(z)] =
∑
S

f̂(S)χS(x)δ|S| = Tδ(f)(x)

so these two transforms are one. T ′δ can also be written as

T ′δ(f) = E
z∼µ

(n)
(1−δ)/2

[σz(f)] ,

where σz is the shift by z on the hypercube.
Since ‖σz(f)‖p = ‖f‖p for any z and ‖ · ‖p is convex we have

‖T ′δ(f)‖p = ‖E
z∼µ

(n)
(1−δ)/2

[σz(f)]‖p ≤ E
z∼µ

(n)
(1−δ)/2

‖σz(f)‖p = ‖f‖p
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Theorem 9 (Bonami 72’, Beckner 73’) For 1 ≤ p ≤ q and δ ≤
√

p−1
q−1 we have

‖Tδ(f)‖q ≤ ‖f‖p

We will not prove this theorem, but it can be done by induction on n. However, even
the base case (n = 1) is far from trivial. Instead, we will see what can be done with it.

Corollary 10 If 1 ≤ 2 ≤ q < ∞ then

‖f≤k‖q ≤ (q − 1)k/2‖f‖2

‖f≤k‖2 ≤ (p− 1)−k/2‖f‖p

Proof We prove the second inequality, the first is similar.
Take δ =

√
p− 1. Then,

‖f‖p ≥ ‖Tδ(f)‖2 =
√∑

S

δ2|S|f̂2(S) ≥
√ ∑
|S|≤k

δ2|S|f̂2(S) ≥
√ ∑
|S|≤k

δ2kf̂2(S) = δk‖f≤k‖2

Next, we use the corollary to prove some cool stuff about the influence of low degree
functions.

Corollary 11 Let f : {±1}n → {±1} be a Boolean function of degree at most k. Then for
each i either

Ii(f) = 0 or Ii(f) ≥ 8−k

Proof Define
fi(x) =

f(x)− f(σix)
2

.

Since f is Boolean, we have |fi(x)| = 1 if f(x) 6= f(σix) and 0 otherwise. Therefore, for
every 1 ≤ p

‖fi‖p
p = Ii(f) .

By corollary 10, taking p = 3/2, we have

‖fi‖2 ≤ 2k/2‖fi‖3/2 .

Putting these together yields

Ii(f) ≤ 2k‖fi‖2
3/2 = 2k(Ii(f))4/3 ,

so either Ii(f) = 0 or we can divide by it getting

Ii(f) ≥ 8−k .

Since
∑

i Ii(f) =
∑

S |S|f̂2(S) ≤ k we get one final corollary.

Corollary 12 Let f : {±1}n → {±1} be a Boolean function of degree at most k. Then the
number of influencing variables is at most k8k.

note: one can actually get a better exponent basis in this bound, but some exponent
is necessary (exercise).
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