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So far, we used elementary techniques. Today we will do something less elementary, for
the first time.
Reminders and Preliminaries
Definition 1 The L,-norm of a function f: {£1}" — R is
1£1lp = LIS ()PP
for1 <p< oo and
£l = maxx 11(z)

We already proved monotonicity: if p < g then || f|l, < ||fllq-
We also have continuity in p: lim,_q || fll, = || fllq- This includes the case ¢ = oo.

Definition 2 R: RIFU" — RIFL" 45 ¢ linear transformation if for any f,g € {£1}" and
A € R we have

R(f+g)=R(f)+ R(9)
and

RAS) = AR(])

Definition 3 R is p-contractive if for all f € RIFU" we have

ROy < 171

Definition 4 R is p — g-hypercontractive if for all f € RIED" we have

IR lg < 171

p — p-hypercontractivity is just p-contractivity. If R is p — g-hypercontractive then
for any p < p’ < ¢’ < g we have that R is p’ — ¢/-hypercontractive, since, by monotonicity

IR(Dllg < IR Nq < W Fllp < [1F 1l

Definition 5 Given an indeved set of real numbers A = {as}scn define the transform

Ta(f) = asf(S)xs
S
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If for all S we have |ag| < 1 then T4 is 2-contractive, but not necessarily p-contractive
for p # 2, as we have seen in the exercise. An interesting question is for which A and which
p,q is T4 (hyper)contractive.

Example 1 If we take as = 1 if |S| < k and 0 otherwise, we get that Ta(f) = f<F.
We already used this transformation.

Example 2 The Rademacher projection is the transform
Rad(f Z £()

Theorem 6 For all 2 < p we have

[Rad(f)llp < /P = 1 fll2

If we replace \/p — 1 by /p, and require p to be even, then what we get follows from
part 3 of exercise 3.

The Bonami-Beckner Transform

Definition 7 For 0 < ¢ <1 the Bonami-Beckner Transform is defined by
£ =>_6"F(S)xs
S

For which § is T (hyper)contractive?
Claim 8 Ty is p-contractive for all0 < § <1 and all p > 1.

Proof Consider the transform

T(f)=E__ w [f(z2)]

EhG-s)/2
A straightforward computation reveals that

©) =) fSxs@E,_ m => 7 )85 = T5(f) ()
a a>/2
S S
so these two transforms are one. Tg can also be written as

T(f)=E__ w [0.(f)],

VR (1-6)/2

where o, is the shift by z on the hypercube.

Since |lo.(f)|l, = || fllp for any z and || - ||, is convex we have
175Nl =B, o0 [o=(Dlp <E__ o llo=(Hllp = I£1lp
(1-68)/2 (1-68)/2
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Theorem 9 (Bonami 72’, Beckner 73’) For1 <p<gq and § < ,/Z:—} we have

15 ()llg < 11

We will not prove this theorem, but it can be done by induction on n. However, even
the base case (n = 1) is far from trivial. Instead, we will see what can be done with it.

Corollary 10 If1 <2< q < oo then
1755 1lg < (@ = D)1 f]12
1F =¥ < =172 £

Proof We prove the second inequality, the first is similar.
Take § = /p — 1. Then,

171y 2 WTs(Hle = [3225102(8) 2 [ 32 291f2(8) = |37 872(8) = 6417l
o |S|<k |S|<k

Next, we use the corollary to prove some cool stuff about the influence of low degree
functions.

Corollary 11 Let f: {£1}" — {£1} be a Boolean function of degree at most k. Then for
each i either
L(f)=0 or L(f)>8F
Proof Define o) — flow)
xTr) — o;r
fil) = 1S

Since f is Boolean, we have |f;(x)| = 1 if f(x) # f(osx) and 0 otherwise. Therefore, for
every 1 <p

| fill5 = Li(f) -
By corollary taking p = 3/2, we have

1£ill2 < 2572 fillsye -
Putting these together yields

Li(f) < 2k\|f¢\|§/g = 2(L;(f)"*
so either I;(f) = 0 or we can divide by it getting
L(f)>87".

Since >, Li(f) =g |S|f2(S) < k we get one final corollary.

Corollary 12 Let f: {£1}" — {£1} be a Boolean function of degree at most k. Then the
number of influencing variables is at most kS*.

note: one can actually get a better exponent basis in this bound, but some exponent
is necessary (exercise).
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