
Harmonic Analysis of Boolean Functions, and applications in CS

Lecture 10
May 12, 2008

Lecturer: Guy Kindler Scribe by: Ori Brostovski Updated: June 11, 2008

In this lecture we describe a permutation test over the long code (Section 2 and then
go on to introduce the subject of hardness of approximation and specifically the hardness
of E3-LIN-2 based on the Unique games conjecture (Section 3).

1 In the previous lecture

In the last lecture we discussed the coordinate permutation test for odd Hadamard codes.
Let us recall it.

Coordinate permutation test

• Codes: C1 = C2 = {χS} S⊆[n]
|S| odd

.

• Constraint family: Rτ := {(χS , χτ(S)) : χS ∈ C1}, where τ is a permutation over [n].

• Query: Given codewords f ∈ C1 and g ∈ C2, the test checks whether for x ∈R {±1}n,
y ∈R {±1}n, and u ∈R {±1} the following equation is satisfied:

f(x)f(y) = ug(uτ(xy)) .

• Completeness: 1.

• Soundness: 1
2 + δ (for the coordinate decoding schemes below).

Decoding schemes

• D1(f) - Output χS with probability f̂(S)2 (⊥ if |S| is even).

• D2(g) - If |T | is odd, and ĝ(T) ≥ δ, output χT with probability ĝ(T)
α where α :=∑

|T | odd ĝ(T).

2 Testing permutations over the long code

In the coordinate permutation test, the test’s constraint family corresponded to a set of
permutations over [n]. That set of permutations can be considered as a subset of the
set of permutations over the odd Hadamard code. It is a strict subset as permutations
like χS → χ[n]\S are not in it. In this section we consider a test that allows checking all

10-1

possible permutations over long code words. Note that in the case of the long code, the
set of coordinate permutation corresponds to the set of permutations over long code words.
Before we elaborate on the long code permutation test, we define the distribution µε:

µε =

{
+1 w.p. 1− ε

−1 w.p. ε
.

Long code permutation test

• Codes: C1 = C2 = {χi}i∈[n].

• Constraint family: Rτ := {(χi, χτ(i)) : χS ∈ C1}, where τ is a permutation over [n].

• Query: Given codewords f ∈ C1 and g ∈ C2, the test checks whether for x ∈R {±1}n,
y ∈R {±1}n, z ∈R {±1}, and z ∼ µ

(n)
ε the following equation is satisfied:

f(x)f(y) = ug(uτ(zxy)) .

• Completeness: 1− ε.

• Soundness: 1
2 + δ (for the coordinate decoding schemes below).

Decoding schemes

• D1(f) - Pick S with probability f̂(S)2. Pick i ∈R S, output χi.

• D2(g) - Define A as:

A := {T : |T | ≤ log1−2ε(0.5δ) ∧ ĝ(T) ≥ δ ∧ |T | odd} .

If A empty, return ⊥. Else, define α as:

α :=
∑
T∈A

ĝ(T) .

Pick T ∈ A with probability ĝ(T)
α . Pick j ∈R T and return χj .

Theorem 1 The long code permutation test has completeness 1 − ε, and soundness 1
2 + δ

with δ2

2 log1−2ε(0.5δ) -satisfaction-rate.

Proof

10-2

Completeness To show completeness, we assume that we have some i ∈ [n] such that
f = χi and g = χτ(i). We will show that for every x and y, the equation

f(x)f(y) = g(τ(xy)) (1)

is satisfied. Start from the left hand side:

(Since f = χi and g = χτi .)

f(x)f(y) = χi(x)χi(y) ,

(Fourier characters are linear.)

f(x)f(y) = χi(xy) ,

(Since |τ(i) = 1|, χi(u, . . . , u) = u.)

f(x)f(y) = uχi(u, . . . , u)χi(xy) ,

(If a permutation is applied both to a input and to its set, the character’s result stays the
same.)

f(x)f(y) = uχi(u, . . . , u)χτ(i)(τ(xy)) .

We observe that g(τ(zxy)) 6= g(τ(xy)) if and only if zi = −1. Thus,

1− ε = Pr[g(τ(zxy)) = g(τ(xy))] ,

(Using equation (1) and our result thus far.)

1− ε = Pr[g(τ(zxy)) = f(x)f(y)] .

Soundness As in the soundness proofs of other tests, we develop an expression for
2 Pr[accept]− 1:

2 · Pr[accept]− 1 = Ex,y,u,z[f(x)f(y)ug(uτ(zxy))] ,

(Using Fourier coefficients.)

2 · Pr[accept]− 1 =
∑

R,S,T⊆[n]

f̂(R)f̂(S)f̂(T)Ex,y,u,z[χR(x)χS(y)uχT (u, . . . , u)χT (τ(z))χT (τ(x))χT (τ(y))] ,

(The expectation of χR(x)χT (τ(x)) is 1 if T = τ(R), and 0 otherwise.)

2 · Pr[accept]− 1 =
∑

S⊆[n]

f̂(S)2ĝ(τ(S))Eu,z[uχτ(S)(u, . . . , u)χτ(S)(τ(z))] ,

10-3

(The expectation of uχτ(S)(u, . . . , u) is 1 if |S| is odd, and 0 otherwise. Expectation of a
single µε variable is (1− 2ε) which means that the expectation of χτ(S)(τ(z)) is (1− 2ε)|S|

due to expectation being multiplicative over independent variables.)

2 · Pr[accept]− 1 =
∑

S⊆[n]
|S| odd

f̂(S)2ĝ(τ(S))(1− 2ε)|S| .

Since we wish to prove soundness, we assume that Pr[accept] > 1
2 + δ, this allows us to say

that: ∑
S⊆[n]
|S| odd

f̂(S)2ĝ(τ(S))(1− 2ε)|S| ≥ 2δ , (2)

(Note that
∑

S f̂(S)2 = 1, and (1− 2ε) ≤ 1. Hence, the total weight of the sets S for which
ĝ(τ(S)) < δ is less than δ. We can use this to bound the sum of all sets S in the above sum
for which ĝ(τ(S)) ≥ δ.) ∑

S⊆[n]
|S| odd

ĝ(τ(S))≥δ

f̂(S)2ĝ(τ(S))(1− 2ε)|S| ≥ δ , (3)

(Note that
∑

S f̂(S)2 = 1, and for every S, ĝ(τ(S)) ≤ 1. Hence, the total weight of the sets
S for which |S| < log1−2ε(0.5δ) is less than δ. We can use this to bound the sum of all sets
S in the above sum for which |S| < log1−2ε(0.5δ).)∑

S⊆[n]
|S| odd

ĝ(τ(S))≥δ
|S|<log1−2ε(0.5δ)

f̂(S)2ĝ(τ(S)) ≥ 0.5δ . (4)

Next, we are going to use this bound to finish our proof. We show that the probability
that the decoding schemes will return codewords which satisfy the constraint is greater or
equal than δ2

2 log1−2ε(0.5δ) :

Pr[D1(f)RτD2(g)] ≥
∑

S⊆[n]
|S| odd

ĝ(τ(S))≥δ
|S|<log1−2ε(0.5δ)

1
α

f̂(S)2ĝ(τ(S))︸ ︷︷ ︸
prob. we selected S and τ(S)

· 1
|S|︸︷︷︸

prob. that j = τ(i)

,

(Since |S| < log1−2ε(0.5δ).)

Pr[D1(f)RτD2(g)] ≥
∑

S⊆[n]
|S| odd

ĝ(τ(S))≥δ
|S|<log1−2ε(0.5δ)

1
α

f̂(S)2ĝ(τ(S))
1

log1−2ε(0.5δ)
,

10-4

(Using equation (4) and out result thus far.)

Pr[D1(f)RτD2(g)] ≥ 0.5δ

α log1−2ε(0.5δ)
,

(As shown in the previous lecture, we have α ≤ 1
δ .)

Pr[D1(f)RτD2(g)] ≥ δ2

2 log1−2ε(0.5δ)
.

3 Hardness of approximation

A variant of theorem (1) can be used to prove an interesting hardness result. We will first
explain terms related to hardness of approximation, and then we will describe the result.

3.1 Introduction

We will start with the definition of optimization problems and then move on to approimx-
ation problems.

Optimization problem

• Let I be a set of instances.

• For every instance I ∈ I, there is a set of assignments A(I).

• For every instance I and an assignment A ∈ A(I), there is a value ValI(A).

• Given an instance I, we wish to find A such that:

Val
I

(A) = max
A
{Val

I
(A)} .

Gap problem

• Let I, A, I, A and Val be defined the same as in an optimization problem.

• Let t1 and t2 be two scalars such that t1 < t2.

• We define a function g : I → {0, 1} as following:

g(i) =

1 ∃A : ValI(A) ≥ t2

0 ∀A : ValI(A) ≤ t1

undefined behaviour otherwise

.

(In some cases ≥ may be replaced with > and ≤ may be replaced with <).

The term hardness of approximation refers to the hardness of solving a given gap prob-
lem.

10-5

3.2 Approximating E3-LIN-2

E3-LIN-2

• An instance I is a distribution over linear equations.

• An assignment A is assignment to the variables of the linear equation.

• ValI(A) is defined as:
Val

I
(A) := Pr

e∼I
[A satisfies e] .

(For convenience we can think of an instance as a collection of equations with positive
weights whose sum is equal to one. In this case ValI(A) is the sum of weights of satisfied
equations.)

We are interested in the following result:

Theorem 2 It is hard to approximate E3-LIN-2 for a gap of (1
2 + δ, 1− ε).

In order to prove this result, we define the unique games and label cover problems.

Unique games

• Let k be a parameter.

• An instance I is a graph with a set of vertices V , a distribution on edges E. For each
edge e there is some permutation τe ∈ Sk.

• An assignment is defined to be a function A : V → [k] which assigns each vertex with
a number.

• ValI(A) is defined as:

Val
I

(A) = Pr
e∼E

e=(u,v)

[A(v) = τe(A(u))] .

When referring to the unique games problem we use the notation UG[k]. It is conjectured
that:

Conjecture 3 (Unique games conjecture - Khot, 2002) For every ε and δ, there ex-
ists k such that (1− ε, δ)-gap version of UG(k) is NP-hard.

Label cover

• Let k be a parameter.

• An instance I is a graph with a set of vertices V , a distribution on edges E. For each
edge e there is some function πe ∈ [k]V .

• An assignment is defined to be a function A : V → [k] which assigns each vertex with
a number.

10-6

• ValI(A) is defined as:

Val
G

(A) = Pr
e∼E

e=(u,v)

[A(v) = τe(A(u))] .

When referring to the label cover problem we use the notation LC[k]. It has been proved
that:

Theorem 4 For every ε and δ, there exists k such that (1 − ε, δ)-gap version of LC(k) is
NP-hard.

Theorem (2) can be proven by showing a reduction from the gap version of label cover
to E3-LIN-2, and using a variant of theorem (1). In the next class we will show that if
conjecture (3) is correct then so is theorem (2).

10-7

	In the previous lecture
	Testing permutations over the long code
	Hardness of approximation
	Introduction
	Approximating E3-LIN-2

