Harmonic Analysis of Boolean Functions, and applications in CS		
	Lecture 11	
	May 19, 2008	
Lecturer: Guy Kindler	Scribe by: Eric Shellef	

1 Hardness of approximation of E3-LIN-2

W r fr sh from last 1 ctur th d finition of th uniqu gam probl m with param $\mathrm{tr} k$, UG[k], and of th Uniqu Gam s Conj ctur (UGC).

An instanc I of th probl m compris s of astof v tic s, V, and as t of dir ct d dg s , E. Each dg $e \in E$ has an associat d w ight, $w(e)>0$ such that $w(E)=\sum_{e \in E} w(e)=1$ and an associat d p rmutation $\tau_{e} \in S_{k}$. An assignm nt A for I is $A: V \rightarrow[k]$, and $\operatorname{val}_{I}(A)=\mathbb{P}_{e=(u, v) \sim E}\left[A(v)=\tau_{e}(A(u))\right]$.

UGC stat s that for all small nough $\delta, \epsilon>0$ th r is a k such that distinugishing b tw n an instanc $I \in \mathrm{UG}[k]$ that satisfi $\mathrm{s} \operatorname{opt}(I) \geq 1-\epsilon$ and an instanc $J \in \mathrm{UG}[k]$ for which $o p t(J) \leq \delta$ is NP-hard.

Whil hardn ss for $\mathrm{UG}[k]$ is only conj ctur d , w can actually prov it for $\mathrm{LC}[k]$ wh r w hav a g n ral function inst ad of a p rmutation. Not that LC $[k]$ is hard with a $(1, \delta)$-gap, which is cl arly impossibl in th cas of UG.

Th goal of this l ctur is to prov that UGC impli s hardn ss of approximation for E3-LIN-2, which was d fin d in th pr vious l ctur .

Theorem 1 Assuming UGC, for all small enough $\delta, \epsilon>0$, it is NP-hard to distinguish between instances of E3-LIN-2 which satisfy opt $(I)>1-\epsilon$ and instances where opt $(I)<$ $\frac{1}{2}+\delta$.

W prov Th or m 1 by showing a (polynomial-tim) r duction $\mathrm{r}[k]$ from an instanc I in UG[k] to an instanc I^{\prime} of E3-LIN-2 such that

$$
\begin{equation*}
\operatorname{opt}(I)>1-\epsilon \Longrightarrow \operatorname{opt}\left(I^{\prime}\right)>1-2 \epsilon \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{opt}(I)<\frac{\delta^{3}}{32 \log _{(1-2 \epsilon)}(\delta / 4)} \Longrightarrow \operatorname{opt}\left(I^{\prime}\right)<\frac{1}{2}+\delta \tag{2}
\end{equation*}
$$

and th numb r of quations in I^{\prime} is bound d by $C(\delta, \epsilon) \cdot|V(I)+E(I)|$.
Giv n th s t of v rtic s in $I, V(I)$, w g n rat astof variabl $\mathrm{s} V^{\prime}=\left\{f_{v}(x)\right\}_{v \in V}^{x \in\{ \pm 1\}^{k}}$, Thus $\left|V^{\prime}\right|=2^{k}|V|$.

For $E^{\prime} \mathrm{w}$ pick $e=(u, v) \sim E$ and apply th p rmutation-t st with param $\mathrm{t} \mathrm{r} \epsilon$ on f_{u}, f_{v} and th p rmutation τ_{e}, using th random param t rs $x, y \sim \mu_{1 / 2}^{(k)}, z \sim \mu_{\epsilon}^{(k)}, \eta \sim \mu_{1 / 2}^{(1)}$.

Explicitly, w hav

$$
E^{\prime}=\left\{f_{u}(x) f_{u}(y)=\eta f_{v}\left(\eta \tau_{e}(x y z)\right): x, y, z \in\{ \pm 1\}^{k}, \eta \in\{ \pm 1\}, e=(u, v) \in E\right\}
$$

wh r th w ight of ach quation is $w((u, v)) 2^{-3 k}(1-\epsilon)^{\left|\left\{i: z_{i}=1\right\}\right|} \mid\left\{\left\{i: z_{i}=-1\right\} \mid\right.$. Notic that $\left|E^{\prime}\right|=2^{3 k+1}|E|$.

1.1 Corr ctn ss of R duction

To compl t th proof of th th or m, it is nough to show that th abov r duction has prop rti s (1) and (2).

First w show (1) (compl t n ss):
Assum $\operatorname{opt}(I)>1-\epsilon$, and $\mathrm{lt} A \mathrm{~b}$ an assignm nt with $\operatorname{val}_{I}(A)>1-\epsilon$. D fin A^{\prime} for I^{\prime} by s tting $A^{\prime}\left(f_{v}(x)\right)=\chi_{A(v)}(x)$. Fixing th assignm nt A^{\prime}, th notation w chos for th variabl s of th E3-LIN-2 instanc allow us to vi w th m as functions of th binary word x. Thus, som what abusing notation, w id ntify $f_{v}(x)$ with its assignm nt $A^{\prime}\left(f_{v}(x)\right)$.

$$
\begin{aligned}
\operatorname{val}_{I^{\prime}}\left(A^{\prime}\right) & =\mathbb{P}_{e \sim E^{\prime}}\left[A^{\prime} \text { satisfi s } e\right] \\
& \geq \mathbb{P}_{e \sim E}[A \text { satisfi s } e] \mathbb{P}_{x, y, z, \eta}\left[f_{u}(x) f_{u}(y)=\eta f_{v}\left(\eta \tau_{e}(x y z)\right) \mid A \text { satisfi s } e\right] \\
& \geq \operatorname{val}_{I}(A)(1-\epsilon) \geq(1-\epsilon)^{2}>1-2 \epsilon,
\end{aligned}
$$

wh r conditioning on A satisfying e gav us that $f_{v}=\chi_{A(v)}=\chi_{\tau_{e}(A(u))}=f_{u}$, and thus w may us th $1-\epsilon$ compl t n ss of th p rmutation t st.

To prov (2], w show th contrapositiv, nam ly, that if $r[k](I)=I^{\prime}$, and $\exists A^{\prime}$ with $\operatorname{val}_{I^{\prime}}\left(A^{\prime}\right) \geq \frac{1}{2}+\delta$ th $\mathrm{n} \operatorname{opt}(I) \geq \frac{\delta^{3}}{32 \log _{(1-2 \epsilon)}(\delta / 4)}$. Th assignm nt $A^{\prime} \mathrm{d}$ fin s a function $f_{v}(\cdot)$ for ach $v \in V$. To us soundn ss of th prmutation t st, w n d to show th r ar nough dg s $(u, v) \in E$ for which $f_{v}(x), f_{u}(x)$ satisfy th ir quations in I^{\prime} with good probability on a random x. This will b a cons qu nc of our assumption on $v a l_{I^{\prime}}\left(A^{\prime}\right)$ which low r bounds th w ight of th $\left|E^{\prime}\right|$ quations that ar satisfi d. Using soundn ss, w will randomly d cod $f_{v}(\cdot)$ for ach v rt x in V and prov that th av rag valu of our random assignm nt to I is low r bound d by th function of δ app aring in 2. Sinc th r is a dt rministic choic of A for which $\operatorname{val}(I)$ is at 1 ast th av rag, this will prov what w want.

For ach $v \in V$ choos D^{v} at random from ith $\mathrm{r} D_{1}\left(f_{v}\right)$ or $D_{2}\left(f_{v}\right)$ (th p rmutation t st d cod rs for th first and s cond word) to obtain a word χ_{i}, and $\mathrm{l} \mathrm{t} A$ assign i to v (if $\mathrm{w} \mathrm{g} \mathrm{t} \perp \mathrm{w}$ assign an arbitrary lab l).

W us th following 1 mma to prov that $\mathbb{E}\left[\operatorname{val}_{I}(A)\right]$ is larg.
Lemma 2 Let X be an r.v. satisfying $0 \leq X \leq 1$, then

$$
\begin{equation*}
\mathbb{P}[X \geq \alpha] \geq \frac{\mathbb{E}[X]-\alpha}{1-\alpha} \tag{3}
\end{equation*}
$$

Proof

$$
1 \cdot \mathbb{P}[X \geq \alpha]+\alpha(1-\mathbb{P}[X>\alpha]) \geq \mathbb{E}[X]
$$

For $e=(u, v) \in E, 1 \mathrm{t} P_{e}=\mathbb{P}_{x, y, z, \eta}\left[\mathrm{p}\right.$ rmutation $\mathrm{t} \mathrm{st}[\epsilon]$ acc pts on f_{u}, f_{v}, τ_{e} with $\left.A^{\prime}\right]$. Th law of total probability giv s

$$
\frac{1}{2}+\delta<\operatorname{val}_{I^{\prime}}\left(A^{\prime}\right)=\mathbb{P}_{e \sim E}\left[A^{\prime} \text { sat. } e\right]=\mathbb{E}_{e=(u, v) \sim E}\left[P_{e}\right]
$$

Thus using 3 ,

$$
\mathbb{P}_{e=(u, v) \sim E}\left[P_{e} \geq \frac{1}{2}+\frac{\delta}{2}\right] \geq \frac{\delta / 2}{1-(1 / 2+\delta / 2)}>\delta .
$$

$\mathrm{L} \mathrm{t} \mathcal{E}=\left\{e \in E: P_{e} \geq \frac{1}{2}+\frac{\delta}{2}\right\} \mathrm{b}$ th subs t of dg s for which th t st pass s with good probability. Th abov shows th probabilistic w ight of dg s in $\mathcal{E}, w(\mathcal{E})=\sum_{e \in \mathcal{E}} w(e)$ is at l ast δ. For $e=(u, v) \in E, 1 \mathrm{t} \pi(e)=\mathbb{P}_{\chi_{u} \sim D_{1}\left(f_{u}\right), \chi_{v} \sim D_{2}\left(f_{v}\right)}\left[\chi_{u}(x)=\chi_{v}\left(\tau_{e}(x)\right)\right]$ and r call that th p rmutation t st has satisfaction rat $s(\alpha)=\frac{\alpha^{2}}{2 \log _{(1-2 \epsilon)}(\alpha / 2)}$ for soundn ss of $\frac{1}{2}+\alpha$. Thus for $e \in \mathcal{E}, \pi(e) \geq s\left(\frac{\delta}{2}\right)$.

Finally, w low r bound $\mathbb{E}\left[\operatorname{val}_{I}(A)\right]$ (th random d codr choic is av rag dout) as follows

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{val}_{I}(A)\right] & =\mathbb{E} \underset{\substack{e=(u, v) \sim E \\
D^{u}, D^{v} \in_{R}\left\{D_{1}, D_{2}\right\}}}{ }\left[\mathbf{1}_{\{A \text { satisfi s } e\}}\right] \\
& \geq \sum_{e=(u, v) \in \mathcal{E}} w(e) \mathbb{E}\left[\mathbf{1}_{\left\{D^{u}=D_{1}, D^{v}=D_{2}\right\}} \mathbf{1}_{\pi(e)} \mid e \in \mathcal{E}\right] \\
& \geq w(\mathcal{E}) \min _{e \in \mathcal{E}}\left\{\mathbb{E}\left[\mathbf{1}_{\left\{D^{u}=D_{1}, D^{v}=D_{2}\right\}} \mathbf{1}_{\pi(e)}\right]\right\} \geq \frac{\delta}{4} s\left(\frac{\delta}{2}\right) \\
& =\frac{\delta^{3}}{32 \log _{(1-2 \epsilon)}(\delta / 4)} .
\end{aligned}
$$

and this is what w want d .

