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1 Hardness of approximation of E3-LIN-2

We refresh from last lecture the de�nition of the unique game problem with parameter k,
UG[k], and of the Unique Games Conjecture (UGC).

An instance I of the problem comprises of a set of vertices, V , and a set of directed edges,
E. Each edge e ∈ E has an associated weight, w(e) > 0 such that w(E) =

∑
e∈E w(e) = 1

and an associated permutation τe ∈ Sk. An assignment A for I is A : V → [k], and
valI(A) = Pe=(u,v)∼E [A(v) = τe(A(u))].

UGC states that for all small enough δ, ε > 0 there is a k such that distinugishing between
an instance I ∈ UG[k] that satis�es opt(I) ≥ 1 − ε and an instance J ∈ UG[k] for which
opt(J) ≤ δ is NP-hard.

While hardness for UG[k] is only conjectured, we can actually prove it for LC[k] �
where we have a general function instead of a permutation. Note that LC[k] is hard with a
(1, δ)-gap, which is clearly impossible in the case of UG.

The goal of this lecture is to prove that UGC implies hardness of approximation for
E3-LIN-2, which was de�ned in the previous lecture.

Theorem 1 Assuming UGC, for all small enough δ, ε > 0, it is NP-hard to distinguish

between instances of E3-LIN-2 which satisfy opt(I) > 1 − ε and instances where opt(I) <
1
2 + δ.

We prove Theorem 1 by showing a (polynomial-time) reduction r[k] from an instance I
in UG[k] to an instance I ′ of E3-LIN-2 such that

opt(I) > 1− ε =⇒ opt(I ′) > 1− 2ε (1)

and

opt(I) <
δ3

32 log(1−2ε)(δ/4)
=⇒ opt(I ′) <

1
2

+ δ, (2)

and the number of equations in I ′ is bounded by C(δ, ε) · |V (I) + E(I)|.
Given the set of vertices in I, V (I), we generate a set of variables V ′ = {fv(x)}v∈V

x∈{±1}k
.

Thus |V ′| = 2k |V |.
For E′ we pick e = (u, v) ∼ E and apply the permutation-test with parameter ε on fu, fv

and the permutation τe, using the random parameters x, y ∼ µ(k)
1/2, z ∼ µ

(k)
ε , η ∼ µ(1)

1/2.
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Explicitly, we have

E′ =
{
fu(x)fu(y) = ηfv (ητe (xyz)) : x, y, z ∈ {±1}k , η ∈ {±1} , e = (u, v) ∈ E

}
,

where the weight of each equation is w ((u, v)) 2−3k(1− ε)|{i:zi=1}|ε|{i:zi=−1}|. Notice that
|E′| = 23k+1 |E|.

1.1 Correctness of Reduction

To complete the proof of the theorem, it is enough to show that the above reduction has
properties (1) and (2).

First we show (1) (completeness):
Assume opt(I) > 1− ε, and let A be an assignment with valI(A) > 1− ε. De�ne A′ for

I ′ by setting A′(fv(x)) = χA(v)(x). Fixing the assignment A′, the notation we chose for the
variables of the E3-LIN-2 instance allow us to view them as functions of the binary word x.
Thus, somewhat abusing notation, we identify fv(x) with its assignment A′(fv(x)).

valI′(A′) = Pe∼E′
[
A′ satis�es e

]
≥ Pe∼E [A satis�es e] Px,y,z,η [fu(x)fu(y) = ηfv (ητe (xyz)) | A satis�es e]
≥ valI(A)(1− ε) ≥ (1− ε)2 > 1− 2ε,

where conditioning on A satisfying e gave us that fv = χA(v) = χτe(A(u)) = fu, and thus we
may use the 1− ε completeness of the permutation test.

To prove (2), we show the contrapositive, namely, that if r[k](I) = I ′, and ∃A′ with
valI′(A′) ≥ 1

2 + δ then opt(I) ≥ δ3

32 log(1−2ε)(δ/4) . The assignment A′ de�nes a function fv(·)
for each v ∈ V . To use soundness of the permutation test, we need to show there are enough
edges (u, v) ∈ E for which fv(x), fu(x) satisfy their equations in I ′ with good probability on
a random x. This will be a consequence of our assumption on valI′(A′) which lower bounds
the weight of the |E′| equations that are satis�ed. Using soundness, we will randomly decode
fv(·) for each vertex in V and prove that the average value of our random assignment to I
is lower bounded by the function of δ appearing in 2. Since there is a deterministic choice
of A for which val(I) is at least the average, this will prove what we want.

For each v ∈ V choose Dv at random from either D1(fv) or D2(fv) (the permutation
test decoders for the �rst and second word) to obtain a word χi, and let A assign i to v (if
we get ⊥ we assign an arbitrary label).

We use the following lemma to prove that E [valI(A)] is large.

Lemma 2 Let X be an r.v. satisfying 0 ≤ X ≤ 1, then

P [X ≥ α] ≥ E [X]− α
1− α

(3)

Proof

1 · P [X ≥ α] + α(1− P [X > α]) ≥ E [X]
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For e = (u, v) ∈ E, let Pe = Px,y,z,η [permutation test[ε] accepts on fu, fv,τe with A
′].

The law of total probability gives

1
2

+ δ < valI′(A′) = Pe∼E
[
A′ sat. e

]
= Ee=(u,v)∼E [Pe] .

Thus using 3,

Pe=(u,v)∼E

[
Pe ≥

1
2

+
δ

2

]
≥

δ/2

1− (1/2 + δ/2)
> δ.

Let E =
{
e ∈ E : Pe ≥ 1

2 + δ
2

}
be the subset of edges for which the test passes with good

probability. The above shows the probabilistic weight of edges in E , w(E) =
∑

e∈E w(e) is
at least δ. For e = (u, v) ∈ E, let π(e) = Pχu∼D1(fu),χv∼D2(fv) [χu(x) = χv(τe(x))] and recall

that the permutation test has satisfaction rate s(α) = α2

2 log(1−2ε)(α/2) for soundness of 1
2 + α.

Thus for e ∈ E , π(e) ≥ s( δ2).
Finally, we lower bound E [valI(A)] (the random decoder choice is averaged out) as

follows

E [valI(A)] = E e=(u,v)∼E
Du,Dv∈R{D1,D2}

[
1{A satis�es e}

]
≥

∑
e=(u,v)∈E

w(e)E
[
1{Du=D1,Dv=D2}1π(e)|e ∈ E

]
≥ w(E) min

e∈E

{
E
[
1{Du=D1,Dv=D2}1π(e)

]}
≥ δ

4
s(
δ

2
)

=
δ3

32 log(1−2ε)(δ/4)
.

and this is what we wanted.
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