Harmonic Analysis of Boolean Functions in Computer Science

Assignment no. 4

Date due: 5/19/2008

1. (a) Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ be a transitive function. Show that $I_{i}(f)=I_{j}(f)$ for all $i, j \in[n]$.
(b) Let n be odd. Show that the majority function has the highest weight on the first level (linear characters) out of all Boolean valued functions.
2. Let $C=C_{1}=C_{2}=\left\{\chi_{S}\right\}_{S \subseteq[n]}$, and let $\mathcal{R}=\left\{R_{T}\right\}_{T \subseteq[n]}$ be a constraint family where for every T, $R_{T}=\left\{f, g \in C: f=\chi_{T} g\right\}$. Show a three query test for the codes C_{1}, C_{2} and the constraint family \mathcal{R} that has completeness 1 and soundness $\frac{1}{2}+\delta$ for every constant $\delta>0$.
3. (a) Find a reasonable generalization of a q-query constraint test to the three-way case, namely the case where three code families C_{1}, C_{2}, C_{3} are given and where $\mathcal{R}=\left\{R_{\lambda}\right\}_{\lambda \in \Lambda}$ is a set of relations $R_{\lambda} \subseteq C_{1} \times C_{2} \times C_{3}$. Also generalize the notions of completeness and soundness for this case.
(b) Find a three query three-way constraint tester for the codes $C=C_{1}=C_{2}=C_{3}=\left\{\chi_{S}\right\}_{S \subseteq[n]}$ and for the constraint family $\mathcal{R}=\left\{R_{T_{1}, T_{2}}\right\}_{T_{1}, T_{2} \subseteq[n]}$, where

$$
R_{T_{1}, T_{2}}=\left\{f, g, h \in C: g=\chi_{T_{1}} \cdot f \text { and } h=\chi_{T_{2}} \cdot f\right\} .
$$

Your test should have completeness 1. In addition, if for any f, g, h, T_{1}, T_{2} and $\delta>0$ your test succeeds with probability at least $1-\delta$, it must hold that for some $u, v, w \in\{ \pm 1\}$,

$$
\max \left\{\left\|f-u \cdot \chi_{S}\right\|_{2}^{2},\left\|g-v \cdot \chi_{T_{1}} \chi_{S}\right\|_{2}^{2},\left\|h-w \cdot \chi_{T_{2}} \chi_{S}\right\|_{2}^{2}\right\} \leq O(\delta)
$$

(c) Prove that the test you constructed in the previous section has soundness $1 / 2+\delta$ for any constant $\delta>0$ (or alternatively, solve the previous section again with a new test, and then prove this additional property..).
4. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a function, let $x \in\{-1,1\}^{n}$ and $u \in\{ \pm 1\}$ be uniformly selected, and for some small positive parameter $\epsilon<1 / 2$, let $z \in\{-1,1\}^{n}$ be randomly chosen by independently setting

$$
z_{i}=\left\{\begin{array}{cl}
-1 & \text { with probability } \epsilon \\
1 & \text { with probability } 1-\epsilon
\end{array}\right.
$$

Let T be the two-query test which accepts iff $f(x)=u \cdot f(u z x)$. Show that for every (small enough) $\epsilon>0$ there is a number $\delta(\epsilon)>0$ such that the following hold:

- If $f=\chi_{i}$ or $f=-\chi_{i}$ for some i, then the test accepts with probability at least $1-\epsilon$.
- If the test accepts with probability at least $1-\epsilon-\delta(\epsilon)$ then f must be a non-constant Boolean dictatorship g such that $\|f-g\|_{2}^{2} \leq 0.1$.

5. (a) Extend the test from question (4) to a permutation test over the long-code, and prove that it has completeness $1-\epsilon$ and soundness $\delta(\epsilon)$ for some $\delta(\epsilon)>0$.
(b) Show that for every (small enough) $\epsilon>0$ there exists a number $\delta(\epsilon)>0$ with the following property: assuming the Unique Games conjecture, it is NP-hard to distinguish between instances of Max-E2-LIN-2 with optimum at least $1-\epsilon$ and instances where the optimum is at most $1-\epsilon-\delta(\epsilon)$.
