Harmonic Analysis of Boolean Functions in Computer Science

Assignment no. 2

Date due: 3/31/2007

- 1. Let $f: \{-1,1\}^n \to \mathbb{R}$ be a function, and define $\tau(p) \doteq \|f\|_p$ for all $p \ge 1$.
 - (a) Show that τ is monotone increasing. **Hint:** recall that the function $t \to |t|^q$ is convex for every $q \ge 1$ and use Jensen's inequality, which states that for any convex function φ and any random variable $X, \mathbb{E}[\varphi(x)] \ge \varphi(\mathbb{E}[X])$.
 - (b) Show that $\lim_{p\to\infty}\varphi(p) = \|f\|_{\infty}$.
- 2. For a function $f : \{-1,1\}^n \to \mathbb{R}$, let $\sigma(f) \doteq \sum_i \widehat{f}(i)$.
 - (a) Denote $w(x) \doteq \sum x_i$, and show that $\sigma(f) = \mathbb{E}[f(x)w(x)]$ for every f.
 - (b) Prove that among all Boolean-valued functions over $\{-1,1\}^n$, σ is maximized by the Majority function.
 - (c) Deduce that majority has the largest total influence of all Boolean-valued monotone functions.
- 3. Let $f: \{-1,1\} \to \mathbb{R}$. For a set $T \subseteq [n]$ of coordinates we define the variation of f on T by

$$\operatorname{Vr}_{T}(f) \doteq \mathop{\mathbb{E}}_{x \setminus T} \left[\mathop{\mathbb{V}}_{x \cap T} \left[f(x) \right] \right].$$

- (a) Write $Vr_T(f)$ in terms of the Fourier coefficients of f.
- (b) Let $g: \{-1,1\} \to \mathbb{R}$ be a function that depends only on coordinates from T. Prove that

$$\|f - g\|_2^2 \ge \mathsf{Vr}_{[n]\setminus T}(f).$$

(c) Prove that if $\operatorname{Vr}_{[n]\setminus T}(f) \leq \epsilon$ then there exists a function $g: \{-1,1\} \to \mathbb{R}$ that depends only on coordinates from T, such that

$$\|f - g\|_2^2 \le \mathsf{Vr}_{[n]\setminus T}(f).$$

4. Let $g: \{-1,1\}^n \to \mathbb{R}$ be a *j*-junta, and let $f: \{-1,1\}^n \to \mathbb{R}$ be a symmetric function (namely, for any permutation π of coordinates and every $x, f(x) = f(\pi(x))$). Show that

$$||f - g||_{2}^{2} \ge \frac{n - j}{n} \cdot \mathbb{V}[f].$$

(For extra credit, prove the same when f is only known to be transitive.)

- 5. (a) write $\mathbb{E}_{x,y}[f(x)g(y)h(xy)]$ in terms of the Fourier coefficients of f, g, and h.
 - (b) Assume that $||f||_2 = 1$ and that $\mathbb{E}_{x,y}[f(x)f(y)f(xy)] \ge 1 \epsilon$. Prove that $\widehat{f}(S) \ge (1 \epsilon)$ for some $S \subseteq [n]$.