Harmonic Analysis of Boolean Functions in Computer Science

Assignment no. 2

Date due: 3/31/2007

1. Let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ be a function, and define $\tau(p) \doteq\|f\|_{p}$ for all $p \geq 1$.
(a) Show that τ is monotone increasing.

Hint: recall that the function $t \rightarrow|t|^{q}$ is convex for every $q \geq 1$ and use Jensen's inequality, which states that for any convex function φ and any random variable $X, \mathbb{E}[\varphi(x)] \geq \varphi(\mathbb{E}[X])$.
(b) Show that $\lim _{p \rightarrow \infty} \varphi(p)=\|f\|_{\infty}$.
2. For a function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$, let $\sigma(f) \doteq \sum_{i} \widehat{f}(i)$.
(a) Denote $w(x) \doteq \sum x_{i}$, and show that $\sigma(f)=\mathbb{E}[f(x) w(x)]$ for every f.
(b) Prove that among all Boolean-valued functions over $\{-1,1\}^{n}, \sigma$ is maximized by the Majority function.
(c) Deduce that majority has the largest total influence of all Boolean-valued monotone functions.
3. Let $f:\{-1,1\} \rightarrow \mathbb{R}$. For a set $T \subseteq[n]$ of coordinates we define the variation of f on T by

$$
\operatorname{Vr}_{T}(f) \doteq \underset{x \backslash T}{\mathbb{E}}[\underset{x \cap T}{\mathbb{V}}[f(x)]] .
$$

(a) Write $\mathrm{Vr}_{T}(f)$ in terms of the Fourier coefficients of f.
(b) Let $g:\{-1,1\} \rightarrow \mathbb{R}$ be a function that depends only on coordinates from T. Prove that

$$
\|f-g\|_{2}^{2} \geq \operatorname{Vr}_{[n] \backslash T}(f)
$$

(c) Prove that if $\operatorname{Vr}_{[n] \backslash T}(f) \leq \epsilon$ then there exists a function $g:\{-1,1\} \rightarrow \mathbb{R}$ that depends only on coordinates from T, such that

$$
\|f-g\|_{2}^{2} \leq \operatorname{Vr}_{[n] \backslash T}(f)
$$

4. Let $g:\{-1,1\}^{n} \rightarrow \mathbb{R}$ be a j-junta, and let $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ be a symmetric function (namely, for any permutation π of coordinates and every $x, f(x)=f(\pi(x)))$. Show that

$$
\|f-g\|_{2}^{2} \geq \frac{n-j}{n} \cdot \mathbb{V}[f]
$$

(For extra credit, prove the same when f is only known to be transitive.)
5. (a) write $\mathbb{E}_{x, y}[f(x) g(y) h(x y)]$ in terms of the Fourier coefficients of f, g, and h.
(b) Assume that $\|f\|_{2}=1$ and that $\mathbb{E}_{x, y}[f(x) f(y) f(x y)] \geq 1-\epsilon$. Prove that $\widehat{f}(S) \geq(1-\epsilon)$ for some $S \subseteq[n]$.

