Harmonic Analysis of Boolean Functions in Computer Science

Assignment no. 1

Date due: 3/10/2007

No Fourier. In this exercise set please do not use Fourier analysis in your answers.

1. Let M_n denote the majority function on *n* variables. Compute

$$\lim_{n \to \infty} \frac{I(M_n)}{\sqrt{n}}$$

(use Stirling's approximation formula if necessary).

- 2. Prove that there exists a constant c such that for every constant b > 0 and for every large enough t the following holds: there is a number m(t) such if we take $n = t \cdot m(t)$ and let $f: \{-1, 1\}^n \to \{-1, 1\}$ be the tribes function with m(t) tribes of size t each, then $|\mathbb{E}_x[f(x)]| < b$ and $I(f) \leq c \cdot \log n$.
- 3. Let $f: \{-1,1\}^n \to \{-1,1\}$ satisfy $I(f) \ge n \epsilon$. Show that either $\Pr_x[f(x) \ne \prod_{i=1}^n x_i] \ge 1 \epsilon/2$ or $\Pr_x[f(x) \ne -\prod_{i=1}^n x_i] \ge 1 \epsilon/2$.
- 4. (a) Let X_1 and X_2 be independent random variables, and let $f(X_1, X_2)$ be a function. Suppose that $\mathbb{V}_{X_2}\left[\mathbb{E}_{X_1}\left[f(X_1, X_2)\right]\right] = \mathbb{E}_{X_1}\left[\mathbb{V}_{X_2}\left[f(X_1, X_2)\right]\right]$, and prove that there exist functions $g(X_1)$ and $h(X_2)$ such that $f(X_1, X_2) = g(X_1) + h(X_2)$.
 - (b) Find a necessary and sufficient condition for a function $f : \{-1, 1\}^n \to \mathbb{R}$ to satisfy $\mathbb{V}_x[f(x)] = I(f)$.
 - (c) Let $f : \{-1,1\}^n \to \{-1,1\}$ be a balanced function such that I(f) = 1. Show that f is a dictatorship.
- 5. Let's generalize the notion of influence from single coordinates to sets of coordinates. Fix $f: \{-1, 1\}^n \to \mathbb{R}$. For a set of $S \subseteq [n]$ of coordinates we define the variation of f on S by

$$\operatorname{Vr}_{S}(f) \doteq \mathbb{E}_{x \setminus S} \left[\mathbb{V}_{x \cap S} \left[f(x) \right] \right].$$

Show that for every $S, T \subseteq [n]$,

$$\operatorname{Vr}_{S\cup T}(f) \leq \operatorname{Vr}_{S}(f) + \operatorname{Vr}_{T}(f).$$