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Abstract

Understanding how features are encoded during categowysiiogn is a fundamental
challenge in the study of human learning. The current wodppses that in order to maintain
accurate generalization in large scale categorizatiotesys features that are useful in
discriminating multiple categories must be actively prefd. This multi-class hypothesis stands
in contrast with theories in which features are encodeddoheategorization task individually,
as well as theories that focus solely on encoding coincieentinput patterns. The current paper
provides a methodology for empirically testing the promblsgpothesis under controlled
conditions. It is shown that in the process of acquiring aisege of new categories, features that
are informative for recognizingeveral categories are preferably encoded. Moreover, evidence is
provided that after acquiring these features, representabf categories learned in the past are
actively reconstructed by the newly encoded features. lligjmias demonstrated that encoded
features play a role in facilitating future category acdigs. These results are observed using
both perceptual and semantic stimuli. It is suggested ttedieping features that provide
maximum information on multiple categories is a generaratigristic of the human

categorization systems.



Introduction

The environment in which humans live requires fast and ateuecognition of
numerous categories. These requirements must often beterebialy few examples of a novel
category have been encountered. Nevertheless, humansgsdeal with this challenge
effectively, recognizing a large number of categories gBrenan, 1987) with high speed and
accuracy (Thorpe, Fize, & Marlot, 1996). It remains a puizie new categories are acquired
reliably, overcoming the difficulties associated with gaieation from a small sample
(Goodman, 1972). Theories of categorization are typidadised on measuring the similarity of
an incoming stimulus to an internal representation of thegmy, such as a prototype or a set of
exemplars (Medin & Smith, 1984; Barsalou, 1985; Nosofs®g8). The tradition set by Tversky
(1977) emphasized the role of having the appropriate featior measuring this similarity;
however, the criteria for encoding the appropriate featu@mains unclear. Thus, a major
guestion is what features are used for evaluating simjlarian ever-increasing range of
categories. Attempts to address this question have engaukitiat in a compositional framework,
a small vocabulary of basic features can be reused in theseptation of many categories (see
review and references in Goldstone, 2003). Initially, trisabulary was characterized as
including a set of fixed primitives, such as the geon-bassdalialphabet (Biederman, 1987).
More recent theories have proposed the use of adaptiveéesdts (Schyns, Goldstone, &

Thibaut, 1998), which are class-dependent, and are achgineng a learning stage.

Two theoretical frameworks have suggested computatiaitalia as to when a feature
set should be dynamically extended. The first theoretiemh&work emphasizes the importance
of features that encode suspicious coincidences betweehpatterns, e.g., jointly encoding
wings and feathers (Barlow, 1989). A number of studies happarted this view by

demonstrating that features sensitive to input statisticsbe created in the absence of any



categorization feedback (Billman & Knutson, 1996; RosahthRusi, & Hochstein, 2001;

Edelman, Hiles, Yang, & Intrator, 2001; Fiser & Aslin, 2002)

In contrast to this approach, the class-based framewordesigjthat the encoded
features are those which are maximally discriminative endbntext of a target categorization
task. Discriminative power is often quantified using muta&drmation (Battiti, 1994; Ullman,
Vidal-Naquet, & Sali, 2002; Fleuret, 2004; Vasconcelos &&ancelos, 2004). Several empirical
findings provide indirect evidence for this theoreticahfivork. Goldstone (1994) has
demonstrated that different categorization tasks indatextve feature sensitization. Similarly,
Archambault, O’'Donnell, and Schyns (1999) show that gdnexaspecific categorization tasks
might influence the perceived properties of the same difalct. More direct evidence for
feature creation induced by a categorization task, wasigeovby Schyns and Murphy (1994),
Schyns and Rodet (1997), Goldstone (2000) and Goldsto@3)2Recently, Goldstone,
Rogosky, Pevtzow, and Blair (2004) have demonstrated theegs of encoding discriminative
features during perceptual and semantic category acguiswhile characterizing the interplay
between discriminative value and feature naturalnessldive for selectivity to discriminative
features has also been established through neuronal regeifdom monkey inferior temporal
(IT) cortex (Baker, Behrmann, & Olson, 2002; Sigala & Logetik, 2002). However, these
different lines of research do not directly address thetfzait categorization systems must be

capable of acquiring many thousands of categories.

The current study examines the hypothesis that in orderteae efficient
generalization when classifying numerous categoriesjtigkerlying organizing principle is to
preferentially encode features which are informative foitiple categories. In the past, accurate
generalization in novel categorization tasks has beeibaii®d to an acquired domain theory

(Ahn, Mooney, Brewer, & DeJong, 1987; Pazzani, 1991). Oseaech hypothesis suggests that a



significant part of domain knowledge, is manifested by emapthe features suitable for
discriminating categories within the target domain. A fatmescription of this informativeness
criterion is provided in Appendix |. The assumption supjaythe proposed criterion is that
categories often share common informative sub-structi@sexample, tails are common to
different animals, and wheels are shared by different Velsiasses. Thus, representing features
that are highly informative for multiple known categorisdikely to contribute to the encoding
process of future categories as well. This contributiorspgeeially significant when it is
necessary to learn the manner in which complex perceptatlres can change their appearance
(e.g. an eye may be open or closed and a tail may bend in cartglas but not in others). When
learning is done independently for each class, the contglekisuch features might require
observing a large sample. The use of shared features alarslass transfer of this learned
variability and thereby contributes to reliable classtima of new categories (e.g. handling eye

appearance under changing viewing conditions).

The perceptual-conceptual continuum view (Jones & SmBBA31Eimas, 1994;
Quinn & Eimas, 1996, 1997; Goldstone & Barsalou, 1998; Batsd 999), emphasizes the fact
that categorization tasks in the perceptual domain andeisémantic domain are challenged by
the similar fundamental requirement of discriminatingamges originating from a large number
of categories. We therefore suggest that features thah&merative for multiple classes might
assist generalization not only in perceptual categoomatiut in semantic categorization as well.
For example, once the rich cultural correlates of semaa#titufes such asfamale or teenager
are encoded, they can be instrumental in characterizing ffodire semantic categories such as

cheerleaders or anorexia-nervosa.

The hypothesis examined in this study is that features wémietdiscriminative for

several different categories are identified and encoded.féict selecting features that are



informative for multiple categories is a basic organizimggiple, it can be hypothesized that
novel features that are discriminative to multiple categgcollectively, will be encoded, even in
the absence of suspicious coincidences in the input statestd even if they do not maximize the
information provided for anyndividual category. Furthermore, it is hypothesized that during the
dynamic process of acquiring multiple categories the pedcof constantly maintaining a shared
set of discriminative features can induce representdtgim#s of categories learned in the past
and affect the representation of subsequent classes. figpstheses are summarized in three

predictions:

1. features informative for recognizing multiple categsrare preferentially encoded

2. features revealed as informative for multiple categocen change former category

representations

3. features encoded due to their information content fottiplelcategories, can later facilitate

the acquisition of future categories

Four experiments were designed to test the three predscsiated above. Experiment |
examined the first two predictions while Experiment |l exaed the third. Both experiments
utilized controlled sets of semantic stimuli (job candetatiescriptions). To test the three
predictions in lower levels of the perceptual-conceptaaitimuum, Experiments Il and IV
replicated the first two experiments utilizing perceptuahsli (configurations of colored cubes).
The following four sections describe the four experimefaowed by a discussion on the scope

and limitations of the proposed theory and research methggo



Experiment I: Preferential Encoding of Semantic Featunésrimative for

Multiple Categories

Experiment | was designed to examine whether features tbanfrmative for
recognizing multiple categories are preferentially erszbdnd whether this process might
actively reconstruct the representations of categorigaieed in the past. Studying the intricacies
of feature creation processes in adult categorizatioresysis a challenging endeavor. This is
especially true if the proposed hypothesis is correct anehwdonfronted with new categorization
tasks, humans do in fact employ their rich arsenal of exgdatures. The challenge lays in
isolating the contribution of feature discriminative valior multiple classes collectively, while
controlling the effects of stimuli co-occurrence and thieimation provided by features for each
category, individually. Therefore, the experimental patiakes use of novel categories in which
the experimental conditions can be designed in a contratiaaner using features which do not

resonate with existing representations.

Method

This section starts by presenting an abstract categaiztdask. The categorization task
is specifically designed to test whether features that ars discriminative for multiple
categories collectively, are indeed preferentially emtbdrhe empirical implementation of this
abstract task using semantic stimuli, is described latérérmaterials and procedure sections of

Experiment I. An implementation using perceptual stimsifprovided in Experiment IIl.

The abstract categorization task consisted of eight bimgyt elements;; ;—; s, jointly
notated as. Four target categories, ,,_; 4 were defined over the input vector gat}. As

described in Fig. 1:Left, each category was fully charaoter by four specific input elements
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being in anon position. Thus, for example; = [— — + + + + —+] is an exemplar of category,

Cy = [* x + + + + =x]. It will now be shown why this specific category structure barused to

test the research predictions. The subset of all second cod@unctions of input elements
(including (g) = 28 features) was selected as the focus of the proposed analydigual
information was evaluated between each ofZkeandidate features and the individual categories
(using Eqg. (1) in Appendix I). Then, the information was exséed for the four categories
collectively (summing Eq. (1) over all category assignment&'dpf As shown in Fig. 1:Left,
categorieg”; andC, require two common input elements to be inarstate {4 andz;). This
common requirement was termegair-feature. In fact, each of the four categories shares a

commonpair-feature with two other categories. Thegpair-features are formally defined as:

o vy =x Nag

o vy =i Ny

o v3=xd Nt

U4Ex;’ﬂx§

As depicted in Fig. 1:Right, theair-features are not more informative than other pairs
for categoryC; individually (providing0.264 or 0.008 bits). However, they do appear as the
maximally informative features for the four categoriededtively (each providing.581 bits)2.
Thus, the first research prediction would be manifested &liest representation of the
pair-features: v, v, v3 andv,, emerges while acquiring the four categories. As desciibbéuke
introduction section the proposed setting must also cbtitestwo alternative computational
criteria that induce feature creation. This goal was a@ddw finding a representation that is
comparable in all aspects to thair-feature structure but is not as informative for the

categorization tasks collectively. Such an alternatipeesentation is generated by arbitrarily
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segmenting the eight input elements into fanoongruent-pairs, that appear each in just one

category, i.e.:

— ot At

= ot At
he = 2y Nag

= ot At
hs = x; Nx;

— At

Insert Figure 1 about here.

Participants Twelve undergraduate students from the Hebrew Universifgnisalem
participated in Experiment | for payment or course credartieipants, aged 20 to 30 years, were

screened for normal vision.

Materials The categories defined in Fig. 1 were implemented in a jolyassnt task,
requiring participants to sort applicants to four busirfesss. Eight binary characteristics
encoded the input description of each candidate. For eafacteristic, one value was selected to
function as then state and another as th# state e.g. Department Preference: Logand
International- (see Fig. 2). Thus, each of the four business firms requinedsipecific
characteristics to be in amn state. For example, Firm 3 required all candidates to be,male
lawyers, living in New York and preferring the local depaetmh. Beneath the applicant sheet, an
array of five target buttons was displayed (see setting inBigeach of the four peripheral

buttons was associated with one of the four firms. The cebttan was reserved for applicants
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not qualified for any firm. In order to control feature saligtize position of the fields in the

display were randomly permuted in each trial.

The intersections of the categories’ relevant charatitesidefined the set of

pair-features:

v, = Spanish-speakand Married

vy = Private-collegand Thirties

vz = Male and Lawyer

vy = New Yorkand Local-department

It was previously predicted that an internal represematicthesepair-features should evolve if
features are not selected by their information contentdchecategorization task individually, but
rather by their information content to all categorizatiasks collectively. This will be guaranteed
by comparing eacpair-feature to anincongruent-pair which provides an equal amount of
information to any one specific category. For example, tfarimation provided bypair-feature

vy to Firm (', is equal to the information provided loigcongruent-pair h; (Spanish-speakend

Thirties) to the same categorty.264bits, as indicated in the top pane of Fig. 1).

Insert Figure 2 about here.

Training Procedure Experiment | was composed of four training stages. At eaatpest
participants learned the requirements of one additioralifira trial-and-error paradigm. In every
trial a random subset of the eight input elementsas set to then state while the remaining

features were set to tio#f state. This random activation process was carefully desigiot bias
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the pairs-features over theincongruent-pairs (as explained in Appendix Il). The resulting eight
dimensional candidate description was displayed untipéméicipants pressed one of the category
buttons. If a wrong firm was indicated an error tone was trigde In the first stage, dedicated to
learning the requirements of Fir@%, only the centratlefault button, and the button associated
with Firm C;, were presented. Later, an additional button appearedeaith subsequent stage,
so that participants can indicate whether the candidatengpatible with the requirements of
Firm Cy, Firm C3, and FirmC}. Each training stage was concluded only when participants
reached a criterion a0 consecutive successes. It should be emphasized that the random
activation probability over the input sék} was identical during all four training stages. Thus,
participants were constantly viewing stimuli generateahfra fixed source, while incrementally
learning to recognize which exemplars (candidates) weralees of categories (Firms),
throughCy. 1t should be noted that for each participant the varioudsigtere randomly assigned
so that fourpair-features of one participant could have been faacongruent-pairs of another.
Finally, when the four training stages were concluded, ewtas employed to examine whether

the hypothesizegair-features have emerged.

Testing Procedure In the testing stage, each of the category buttons was bigleld in a
sequential manner while requiring the participants to alylreport which characteristics were
necessary for the associated firm. The proposed test asshaté&san internal representation of
the pair-features had undergone a process of unitization (Goldstone, 2008 vérbal reports
should be composed of twmair-features. In other words, if certain input elements have been
consolidated into @air-feature, they should be reported as one. This reporting patternlgimai
be exhibited if a representation based on any oflengruent-pairs had emerged. It should be
noted that although participants were explicitly requitederbally report each category, the

sequence of reported characteristics is a purapjicit measurement. The advantage of this
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testing method is that it refrains from presenting the higpsizedpair-features during the testing
process, thus avoiding the encodingair-features as a byproduct of the testing phase itself. It
was therefore assumed that the reporting sequence wag&atiamally or unintentionally biased
by the participants, and that these reports essentialctefie internal structure that had emerged

in the learning process.

Results Participants completed the four training stages in 4-6 $iaeiquiring
approximately 1000 trials. The verbal reports providedhmtesting stage were then coded by
examining whether the first two characteristics compogeairafeature or anincongruent-pair. It
was observed that the frequency of reportuag -features was significantly higher than that of a
comparable pattern aficongruent-pairs (binomial testp < 0.05, n=12) in all of the reports of
the four firms (Fig. 3). In addition to registering the repsgtjuence, the participants of
Experiment | were recorded while verbally reporting theuiegments of each firm. The reports
of each firm were manually annotated by marking the starting and the ending time of the
four comprising characteristics. An annotated recordiingategoryCs is presented in Fig. 3. By
performing this annotation it becomes possible to measweration of the three gaps between
the four reported characteristics and to assess whethergheelements composing each
pair-feature are indeed temporally fused, as expected by a unitizatioogss. The three gaps
were scored according to the ascending order of their durétihe shortest gap was scored as 1,
the intermediate gap was scored as 2 and the longest gap evad s 3). When analyzing these
patterns in the recordings of Categary, it was observed that the second gap schte=(2.86,

D = 0.38) was significantly larger (t(6) = 4.86) than the firgb gaore 1 = 1.83,3D = 0.69) and
significantly larger (t(6) = 10.49) than the third gap scdviex( 1.43,SD = 0.53}'. It should be
noted that only recordings of participants that reportedcditegories as twaair-features were

used in this analysis and that corrupted recordings anddexs where participants did not
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report only the relevant characteristics (e.g. incorpogatvords like AND into the report) were
not used. Similarly, the second gap scores were significantly lafigan the first and third gaps

in the reports of categories, throughCl.

One might claim that this pattern of reports results fromfétoe that people simply tend
to take longer pauses in the second gap of a four word lishairthe recording results are do a
preexistent representational bias and therefore do nettefh emergergair-feature structure.
Therefore, a control group was established, where paaintgowere required to only learn and
report FirmC'. The eight participants of the control group were selectechfthe same student
population as the experiment group. This between subjsttdempared the score difference
between the second and first gaps (e.g. the report in Fig. 8\vbeuscored as 3 - 2 = 1). In this
comparison a significant difference (t(13) = 2.21) was olegbetween the gap scores of the
experiment groupN]l = 1.00,SD = 1.00) and the control groupA= 0.00,SD = 1.16). Similarly,
when comparing the score difference between the secondhaddyaps (e.g. the report in Fig. 3
would be scored as 3 - 1 = 2). A significant difference (t(13) 7Y was observed between the
gap scores of the experiment grot € 1.43,SD = 0.53) and the control groupA=-0.38,3D =
1.19). Thus, the temporally fused reports of gaér-features are not observed after the
acquisition of category’;, but rather manifest a representational shift emergingduhe later

acquisition of categorieS, throughCj.

The reported results provide evidence that in the semaygtes, features are preferably
encoded if they provide information for multiple categsrielowever, Experiment | also
addresses the second prediction, stating that encodirg] features might lead to a
reconstruction of former category representations. Tlaiscis based on observing the evolved
representation of categofy,. When participants pass the first training stage, they argppqd

with a representation that enables perfect recognitiotl chgegoryC; exemplars (due to the
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highly stringent training criterion of00 consecutive successes). At this point plag-features
have no salient representation because they are by defirdgatical to thencongruent-pairs

until learning at least one additional category. In factdbetrol group participants that only
learned category’;, showed no saliency of gair-features representation. However, when
analyzing the reporting results of categary, registeredafter concluding the learning procedure
of all four categories, it is evident that the initial repeagation of category’;, had been actively
reconstructed. This reconstruction maintained that theegentation of category; complies

with the pair-features acquired only later in the training process. Thus, the fiwsttesearch
predictions have been addressed while controlling for leereative factors that might have

accounted for the emergepair-feature structure.

Insert Figure 3 about here.

Experiment Il: Facilitated Acquisition of Novel Semantiatégories

Experiment Il examined the third research prediction, ngwhether thepair-features

facilitate learning of future categories.

Method

Experiment Il included an additional training stage to therftraining stages of
Experiment I. In this additional stage, examples of a newgaty,C's, were presented. This new
category was defined & = v;” N v, (see Fig. 1). Unlike the training procedure of Categories
C1 through(y, that continued until a criterion of perfect categorizatperformance had been

reached, the fifth stage was restricted to a prefixed numbeats. It was predicted that when
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training a fifth category that is congruent with tbar-feature structure, a significant facilitation
would be observed. Comparing the performance of partitgiduat have already learned the four
initial categories to the performance of naive particigastmeaningless, due to history
confounds. Therefore, Experiment Il maintained a betwedjest design by including a control
group that shared the same history as the experimental gfdugpcontrol group learned a
different fifth category(s = hd N A}, that is equally complex aSs yet incongruent with the

pair-feature structure.

Participants Twelve undergraduate students from the Hebrew Universifgnusalem
participated in Experiment Il for payment or course crelddrticipants, aged 20 to 30 years, were
screened for normal vision, and then randomly allocatedjtmksized experimental and control

groups.

Materials The stimuli and setting of Experiment Il were similar to tbaescribed in

Experiment I.

Training Procedure Participants were first required to complete training ssalge
through 4 as in Experiment I. Next, both groups learned thairements of a fifth firm using a
limited set of48 training trials. The stimulus presentation procedure effifth stage was
identical to the first four training stages except that srimere limited to a prefixed duration of
sixteen seconds. Providindg training trials was aimed at terminating the training psscat a
point where the differential learning rate of the experitaéand control groups might be
manifested. Rather than samplifigjtrials as in the first (unbounded) four training stages, the

fifth stage displayed in a random order, a predefined s&t okgative examples ard positive
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examples of either the congruent categ6yor the incongruent category;. The detailed

composition of thesés training trials is described in Appendix Il1.

Testing Procedure  Following the4s8 training trials, participants were first tested on their
capability to correctly categorize tl8 training examples, by repeating the presentation
procedure in the absence of any feedback signal. Only thleepatticipants verbally report the
candidate characteristics composing the new firm’s remergs. If thepair-features have no
functional influence on future category learning, it wouddxpected that the learning rate of the
fifth category should be equal in both groups. On the othed hiawas hypothesized that the
previously encodegdair-features might facilitate future learning of a new congruent catggdr
was therefore anticipated that under such constrainedrngaconditions, the experimental group

would display a significant advantage in learning the fifttegary.

Results The participants of both the experimental and the contrmlgs reported that
the training procedure of the fifth firm was difficult. This&gt is probably due to the limited time
provided for thel8 training trials. The participants’ performance on tfdgesting trials
(presented without feedback), was scored by averagingrapmopion of the correctly classified
examples of the fifth category with the proportion of the eotty classified remaining fillers so
that chance level i8.50. It was observed that while the control group performednslygabove
chance levelNl = 0.59, SD = 0.11) the accuracy of the experimental grody € 0.81, SD = 0.13)
was substantially higher (t(10) = 2.38). Next, the verbpbréing results were scored by
subtracting the number of any incorrectly reported charastics from the number of correctly
reported characteristics. Here too, a significant diffeegt(10) = 4.65) was observed between

the experimental group scored € 2.33, SD = 1.51) and the control group scorelsl (= —0.33,
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SD =1.21). It could therefore be concluded that the emergaid-feature representation was a

functional tool in facilitating the acquisition of a novedreantic category.

Experiment Ill: Preferential Encoding of Perceptual Feadunformative for

Multiple Categories

The goal of Experiment Il was to examine whether the resaflSxperiment | were
specific to the semantic domain or whether evidence for angddatures that are informative for

recognizing many categories might also be observed in &ptral classification task.

Method

Due to the fact that Experiment Ill was aimed at replicatimg $tructure of Experiment I,

the applied method was similar to that described above.

Participants Twenty undergraduate students from the Hebrew Univer$ifgnisalem
participated in Experiment Il for payment or course creBdrticipants, aged 20 to 30 years,

were screened for normal color vision.

Materials To test the first research prediction using perceptual ditime
eight-dimensional binary inputs were implemented using images composed of eighar
cubes. For each cube, one color was selected to function asrtiséate and another color as the
off state (Fig. 4). For each individual participant, the set®tdalors was randomly allocated to

the eight cubés
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Insert Figure 4 about here.

Insert Figure 5 about here.

In thecolor cube implementation, each category required four specific n@ghg cubes
to be in anon position (see Fig. 5). Categories based on neighboring cobigurations were
chosen, because they are easier to acquire. Exemplarstotaimgory were generated by using
color combinations of the remaining four non-relevant autdéhus for example, all Catego€y;

exemplars included: Black, Orange, Yellow and Greelor cubes.

The intersections of the categories’ relevant cubes defimedet ofpair-features (see
Fig. 6). Since the stimuli presentation probabilities widentical to those described in
Experiment I, the mutual information measurements from Eiggmain valid, leaving the

pair-features as the maximally informative representations.

Insert Figure 6 about here.

Procedure The training procedure of Experiment Il was analogous &t trescribed in
Experiment I. Similarly to the field permutation in Experintg |, at every trial of Experiment Ill,
the entire three dimensional cube configuration was rotatentder to control perceptual biases
between theair-features and theincongruent-pairs (see Appendix IV). When the four training
stages were concluded, participant were required to Mgr@gort thecol or-cubes relevant for

each of the four categories.
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Results Participants completed the four training stages in 2-3 $ioline relatively
short training duration resulted from the fact that procegthe perceptual stimuli required
approximately half the time than in the analogues stagexpéiment I. All twenty participants
succeeded in reporting the four colors relevant to eaclyoateThe frequency of reporting
according to theair-feature pattern was observed to be significantly higher than that of a
comparablencongruent pair pattern in all four categories (binomial tegt< 0.05, n=20). Fig. 7
depicts the number of reports congruent with pag-feature structure. Thus, Experiment Il
validates the first research predication. As in Experimgtitd fact that the report of categafy
reflects the later acquirgehir-feature structure, validates the second prediction regarding the

reconstruction of former category representations.

Insert Figure 7 about here.

Experiment IV: Facilitated Acquisition of Novel Percept@ategories

Experiment IV examined whether an informative feature aetfacilitate learning future

perceptual categories.

Method

Experiment IV replicated Experiment Il, utilizing the peptual stimuli described in
Experiment Ill. Thus, the fifth training stage required f@ag a novel perceptual category
Cs = vy Nuf from just a few training examples. The facilitation of aaipg categoryC; was

assessed in comparison to a control fifth category, definéy ash; N h}.
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Participants Ten undergraduate students from the Hebrew UniversityroSadem
participated in Experiment IV for payment or course creBdrticipants, aged 20 to 30 years,
were screened for normal color vision, and then randomécatied to equal sized experimental

and control groups.

Materials The stimuli and setting of Experiment IV were similar to teakescribed in

Experiment 1. Fig. 8 depicts the fowolor cubes characterizing categori&s; andCs.

Insert Figure 8 about here.

Procedure Participants were first required to complete training ssalgthrough 4.
Then, both the experimental and the control groups learridih @ategory using a limited set of
48 training images (detailed in Appendix Ill). The stimuli pentation process of this stage was
similar to that described in the first four training stagesapt for the fact that the trial duration
was fixed to six seconds. Following tHe training trials, participants were required to verbally

report thecolor cubes composing the new category.

Results As in Experiment Il, the ten participants of both the expenal and the
control groups reported that the training procedure of titke ¢ategory was difficult. However,
when comparing participants’ performance in the expertaleand control groups, it was
observed that the learning rate was significantly highehéncongruent condition (Fisher Exact
Probability Testp < 0.05, n=10). Members of the experimental group reported on gea
correctcolor cubes, i.e. participants learned most of the new category’s ctarstics. Members

of the control group, reported on average oy out of the fourcolor cubes present in category
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Cs. Thus, the emergephir-feature representation was indeed a functional tool in facilitgtine

acquisition of a novel perceptual category.

Summary and Discussion

The proposed experimental setting required learning fategories, each based on a
conjunction of four input elements. Pairs of input elemgeteismedpair-features were suggested
as the preferred internal representation due to theirmmédion content for the target categories,
collectively. Although no direct feedback was providedtfue pair-feature structure, it was
experimentally found that participants’ reporting patgecorresponded to an internal structure
based on these pairs. The existence ofpdie-features cannot be attributed to their perceptual
salience or frequency of appearance, since these factoesoaeefully controlled. It was also
observed that thpair-feature structure actively reconstructed the previously acquired
representation of the first category. Finally, it was denratsd that the emergepéir-features
can significantly facilitate learning of future categori&be three experimental predictions have
been validated using both semantic and perceptual sti@uak. might claim that while
categorizing the perceptual stimuli in Experiments Il &ddparticipants actually translated the
observectolor cubesinto semantic entities (e.g. naming each color cube). Aigfopossible, this
claim seems to be inconsistent with the substantial tinferéihce required for trials in
Experiment | ( 16 seconds) and in Experiment Il ( 6 secondigarticipants were implicitly
translating all perceptual stimuli into the semantic sys#and then performing categorization
over semantic entities, it would be expected that trialsxpdtiment Il require at least the
processing duration observed in Experiment I. It remairenags to whether a single mechanism

is used for consolidating features that are discrimindtvenultiple categories, or whether
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encoding common features is a general principal charastgrmany systems throughout the

perceptual-conceptual continuum.

Several questions regarding the generalization of thegs@gtheory might be raised.
The learning task stripped the category acquisition anaifeareation processes to the bare
minimum, two conjunctions of binary inputs determinisligaefined each category. Examining
the effects of more complex settings, like continuous irgpotensions, complex features and

other (more natural) learning schemes is the goal of fuesearch.

Appendix I: Formal Definition of the Multiple Category Distitiveness Criterion

The unsupervised (statistical) learning approach sugddst Barlow (1989) emphasizes
the importance of features that encode suspicious coincedebetween input patterns (sgyand
x;). Formally, this theory encodes events whgﬁ% > 1. In contrast, the class-based
framework stipulates that the encoded features are thosd\ahe maximally discriminative in
the context of the given categorization task. Discrimv&power is often quantified using mutual
information (Battiti, 1994; Ullman et al., 2002; Fleure@@; Vasconcelos & Vasconcelos, 2004),
which is the reduction in class uncertainty, given the stagecertain feature. Formally, |6f be
the set of candidate features, aridbe a class variable, then the class uncertainty (entropy) is
defined ad7(C) = —>__p(c)logp(c) and the uncertainty given the feature state (conditional
entropy) is defined a&/ (C|F) = —3__ ;p(c, f)logp(c|f). Therefore, the feature to be
encoded is the featur, that maximally reduces the class uncertainty:

. p(F,C)
F* =argmax H(C) — H(C|F) = argmax — F .C)log ——~
g H(C) = H(CIF) = argmax = 3 p(F,C)log 5,55

(1)

For a single class distinction, the information providedlig presence or absence of a feature, is

estimated with respect to a binary class variable, summingE over two states af' (class
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present and class absen]. This research puts forth the hypothesis that in order hteae

efficient generalization in large categorization systemesunderlying organizing principle must

be the preferential encoding of features informative foltiple categories. Thus, the encoded
features should maximize information to all the categormiectively, summing”' in Eq. (1)

over all possible category assignments. It should be nbgdttiteria suggested by the
unsupervised and by the class-based frameworks, both ghnat® evaluating the deviance from
statistical independence. Although biologically basesteays could not be expected to accurately
evaluate these probabilities and information quantities proposed computational criteria
formally characterize the fundamentally different fasttivat might govern feature creation
processes. By doing so, it becomes possible to characteazzmpirical setting in which the

differences between these theories might be manifested

Appendix Il: Experiment | Trial Composition

In preliminary experiments it had been established thatleev rate of positive
examples entails a non-feasible training duration. If Hr&lom process generating the state of
the input elements samples uniformly from af256 (2°) possible configurations, the positive
example rate would b§56—, counting the sixteen different exemplars of each firm. Timegns that
after viewing an example of a certain category, participavduld observe an average of fifteen
negative examples before seeing another positive oneningain these conditions is extremely
difficult. Therefore an alternative random generating pssdor the input elements was favored.
This process selected with probabilﬁywhether four, five, six or seven input elements would be
active in the current trial. Then, with equal probabilitgyaof the candidates complying with this
constraint might be selected (see Table 1). For examplg@rttebility of seeing a specific input

patternx with six active elements (like the categaty exemplarz = [+ — + + + + —+]), is
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X ﬁ = ﬁ Thus, the probability of observing an instance of a certéass with four, five, six,
6

AN

or seven active input elements is respectivgty ﬁ =, and%. Summing these probabilities
the positive frequency rate increaseslgtmhus enabling training in a reasonable time for an
experimental framework. It should be emphasized that tigatigeneration procedure maintains
equal probability rates for thaair-features andincongruent-pairs. In addition it should be noted
that this input generating distribution, observed by theipaants, was the basis for the mutual

information measurements provided in Fig. 1:Right.

Insert Table 1 about here.

Appendix Ill: Experiment Il Trial Composition

The fifth training stage of Experiment Il displayed in randorder a fixed set at4
negative examples ard positive examples of either the congruent categoypr the
incongruent categorg’s. The24 negative examples included 4 examples of each of the cagsgor
C1 throughC, and 8 non-category related fillers (see Table 2). Zhpositive examples of’s are
described in Table 3. The composition of titetraining trials of the incongruent control group
results from replacing th4 positive examples of categofys with 24 positive examples of

categoryCs (see Table 4).

Insert Table 2 about here.

Insert Table 3 about here.

Insert Table 4 about here.
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Appendix 1V: Stimuli Rotation

In order to control the perceptual salience of plaé -features and theincongruent-pairs
in thecolor cube implementation, at every trial the entire three dimendicoae configuration
was rotated in 90 degrees to a random selection of eitheX thige-Y or the-Z axis. This 90
degree rotation was displayed as a two second (18-frameadioin, appearing at the end of each
trial. Rotating the cube configuration was favored to pemguthe locations of theolor cubesin
order to assist participants not to lose spatial oriematidhe 3D perceptual scene. As a result of
this perceptual salience control, each cube configuratj@ould appear i4 different

orientations (see Fig. 9).

Insert Figure 9 about here.
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Footnotes

'The role of features defined over higher order conjunctism®t ruled out; however, the goal
of the proposed setting is to contrast the emergent reptasams of features with comparable

complexity.

2 When evaluating the information content of an extendedifeatet including all first, second
and third order conjunctions, thpair-features remained the maximally informative

representations.

3In theory, a certain candidate might fall into one of sixt¢z#) different combinations of
acceptance to the four firms. In order to simplify the tragnomocedure, participants were
required to assign each candidate to one of the appropmiats, for press on the centragfault

button, in case the candidate was not qualified for any of the firms.

“Throughout the paper t-test results are evaluated usintpded tests withp < 0.05 indicating

statistical significance.

*These criteria eliminated five of the twelve recordings.

¢ The more dominant color was typically selected asastate (e.g. Redn vs. Cyaneff). In
addition, cube edges were colored in the opponent color fthasize the binary role of each

input element.
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active inputs 4 5 6 7
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Table 1: Pairs-features andincongruent-pairs statistics were controlled by uniformly sampling

from the input patterns having four, five, six or seven input elements incarstate.

appearancesz; | xo | ¥3 | x4 | T5 | Tg | T7 | X3
4 1 + |+ |+ |+ | - - - |+
1 + |+ |+ |+ | -] -+ -
1 + |+ |+ |+ | -]+ -] -
1 + |+ |+ |+ |+ ] - -] -
Oy 1 - SRR - e S I S S IS B
1 I S T S I A I
1 SO S I S T R S B B
1 + | -+ |+ |+ ]+ -] -
Cs 1 - - -+ |+ |+ |+
1 I T T S IR I S A O B
1 SR T I N N S I I S
1 + | - - -+ ]+ ]+ |+
Cy 1 + | + | - - -+ |+ |+
1 + |+ - - |+ - |+ ]+
1 + |+ - |+ | -] -+ ]|+
1 + |+ |+ - -] -|+]+
Default 1 o M R A I N I
1 + | - |+ |+ |+ -+ -
1 + |+ - |+ | -]+ -]+
1 + |+ |+ - |+ ] -+ -
1 SO S S I B B R S




appearancesx; | xo | 3 | x4 | 5 | X6 | T7 | T

Cs 6 I I I o R I B
6 S T O A A P N

6 e O S R R

6 + | -+ |+ | -] -+ ]+

34

Table 3: The24 positive examples of the congruent categ6kydefined as a conjunction of

(z3 Nzf) andvy (x4 Nzy).
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appearancesz; | xo | x3 | x4 | T5 | T6 | 17 | T8

Cs 6 + - -+ - +]+ |+
6 e I L e R I o I o

6 + -+ |+ ] -+ ]+ -

6 + |+ - |+ -+ ]+ -

Table 4: The24 positive examples of the incongruent categbgydefined as a conjunction of two

incongruent pairg; Nz andzf N .



36

Figure Captions

Figure 1. Left: Definitions of categorie§’; throughC, learned in Experiment I, and of
categorie€”s andCs learned in Experiment Il. Input elements indicateddbynust appear in an

on state for the category to be present, whildenotes the category’s indifference to certain input
elementsRight: Each of the 28 columns represents a second order conjurieiture by
highlighting the two relevant input elements. Featureggaoeiped by descending information
content on categorg; (top pane) and by information content on the four categamudiectively
(bottom pane). Although theair-features (emphasized in white) do not provide the maximal
information for category’; individually (providing0.264 or 0.008 bits), they all appear as the

maximally informative features for the four categoriededtively (providing0.581 bits).

Figure 2. The eight binary semantic characteristics and the expetahsetup.

Figure 3. Left: The number of reports congruent/incongruent (black/vyhi¢h the pair-feature
structure for categorieS; throughC,. Right: An annotated 10-second recording (amplitude vs.
time) of a participant reporting categofy. Thepair-features seem to be temporally fused: the
shortest gap appearing between New York and Local, the desfmrtest gap between Male and

Lawyer while the longest gap appears between Lawyer and Net Y

Figure4. An example of two stimulk andx’ composed of eight binamgolor cubes. Eachcolor
cube appeared in two distinct colors indicating whether the dapet element was in aon or off

State.
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Figure5. The color-cubes characterizing perceptual categarigbroughCy.

Figure6. The color cubgoair-features, providing the maximum information on the four target

categories.

Figure 7. The number of reports congruent with thar-feature structure (black) for categories

C1 through(.

Figure 8. Thecolor cubes defining the fifth category in the congruent conditi@n= vy N v,

(left) and in the incongruent contrals = h3 N A (right).

Figure 9. Each cube configuration is rotated to avoid spatial biasepidbed here are thgl

possible displays of the categatyy exemplar [+ + + + - - - -].
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