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Abstract

Understanding how features are encoded during category acquisition is a fundamental

challenge in the study of human learning. The current work proposes that in order to maintain

accurate generalization in large scale categorization systems, features that are useful in

discriminating multiple categories must be actively preferred. This multi-class hypothesis stands

in contrast with theories in which features are encoded for each categorization task individually,

as well as theories that focus solely on encoding coincidences in input patterns. The current paper

provides a methodology for empirically testing the proposed hypothesis under controlled

conditions. It is shown that in the process of acquiring a sequence of new categories, features that

are informative for recognizingseveral categories are preferably encoded. Moreover, evidence is

provided that after acquiring these features, representations of categories learned in the past are

actively reconstructed by the newly encoded features. Finally, it is demonstrated that encoded

features play a role in facilitating future category acquisition. These results are observed using

both perceptual and semantic stimuli. It is suggested that preferring features that provide

maximum information on multiple categories is a general characteristic of the human

categorization systems.



5

Introduction

The environment in which humans live requires fast and accurate recognition of

numerous categories. These requirements must often be met after only few examples of a novel

category have been encountered. Nevertheless, humans seemto deal with this challenge

effectively, recognizing a large number of categories (Biederman, 1987) with high speed and

accuracy (Thorpe, Fize, & Marlot, 1996). It remains a puzzlehow new categories are acquired

reliably, overcoming the difficulties associated with generalization from a small sample

(Goodman, 1972). Theories of categorization are typicallybased on measuring the similarity of

an incoming stimulus to an internal representation of the category, such as a prototype or a set of

exemplars (Medin & Smith, 1984; Barsalou, 1985; Nosofsky, 1988). The tradition set by Tversky

(1977) emphasized the role of having the appropriate features for measuring this similarity;

however, the criteria for encoding the appropriate features, remains unclear. Thus, a major

question is what features are used for evaluating similarity in an ever-increasing range of

categories. Attempts to address this question have emphasized that in a compositional framework,

a small vocabulary of basic features can be reused in the representation of many categories (see

review and references in Goldstone, 2003). Initially, thisvocabulary was characterized as

including a set of fixed primitives, such as the geon-based visual alphabet (Biederman, 1987).

More recent theories have proposed the use of adaptive feature sets (Schyns, Goldstone, &

Thibaut, 1998), which are class-dependent, and are acquired during a learning stage.

Two theoretical frameworks have suggested computational criteria as to when a feature

set should be dynamically extended. The first theoretical framework emphasizes the importance

of features that encode suspicious coincidences between input patterns, e.g., jointly encoding

wings and feathers (Barlow, 1989). A number of studies have supported this view by

demonstrating that features sensitive to input statisticscan be created in the absence of any
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categorization feedback (Billman & Knutson, 1996; Rosenthal, Fusi, & Hochstein, 2001;

Edelman, Hiles, Yang, & Intrator, 2001; Fiser & Aslin, 2002).

In contrast to this approach, the class-based framework suggests that the encoded

features are those which are maximally discriminative in the context of a target categorization

task. Discriminative power is often quantified using mutualinformation (Battiti, 1994; Ullman,

Vidal-Naquet, & Sali, 2002; Fleuret, 2004; Vasconcelos & Vasconcelos, 2004). Several empirical

findings provide indirect evidence for this theoretical framework. Goldstone (1994) has

demonstrated that different categorization tasks induce selective feature sensitization. Similarly,

Archambault, O’Donnell, and Schyns (1999) show that general vs. specific categorization tasks

might influence the perceived properties of the same distal object. More direct evidence for

feature creation induced by a categorization task, was provided by Schyns and Murphy (1994),

Schyns and Rodet (1997), Goldstone (2000) and Goldstone (2003). Recently, Goldstone,

Rogosky, Pevtzow, and Blair (2004) have demonstrated the process of encoding discriminative

features during perceptual and semantic category acquisition while characterizing the interplay

between discriminative value and feature naturalness. Evidence for selectivity to discriminative

features has also been established through neuronal recordings from monkey inferior temporal

(IT) cortex (Baker, Behrmann, & Olson, 2002; Sigala & Logothetis, 2002). However, these

different lines of research do not directly address the factthat categorization systems must be

capable of acquiring many thousands of categories.

The current study examines the hypothesis that in order to achieve efficient

generalization when classifying numerous categories, theunderlying organizing principle is to

preferentially encode features which are informative for multiple categories. In the past, accurate

generalization in novel categorization tasks has been attributed to an acquired domain theory

(Ahn, Mooney, Brewer, & DeJong, 1987; Pazzani, 1991). Our research hypothesis suggests that a
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significant part of domain knowledge, is manifested by encoding the features suitable for

discriminating categories within the target domain. A formal description of this informativeness

criterion is provided in Appendix I. The assumption supporting the proposed criterion is that

categories often share common informative sub-structures. For example, tails are common to

different animals, and wheels are shared by different vehicle classes. Thus, representing features

that are highly informative for multiple known categories is likely to contribute to the encoding

process of future categories as well. This contribution is especially significant when it is

necessary to learn the manner in which complex perceptual features can change their appearance

(e.g. an eye may be open or closed and a tail may bend in certainangles but not in others). When

learning is done independently for each class, the complexity of such features might require

observing a large sample. The use of shared features allows interclass transfer of this learned

variability and thereby contributes to reliable classification of new categories (e.g. handling eye

appearance under changing viewing conditions).

The perceptual-conceptual continuum view (Jones & Smith, 1993; Eimas, 1994;

Quinn & Eimas, 1996, 1997; Goldstone & Barsalou, 1998; Barsalou, 1999), emphasizes the fact

that categorization tasks in the perceptual domain and in the semantic domain are challenged by

the similar fundamental requirement of discriminating instances originating from a large number

of categories. We therefore suggest that features that are informative for multiple classes might

assist generalization not only in perceptual categorization, but in semantic categorization as well.

For example, once the rich cultural correlates of semantic features such as afemale or teenager

are encoded, they can be instrumental in characterizing many future semantic categories such as

cheerleaders or anorexia-nervosa.

The hypothesis examined in this study is that features whichare discriminative for

several different categories are identified and encoded. Ifin fact selecting features that are
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informative for multiple categories is a basic organizing principle, it can be hypothesized that

novel features that are discriminative to multiple categories collectively, will be encoded, even in

the absence of suspicious coincidences in the input statistics and even if they do not maximize the

information provided for anyindividual category. Furthermore, it is hypothesized that during the

dynamic process of acquiring multiple categories the principal of constantly maintaining a shared

set of discriminative features can induce representational shifts of categories learned in the past

and affect the representation of subsequent classes. Thesehypotheses are summarized in three

predictions:

1. features informative for recognizing multiple categories are preferentially encoded

2. features revealed as informative for multiple categories can change former category

representations

3. features encoded due to their information content for multiple categories, can later facilitate

the acquisition of future categories

Four experiments were designed to test the three predictions stated above. Experiment I

examined the first two predictions while Experiment II examined the third. Both experiments

utilized controlled sets of semantic stimuli (job candidates descriptions). To test the three

predictions in lower levels of the perceptual-conceptual continuum, Experiments III and IV

replicated the first two experiments utilizing perceptual stimuli (configurations of colored cubes).

The following four sections describe the four experiments,followed by a discussion on the scope

and limitations of the proposed theory and research methodology.
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Experiment I: Preferential Encoding of Semantic Features Informative for

Multiple Categories

Experiment I was designed to examine whether features that are informative for

recognizing multiple categories are preferentially encoded and whether this process might

actively reconstruct the representations of categories acquired in the past. Studying the intricacies

of feature creation processes in adult categorization systems is a challenging endeavor. This is

especially true if the proposed hypothesis is correct and when confronted with new categorization

tasks, humans do in fact employ their rich arsenal of existing features. The challenge lays in

isolating the contribution of feature discriminative value for multiple classes collectively, while

controlling the effects of stimuli co-occurrence and the information provided by features for each

category, individually. Therefore, the experimental setup makes use of novel categories in which

the experimental conditions can be designed in a controlledmanner using features which do not

resonate with existing representations.

Method

This section starts by presenting an abstract categorization task. The categorization task

is specifically designed to test whether features that are most discriminative for multiple

categories collectively, are indeed preferentially encoded. The empirical implementation of this

abstract task using semantic stimuli, is described later inthe materials and procedure sections of

Experiment I. An implementation using perceptual stimuli is provided in Experiment III.

The abstract categorization task consisted of eight binaryinput elementsxi,i=1,..,8, jointly

notated asx. Four target categoriesCn,n=1,..,4 were defined over the input vector set{x}. As

described in Fig. 1:Left, each category was fully characterized by four specific input elements
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being in anon position. Thus, for example,x = [−− + + + + −+] is an exemplar of category,

C2 = [∗ ∗ + + + + ∗∗]. It will now be shown why this specific category structure canbe used to

test the research predictions. The subset of all second order conjunctions of input elements

(including
(

8
2

)

= 28 features) was selected as the focus of the proposed analysis1. Mutual

information was evaluated between each of the28 candidate features and the individual categories

(using Eq. (1) in Appendix I). Then, the information was evaluated for the four categories

collectively (summing Eq. (1) over all category assignments ofC). As shown in Fig. 1:Left,

categoriesC1 andC2 require two common input elements to be in anon state (x+
3 andx+

4 ). This

common requirement was termed apair-feature. In fact, each of the four categories shares a

commonpair-feature with two other categories. Thesepair-features are formally defined as:

• v1 ≡ x+
1 ∩ x+

2

• v2 ≡ x+
3 ∩ x+

4

• v3 ≡ x+
5 ∩ x+

6

• v4 ≡ x+
7 ∩ x+

8

As depicted in Fig. 1:Right, thepair-features are not more informative than other pairs

for categoryC1 individually (providing0.264 or 0.008 bits). However, they do appear as the

maximally informative features for the four categories collectively (each providing0.581 bits) 2.

Thus, the first research prediction would be manifested if a salient representation of the

pair-features: v1, v2, v3 andv4, emerges while acquiring the four categories. As describedin the

introduction section the proposed setting must also control the two alternative computational

criteria that induce feature creation. This goal was achieved by finding a representation that is

comparable in all aspects to thepair-feature structure but is not as informative for the

categorization tasks collectively. Such an alternative representation is generated by arbitrarily
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segmenting the eight input elements into fourincongruent-pairs, that appear each in just one

category, i.e.:

• h1 ≡ x+
1 ∩ x+

3

• h2 ≡ x+
4 ∩ x+

6

• h3 ≡ x+
5 ∩ x+

7

• h4 ≡ x+
2 ∩ x+

8

Insert Figure 1 about here.

Participants Twelve undergraduate students from the Hebrew University of Jerusalem

participated in Experiment I for payment or course credit. Participants, aged 20 to 30 years, were

screened for normal vision.

Materials The categories defined in Fig. 1 were implemented in a job assignment task,

requiring participants to sort applicants to four businessfirms. Eight binary characteristics

encoded the input description of each candidate. For each characteristic, one value was selected to

function as theon state and another as theoff state e.g. Department Preference: Local+ and

International− (see Fig. 2). Thus, each of the four business firms required four specific

characteristics to be in anon state. For example, Firm 3 required all candidates to be male,

lawyers, living in New York and preferring the local department. Beneath the applicant sheet, an

array of five target buttons was displayed (see setting in Fig. 2). Each of the four peripheral

buttons was associated with one of the four firms. The centralbutton was reserved for applicants
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not qualified for any firm. In order to control feature saliency the position of the fields in the

display were randomly permuted in each trial.

The intersections of the categories’ relevant characteristics defined the set of

pair-features:

• v1 ≡ Spanish-speakerand Married

• v2 ≡ Private-collegeand Thirties

• v3 ≡ Maleand Lawyer

• v4 ≡ New York and Local-department

It was previously predicted that an internal representation of thesepair-features should evolve if

features are not selected by their information content for each categorization task individually, but

rather by their information content to all categorization tasks collectively. This will be guaranteed

by comparing eachpair-feature to anincongruent-pair which provides an equal amount of

information to any one specific category. For example, the information provided bypair-feature

v1 to FirmC1, is equal to the information provided byincongruent-pair h1 (Spanish-speakerand

Thirties) to the same category (0.264bits, as indicated in the top pane of Fig. 1).

Insert Figure 2 about here.

Training Procedure Experiment I was composed of four training stages. At each stage,

participants learned the requirements of one additional firm in a trial-and-error paradigm. In every

trial a random subset of the eight input elementsx was set to theon state while the remaining

features were set to theoff state. This random activation process was carefully designed not bias
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thepairs-features over theincongruent-pairs (as explained in Appendix II). The resulting eight

dimensional candidate description was displayed until theparticipants pressed one of the category

buttons. If a wrong firm was indicated an error tone was triggered3. In the first stage, dedicated to

learning the requirements of FirmC1, only the centraldefault button, and the button associated

with Firm C1, were presented. Later, an additional button appeared witheach subsequent stage,

so that participants can indicate whether the candidate is compatible with the requirements of

Firm C2, Firm C3, and FirmC4. Each training stage was concluded only when participants

reached a criterion of100 consecutive successes. It should be emphasized that the random

activation probability over the input set{x} was identical during all four training stages. Thus,

participants were constantly viewing stimuli generated from a fixed source, while incrementally

learning to recognize which exemplars (candidates) were members of categories (Firms)C1

throughC4. It should be noted that for each participant the various fields were randomly assigned

so that fourpair-features of one participant could have been fourincongruent-pairs of another.

Finally, when the four training stages were concluded, a test was employed to examine whether

the hypothesizedpair-features have emerged.

Testing Procedure In the testing stage, each of the category buttons was highlighted in a

sequential manner while requiring the participants to verbally report which characteristics were

necessary for the associated firm. The proposed test assumesthat if an internal representation of

thepair-features had undergone a process of unitization (Goldstone, 2000), the verbal reports

should be composed of twopair-features. In other words, if certain input elements have been

consolidated into apair-feature, they should be reported as one. This reporting pattern should not

be exhibited if a representation based on any of theincongruent-pairs had emerged. It should be

noted that although participants were explicitly requiredto verbally report each category, the

sequence of reported characteristics is a purelyimplicit measurement. The advantage of this
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testing method is that it refrains from presenting the hypothesizedpair-features during the testing

process, thus avoiding the encoding ofpair-features as a byproduct of the testing phase itself. It

was therefore assumed that the reporting sequence was not intentionally or unintentionally biased

by the participants, and that these reports essentially reflect the internal structure that had emerged

in the learning process.

Results Participants completed the four training stages in 4-6 hours, requiring

approximately 1000 trials. The verbal reports provided in the testing stage were then coded by

examining whether the first two characteristics composed apair-feature or anincongruent-pair. It

was observed that the frequency of reportingpair-features was significantly higher than that of a

comparable pattern ofincongruent-pairs (binomial test,p ≤ 0.05, n=12) in all of the reports of

the four firms (Fig. 3). In addition to registering the reportsequence, the participants of

Experiment I were recorded while verbally reporting the requirements of each firm. The reports

of each firm were manually annotated by marking the starting time and the ending time of the

four comprising characteristics. An annotated recording of categoryC3 is presented in Fig. 3. By

performing this annotation it becomes possible to measure the duration of the three gaps between

the four reported characteristics and to assess whether theinput elements composing each

pair-feature are indeed temporally fused, as expected by a unitization process. The three gaps

were scored according to the ascending order of their duration (the shortest gap was scored as 1,

the intermediate gap was scored as 2 and the longest gap was scored as 3). When analyzing these

patterns in the recordings of CategoryC1, it was observed that the second gap score (M = 2.86,

SD = 0.38) was significantly larger (t(6) = 4.86) than the first gap score (M = 1.83,SD = 0.69) and

significantly larger (t(6) = 10.49) than the third gap score (M = 1.43,SD = 0.53)4. It should be

noted that only recordings of participants that reported the categories as twopair-features were

used in this analysis and that corrupted recordings and recordings where participants did not
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report only the relevant characteristics (e.g. incorporating words like AND into the report) were

not used5. Similarly, the second gap scores were significantly largerthan the first and third gaps

in the reports of categoriesC2 throughC4.

One might claim that this pattern of reports results from thefact that people simply tend

to take longer pauses in the second gap of a four word list, or that the recording results are do a

preexistent representational bias and therefore do not reflect an emergentpair-feature structure.

Therefore, a control group was established, where participants were required to only learn and

report FirmC1. The eight participants of the control group were selected from the same student

population as the experiment group. This between subject test, compared the score difference

between the second and first gaps (e.g. the report in Fig. 3 would be scored as 3 - 2 = 1). In this

comparison a significant difference (t(13) = 2.21) was observed between the gap scores of the

experiment group (M = 1.00,SD = 1.00) and the control group (M = 0.00,SD = 1.16). Similarly,

when comparing the score difference between the second and third gaps (e.g. the report in Fig. 3

would be scored as 3 - 1 = 2). A significant difference (t(13) = 7.17) was observed between the

gap scores of the experiment group (M = 1.43,SD = 0.53) and the control group (M = -0.38,SD =

1.19). Thus, the temporally fused reports of thepair-features are not observed after the

acquisition of categoryC1, but rather manifest a representational shift emerging during the later

acquisition of categoriesC2 throughC4.

The reported results provide evidence that in the semantic system, features are preferably

encoded if they provide information for multiple categories. However, Experiment I also

addresses the second prediction, stating that encoding novel features might lead to a

reconstruction of former category representations. This claim is based on observing the evolved

representation of categoryC1. When participants pass the first training stage, they are equipped

with a representation that enables perfect recognition of all categoryC1 exemplars (due to the
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highly stringent training criterion of100 consecutive successes). At this point thepair-features

have no salient representation because they are by definition identical to theincongruent-pairs

until learning at least one additional category. In fact thecontrol group participants that only

learned categoryC1, showed no saliency of apair-features representation. However, when

analyzing the reporting results of categoryC1, registeredafter concluding the learning procedure

of all four categories, it is evident that the initial representation of categoryC1 had been actively

reconstructed. This reconstruction maintained that the representation of categoryC1 complies

with thepair-features acquired only later in the training process. Thus, the first two research

predictions have been addressed while controlling for the alternative factors that might have

accounted for the emergentpair-feature structure.

Insert Figure 3 about here.

Experiment II: Facilitated Acquisition of Novel Semantic Categories

Experiment II examined the third research prediction, namely whether thepair-features

facilitate learning of future categories.

Method

Experiment II included an additional training stage to the four training stages of

Experiment I. In this additional stage, examples of a new category,C5, were presented. This new

category was defined asC5 ≡ v+
2 ∩ v+

4 (see Fig. 1). Unlike the training procedure of Categories

C1 throughC4, that continued until a criterion of perfect categorization performance had been

reached, the fifth stage was restricted to a prefixed number oftrials. It was predicted that when
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training a fifth category that is congruent with thepair-feature structure, a significant facilitation

would be observed. Comparing the performance of participants that have already learned the four

initial categories to the performance of naive participants is meaningless, due to history

confounds. Therefore, Experiment II maintained a between subject design by including a control

group that shared the same history as the experimental group. This control group learned a

different fifth category,̄C5 ≡ h+
2 ∩ h+

4 , that is equally complex asC5 yet incongruent with the

pair-feature structure.

Participants Twelve undergraduate students from the Hebrew University of Jerusalem

participated in Experiment II for payment or course credit.Participants, aged 20 to 30 years, were

screened for normal vision, and then randomly allocated to equal sized experimental and control

groups.

Materials The stimuli and setting of Experiment II were similar to those described in

Experiment I.

Training Procedure Participants were first required to complete training stages 1

through 4 as in Experiment I. Next, both groups learned the requirements of a fifth firm using a

limited set of48 training trials. The stimulus presentation procedure of the fifth stage was

identical to the first four training stages except that trials were limited to a prefixed duration of

sixteen seconds. Providing48 training trials was aimed at terminating the training process at a

point where the differential learning rate of the experimental and control groups might be

manifested. Rather than sampling48 trials as in the first (unbounded) four training stages, the

fifth stage displayed in a random order, a predefined set of24 negative examples and24 positive
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examples of either the congruent categoryC5 or the incongruent categorȳC5. The detailed

composition of these48 training trials is described in Appendix III.

Testing Procedure Following the48 training trials, participants were first tested on their

capability to correctly categorize the48 training examples, by repeating the presentation

procedure in the absence of any feedback signal. Only then did participants verbally report the

candidate characteristics composing the new firm’s requirements. If thepair-features have no

functional influence on future category learning, it would be expected that the learning rate of the

fifth category should be equal in both groups. On the other hand, it was hypothesized that the

previously encodedpair-features might facilitate future learning of a new congruent category. It

was therefore anticipated that under such constrained training conditions, the experimental group

would display a significant advantage in learning the fifth category.

Results The participants of both the experimental and the control groups reported that

the training procedure of the fifth firm was difficult. This effect is probably due to the limited time

provided for the48 training trials. The participants’ performance on the48 testing trials

(presented without feedback), was scored by averaging the proportion of the correctly classified

examples of the fifth category with the proportion of the correctly classified remaining fillers so

that chance level is0.50. It was observed that while the control group performed slightly above

chance level (M = 0.59, SD = 0.11) the accuracy of the experimental group (M = 0.81, SD = 0.13)

was substantially higher (t(10) = 2.38). Next, the verbal reporting results were scored by

subtracting the number of any incorrectly reported characteristics from the number of correctly

reported characteristics. Here too, a significant difference (t(10) = 4.65) was observed between

the experimental group scores (M = 2.33, SD = 1.51) and the control group scores (M = −0.33,
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SD = 1.21). It could therefore be concluded that the emergedpair-feature representation was a

functional tool in facilitating the acquisition of a novel semantic category.

Experiment III: Preferential Encoding of Perceptual Features Informative for

Multiple Categories

The goal of Experiment III was to examine whether the resultsof Experiment I were

specific to the semantic domain or whether evidence for encoding features that are informative for

recognizing many categories might also be observed in a perceptual classification task.

Method

Due to the fact that Experiment III was aimed at replicating the structure of Experiment I,

the applied method was similar to that described above.

Participants Twenty undergraduate students from the Hebrew University of Jerusalem

participated in Experiment III for payment or course credit. Participants, aged 20 to 30 years,

were screened for normal color vision.

Materials To test the first research prediction using perceptual stimuli the

eight-dimensional binary inputsx, were implemented using images composed of eightcolor

cubes. For each cube, one color was selected to function as theon state and another color as the

off state (Fig. 4). For each individual participant, the set of 16 colors was randomly allocated to

the eight cubes6.
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Insert Figure 4 about here.

Insert Figure 5 about here.

In thecolor cube implementation, each category required four specific neighboring cubes

to be in anon position (see Fig. 5). Categories based on neighboring cubeconfigurations were

chosen, because they are easier to acquire. Exemplars of each category were generated by using

color combinations of the remaining four non-relevant cubes. Thus for example, all CategoryC3

exemplars included: Black, Orange, Yellow and Greencolor cubes.

The intersections of the categories’ relevant cubes definedthe set ofpair-features (see

Fig. 6). Since the stimuli presentation probabilities wereidentical to those described in

Experiment I, the mutual information measurements from Fig. 1 remain valid, leaving the

pair-features as the maximally informative representations.

Insert Figure 6 about here.

Procedure The training procedure of Experiment III was analogous to that described in

Experiment I. Similarly to the field permutation in Experiments I, at every trial of Experiment III,

the entire three dimensional cube configuration was rotated, in order to control perceptual biases

between thepair-features and theincongruent-pairs (see Appendix IV). When the four training

stages were concluded, participant were required to verbally report thecolor-cubes relevant for

each of the four categories.
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Results Participants completed the four training stages in 2-3 hours. The relatively

short training duration resulted from the fact that processing the perceptual stimuli required

approximately half the time than in the analogues stages of Experiment I. All twenty participants

succeeded in reporting the four colors relevant to each category. The frequency of reporting

according to thepair-feature pattern was observed to be significantly higher than that of a

comparableincongruent pair pattern in all four categories (binomial test,p ≤ 0.05, n=20). Fig. 7

depicts the number of reports congruent with thepair-feature structure. Thus, Experiment III

validates the first research predication. As in Experiment I, the fact that the report of categoryC1

reflects the later acquiredpair-feature structure, validates the second prediction regarding the

reconstruction of former category representations.

Insert Figure 7 about here.

Experiment IV: Facilitated Acquisition of Novel Perceptual Categories

Experiment IV examined whether an informative feature set can facilitate learning future

perceptual categories.

Method

Experiment IV replicated Experiment II, utilizing the perceptual stimuli described in

Experiment III. Thus, the fifth training stage required learning a novel perceptual category

C5 ≡ v+
2 ∩ v+

4 from just a few training examples. The facilitation of acquiring categoryC5 was

assessed in comparison to a control fifth category, defined asC̄5 ≡ h+
2 ∩ h+

4 .
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Participants Ten undergraduate students from the Hebrew University of Jerusalem

participated in Experiment IV for payment or course credit.Participants, aged 20 to 30 years,

were screened for normal color vision, and then randomly allocated to equal sized experimental

and control groups.

Materials The stimuli and setting of Experiment IV were similar to those described in

Experiment III. Fig. 8 depicts the fourcolor cubes characterizing categoriesC5 andC̄5.

Insert Figure 8 about here.

Procedure Participants were first required to complete training stages 1 through 4.

Then, both the experimental and the control groups learned afifth category using a limited set of

48 training images (detailed in Appendix III). The stimuli presentation process of this stage was

similar to that described in the first four training stages except for the fact that the trial duration

was fixed to six seconds. Following the48 training trials, participants were required to verbally

report thecolor cubes composing the new category.

Results As in Experiment II, the ten participants of both the experimental and the

control groups reported that the training procedure of the fifth category was difficult. However,

when comparing participants’ performance in the experimental and control groups, it was

observed that the learning rate was significantly higher in the congruent condition (Fisher Exact

Probability Test,p ≤ 0.05, n=10). Members of the experimental group reported on average2.2

correctcolor cubes, i.e. participants learned most of the new category’s characteristics. Members

of the control group, reported on average only0.8 out of the fourcolor cubes present in category
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C̄5. Thus, the emergedpair-feature representation was indeed a functional tool in facilitating the

acquisition of a novel perceptual category.

Summary and Discussion

The proposed experimental setting required learning four categories, each based on a

conjunction of four input elements. Pairs of input elements, termedpair-features were suggested

as the preferred internal representation due to their information content for the target categories,

collectively. Although no direct feedback was provided forthepair-feature structure, it was

experimentally found that participants’ reporting patterns corresponded to an internal structure

based on these pairs. The existence of thepair-features cannot be attributed to their perceptual

salience or frequency of appearance, since these factors were carefully controlled. It was also

observed that thepair-feature structure actively reconstructed the previously acquired

representation of the first category. Finally, it was demonstrated that the emergentpair-features

can significantly facilitate learning of future categories. The three experimental predictions have

been validated using both semantic and perceptual stimuli.One might claim that while

categorizing the perceptual stimuli in Experiments III andIV, participants actually translated the

observedcolor cubes into semantic entities (e.g. naming each color cube). Although possible, this

claim seems to be inconsistent with the substantial time difference required for trials in

Experiment I ( 16 seconds) and in Experiment III ( 6 seconds).If participants were implicitly

translating all perceptual stimuli into the semantic system and then performing categorization

over semantic entities, it would be expected that trials in Experiment III require at least the

processing duration observed in Experiment I. It remains open as to whether a single mechanism

is used for consolidating features that are discriminativefor multiple categories, or whether
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encoding common features is a general principal characterizing many systems throughout the

perceptual-conceptual continuum.

Several questions regarding the generalization of the proposed theory might be raised.

The learning task stripped the category acquisition and feature creation processes to the bare

minimum, two conjunctions of binary inputs deterministically defined each category. Examining

the effects of more complex settings, like continuous inputdimensions, complex features and

other (more natural) learning schemes is the goal of future research.

Appendix I: Formal Definition of the Multiple Category Distinctiveness Criterion

The unsupervised (statistical) learning approach suggested by Barlow (1989) emphasizes

the importance of features that encode suspicious coincidences between input patterns (sayxi and

xj). Formally, this theory encodes events wherep(xi,xj)

p(xi)p(xj)
≫ 1. In contrast, the class-based

framework stipulates that the encoded features are those which are maximally discriminative in

the context of the given categorization task. Discriminative power is often quantified using mutual

information (Battiti, 1994; Ullman et al., 2002; Fleuret, 2004; Vasconcelos & Vasconcelos, 2004),

which is the reduction in class uncertainty, given the stateof a certain feature. Formally, letF be

the set of candidate features, andC be a class variable, then the class uncertainty (entropy) is

defined asH(C) = −
∑

c p(c) log p(c) and the uncertainty given the feature state (conditional

entropy) is defined asH(C|F ) = −
∑

c,f p(c, f) log p(c|f). Therefore, the feature to be

encoded is the featureF∗ that maximally reduces the class uncertainty:

F ∗ = argmax
F∈F

H(C) − H(C|F ) = argmax
F∈F

−
∑

F,C

p(F, C) log
p(F, C)

p(F )p(C)
. (1)

For a single class distinction, the information provided bythe presence or absence of a feature, is

estimated with respect to a binary class variable, summing Eq. (1) over two states ofC (class
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presentc and class absentc̄). This research puts forth the hypothesis that in order to achieve

efficient generalization in large categorization systems the underlying organizing principle must

be the preferential encoding of features informative for multiple categories. Thus, the encoded

features should maximize information to all the categoriescollectively, summingC in Eq. (1)

over all possible category assignments. It should be noted that criteria suggested by the

unsupervised and by the class-based frameworks, both sharea ratio evaluating the deviance from

statistical independence. Although biologically based systems could not be expected to accurately

evaluate these probabilities and information quantities,the proposed computational criteria

formally characterize the fundamentally different factors that might govern feature creation

processes. By doing so, it becomes possible to characterizethe empirical setting in which the

differences between these theories might be manifested

Appendix II: Experiment I Trial Composition

In preliminary experiments it had been established that a very low rate of positive

examples entails a non-feasible training duration. If the random process generating the state of

the input elementsx samples uniformly from all256 (28) possible configurations, the positive

example rate would be16
256

, counting the sixteen different exemplars of each firm. Thismeans that

after viewing an example of a certain category, participants would observe an average of fifteen

negative examples before seeing another positive one. Learning in these conditions is extremely

difficult. Therefore an alternative random generating process for the input elements was favored.

This process selected with probability1
4

whether four, five, six or seven input elements would be

active in the current trial. Then, with equal probability, any of the candidates complying with this

constraint might be selected (see Table 1). For example, theprobability of seeing a specific input

patternx with six active elements (like the categoryC2 exemplar:x = [+ − + + + + −+]), is
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1
4
× 1

(8

6
)

= 1
112

. Thus, the probability of observing an instance of a certainclass with four, five, six,

or seven active input elements is respectively1
280

, 4
224

, 6
112

, and 4
32

. Summing these probabilities

the positive frequency rate increases to1
5
, thus enabling training in a reasonable time for an

experimental framework. It should be emphasized that this input generation procedure maintains

equal probability rates for thepair-features andincongruent-pairs. In addition it should be noted

that this input generating distribution, observed by the participants, was the basis for the mutual

information measurements provided in Fig. 1:Right.

Insert Table 1 about here.

Appendix III: Experiment II Trial Composition

The fifth training stage of Experiment II displayed in randomorder a fixed set of24

negative examples and24 positive examples of either the congruent categoryC5 or the

incongruent categorȳC5. The24 negative examples included 4 examples of each of the categories

C1 throughC4 and 8 non-category related fillers (see Table 2). The24 positive examples ofC5 are

described in Table 3. The composition of the48 training trials of the incongruent control group

results from replacing the24 positive examples of categoryC5 with 24 positive examples of

categoryC̄5 (see Table 4).

Insert Table 2 about here.

Insert Table 3 about here.

Insert Table 4 about here.
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Appendix IV: Stimuli Rotation

In order to control the perceptual salience of thepair-features and theincongruent-pairs

in thecolor cube implementation, at every trial the entire three dimensional cube configuration

was rotated in 90 degrees to a random selection of either the-X, the-Y or the-Z axis. This 90

degree rotation was displayed as a two second (18-frame) animation, appearing at the end of each

trial. Rotating the cube configuration was favored to permuting the locations of thecolor cubes in

order to assist participants not to lose spatial orientation in the 3D perceptual scene. As a result of

this perceptual salience control, each cube configurationx, could appear in24 different

orientations (see Fig. 9).

Insert Figure 9 about here.
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Footnotes

1The role of features defined over higher order conjunctions is not ruled out; however, the goal

of the proposed setting is to contrast the emergent representations of features with comparable

complexity.

2 When evaluating the information content of an extended feature set including all first, second

and third order conjunctions, thepair-features remained the maximally informative

representations.

3In theory, a certain candidate might fall into one of sixteen(24) different combinations of

acceptance to the four firms. In order to simplify the training procedure, participants were

required to assign each candidate to one of the appropriate firms, or press on the central,default

button, in case the candidate was not qualified for any of the firms.

4Throughout the paper t-test results are evaluated using onetailed tests withp ≤ 0.05 indicating

statistical significance.

5These criteria eliminated five of the twelve recordings.

6 The more dominant color was typically selected as theon state (e.g. Red-on vs. Cyan-off). In

addition, cube edges were colored in the opponent color to emphasize the binary role of each

input element.
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active inputs 4 5 6 7

p(x) = 1
4
× 1

(8

4
)

= 1
280

1
4
× 1

(8

5
)

= 1
224

1
4
× 1

(8

6
)

= 1
112

1
4
× 1

(8

7
)

= 1
32

Table 1: Pairs-features and incongruent-pairs statistics were controlled by uniformly sampling

from the input patternsx having four, five, six or seven input elements in anon state.

appearancesx1 x2 x3 x4 x5 x6 x7 x8

C1 1 + + + + - - - +

1 + + + + - - + -

1 + + + + - + - -

1 + + + + + - - -

C2 1 - - + + + + - +

1 - - + + + + + -

1 - + + + + + - -

1 + - + + + + - -

C3 1 - - - + + + + +

1 - - + - + + + +

1 - + - - + + + +

1 + - - - + + + +

C4 1 + + - - - + + +

1 + + - - + - + +

1 + + - + - - + +

1 + + + - - - + +

Default 1 - + + + - + - +

1 + - + + + - + -

1 + + - + - + - +

1 + + + - + - + -

1 - + - + - + + +
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appearancesx1 x2 x3 x4 x5 x6 x7 x8

C5 6 - - + + - + + +

6 - - + + + - + +

6 - + + + - - + +

6 + - + + - - + +

Table 3: The24 positive examples of the congruent categoryC5 defined as a conjunction ofv2

(x+
3 ∩ x+

4 ) andv4 (x+
7 ∩ x+

8 ).
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appearancesx1 x2 x3 x4 x5 x6 x7 x8

C̄5 6 + - - + - + + +

6 + - - + + + + -

6 + - + + - + + -

6 + + - + - + + -

Table 4: The24 positive examples of the incongruent categoryC̄5 defined as a conjunction of two

incongruent pairsx+
1 ∩ x+

7 andx+
4 ∩ x+

6 .
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Figure Captions

Figure 1. Left: Definitions of categoriesC1 throughC4 learned in Experiment I, and of

categoriesC5 andC̄5 learned in Experiment II. Input elements indicated by+ must appear in an

on state for the category to be present, while∗ denotes the category’s indifference to certain input

elements.Right: Each of the 28 columns represents a second order conjunctionfeature by

highlighting the two relevant input elements. Features aregrouped by descending information

content on categoryC1 (top pane) and by information content on the four categoriescollectively

(bottom pane). Although thepair-features (emphasized in white) do not provide the maximal

information for categoryC1 individually (providing0.264 or 0.008 bits), they all appear as the

maximally informative features for the four categories collectively (providing0.581 bits).

Figure 2. The eight binary semantic characteristics and the experimental setup.

Figure 3. Left: The number of reports congruent/incongruent (black/white) with thepair-feature

structure for categoriesC1 throughC4. Right: An annotated 10-second recording (amplitude vs.

time) of a participant reporting categoryC3. Thepair-features seem to be temporally fused: the

shortest gap appearing between New York and Local, the second shortest gap between Male and

Lawyer while the longest gap appears between Lawyer and New York.

Figure 4. An example of two stimulix andx
′ composed of eight binarycolor cubes. Eachcolor

cube appeared in two distinct colors indicating whether the cubeinput element was in anon or off

state.
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Figure 5. The color-cubes characterizing perceptual categoriesC1 throughC4.

Figure 6. The color cubepair-features, providing the maximum information on the four target

categories.

Figure 7. The number of reports congruent with thepair-feature structure (black) for categories

C1 throughC4.

Figure 8. Thecolor cubes defining the fifth category in the congruent conditionC5 ≡ v+
2 ∩ v+

4

(left) and in the incongruent control̄C5 ≡ h+
2 ∩ h+

4 (right).

Figure 9. Each cube configuration is rotated to avoid spatial biases. Depicted here are the24

possible displays of the categoryC1 exemplar [+ + + + - - - -].



Category: C1 C2 C3 C4 C5 C̄5

x1 + * * + * *

x2 + * * + * +

x3 + + * * + *

x4 + + * * + +

x5 * + + * * *

x6 * + + * * +

x7 * * + + + *

x8 * * + + + +

0.264bit 0.019bit 0.008bit

I(F;C
1
)

0.581bit 0.278bit 0.181bit

I(F;C
1
,..,C

4
)

on off

x1 Languages Spanish French

x2 Marital Status Married Single

x3 College Private Public

x4 Age Thirties Twenties

x5 Gender Male Female

x6 Profession Lawyer Accountant

x7 Residency New York New Jersey

x8 Department Local International
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on off x x
′

x1 Red Cyan - +

x2 Blue Peach + -

x3 Brown White + -

x4 Purple Light green - +

x5 Black Pink - +

x6 Orange Beige + -

x7 Yellow Gray + -

x8 Green Light blue - +
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