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Abstract. Job management subsystems in parallel environments have toaddress
two important issues: (i) how to associate processes present in the system to the
tasks of parallel jobs, and (ii) how to control execution of these tasks. The stan-
dard UNIX mechanism for job control, process groups, is not appropriate for
this purpose as processes can escape their original groups and start new ones.
We introduce the concept ofgenealogy, in which a process is identified by the
genetic footprint it inherits from its parent. With this concept, tasks are defined
by sets of processes with a common ancestor. Process tracking is the mechanism
by which we implement the genealogy concept in the IBM AIX operating sys-
tem. No changes to the kernel are necessary and individual process control is
achieved through standard UNIX signaling methods. Performance evaluation, on
both uniprocessor and multiprocessor systems, demonstrate the efficacy of job
control through process tracking. Process tracking has been incorporated in a re-
search prototype gang-scheduling system for the IBM RS/6000 SP.

1 Introduction

The job management subsystem of a computing environment is responsible for all as-
pects of controlling job execution. This includes startingand terminating jobs as well
as the details related to their scheduling. Parallel jobs executing on a distributed or
clustered system are typically comprised by a set of concurrently executing tasks that
collaborate with each other. Traditional parallel jobs in the scientific computing com-
munity (e.g., MPI and HPF programs) consist of a fixed set of tasks, each comprised
of a single process. However, we are observing that in the RS/6000 SP users are be-
ginning to write their parallel programs with each task consisting of a set of processes,
exemplified by the following situation: Acsh script fires two collaboratingperl scripts,
connected by a pipe. Each of theseperl scripts then executes a few differentFortran or
C++ programs to perform a computation. In this situation, a taskis no longer a single
process but a dynamically changing tree of processes. In fact, in the more general case a
task can be a forest of processes. Figure 1 shows a parallel job consisting of three tasks.
Each task in turn consists of a set of processes.

Many different approaches to controlling the execution of tasks are described in the
literature [4]. In such systems, schedulers are typically organized in a two-tier structure,
with a central global scheduler for the system and a node-level scheduler (NLS) in each
node. The central scheduler is responsible for resource allocation and job distribution.
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Fig. 1. A 3-way parallel job, each task a forest of processes.

The node-level scheduler is responsible for actually controlling the execution of the
individual tasks of that job on its corresponding node. Thispaper focuses on the issues
related to local task control, as performed by the NLS.

Depending on the level of inter-NLS synchronization, different scheduling varia-
tions are possible. Explicit gang-scheduling systems always run all the tasks of a job si-
multaneously [5–10,17, 21]. In contrast, communication-driven systems [3, 19,20] are
more loosely coupled, and schedule tasks based on message arrival. Independent of the
inter-task scheduling approach, we address those cases in which all processeswithin a
task are closely coupled, like thecsh example of the first paragraph. In these situations,
all processes of a task must be enabled for execution to alloweffective progress within
the task.

Typical UNIX operating systems (OS) have their own process scheduling semantics,
that aim at improving interactive response times and are based on process priorities. The
OS schedulers operate at very fine granularity (order of 10ms) and are very limited with
respect to outside control. These schedulers are not gearedto the task-centric scheduling
required in parallel job control. The traditional approachto bypass the lack of external
scheduler support on OS schedulers is to dedicate an entire node (OS image) to the
execution of a single task within a parallel job [11, 18, 13].A more flexible approach
would permit multiple tasks to share a node, both in space andtime.

Our goal is to develop a task control system that can give eachtask the illusion that
it is running on its own virtual machine. The virtual machines are created by slicing a
physical machine along the time axis. Within each virtual machine, all processes of a
task are controlled and executed by the OS scheduler. The time-slices for these virtual
machines have to be large enough to amortize the cost of context switching. Production
parallel applications are typically memory hungry, and it can take quite a while for them
to bring their working data from paging space. In fact, simple time-sharing (through
the OS scheduler) of parallel jobs can easily lead to trashing of the system. While it is
active, each task must also have, for performance and security reasons, dedicated access
to the parallel machine’s communication device. Context-switching of these devices is
also an expensive operation, as reported in [7]. For the above reasons, the granularity of



the task scheduler is therefore much larger (order of seconds or even minutes) than that
of the underlying OS. This large granularity can be tolerated in our environment as we
target noninteractive applications.

To effectively implement this virtual machine concept, thenode-level scheduler
must be able to control tasks as single entities. All the processes in a task must be
suspended or resumed on occasion of a context switch. There cannot be “stray” pro-
cesses that either are not suspended when the task is suspended or not resumed when
the task is resumed. This behavior must be enforced so that wecan guarantee there is
no interference between suspended and running tasks. In addition, the time interval it
takes to suspend or resume all the processes in a task must be small compared to the
time-slice for the task. Finally, we must have a mechanism that precisely defines the
set of processes that belong to a particular task of a parallel job. To that purpose, we
introduce the concept ofgenealogy of processes.

Each task of a parallel job starts as a single process, which defines the root of that
task. This root process can create new processes, which are its direct descendants and
belong to the same task. The process creation can continue recursively and all descen-
dants of the original root of the task belong to the same task.Belonging to a task is a
genetic property of a process. It cannot be changed and it does not depend on which of
its ancestors are alive at any given time. The genetic footprint of a process defines which
task it belongs to. Genealogy is a good way to define a task for the following reasons.
First, resources must be allocated and accounted for duringthe execution of a job. These
resources include, among others, memory, disk space, and processor time. Any process
associated with that job should be considered as using thoseresources. Second, it de-
fines a scheduling unit that can be controlled through various priority schemes. Even
though the set of processes comprising a task is dynamicallychanging, the binding of
processes to tasks is established at process creation time and remains fixed until process
termination.

We define five mechanisms that are necessary for implementingthe genealogy con-
cept in a job management system. For future reference, we name these mechanismsM1
thoughM5:M1: a mechanism to create new tasks,M2: a mechanism to associate processes to tasks,M3: a mechanism to terminate all processes in a task,M4: a mechanism to capture all dynamic process creation and termination in

order to establish the genetic footprint, andM5: a mechanism to prevent any “escape hatches” that allow processes to leave
a task.

These are in addition to the basic functionality of suspending and resuming execution
of a task, necessary for the actual scheduling operation.

In this paper we describe the difficulties that we encountered in implementing the
genealogy concept for task control, and what solutions we adopted. In Section 2 we
explain why the existing UNIX concepts for process control are not appropriate for the
kind of task control we desire. In Section 3 we discuss the particulars of our imple-
mentations and in Section 4 we present some experimental results for our task control



mechanism on a single node. Section 5 discusses the integration of process tracking on
an actual job scheduling system. Our conclusions are presented in Section 6.

2 Existing UNIX Mechanisms

In standard UNIX systems, processes are the units of scheduling. In order to perform job
based scheduling one has to use process set mechanisms. Modern UNIX systems, such
as SVR4 and 4.4BSD provide two standard notions of process sets. The first one ispro-
cess group and the second one issession [22]. Process groups are provided to identify a
set of related processes that should receive a common signalfor certain events. Process
groups are the standard UNIX mechanism for implementing jobcontrol. Sessions are
provided to identify a set of related processes that have a common controlling terminal
(i.e., are part of one login session). One session can have severalprocess groups.

A process group is defined by its group leader. This is the process which initially
creates a new group through a call tosetpgid. Default process groups are formed by the
parent-child relationship that is established when a process forks itself to create another
process. The child process is created in the same process group as its parent. Execution
of all processes in a process group can be suspended by sending asignal(SIGSTOP) to
that group. Correspondingly, execution can resume by sending asignal(SIGCONT) to
that group. At a first glance this seems to implement the genealogy concept previously
introduced. However, a UNIX process can switch to a different process group or start
its own. This constitutes an escape from its original group,thus failing to implement
mechanismM5 presented above. Also, if a process group leader terminates, all the
remaining processes in that group are reassigned to a built-in process group 0. This in
turn fails mechanismM2, since we can no longer associate processes with their task.

Similar to what happens with process groups, a session is defined by its session
leader. This is the process which initially creates a new session through a call tosetsid.
Again, default sessions are formed by the parent-child relationship: children initially
inherit the session from their parent. Processes can start new sessions, thus disconnect-
ing from their original session and creating the same problems as described for process
groups.

In addition to these two explicit ways to define process sets in UNIX (i.e., groups
and sessions), there is an implicit way through the transitive parent-child relationship.
UNIX provides mechanisms to obtain snapshots (samples) of the list of processes ex-
ecuting at a given time. (Examples of these mechanisms are the getprocs function and
theps command.) For each process this list reports its parent. By properly processing
this list we can build a set that has its origin on a particularroot process. However, this
fails to establish the proper genealogy of processes for thefollowing reasons. First, it is
not an atomic operation: processes can be created and terminated while the list is being
examined. Second, if the process list is not sampled at leastonce between the events of
a child being created and its parent terminating, the genetic property of the child is lost.
The very first time we come to know about the child process willshowinit as its parent.
Finally, since process identifiers are reused in UNIX, one might associate a process with
the wrong task if sampling misses this reuse between an old and a new process. In sum-



mary, the parent-child mechanism of UNIX does not properly implement the genealogy
concept as required for proper task control.

Some systems have attempted to overcome the shortcomings ofthe UNIX parent-
child model by using a special library that intercepts thefork() andsigaction() system
calls [12]. This approach allows one to record every event ofprocess creation and ter-
mination and maintain information on the genealogy of processes. However, this is an
incomplete solution, as it depends on the collaboration of user applications in linking
to those libraries.

The concept of task control has been successfully implemented in other operating
systems. In the OS/390 operating system, theenclave is a concept similar to our task [1].
When a request (e.g., web request) enters into the system, and a thread is startedin
some process to service this request, a new enclave is created. The enclave essentially
represents a unit of work being performed on behalf of a request. If this first thread
initiates new threads in different processes (e.g., the web request leads to a database
operation), then these new threads are also added to the enclave. Accounting of resource
consumption is done on an enclave basis. Furthermore, all threads of an enclave can be
scheduled concurrently.

3 Implementing Process Tracking

After examining the options offered by UNIX, we did not find any functionality that
satisfactorily implements the genealogy concept. It was not an option for us to modify
the existing commercial AIX operating system to introduce anew construct. The solu-
tion we adopted was the development of a process tracking kernel extension. A kernel
extension is a mechanism to dynamically load additional code into the kernel space,
thus extending the kernel with new functionality that can beaccessed by user-level pro-
grams. These extensions execute in the kernel mode of the calling process and have
access to all kernel related activities. The purpose of our process tracking kernel exten-
sion is to monitor and log all process creation and termination events. Based on that
information, the kernel extension maintains the genealogyof selected process sets. The
kernel extension also implements the task control functions necessary for scheduling:
task suspend, task resume, andtask kill.

Our process tracking kernel extension makes use of one particular AIX kernel fea-
ture, the process state change handler. As the name indicates, process state change
handlers in AIX are invoked every time a process state changes. Several process state
change handlers can be chained. In particular, the following events trigger a call to the
handlers: process creation, process termination, thread creation, and thread termina-
tion. Consequently, process state change handlers have strict performance requirements
and have to be as little intrusive as possible. In our case that implies ignoring events
unrelated to tracked processes and maintaining the genealogy of tracked processes effi-
ciently.

The operation of the process tracking is illustrated in Figure 2. The kernel extension
maintains the following data structures:

– TrackedProcessObj: An object of this type is maintained for each process being
tracked. It includes the process identifiers (pids) of the process and its genetic par-



ent. It also contains pointers to theTrackedProcessObjs for one sibling process and
one child process. (Thesibling pointer is used to form a list of children.) This ob-
ject is necessary because the kernel process object, theuproc structure, cannot be
modified directly.

– TaskObj: An object of this type is maintained for each task. It contains a task iden-
tifier that is assigned by the node level scheduler. It also maintains pointers to the
TrackedProcessObjs of the top level processes belonging to the task. The collection
of all TaskObjs constitutes the list of tasks to be monitored in the system.
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Fig. 2.Organization of the kernel extension.

The process state change handler is loaded once in the kernelextension and imme-
diately starts monitoring process creation and termination events. Because the task list
is initially empty, none of these events has any effects. When the node-level scheduler



creates a new task, it registers that task and its root process with the kernel extension.
This involves the creation of a newTaskObj and a newTrackedProcessObj. From this
point on the process is being tracked. This implements mechanismM1. MechanismsM2, M4, andM5 are implemented by monitoring all process creation and termination
events.

When a new process is created, its parent’spid is searched in the set of tracked
processes. To perform an efficient search we provide a hashtable access based on the
pid. If the parent is a tracked process, and hence belongs to sometask, we create a new
TrackedProcessObj, add it to the children list of the parent process, and createa new
entry in the hashtable.

When a tracked process terminates, we remove its associatedTrackedProcessObj
from its parent’s children list. Then its own children are added to its parent’s children
list. (TheTaskObj acts as a parent to the top level processes.) This is very different from
the way the kernel maintains the parent-child relationship. Whereas the kernel makes
init adopt orphan processes, we implement a policy in which orphans are adopted by
their most immediate ancestor still alive. (As an alternative policy, orphans could al-
ways be adopted by the correspondingTaskObj.) This approach always keeps a process
associated with its original task.

All accesses to the kernel extension functions are serialized via a lock. Through this
we implement the atomicity required by the task control operations. Task execution is
controlled from the kernel extension through standard UNIXsignaling mechanisms as
follows.

Task Suspend: Using a top-down depth-first traversal of the task’sTrackedProcessObj
tree, we issue asignal(SIGSTOP) to suspend the execution of each process. We verify
that the process indeed has stopped before proceeding to thenext process. We have to
use a traversal order that guarantees that a parent process is stopped before its children
are signaled. This avoids the scenario where a parent detects its child stopped and takes
some action. (For example, incsh this situation implies thatCTRL-Z was issued to
the child process). If a process does not stop immediately, we exit from the suspend
operation with anEAGAIN error code. (In a multiprocessor system, a process being
stopped could be active on a different processor. In this case, it will only receive the
signal when it returns from a system call or when it is about torun in a future OS
time-slice.) Upon detecting theEAGAIN error code, the node-level scheduler retries
the operation after waiting for a period we refer to as theretry interval. During the
subsequent invocation, theTaskSuspend function verifies whether a process has already
been signaled previously with the same signal and whether ithas indeed stopped. If so,
we continue signaling the remaining processes. This mechanism deals properly with the
dynamics of process creation and termination between retries. (Note that, on a retry, we
do not have to resend signals, just make sure that they have taken effect.)

Task Resume: Using a bottom-up depth-first traversal of the task’sTrackedProcessObj
tree, we usesignal(SIGCONT) to resume execution of each process. We verify that
the process has indeed resumed execution before proceedingto the next process. This
traversal order is the opposite of what we use when suspending a task. Again, the goal
is to avoid the scenario where a parent detects its child stopped. If a process does not



resume immediately, we exit from the resume operation with an EAGAIN error code, to
let the node level scheduler retry this operation.

Task Kill: The algorithm to kill a task also uses a top-down traversal ofthe task’s
TrackedProcessObj tree, issuing asignal(SIGKILL) to each process. Since the action of
a SIGKILL is guaranteed, there is no need to test before proceeding to the next process.
This is the implementation of mechanismM3.

Task suspend, resume, and kill operations can also be selectively performed on a
subtree of the processes of a task.

An odd situation can arise due to the access serialization inthe kernel extension
functions. When a process in the middle of its creation eventrecognizes that its par-
ent has stopped, it is immediately stopped as well. This mechanism, together with the
top-down traversal, guarantees that, with a finite number ofretries, progress is made
in suspending the task. Ultimately, the number of processesthat can be created is lim-
ited by the operating system. At one point, all processes belonging to the task will be
suspended.

4 Experimental Results

In this section we discuss an experimental evaluation of ourtask control mechanism.
We conduct this evaluation through direct measurement of the context switch time be-
tween two tasks. This is a very common operation performed bythe process tracking
facility when implementing time-sharing. A complete context switch operation, from
a currently running task A to a currently suspended task B, requires first suspending
task A and then resuming task B. The mechanism for suspendingand resuming tasks is
discussed in Section 3.

For the purpose of our experiments we use tasks that are binary trees of processes.
We have chosen three types of tasks: 2, 3, and 4 levels deep, for a total of 3, 7, and 15
processes per task, respectively. The tasks use very littlememory and all fit comfortably
within the physical memory of our test systems. We measure the context switch time
between two tasks with the same number of processes. The measurements are repeated
several times and the results presented in this paper represent arithmetic means of the
samples. We perform the measurements for different values of the retry interval, that is
the interval the node level scheduler waits before retryinga suspend or resume operation
that fails.

The first set of results that we present is for a uniprocessor machine: an 160 MHz
P2SC thin-node of an IBM RS/6000 SP system, with 256 MB of mainmemory. Re-
sults for this machine are shown in Figure 3. The context switch operations are very
fast, taking less than 1 ms to complete. Also, the context switch time is proportional
to the number of processes in the tasks, as expected from the description in Section 3.
Finally, the context switch time is invariant to the retry interval. This occurs because
retries are extremely infrequent. A suspended process cannot be running, therefore a
signal(SIGCONT) to such a process has immediate effect, bringing it to active state.



Correspondingly, if the node level scheduler is running andperforming a suspend oper-
ation, the processes from the tasks being suspended are not running (this is a uniproces-
sor system). Hence, thesignal(SIGSTOP) takes effect immediately and the processes
are suspended. (There are some rare situations when the signal cannot be processed
immediately and therefore retries are necessary.)
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Fig. 3.Context switch times for a uniprocessor system.

We repeat these experiments on a multiprocessor machine: anIBM RS/6000 model
S70 system. This machine has four 125 MHz 64-bit RS64 processors and 512 MB of
main memory. Results for this machine are shown in Figure 4. We present the same
data using nonlinear (Figure 4(a)) and linear (Figure 4(b))time scales. (The nonlinear
scale shows more detail in the 1-10 ms range, while the linearscale allows for a better
understanding of the behavior in the 10-50 ms range.) The major difference in com-
parison to Figure 3 is the effect of the retry interval on the total context switch time.
Overall, the context switch time is much larger than on an uniprocessor, and it increases
with the retry interval. We also observe, in Figure 4(b), that the context switch time is
approximately linear on the retry interval in the 10 to 50 ms range. Context switch times
on a multiprocessor are dominated by the time to suspend a running task. Resuming a
suspended task still does not require any retries and is veryfast. The maximum value
we observed for resuming a task with 15 processes was approximately 0.3ms.

The interesting behavior occurs when suspending a running task. Because we are
now dealing with a multiprocessor system, it is possible foran application process to be
executing at the same time the node level scheduler is tryingto suspend it. When that
occurs, asignal(SIGSTOP) is sent to the process but it is not actually processed until
the next time the process is about to run. The suspend operation fails and the node level
scheduler has to retry.

We can model the context switch time as a function of the retryinterval as follows.
Consider a multiprocessor system withn processors and only the following processes:
the node level scheduler, the processes from the active taskand the processes from
the suspended task. We know that the context switch time is dominated by the time
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Fig. 4.Context switch times for a multiprocessor system.

to suspend processes that are actually running. Hence, thatwill be the focus of our
following discussion. Let� be the retry interval used by the node level scheduler and
let there bep processes in the task to be suspended. Lettk be the time that it takes to
suspend one process when there are stillk processes active. The total time� to suspend
the active task is: � = pXk=1 tk: (1)

Time tk can be computed as tk = Pr(k; n)� r � � (2)

WherePr(k; n) is the probability that the particular process to be suspended is running
on one ofn processors andr is the average number of retries before it is stopped. (If
the process is not running, the time to stop it is negligible,as seen for the uniprocessor
system.) We know that the node level scheduler is running on aprocessor for sure,
leavingn � 1 processors for the task processes. Also, ifk � n � 1, then the process
must be running on some processor. Therefore, we can writePr(k; n) = min(1; n� 1k ): (3)

The mean number of retries to stop a running process isr = �Tstop(k; n)� � : (4)Tstop(k; n) is the time it takes for a running process to respond tosignal(SIGSTOP)
when there arek processes active onn processors. (The node level scheduler sleeps
between retries, so alln processors are available for running task processes.) At each
system clock tick of lengthT , a system withn processors runsmin(k; n) processes. (In



AIX, this clock tick is typically 10 ms.) Because of the round-robin policy for processes
at the same priority level, it will take kmin(k; n) � 12 (5)

clock ticks for the signaled process to be scheduled again. (The�1=2 term accounts for
the fact that asignal(SIGSTOP) can be issued any time during the current clock tick.)
The actual time for stopping a running process is:Tstop(k; n) = � kmin(k; n) � 12�T= �2k �min(k; n)2min(k; n) �T (6)

and r = � (2k �min(k; n))T2min(k; n)� �
(7)

Substituting Equation (3) and Equation (7) into Equation (2) leads totk = min(1; n� 1k )� (2k �min(k; n))T2min(k; n)� � � (8)

and � = pXk=1min(1; n� 1k )� (2k �min(k; n))T2min(k; n)� � �: (9)

The correspondence between our model and experimental results is shown in Fig-
ure 5, again with two different time scales. Values from the model are shown in solid
lines, whereas the markers represent the experimental data. Overall agreement is very
good, with a tendency by the model to overestimate the context switch time. This ten-
dency might be explained by the presence of other processes in the system. In real
UNIX systems there are many active processes at any given time. For example, even
in single-user mode our multiprocessor system had 70 activeprocesses, in addition to
the task processes of our experiments. These are usually system daemons that consume
little resources, maybe 1 to 2% of total CPU time when combined. Nevertheless, they
contribute to decrease the probability that application processes will be running at any
given time, thus reducing the total suspend time for a task.

Both the model and the experimental results show that there is little variation in
the context switch time when the retry interval is varied between 1 and 5 ms. Retrying
too soon is ineffective, as the process being signaled will not have had time to process
the signal. Since each retry operation is a kernel extensioninvocation involving kernel
locks, repeating it too often can hurt system performance. Therefore, a retry interval of
5 or 10 ms is the best choice for the node-level scheduler on this system.
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Fig. 5.Model and experimental data for context switch times for a multiprocessor system.

5 System Integration

Process tracking is currently used to implement task control in a research prototype
gang-scheduling system for the RS/6000 SP [15]. We discuss this system here as an
example of an application of process tracking. We emphasizethat process tracking is
applicable in many other environments. The general problemthat process tracking tack-
les is that of resource reclaiming: We want to be able to get back resources that a job
is using in order to give them to another job. In the case of gang-scheduling, that re-
source is (mainly) processor time. Process tracking can also be used to control “stray”
processes that would typically overlast the lifetime of a job and continue to consume
system resources.

Gang-scheduling is a mechanism for performing coordinatedscheduling of the tasks
of a parallel job [16]. It partitions the resources of a parallel system both in space and
time, and all tasks of one job execute concurrently. Gang-scheduling has been shown to
improve system performance, in particular by improving system utilization and reduc-
ing job wait time [5, 15]. The operation of a gang-scheduled system is characterized by
a stream of context-switch events, that occur at the boundaries of the time-slices. On
each context-switch event a currently running parallel jobis suspended and another job
is enabled for execution.

The gang-scheduling system we developed follows the two-tier model discussed in
Section 1, with a centralized global scheduler and local node-level schedulers. The role
of the central scheduler is to derive a global schedule for the system and then distribute
the relevant subsets to the local schedulers in an efficient manner. While there are many
approaches to representing global schedules, we have chosen the Ousterhout matrix,
due to its simplicity and generality. Using hierarchical distribution schemes, we deliver
each column of the matrix to its designated node-level scheduler. For multiprocessor
nodes, the corresponding node-level scheduler receives multiple columns. The node-
level scheduler is then responsible for implementing this local schedule as described
by the columns of the Ousterhout matrix. It accomplishes that by executing the con-



text switch operations at the time dictated by the schedule.The system relies on some
form of a synchronized clock for all node-level schedulers.This can be either a global
clock, or distributed local clocks that are kept synchronized with NTP [14]. Note, that
in the case of a multiprocessor node, a single node-level scheduler may have to perform
multiple context switch operations.

The environment we use to measure application performance under our gang-sched-
uling system consists of an IBM RS/6000 SP with 9 compute nodes and an additional
node dedicated to handling job submission and running the global scheduler. Each com-
pute node has four 332 MHz PowerPC 604e processors that share1.5 GB of main mem-
ory. Job execution is controlled by our gang-scheduling prototype, using a time-slice of
10 seconds. As benchmarks we use the three pseudo-applications from the NAS Parallel
Benchmark suite, version 2.3 [2]:BT, LU, andSP. Each benchmark is written in For-
tran with calls to the MPI message-passing library.BT andSP are compiled to run with
36 tasks (requiring all 9 nodes), whileLU is compiled to run with 32 tasks (requiring
8 nodes). Each task consists of exactly three processes. Oneof the processes imple-
ments the benchmark itself, while the other two are support processes that implement
the parallel environment.

We first run each benchmark on a dedicated environment and measure their execu-
tion time. This corresponds to gang-scheduling with a multiprogramming level (MPL)
of one. We then run two, three, and four instances of each benchmark at a time, which
corresponds to MPLs of 2, 3, and 4, respectively. Results from these experiments are
shown in Table 1 and in Figure 6. For each benchmark, Table 1 shows the memory
footprint per task, and the average execution time (in seconds) under different multi-
programming levels. Figure 6 presents the same performanceresults graphically, with
the execution times for each benchmark normalized to the execution time of a single
instance of the benchmark in a dedicated environment, and then divided by the multi-
programming level. We note that the highest memory consumption occurs forBT with
an MPL of 4. In that case, there are 16 tasks running in each node, for a total memory
footprint of 590 MB. (The support processes have small footprints.) This is still much
smaller than the 1.5GB of main memory available in each node,and therefore there is
minimal paging during execution of the benchmarks.

Table 1. Results for running the NAS Parallel BenchmarksBT, LU, and SP under gang-
scheduling.

benchmarknumberfootprint Average execution time (s)
of tasks(MBytes)MPL = 1 MPL = 2 MPL = 3 MPL = 4

BT, class B 36 36.9 568.79 1157.14 1763.32 2339.36
LU, class B 32 8.5 371.21 743.92 1202.03 1599.72
SP, class B 36 15.2 432.95 916.27 1360.56 1842.16

In the ideal case, runningk instances of a benchmark should slow their execution
by a factor ofk. In this ideal case, all bars in Figure 6 should be at a value of1. Any
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Fig. 6.Performance ofBT, LU, andSP under gang-scheduling.

value above 1 represents overhead resulting from time-sharing. We note that the worst
overhead occurs forLU with multiprogramming levels of 3 and 4. In those cases, the
measured execution time is 8% larger than expected from the ideal case. Overall, our
gang-scheduling system does an effective job of providing the illusion of a slower vir-
tual machine for the execution of each job. Explicit controlof the time slices allows us
to amortize the cost of context switching over a long enough time slice. It also allows for
resource dedication for longer periods and thus one can expect higher cache hit rates,
lower page fault rates, and better communication performance (due to the synchronous
nature of the applications). The footprint of our benchmarks were too small to exercise
the memory paging system, and we plan to conduct such experiments in the near future.

6 Conclusions and Future Work

In this paper we introduced the new concept of process genealogy to define the set of
processes comprising a task. Process to task binding is an intrinsic characteristic of
the process which it inherits from its parent and which can not be modified. None of
the existing process set concepts in UNIX satisfy the requirements for building task
based genealogy. We have successfully implemented the genealogy mechanisms with-
out modifying the operating system. Our approach is based ona process tracking kernel
extension that monitors process creation and termination events and builds a database
representing the genealogy concept. Process tracking alsoimplements atomic suspend
and resume operations for tasks. These operations form the core of context-switching
for time-sharing systems.



We have used process tracking as an integral part of our gang-scheduling system
for the RS/6000 SP. An initial prototype of this system has been installed at Lawrence
Livermore National Laboratory. Deployment in production mode will follow soon. Our
preliminary results indicate little overhead from the context-switching as performed by
the process tracking facility. As an added benefit, we eliminated the possibility of any
stray processes escaping termination control. The development of process tracking was
motivated by the necessary functionality. Nevertheless, our experiments have shown
that we can use it to implement efficient, low overhead task control. (The experiments
have also shown the importance of using the proper retry interval, in the 5 to 10 ms
range, in suspending tasks. 10 ms is the base operating system time-slice.) Process
tracking is a vehicle through which an enhanced user-level scheduling can be added to
a system.

In terms of future work, we are investigating alternative ways to traverse the forest
of processes that constitute a task. We currently perform a depth first traversal, which
we quit (and later retry) when we find a process that is not immediately suspended or
resumed. We could also use a breadth first traversal: Attemptto suspend/resume all
processes at a given level before proceeding to the next level. This approach would
require changes in our data structures and needs to be investigated. There is also a
hybrid, or optimized, depth first approach: We start traversing the tree in depth first
mode. If we hit a process that we cannot stop then, instead of proceeding to its children,
we just move on to its siblings. (See Figure 7.) This traversal can be implemented with
our current data structures.��������� ���= ZZZZZ����X
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� JJJJJJĴ����������������
(b)

Fig. 7. Depth first approach (a) stops as soon as one task (marked X) cannot be suspended or
resumed. The hybrid approach (b) continues with the siblings of task X.

Process genealogy is an important concept for job control and accounting. We have
successfully implemented the genealogy concept through process tracking in a commer-
cial operating system. Other implementation strategies are also possible. In particular,



as a new research, we are currently investigating the migration of the genealogy concept
directly into the kernel of the AIX UNIX operating system.
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