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Abstract. Job management subsystems in parallel environments hadeltess
two important issues: (i) how to associate processes presére system to the
tasks of parallel jobs, and (ii) how to control executiontuége tasks. The stan-
dard UNIX mechanism for job control, process groups, is mpyrapriate for
this purpose as processes can escape their original grodpstat new ones.
We introduce the concept genealogy, in which a process is identified by the
genetic footprint it inherits from its parent. With this aapt, tasks are defined
by sets of processes with a common ancestor. Process faskine mechanism
by which we implement the genealogy concept in the IBM AlX &tieg sys-
tem. No changes to the kernel are necessary and individoakgs control is
achieved through standard UNIX signaling methods. Pedoice evaluation, on
both uniprocessor and multiprocessor systems, demomstratefficacy of job
control through process tracking. Process tracking has ineerporated in a re-
search prototype gang-scheduling system for the IBM RY/&ER)

1 Introduction

The job management subsystem of a computing environmeesg®nsible for all as-
pects of controlling job execution. This includes startamgl terminating jobs as well
as the details related to their scheduling. Parallel jolex@ing on a distributed or
clustered system are typically comprised by a set of copatigr executing tasks that
collaborate with each other. Traditional parallel jobshe scientific computing com-
munity (eg., MPI and HPF programs) consist of a fixed set of tasks, eactpised
of a single process. However, we are observing that in th&®0® SP users are be-
ginning to write their parallel programs with each task dstirsg of a set of processes,
exemplified by the following situation: Ash script fires two collaboratinger! scripts,
connected by a pipe. Each of thgmel scripts then executes a few differéfartran or
C++ programs to perform a computation. In this situation, a tasto longer a single
process but a dynamically changing tree of processes. triffidbe more general case a
task can be a forest of processes. Figure 1 shows a paréllebjsisting of three tasks.
Each task in turn consists of a set of processes.

Many different approaches to controlling the executioresks are described in the
literature [4]. In such systems, schedulers are typicatipoized in a two-tier structure,
with a central global scheduler for the system and a noda-teheduler (NLS) in each
node. The central scheduler is responsible for resouroeatibn and job distribution.
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Fig. 1. A 3-way parallel job, each task a forest of processes.

The node-level scheduler is responsible for actually adlivig the execution of the
individual tasks of that job on its corresponding node. aper focuses on the issues
related to local task control, as performed by the NLS.

Depending on the level of inter-NLS synchronization, difet scheduling varia-
tions are possible. Explicit gang-scheduling systemsydwian all the tasks of a job si-
multaneously [5-10, 17, 21]. In contrast, communicationesh systems [3, 19, 20] are
more loosely coupled, and schedule tasks based on messagé Brdependent of the
inter-task scheduling approach, we address those casdsch all processewithina
task are closely coupled, like thesh example of the first paragraph. In these situations,
all processes of a task must be enabled for execution to alffi@etive progress within
the task.

Typical UNIX operating systems (OS) have their own procebeguling semantics,
that aim at improving interactive response times and aretas process priorities. The
OS schedulers operate at very fine granularity (order of J@ndsare very limited with
respect to outside control. These schedulers are not gedifegltask-centric scheduling
required in parallel job control. The traditional approastbypass the lack of external
scheduler support on OS schedulers is to dedicate an ewtite (©S image) to the
execution of a single task within a parallel job [11, 18, 18]more flexible approach
would permit multiple tasks to share a node, both in spacdiared

Our goal is to develop a task control system that can give &mththe illusion that
it is running on its own virtual machine. The virtual machsrage created by slicing a
physical machine along the time axis. Within each virtuathiae, all processes of a
task are controlled and executed by the OS scheduler. Tleedices for these virtual
machines have to be large enough to amortize the cost oba@wéching. Production
parallel applications are typically memory hungry, andiit take quite a while for them
to bring their working data from paging space. In fact, sienpine-sharing (through
the OS scheduler) of parallel jobs can easily lead to trasbirthe system. While it is
active, each task must also have, for performance and seeaisons, dedicated access
to the parallel machine’s communication device. Contaitehing of these devices is
also an expensive operation, as reported in [7]. For theaat#asons, the granularity of



the task scheduler is therefore much larger (order of secondven minutes) than that
of the underlying OS. This large granularity can be tolatéteour environment as we
target noninteractive applications.

To effectively implement this virtual machine concept, thede-level scheduler
must be able to control tasks as single entities. All the ggses in a task must be
suspended or resumed on occasion of a context switch. Tharetbe “stray” pro-
cesses that either are not suspended when the task is sedpenagot resumed when
the task is resumed. This behavior must be enforced so thaaweguarantee there is
no interference between suspended and running tasks. iticaighe time interval it
takes to suspend or resume all the processes in a task musiallecempared to the
time-slice for the task. Finally, we must have a mechanisat pinecisely defines the
set of processes that belong to a particular task of a phjalieTo that purpose, we
introduce the concept @feneal ogy of processes.

Each task of a parallel job starts as a single process, wigfthes the root of that
task. This root process can create new processes, whictsatieect descendants and
belong to the same task. The process creation can contiousiely and all descen-
dants of the original root of the task belong to the same fslonging to a task is a
genetic property of a process. It cannot be changed andstmmealepend on which of
its ancestors are alive at any given time. The genetic fattpfa process defines which
task it belongs to. Genealogy is a good way to define a taskhéfdlowing reasons.
First, resources must be allocated and accounted for dilméngxecution of a job. These
resources include, among others, memory, disk space, acdgsor time. Any process
associated with that job should be considered as using tlesserces. Second, it de-
fines a scheduling unit that can be controlled through varfmiority schemes. Even
though the set of processes comprising a task is dynamidadlgging, the binding of
processes to tasks is established at process creationrtimermains fixed until process
termination.

We define five mechanisms that are necessary for implemethigngenealogy con-
cept in a job management system. For future reference, we ttagse mechanisnid;
thoughMs:

M;: amechanism to create new tasks,

M,: amechanism to associate processes to tasks,

Mj3: amechanism to terminate all processes in a task,

M,: a mechanism to capture all dynamic process creation andrtation in
order to establish the genetic footprint, and

My: amechanism to prevent any “escape hatches” that allovepses to leave
a task.

These are in addition to the basic functionality of suspeg@nd resuming execution
of a task, necessary for the actual scheduling operation.

In this paper we describe the difficulties that we encoudtémémplementing the
genealogy concept for task control, and what solutions vaptadl. In Section 2 we
explain why the existing UNIX concepts for process contrel@ot appropriate for the
kind of task control we desire. In Section 3 we discuss théiqaars of our imple-
mentations and in Section 4 we present some experimentdtgésr our task control



mechanism on a single node. Section 5 discusses the integodiprocess tracking on
an actual job scheduling system. Our conclusions are piezb@nSection 6.

2 Existing UNIX Mechanisms

In standard UNIX systems, processes are the units of sdnedLr order to perform job
based scheduling one has to use process set mechanismsnNIdX systems, such
as SVR4 and 4.4BSD provide two standard notions of procéssHee first one ipro-
cess group and the second onegsssion [22]. Process groups are provided to identify a
set of related processes that should receive a common $igreadrtain events. Process
groups are the standard UNIX mechanism for implementingcfoitrol. Sessions are
provided to identify a set of related processes that haversramn controlling terminal
(i.e, are part of one login session). One session can have sevecalss groups.

A process group is defined by its group leader. This is thega®evhich initially
creates a new group through a calbitpgid. Default process groups are formed by the
parent-child relationship that is established when a m®terks itself to create another
process. The child process is created in the same procags @gadts parent. Execution
of all processes in a process group can be suspended by gersitnal (SIGSTOP) to
that group. Correspondingly, execution can resume by sgrakignal (SIGCONT) to
that group. At a first glance this seems to implement the degg@oncept previously
introduced. However, a UNIX process can switch to a diffepgncess group or start
its own. This constitutes an escape from its original grabps failing to implement
mechanismi presented above. Also, if a process group leader termijnallethe
remaining processes in that group are reassigned to aibyifbcess group 0. This in
turn fails mechanisnd{,, since we can no longer associate processes with their task.

Similar to what happens with process groups, a session isedeby its session
leader. This is the process which initially creates a newisaghrough a call teetsid.
Again, default sessions are formed by the parent-childiogiship: children initially
inherit the session from their parent. Processes can garsassions, thus disconnect-
ing from their original session and creating the same problas described for process
groups.

In addition to these two explicit ways to define process setdNIX (i.e, groups
and sessions), there is an implicit way through the trarsjgarent-child relationship.
UNIX provides mechanisms to obtain snapshots (samplesjeolist of processes ex-
ecuting at a given time. (Examples of these mechanisms aigetibrocs function and
the ps command.) For each process this list reports its parent.rByegply processing
this list we can build a set that has its origin on a partictdat process. However, this
fails to establish the proper genealogy of processes fdotlmving reasons. First, it is
not an atomic operation: processes can be created and &teahiwhile the list is being
examined. Second, if the process listis not sampled at ¢east between the events of
a child being created and its parent terminating, the gepetiperty of the child is lost.
The very first time we come to know about the child processshidiwinit as its parent.
Finally, since process identifiers are reused in UNIX, onghnéissociate a process with
the wrong task if sampling misses this reuse between an dld aew process. In sum-



mary, the parent-child mechanism of UNIX does not properiglement the genealogy
concept as required for proper task control.

Some systems have attempted to overcome the shortcomitigs biNIX parent-
child model by using a special library that interceptsfibré() andsigaction() system
calls [12]. This approach allows one to record every evemrofess creation and ter-
mination and maintain information on the genealogy of psses. However, this is an
incomplete solution, as it depends on the collaborationsef @pplications in linking
to those libraries.

The concept of task control has been successfully implesdantother operating
systems. Inthe OS/390 operating systemgtitbave is a concept similar to our task [1].
When a requeste(g., web request) enters into the system, and a thread is sfarted
some process to service this request, a new enclave isaréddite enclave essentially
represents a unit of work being performed on behalf of a reigukthis first thread
initiates new threads in different processeg.( the web request leads to a database
operation), then these new threads are also added to ttevendlccounting of resource
consumption is done on an enclave basis. Furthermorera#ds of an enclave can be
scheduled concurrently.

3 Implementing Process Tracking

After examining the options offered by UNIX, we did not findyafunctionality that
satisfactorily implements the genealogy concept. It wasanmption for us to modify
the existing commercial AlX operating system to introducesev construct. The solu-
tion we adopted was the development of a process trackimgkextension. A kernel
extension is a mechanism to dynamically load additionakdodo the kernel space,
thus extending the kernel with new functionality that carabeessed by user-level pro-
grams. These extensions execute in the kernel mode of thigcptocess and have
access to all kernel related activities. The purpose of caegss tracking kernel exten-
sion is to monitor and log all process creation and termamagivents. Based on that
information, the kernel extension maintains the geneatidgglected process sets. The
kernel extension also implements the task control funstimecessary for scheduling:
task suspend, task resume, andtask kill.

Our process tracking kernel extension makes use of onepkntiAlX kernel fea-
ture, the process state change handler. As the name ingligatecess state change
handlers in AlX are invoked every time a process state clmariggveral process state
change handlers can be chained. In particular, the follgpwirents trigger a call to the
handlers: process creation, process termination, thresation, and thread termina-
tion. Consequently, process state change handlers hateostiformance requirements
and have to be as little intrusive as possible. In our caseirtfzies ignoring events
unrelated to tracked processes and maintaining the gegyealdracked processes effi-
ciently.

The operation of the process tracking is illustrated in Fégl The kernel extension
maintains the following data structures:

— TrackedProcessObj: An object of this type is maintained for each process being
tracked. It includes the process identifigualg) of the process and its genetic par-



ent. It also contains pointers to tfieackedProcessObjs for one sibling process and
one child process. (Th&bling pointer is used to form a list of children.) This ob-
ject is necessary because the kernel process objeatptbe structure, cannot be

modified directly.

— TaskObj: An object of this type is maintained for each task. It cordainask iden-
tifier that is assigned by the node level scheduler. It alsmtai@s pointers to the
TrackedProcessObjs of the top level processes belonging to the task. The ¢mtec
of all TaskObjs constitutes the list of tasks to be monitored in the system.

node level scheduler

register, unregister suspend, resume, kill
TaskObj
hashtabl i
table .
/pidzzl\TrackedProcessObj
—+ siblings
process|__create J
state children
change .
handler _terminate, _ _ _
[ pid=56Y  /pid=4 "\ /pid=131\
| - = —
o L T+
pid + TrackedProcessObj = =

runs processstate change handler in target address space

operating system scheduler

Fig. 2. Organization of the kernel extension.

The process state change handler is loaded once in the lkesteakion and imme-
diately starts monitoring process creation and termimagicents. Because the task list
is initially empty, none of these events has any effects. Wthe node-level scheduler



creates a new task, it registers that task and its root agith the kernel extension.
This involves the creation of a nevaskObj and a newTrackedProcessObj. From this
point on the process is being tracked. This implements nméstmal/; . Mechanisms
M,, M4, and M5 are implemented by monitoring all process creation anditetion
events.

When a new process is created, its parepitsis searched in the set of tracked
processes. To perform an efficient search we provide a Hastdacess based on the
pid. If the parent is a tracked process, and hence belongs totssieve create a new
TrackedProcessObj, add it to the children list of the parent process, and craatew
entry in the hashtable.

When a tracked process terminates, we remove its assodiaeibdProcessObj
from its parent’s children list. Then its own children areled to its parent’s children
list. (TheTaskObj acts as a parent to the top level processes.) This is vesreliff from
the way the kernel maintains the parent-child relationsWpereas the kernel makes
init adopt orphan processes, we implement a policy in which orphee adopted by
their most immediate ancestor still alive. (As an alter@apolicy, orphans could al-
ways be adopted by the correspondiagkObj.) This approach always keeps a process
associated with its original task.

All accesses to the kernel extension functions are segi@lia a lock. Through this
we implement the atomicity required by the task control afiens. Task execution is
controlled from the kernel extension through standard UBighaling mechanisms as
follows.

Task Suspend: Using a top-down depth-first traversal of the task'ackedProcessObj

tree, we issue a@ignal (SIGSTOP) to suspend the execution of each process. We verify
that the process indeed has stopped before proceeding texherocess. We have to
use a traversal order that guarantees that a parent pracaspped before its children
are signaled. This avoids the scenario where a parent détechild stopped and takes
some action. (For example, ©sh this situation implies thaCTRL-Z was issued to
the child process). If a process does not stop immediatadyexit from the suspend
operation with anEAGAIN error code. (In a multiprocessor system, a process being
stopped could be active on a different processor. In this,aasvill only receive the
signal when it returns from a system call or when it is aboututo in a future OS
time-slice.) Upon detecting thEAGAIN error code, the node-level scheduler retries
the operation after waiting for a period we refer to as ititey interval. During the
subsequent invocation, tiiaskSuspend function verifies whether a process has already
been signaled previously with the same signal and whethesiindeed stopped. If so,
we continue signaling the remaining processes. This mésimeaheals properly with the
dynamics of process creation and termination betweerege{fiNote that, on a retry, we
do not have to resend signals, just make sure that they hiese édfect.)

Task Resume:  Using a bottom-up depth-first traversal of the tagkackedProcessObj
tree, we usesignal (SIGCONT) to resume execution of each process. We verify that
the process has indeed resumed execution before procdedimg next process. This
traversal order is the opposite of what we use when suspgdiask. Again, the goal

is to avoid the scenario where a parent detects its chilcosbplf a process does not



resume immediately, we exit from the resume operation witBAGAIN error code, to
let the node level scheduler retry this operation.

Task Kill: The algorithm to kill a task also uses a top-down traversateftask’s
TrackedProcessObj tree, issuing & gnal (SIGKILL) to each process. Since the action of
aSIGKILL is guaranteed, there is no need to test before proceedihg treit process.
This is the implementation of mechanisif.

Task suspend, resume, and kill operations can also beiselggerformed on a
subtree of the processes of a task.

An odd situation can arise due to the access serializatidghdrkernel extension
functions. When a process in the middle of its creation eveocdgnizes that its par-
ent has stopped, it is immediately stopped as well. This ar@sim, together with the
top-down traversal, guarantees that, with a finite numbeetfes, progress is made
in suspending the task. Ultimately, the number of proceisgtscan be created is lim-
ited by the operating system. At one point, all processesrigghg to the task will be
suspended.

4 Experimental Results

In this section we discuss an experimental evaluation oftask control mechanism.
We conduct this evaluation through direct measuremente€timtext switch time be-
tween two tasks. This is a very common operation performethbyprocess tracking
facility when implementing time-sharing. A complete codtewitch operation, from
a currently running task A to a currently suspended task gyires first suspending
task A and then resuming task B. The mechanism for suspeadihgesuming tasks is
discussed in Section 3.

For the purpose of our experiments we use tasks that areylineas of processes.
We have chosen three types of tasks: 2, 3, and 4 levels deeptdtal of 3, 7, and 15
processes per task, respectively. The tasks use verynigtheory and all fit comfortably
within the physical memory of our test systems. We measwgedmtext switch time
between two tasks with the same number of processes. Theirapsnts are repeated
several times and the results presented in this paper eggiragthmetic means of the
samples. We perform the measurements for different valigmaetry interval, that is
the interval the node level scheduler waits before retrgiagspend or resume operation
that fails.

The first set of results that we present is for a uniprocessmhime: an 160 MHz
P2SC thin-node of an IBM RS/6000 SP system, with 256 MB of nma@mory. Re-
sults for this machine are shown in Figure 3. The contextadwitperations are very
fast, taking less than 1 ms to complete. Also, the contextcévtime is proportional
to the number of processes in the tasks, as expected fronetioeiption in Section 3.
Finally, the context switch time is invariant to the retrydrval. This occurs because
retries are extremely infrequent. A suspended processotdmrunning, therefore a
signal (SIGCONT) to such a process has immediate effect, bringing it to actate.



Correspondingly, if the node level scheduler is runningpedorming a suspend oper-
ation, the processes from the tasks being suspended arenmirtg (this is a uniproces-
sor system). Hence, thseignal (SIGSTOP) takes effect immediately and the processes
are suspended. (There are some rare situations when thed sggmot be processed
immediately and therefore retries are necessary.)

Context switch time for different retry intervals

x 15 processes/task
0.25F 0.7 processes/task
O 3 processes/task

|

Context switch time (ms)
o £
= (%)

0.05F

2ms 5ms 10ms  20ms  50ms
Retry interval

Fig. 3. Context switch times for a uniprocessor system.

We repeat these experiments on a multiprocessor machitBMaRS/6000 model
S70 system. This machine has four 125 MHz 64-bit RS64 processd 512 MB of
main memory. Results for this machine are shown in Figure &.pvésent the same
data using nonlinear (Figure 4(a)) and linear (Figure 4§ scales. (The nonlinear
scale shows more detail in the 1-10 ms range, while the ligese allows for a better
understanding of the behavior in the 10-50 ms range.) Themudljference in com-
parison to Figure 3 is the effect of the retry interval on tbial context switch time.
Overall, the context switch time is much larger than on aprotessor, and itincreases
with the retry interval. We also observe, in Figure 4(b)tih@ context switch time is
approximately linear on the retry interval in the 10 to 50 arsge. Context switch times
on a multiprocessor are dominated by the time to suspendramgitask. Resuming a
suspended task still does not require any retries and isfasty The maximum value
we observed for resuming a task with 15 processes was appately 0.3ms.

The interesting behavior occurs when suspending a runailg Because we are
now dealing with a multiprocessor system, it is possiblefoapplication process to be
executing at the same time the node level scheduler is ttgisgspend it. When that
occurs, asignal (SIGSTOP) is sent to the process but it is not actually processed until
the next time the process is about to run. The suspend opefatis and the node level
scheduler has to retry.

We can model the context switch time as a function of the lietarval as follows.
Consider a multiprocessor system witlprocessors and only the following processes:
the node level scheduler, the processes from the activeata$khe processes from
the suspended task. We know that the context switch timensirdded by the time
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Fig. 4. Context switch times for a multiprocessor system.

to suspend processes that are actually running. Hencewthdte the focus of our
following discussion. Letr be the retry interval used by the node level scheduler and
let there bep processes in the task to be suspendedzi &te the time that it takes to
suspend one process when there arefspllocesses active. The total tii¢o suspend

the active task is:

p
0="> t. (1)
k=1
Timet; can be computed as
th =P (k,n)XFXT (2)

WhereP,(k,n) is the probability that the particular process to be suspeiglrunning
on one ofn processors and is the average number of retries before it is stopped. (If
the process is not running, the time to stop it is negligiateseen for the uniprocessor
system.) We know that the node level scheduler is running proaessor for sure,
leavingn — 1 processors for the task processes. Alsé, € n — 1, then the process
must be running on some processor. Therefore, we can write

n—1

P,(k,n) = min(1, T) 3)
The mean number of retries to stop a running process is

_ [Tstop(k,n)" . @

r =
-
Tsop(k, ) is the time it takes for a running process to respondigoal (SIGSTOP)
when there aré& processes active am processors. (The node level scheduler sleeps
between retries, so all processors are available for running task processes.)dit ea
system clock tick of lengtf’, a system withe processors runain(k, n) processes. (In



AlX, this clock tick is typically 10 ms.) Because of the rourmbin policy for processes
at the same priority level, it will take

k

min(k,n)

(5)

N —

clock ticks for the signaled process to be scheduled aglie{1/2 term accounts for
the fact that aignal (SIGSTOP) can be issued any time during the current clock tick.)
The actual time for stopping a running process is:

Tstop(k, ) = <L - %) T

min(k, n)

I

and

_ [(21@ — min(k, n))T" -

"= 2min(k, n)T

Substituting Equation (3) and Equation (7) into Equation€ads to

ik

(8)

tr = min(1,

and
»

9:Zmin(1,n_1) P%-min(k,n))ﬂ ~ o

Pt k 2min(k, n)T

The correspondence between our model and experimentéisresghown in Fig-
ure 5, again with two different time scales. Values from thadei are shown in solid
lines, whereas the markers represent the experimental @a¢siall agreement is very
good, with a tendency by the model to overestimate the costeitch time. This ten-
dency might be explained by the presence of other proceasé isystem. In real
UNIX systems there are many active processes at any given Eor example, even
in single-user mode our multiprocessor system had 70 aptiveesses, in addition to
the task processes of our experiments. These are usuakyrsgaemons that consume
little resources, maybe 1 to 2% of total CPU time when condbifNevertheless, they
contribute to decrease the probability that applicatiacpsses will be running at any
given time, thus reducing the total suspend time for a task.

Both the model and the experimental results show that tlseligtle variation in
the context switch time when the retry interval is variedi®sn 1 and 5 ms. Retrying
too soon is ineffective, as the process being signaled wilhave had time to process
the signal. Since each retry operation is a kernel extensiatation involving kernel
locks, repeating it too often can hurt system performanberdfore, a retry interval of
5 or 10 ms is the best choice for the node-level schedulerisrsyistem.
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Fig. 5. Model and experimental data for context switch times for dtiprocessor system.

5 System Integration

Process tracking is currently used to implement task cbirira research prototype
gang-scheduling system for the RS/6000 SP [15]. We disdussystem here as an
example of an application of process tracking. We emphakiaeprocess tracking is
applicable in many other environments. The general probiatrprocess tracking tack-
les is that of resource reclaiming: We want to be able to gek besources that a job
is using in order to give them to another job. In the case ofjgmheduling, that re-
source is (mainly) processor time. Process tracking cankedsused to control “stray”
processes that would typically overlast the lifetime of b gmd continue to consume
system resources.

Gang-scheduling is a mechanism for performing coordinstedduling of the tasks
of a parallel job [16]. It partitions the resources of a platalystem both in space and
time, and all tasks of one job execute concurrently. Gamgdhaling has been shown to
improve system performance, in particular by improvingeysutilization and reduc-
ing job wait time [5, 15]. The operation of a gang-scheduletem is characterized by
a stream of context-switch events, that occur at the boigslaf the time-slices. On
each context-switch event a currently running paralleligsduspended and another job
is enabled for execution.

The gang-scheduling system we developed follows the temtodel discussed in
Section 1, with a centralized global scheduler and loca&rledel schedulers. The role
of the central scheduler is to derive a global schedule ®s{tstem and then distribute
the relevant subsets to the local schedulers in an efficianther. While there are many
approaches to representing global schedules, we haverchivseéOusterhout matrix,
due to its simplicity and generality. Using hierarchicatdbution schemes, we deliver
each column of the matrix to its designated node-level adieed~or multiprocessor
nodes, the corresponding node-level scheduler receivétiptaicolumns. The node-
level scheduler is then responsible for implementing tbéal schedule as described
by the columns of the Ousterhout matrix. It accomplishes blyaexecuting the con-



text switch operations at the time dictated by the schedtile.system relies on some
form of a synchronized clock for all node-level schedul@iss can be either a global
clock, or distributed local clocks that are kept synchredizvith NTP [14]. Note, that
in the case of a multiprocessor node, a single node-levelsdlr may have to perform
multiple context switch operations.

The environment we use to measure application performamderwur gang-sched-
uling system consists of an IBM RS/6000 SP with 9 compute s@ahel an additional
node dedicated to handling job submission and running titeegscheduler. Each com-
pute node has four 332 MHz PowerPC 604e processors thatkbaed of main mem-
ory. Job execution is controlled by our gang-schedulingqiype, using a time-slice of
10 seconds. As benchmarks we use the three pseudo-appigatm the NAS Parallel
Benchmark suite, version 2.3 [BT, LU, andSP. Each benchmark is written in For-
tran with calls to the MPI message-passing libraflyandSP are compiled to run with
36 tasks (requiring all 9 nodes), whil#) is compiled to run with 32 tasks (requiring
8 nodes). Each task consists of exactly three processesofdhe processes imple-
ments the benchmark itself, while the other two are supportgsses that implement
the parallel environment.

We first run each benchmark on a dedicated environment angumeetheir execu-
tion time. This corresponds to gang-scheduling with a rpuigramming level (MPL)
of one. We then run two, three, and four instances of eachhoeaik at a time, which
corresponds to MPLs of 2, 3, and 4, respectively. Results fittese experiments are
shown in Table 1 and in Figure 6. For each benchmark, Tableotvsithe memory
footprintper task, and the average execution time (in seconds) under diffeneiti-
programming levels. Figure 6 presents the same perforntasoéts graphically, with
the execution times for each benchmark normalized to thewtiam time of a single
instance of the benchmark in a dedicated environment, arddivided by the multi-
programming level. We note that the highest memory consiamjgiccurs foBT with
an MPL of 4. In that case, there are 16 tasks running in eack,foda total memory
footprint of 590 MB. (The support processes have small footp.) This is still much
smaller than the 1.5GB of main memory available in each nade therefore there is
minimal paging during execution of the benchmarks.

Table 1. Results for running the NAS Parallel Benchmai&$, LU, and SP under gang-
scheduling.

benchmarknumbeffootprint Average execution time (s)

of tasks(MBytesYMPL = 1]MPL = 2|MPL = 3]MPL = 4
BT, class B 36| 36.9 568.79 1157.14 1763.32 2339.36
LU, class B 32| 85 371.21 743.92 1202.03 1599.72
SP, class H 36| 15.2 432.95 916.27 1360.56 1842.16

In the ideal case, running instances of a benchmark should slow their execution
by a factor of. In this ideal case, all bars in Figure 6 should be at a value @iy
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Fig. 6. Performance oBT, LU, andSP under gang-scheduling.

value above 1 represents overhead resulting from timerghat/e note that the worst
overhead occurs fdrU with multiprogramming levels of 3 and 4. In those cases, the
measured execution time is 8% larger than expected frondied case. Overall, our
gang-scheduling system does an effective job of providiegltusion of a slower vir-
tual machine for the execution of each job. Explicit contfihe time slices allows us

to amortize the cost of context switching over a long enourgk slice. It also allows for
resource dedication for longer periods and thus one carcekjgher cache hit rates,
lower page fault rates, and better communication perfoomédue to the synchronous
nature of the applications). The footprint of our benchraamere too small to exercise
the memory paging system, and we plan to conduct such exget$rin the near future.

6 Conclusions and Future Work

In this paper we introduced the new concept of process gegye#b define the set of
processes comprising a task. Process to task binding istansio characteristic of
the process which it inherits from its parent and which canlbr@omodified. None of
the existing process set concepts in UNIX satisfy the reguénts for building task
based genealogy. We have successfully implemented thalggyenechanisms with-
out modifying the operating system. Our approach is basedprocess tracking kernel
extension that monitors process creation and terminatiente and builds a database
representing the genealogy concept. Process trackingnaggdements atomic suspend
and resume operations for tasks. These operations fornotkeof context-switching
for time-sharing systems.



We have used process tracking as an integral part of our gamegduling system
for the RS/6000 SP. An initial prototype of this system hasrbiestalled at Lawrence
Livermore National Laboratory. Deployment in productioaahe will follow soon. Our
preliminary results indicate little overhead from the @xttswitching as performed by
the process tracking facility. As an added benefit, we elatdd the possibility of any
stray processes escaping termination control. The demsopof process tracking was
motivated by the necessary functionality. Nevertheless,experiments have shown
that we can use it to implement efficient, low overhead taskrod. (The experiments
have also shown the importance of using the proper retryvaltein the 5 to 10 ms
range, in suspending tasks. 10 ms is the base operatingrsyiste-slice.) Process
tracking is a vehicle through which an enhanced user-learedduling can be added to
a system.

In terms of future work, we are investigating alternativeys/éo traverse the forest
of processes that constitute a task. We currently perforepahdfirst traversal, which
we quit (and later retry) when we find a process that is not idiately suspended or
resumed. We could also use a breadth first traversal: Attémnptispend/resume all
processes at a given level before proceeding to the next [ehiss approach would
require changes in our data structures and needs to beigatest There is also a
hybrid, or optimized, depth first approach: We start tramgrshe tree in depth first
mode. If we hit a process that we cannot stop then, insteacboépding to its children,
we just move on to its siblings. (See Figure 7.) This traveraa be implemented with
our current data structures.

= =
/ \

@) (b)

Fig. 7. Depth first approach (a) stops as soon as one task (markednX¥pthe suspended or
resumed. The hybrid approach (b) continues with the siblofgask X.

Process genealogy is an important concept for job contbanounting. We have
successfully implemented the genealogy concept throumgegs tracking in a commer-
cial operating system. Other implementation strategiesabso possible. In particular,



as a new research, we are currently investigating the nmgraf the genealogy concept
directly into the kernel of the AIX UNIX operating system.
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