
DEMB: Cache-Aware Scheduling for

Distributed Query Processing ⋆

Junyong Lee1, Youngmoon Eom1, Alan Sussman2, and Beomseok Nam1

1 School of Electrical and Computer Engineering

Ulsan National Institute of Science and Technology,

Ulsan, 689-798, Republic of Korea
2 Dept. of Computer Science

University of Maryland

College Park, MD 20742, USA

Abstract. Leveraging data in distributed caches for large scale query process-

ing applications is becoming more important, given current trends toward build-

ing large scalable distributed systems by connecting multiple heterogeneous less

powerful machines rather than purchasing expensive homogeneous and very pow-

erful machines. As more servers are added to such clusters, more memory is

available for caching data objects across the distributed machines. However the

cached objects are dispersed and traditional query scheduling policies that take

into account only load balancing do not effectively utilize the increased cache

space. We propose a new multi-dimensional range query scheduling policy for

distributed query processing frameworks, called DEMB, that employs a probabil-

ity distribution estimation derived from recent queries. DEMB accounts for both

load balancing and the availability of distributed cached objects to both improve

the cache hit rate for queries and thereby decrease query turnaround time and

throughput. We experimentally demonstrate that DEMB produces better query

plans and lower query response times than other query scheduling policies.

1 Introduction

As requirements for computing power increases and high-speed networks become more

widespread, cluster computing is rapidly and widely accepted in various disciplines. For

high performance data intensive computing applications, a large number of distributed

and parallel query processing middleware systems have been developed and employed

to solve large, complex scientific problems [14, 8, 15].

In distributed and parallel query processing systems, load balancing plays an im-

portant role to maximize overall system throughput by spreading the workload evenly

across multiple servers. Besides load balancing, cache hit rate is another critical per-

formance factor that must be accounted for to improve system throughput. However,

prior distributed query scheduling policies do not take into consideration load balanc-

ing and cache hit rate at the same time. As more servers are added to the distributed

query processing system, the amount of cache space available in the distributed servers

⋆ This research was supported by the 1.100027.01 Research Fund of the UNIST(Ulsan National

Institute of Science and Technology) and 2.110147.01 National Research Foundation of Korea.



increases linearly. But traditional scheduling policies such as round-robin or load-based

scheduling policies do not consider cached objects that may be available in the dis-

tributed cache infrastructure, so get little benefit from the larger cache space. Hence we

need more intelligent query scheduling policies in order to leverage the availability of a

large number of cached objects in a distributed environment.

It is not an easy task to obtain both good load balancing and a high cache hit rate

in modern heterogeneous cluster systems, especially if query patterns are also hetero-

geneous. Our earlier work [12] has shown that either a high cache hit rate with poor

load balancing or good load balancing with low cache hit rate fails to maximize sys-

tem throughput. Another difficult challenge in designing a distributed query scheduling

policy is how to make a query scheduler know or predict the availability of cached ob-

jects in remote servers. Note that the query scheduling decisions are usually made in a

remote front-end server, and that cached objects are evicted dynamically from remote

servers, potentially at a high rate (as fast as new data objects are produced). Obviously it

is not easy to keep track of cached objects in remote caches. Even if a query scheduler

can keep track of them, the amount of information needed in the scheduler will be-

come substantial as the number of servers increases, potentially making the scheduler a

performance bottleneck. In order to make the scheduler scalable, the query scheduling

policy must be designed to be lightweight.

In our previous work [12] we have proposed a statistical prediction-based query

scheduling policy, called DEMA (Distributed Exponential Moving Average) that clus-

ters queries on the fly to increase cache hit rate as well as to balance the query load

across servers. The DEMA scheduling policy partitions a set of user queries and evenly

distributes them across parallel servers to achieve load balance. DEMA has been shown

to produce high cache hit rates since it preserves query locality by grouping similar

queries and assigning them to the same server. If the distribution of queries through

the query space is static, or slowly changes over time, the DEMA scheduling policy

achieves good load balance, however if the query distribution changes rapidly or is ex-

tremely skewed, DEMA may suffer from load imbalance as we will discuss further in

Section 3.1.

In this paper, we propose an alternative scheduling policy - DEMB (Distributed

Exponential Moving Boundary) that overcomes the drawbacks of the DEMA schedul-

ing policy by equally partitioning recent queries using a probability density estimation.

Our experimental results show that the new scheduling policy outperforms prior query

scheduling policies by a large amount and that it improves upon the DEMA scheduling

policy, decreasing response time by up to 50%.

The rest of the paper is organized as follows. In Section 2 we discuss other re-

search related to distributed query scheduling policies. In Section 3 we review the

DEMA scheduling algorithm and its drawbacks. In Section 4 we introduce our new

query scheduling algorithm, and discuss experimental results from simulations in Sec-

tion 5. In Section 6 we conclude and discuss future work.



2 Related Work

Load-balancing problems have been extensively investigated in many different fields.

Godfrey et. al [5] proposed an algorithm for load balancing in heterogeneous and

dynamic peer-to-peer systems. Catalyurek et. al [3] investigated how to dynamically

restore balance in parallel scientific computing applications where the computational

structure of the applications change over time. Vydyanathan et. al [17] proposed schedul-

ing algorithms that determine what tasks should be run concurrently and how many

processors should be allocated to each task. Zhang et. al [20] and Wolf et al. [18] pro-

posed scheduling policies that dynamically distribute incoming requests for clustered

web servers. WRR (Weighted Round Robin) [7] is a commonly used, simple but en-

hanced load balancing scheduling policy which assigns a weight to each queue (server)

according to the current status of its load, and serves each queue in proportion to the

weights. However, none of these scheduling policies were designed to take into account

a distributed cache infrastructure, but only consider the heterogeneity of user requests

and the dynamic system load.

LARD (Locality-Aware Request Distribution) [1, 13] is a locality-aware scheduling

policy designed to serve web server clusters, and considers the cache contents of back-

end servers. The LARD scheduling policy causes identical user requests to be handled

by the same server unless that server is heavily loaded. If a server is too heavily loaded,

subsequent user requests will be serviced by another idle server in order to improve

load balance. The underlying idea is to improve overall system throughput by process-

ing queries directly rather than waiting in a busy server for long time even if that server

has a cached response. LARD shares the goal of improving both load balance and cache

hit ratio with our scheduling policies, DEMA and DEMB, but LARD transfers work-

load only when a specific server is too heavily loaded while our scheduling policies

actively predict future workload balance and take actions beforehand to achieve better

load balancing.

In relational database systems and high performance scientific data processing mid-

dleware systems, exploiting similarity of concurrent queries has been studied exten-

sively. That work has shown that heuristic approaches can help to reuse previously

computed results from cache and generate good scheduling plans, resulting in improved

system throughput as well as reducing query response times [8, 12]. Zhang et al. [19]

evaluated the benefits of reusing cached results in a distributed cache framework in a

Grid computing environment. In that simulation study, it was shown that high cache hit

rates do not always yield high system throughput due to load imbalance problems. We

solve the problem with scheduling policies that consider both cache hit rates and load

balancing.

In order to support data-intensive scientific applications, a large number of dis-

tributed query processing middleware systems have been developed including MOCHA [14],

DataCutter [8], Polar* [15], ADR [8], and Active Proxy-G [8]. Active Proxy-G is

a component-based distributed query processing grid middleware that employs user-

defined operators that application developers can implement. Active Proxy-G employs

meta-data directory services that monitor performance of back-end application servers

and a distributed cache indexes. Using the collected performance metrics and the dis-

tributed cache indexes, the front-end scheduler determines where to assign incoming



queries considering how to maximize reuse of cached objects [12]. The index-based

scheduling policies cause higher communication overhead on the front-end scheduler,

and the cache index may not predict contents of the cache accurately if there are a large

number of queries waiting to execute in the back-end application servers.

3 Distributed Query Processing Scheduling Algorithms

E0

E2 E3

E4
E2

E1

E4

E5E6
E1 E0

E2

E3

E5

E4

E6

E5

Fig. 1. Distributed Query Processing Framework with Distributed Semantic Caches

Figure 1 shows the architecture of Active Proxy-G, a distributed and parallel query

processing middleware for scientific data analysis applications. The front-end server

runs a query scheduler that determines which back-end application server will process

a given query. The homogeneous back-end servers retrieve raw datasets from networked

storage systems and process incoming queries on cluster nodes. If the back-end servers

are heterogeneous, the scheduling algorithms can be modified with appropriate weight

factors.

3.1 DEMA Scheduling Policy

Exponential moving average (EMA) is a well-known statistical method to obtain long-

term trends and smooth out short-term fluctuations, which is commonly used to predict

stock prices and trading volumes [4]. In general, EMA computes a weighted average of

all observed data by assigning exponentially more weight to recent data. The formula

that calculates the EMA at time t is given by

EMAt = α · datat + (1 − α) · EMAt−1 (1)

where α is the weight factor, which determines the degree of weight decrease over

time.

The Distributed Exponential Moving Average (DEMA) scheduling policy [12] esti-

mates the cache contents of each back-end server using an exponential moving average

(EMA) of past queries executed at that server. In the context of a multidimensional



range query scheduling policy, we use the multidimensional center point of the query

as datat in Equation 1.

Given that application servers replace old cache entries and the DEMA scheduling

policy gives less weight to older query entries, the smoothing factor α ∈ (0, 1) must be

chosen so that it reflects the degree of staleness used to expunge old data. This implies

that α should be adjusted based on the size of the cache space. For example, α should

be 1 if a cache can contain only a single query result and α should be close to 0 if the

size of the cache is large enough to store all the past query results. However, the number

of cached objects in a server can be hard to predict when the sizes of cached objects can

vary widely.

E2 E3

E4

E1

E5

E1 E0

E5

E6

Fig. 2. The DEMA scheduler calculates the Euclidean distance between EMA points and an in-

coming query, and assigns the query to the server (0) whose EMA point is closest.

If we can keep track of both the number of current cache entries in each back-end

server (k) and the last k · N query center points in the front-end scheduling server

(where N is the number of back-end application servers), we can alternatively employ

a simple moving average (SMA) instead of EMA, which takes the average of the past k

query center points. SMA eliminates the weight-sum error and correctly represent the

cache contents of remote back-end application servers. However, SMA does not quickly

reflect the moving trend of arriving queries. Furthermore, it causes some overhead in

the front-end server to keep track of the last k · N query center points.

In the DEMA query scheduling policy the front-end query scheduler server has

one multi-dimensional EMA point for each back-end application server. For the 2 di-

mensional image, each query specifies ranges in the x and y dimensions, as shown in

Figure 2. For an incoming query, the front-end server calculates the Euclidean distance

between the center of the multidimensional range query and the EMA points of the

N application servers, and chooses an application server whose current EMA point is

the closest to that of the incoming query. Clustering similar range queries increases

the probability of overlap between multi-dimensional range queries, and increases the

cache hit rate at each back-end server. In Figure 2, the given 2 dimensional range query



will be forwarded to server 0 since the EMA point of server 0 is closer to the query than

any other EMA point. This strategy is called the Voronoi assignment model, where ev-

ery multidimensional point is assigned to the nearest cell point. The query assignment

regions induced from the DEMA query assignment form a Voronoi diagram [2].

After the query Q is assigned to the selected application server, the EMA point for

that application server is updated as EMAs∗ = αQ + (1 − α)EMAs∗ (EMAs rep-

resents the EMA point of the sth server). For every incoming query, one EMA point

moves in the direction of that query, but we do not need to calculate the changing bi-

sectors of the EMA points since DEMA scheduling algorithm compares the Euclidean

distance between EMA points and a given query. The complexity of the DEMA schedul-

ing algorithm is O(N) where N is the number of back-end application servers. So the

DEMA scheduling policy is very light-weight.

3.2 Load Balancing

EMA2 EMA3EMA1
Boundary1 Boundary2

(a) DEMA Load Imbalance Problem

Boundary1 Boundary2

(b) DEMB moves all the boundaries according to new query distribution

Fig. 3. DEMA Load Imbalance Problem

The DEMA scheduling algorithm clusters similar queries together so that it can

take advantage of cache hits. In addition to a high cache hit rate, the DEMA scheduling

algorithm balances query workload across multiple back-end application servers by

moving EMA points to hot spots.

Ideally, we want to assign the same number of queries to back-end application

servers with a uniform distribution. In DEMA, the probability of assigning a new query

to a specific server depends on the query probability distribution and the size of the

Voronoi hyper-rectangular cell (e.g., a range in a 1-dimensional line or area for a 2D

space).

DEMA balances the server loads by trying to keep the region size inversely pro-

portional to the probability that queries fall inside their region. For the 2D uniform

distribution case, as shown in Figure 2, queries that fall inside the Voronoi region of

server B’s EMA (V or(B)) are assigned to server B. We denote the Voronoi cell of

server A’s EMA as V or(A). The probability that a query arrives in a specific Voronoi

cell V or(A) is proportional to the size of the V or(A). Thus, more queries are likely to

land in larger cells than smaller cells for a uniform query distribution.



One important property of the DEMA scheduling policy is that an EMA point tends

to move to the center of its Voronoi cell if queries arrive with a uniform distribution.

In Figure 2, EMA point E0 is located in the lower right corner of V or(A). Since more

queries will arrive in the larger part of the cell (i.e. the upper left part of V or(A)),
Equation 1 is likely to move the EMA point E0 to the upper left part of V or(A) with

higher probability than to the lower right part, which will tend to move the E0 toward

the center of the cell. That will result in moving the bisectors of E2 and E0 and the

bisector of E0 and E5 to the left as well. Eventually, this property makes the size of

V or(E2) decrease and the size of V or(E5) increase. As the size of large Voronoi cells

becomes smaller and the size of small Voronoi cells becomes larger, the sizes of the

Voronoi cells are likely to converge and effectively the number of queries processed by

each back-end application servers will be similar. A similar argument can be made for

higher dimensional query spaces.

A normal distribution is another commonly occurring family of statistical probabil-

ity distributions. It is known that the sum of normally distributed random variables is

also normally distributed [6]. If we assume that each historical query point datat is an

individual random variable, the weighted sum EMAt also should have a normal dis-

tribution. Hence the DEMA scheduling policy approximately balances the number of

processed queries across multiple back-end application servers even when the queries

arrive with a normal distribution.

However the DEMA scheduling policy may suffer from temporary load imbalance if

the query distribution changes quickly, with query hot spots moving through the query

space randomly. Let us look at an extreme case. Suppose queries have arrived with

a uniform distribution, and suddenly all the subsequent queries land in a very small

region that is covered by a single Voronoi cell, as illustrated in Figure 3. In such an

extreme case, only one corresponding EMA point will move around the new hot spot

and the single server will have to process all the queries without any help from other

servers. Although this may not commonly occur, we have observed that the DEMA

scheduling policy suffers from failing to adjust its EMA points promptly. If a new query

distribution spans multiple Voronoi cells, the EMA points slowly adjust their boundaries

based on the new query distribution. However the time to adjust depends on the standard

deviation of the query distribution. In the next section, we propose an alternative query

scheduling policy that solves this load imbalance problem.

4 DEMB: Distributed Exponential Moving Boundary

To overcome the described weakness of the DEMA scheduling policy, we have devised

a new scheduling policy called Distributed Exponential Moving Boundary (DEMB) that

estimates the query probability density function using histograms from recent queries.

Using the query probability density function, the DEMB scheduling policy chooses

the boundaries for each server so that each has equal cumulative distribution value.

The DEMB scheduling policy adjusts the boundaries of all the servers together, unlike

DEMA, so that it can provide good load balancing even for dynamically changing and

skewed query distributions.



(a) Mapping cache contents on

Hilbert curve

(b) Calculating Boundaries using CDF

Fig. 4. Calculating DEMB boundaries on Hilbert curve

In the DEMB scheduling policy, the front-end scheduler manages a queue that stores

a predefined number (window size, WS) of recent queries, periodically enumerates

those queries, and finds the boundaries for each server by assigning an equal number of

queries to each back-end application server.

One challenge in the DEMB scheduling policy is to enumerate the recent multi-

dimensional queries and partition them into sub-spaces that have equal probability. In

order to map the multi-dimensional problem space onto a one dimensional line, we

employ a Hilbert space filling curve [11]. A Hilbert curve is a continuous fractal space-

filling curve, which is known to maintain good mapping locality (clustering), i.e. it

converts nearby multi-dimensional points to close one-dimensional values.

Using the transformed one dimensional queries, we estimate the cumulative prob-

ability density function in the one-dimensional space and partition the space into N

sub-ranges so that each one has the same probability as other sub-ranges. The front-

end scheduler uses the sub-ranges for scheduling subsequent queries. When a query is

submitted, the front-end scheduler converts the center of the query to its corresponding

one-dimensional point on the Hilbert curve, determines which sub-range includes the

point, and assigns the query to the back-end server that owns the sub-range.

Assigning nearby queries in one-dimensional sub-ranges takes advantage of the

Hilbert curve properties. As shown in Figure 4(a), the one dimensional boundaries on

the Hilbert curve cluster two dimensional queries so that they have good spatial locality.

The DEMB scheduling policy achieves good load balance as well as a high cache hit

rate since the scheduler assigns similar numbers of nearby queries on the Hilbert curve

to each back-end server.

The DEMB scheduling policy is presented in Algorithm 1. When a new query is

submitted to the scheduler, it is inserted into the queue and the oldest query in the queue

is evicted, which can change the query probability density function. However if we

update the boundaries of each server for every incoming query, that may cause too much

overhead in the front-end scheduler. Instead, we employ a sliding window approach,



where the scheduler waits for a predefined number of queries (update interval, UI)

to arrive before updating the boundaries. Note that the update interval does not have to

be equal to the window size. As the update interval is increased, the window size also

has to be increased. Otherwise some queries may not be counted when calculating the

query probability distribution.

In the DEMB scheduling policy, the window size WS is an important performance

factor to estimate the current query probability density. As the window size becomes

larger, the recent probability density function can be better estimated. However, if the

query distribution changes dynamically, a large window size causes the scheduler to

use a large number of old queries to estimate the query probability density function.

As a result, the scheduler will not adapt to rapid changes in the query distribution in a

timely manner. On the other hand, a small window size can cause a large error in the

current query probability distribution estimate due to an insufficient number of sample

queries. Moreover, if the window size is smaller than the size of the distributed caches,

the query probability density estimation may not correctly reflect all the cached objects

in the back-end servers, in addition to the moving trend of query distribution. Therefore

choosing an optimal window size under various conditions is one of the most important

factors when applying the DEMB scheduling policy to the distributed query processing

framework.

In most systems the size of the distributed caches will be much larger than the front-

end server’s queue size WS. Instead of increasing the window size in order to reduce

the error in the probability distribution estimate, we can calculate the moving average

of the past query probability distributions, as for the DEMA scheduling policy.

After updating the query probability distribution, we choose the sub-range of each

server so that each has equal probability. In Figure 4(b), the problem space is divided

into 5 sub-ranges where 20% of the queries are expected for each one. However it is

not practical to estimate the real probability distribution function because that requires

a large amount of memory to store the histograms. Instead, we assume the query proba-

bility density function is a continuous smooth curve. Then we can make the probability

density estimation process simpler. The scheduler will determine the boundaries of each

server using the WS most recent queries, and apply the following equation to calculate

the moving average for each boundary.

BOUNDARY [i]t = α · CUR BOUND[i]t + (1 − α) · BOUNDARY [i]t−1

The weight factor α is another important performance parameter in the DEMB

scheduling policy, as for DEMA. As described in Section 3.1, alpha determines how

earlier boundaries for each server will be considered for the current query probability

distribution. However unlike the DEMA scheduling policy, the DEMB scheduling pol-

icy has two parameters to control how fast the old queries decay. One is α, and the other

is the window size (WS). A large window size (WS) can be used to give more weight

to the old queries instead of a low α value.

Now we show an example to see how the DEMB scheduling policy works. Suppose

there are 10 back-end servers (N = 10), the window size is 500 queries (WS = 500),

and the boundary update interval is 100 queries (UI = 100). The front-end sched-

uler will replace the oldest query in the queue with the newest incoming query every



Algorithm 1

DEMB Algorithm

procedure

ScheduleDEMB(Queryq)

1: INPUT: a client query Q
2: MinDistance←MaxNum
3: distance← HilbertDistance(query)
4: for s = 0→ N − 1 do
5: if BOUNDARY[s] is not initialized then

6: forward query Q to server s.

7: BOUNDARY [s]← HilbertDistance(Q)
8: return

9: else

10: if s = 0
V

distance ≤ BOUNDARY [0] then
11: selectedServer← 0
12: else if BOUNDARY [s− 1] < distance

V

distance ≤ BOUNDARY [s] then
13: selectedServer← s
14: end if

15: end if

16: end for

17: forward query Q to SelectedServer.

18: ifQueryQueue.size() < WindowSize then
19: QueryQueue.enqueue(Q)
20: ifQueryQueue.size()%N = 0 then
21: UPDATE(QueryQueue)
22: end if

23: else

24: QueryQueue.dequeue()
25: QueryQueue.enqueue(Q)
26: if intervalCount = UpdateInerval then
27: UPDATE(QueryQueue)
28: intervalCount← 0
29: end if

30: end if

31: intervalCount← intervalCount + 1

end procedure

procedure

UPDATE(Queue QueryQueue)

1: INPUT: a queue that stores recent queries QueryQueue
2: LOAD ← QueryQueue.getSize()/N
3: for i = 1→ N − 1 do
4: CUR BOUND[i] ← (HilbertDistance(LOAD× i)+HilbertDistance(LOAD×

i + 1))/2
5: end for

6: for i = 1→ N − 1 do
7: BOUNDARY [i]← alpha ∗ CUR BOUND[i] + (1− alpha) ∗ BOUNDARY [i]
8: end for

end procedure



time a new query arrives. The incoming queries will be forwarded to one of the back-

end servers using the boundaries of each server (BOUNDARY [i]). When the 100th

query arrives, the scheduler recalculates the boundary for each server using the past

500 queries. Since there are 10 back-end servers, each server should process 50 queries

to achieve perfect load balance. Hence, the new boundary between the 1st server and

the 2nd server should be the middle point of the 50th query and the 51st query in the

Hilbert curve ordering. Likewise, the new boundary (CUR BOUND[i]) between the

ith server and the i + 1th server should be the middle point of the 50 ∗ ith query and

the 50 · i + 1th query. After calculating the new boundaries (CUR BOUND[i]) for

the back-end servers, we compute the moving average for each boundary. If the query

distribution has changed, BOUNDARY [i] would move to CUR BOUND[i]. In this

way, the DEMB scheduling policy makes the boundaries move according to the new

query distribution.

The cost of the DEMB scheduling policy is determined by the number of servers and

the level of recursion for the Hilbert curve, i.e. O(N · HilbertLevel). The complexity

of the Hilbert curve is determined by the level of recursion in the Hilbert curve, which

is usually a very small number. With a higher level of recursion, a Hilbert space filling

curve can map a larger number of points onto it. For example, for a level 15 Hilbert

curve about 1 billion (415) points can be mapped to distinct one-dimensional values. In

our experiments, we set the level of the Hilbert curve to 15, and employed at most 50

servers. The cost of DEMB scheduling is very low, but is somewhat higher than that of

DEMA, which is O(N).

5 Experiments

5.1 Experimental Setup

The primary objective of the simulation study is to measure the query response time

and system load balance of the DEMB scheduling policy with various query distribu-

tions. To measure the performance of query scheduling policies, we generated synthetic

query workloads using a spatial data generator, which is available at [16]. It can gen-

erate spatial datasets with normal, uniform, or Zipf distributions. We have generated

a set of queries with various distributions with different average points, and combined

them so that the distribution and hot spots of queries move to different location unpre-

dictably. We will refer to the randomly mixed distribution as the dynamic distribution.

We also employed a Customer Behavior Model Graph (CBMG) to generate realistic

query workloads [10]. CBMG query workloads have a set of hot spots. CBMG chooses

one of the hot spots as its first query, and subsequent queries are modeled using spatial

movements, resolution changes, and jumps to other hot spots. The query’s transitions

are characterized by a probability matrix. In the following experiments, we used the

synthetic dynamic query distribution and a CBMG generated query distribution, with

each of them containing 40,000 queries, and a cache miss penalty of 400 ms. This

penalty is the time to compute a query result from scratch on a back-end server. We

are currently implementing a terabyte scale bio-medical image viewer application on

top of our distributed query scheduling framework. In this framework, a large image is

partitioned into small equal-sized chunks and they are stored across distributed servers.



Obviously the cache miss penalty is dependent on the size of the image chunks. When a

cache miss occurs, the back-end server must read raw image file data from disk storage

and generate an intermediate compressed image file at the requested resolution. The

400 ms cache miss penalty is set based on this scenario. We also evaluated the schedul-

ing policies with smaller cache miss penalties, but the results were similar to the results

described below.

5.2 Experimental Results - DEMB

Using various experimental parameters, we measured (1) the query response time, the

elapsed time from the moment a query is submitted to the system until it completes, (2)

the cache hit rate, which shows how well the assigned queries are clustered, and (3) the

standard deviation of the number of processed queries across the back-end servers, to

measure load balancing, i.e. lower standard deviation indicates better load balancing. In

the following set of experimental studies, we focused on the performance impact of 3

parameters - window size (WS), EMA weight factor (α), and update interval (UI).

Weight Factor: The weight factor α is one of the three parameters that we can control

to determine how fast the query scheduler loses information about past queries. The

other two parameters are the update interval UI and window size WS. WS is the

number of recent queries that front-end scheduler keeps track of. The update interval UI

determines how frequently new boundaries should be calculated in the scheduler with

weight factor α. As the weight factor α becomes larger, the scheduler will determine

the boundaries using more recent queries. As UI becomes shorter, α will be applied

to boundary calculations more frequently. Hence older queries will have less impact

on the calculation of boundaries. Also, if WS is small, only a few of the most recent

queries will be used to calculate the boundaries.

For the experiments shown in Figure 5 and 6, we employed 50 servers, and fixed

the window size to a small number (200), i.e. only 4 recent queries are used to calculate

the boundaries of each back-end server. Since the window size is small, we updated the

boundaries of each server whenever 10 new queries arrive. These numbers are chosen

to minimize the effects of the weight factor α on query response time.

With smaller α, the boundaries move more slowly. If α is 0, the boundaries will

not move at all. For both the dynamic query distribution shown in Figure 5(a) and the

CBMG distribution shown in Figure 5(b), load balancing (STDDEV) becomes worse as

we decrease α because the boundaries of the back-end application servers fail to adjust

to the changes in the query distribution.

However the cache hit rate slightly increases from 16.9% to 20.4% as we decrease α

for the CBMG query distribution because the CBMG query pattern is rather stationary

and a small α value, close to 0, makes the boundaries fixed, which increases the proba-

bility of reusing cached objects. However for the dynamic query distribution stationary

boundaries decrease the probability of cache reuse, hence the cache hit rate decreases

from 12.2% to 8.1% as we decrease α. Figure 6 shows the average query response time

determined by the cache hit rate and load balancing. As we decrease α, the query re-

sponse time increases exponentially since it hurts overall system load balance greatly

although it improves the cache hit rate slightly.



 6

 8

 10

 12

 14

 16

 18

 20

1.00.90.80.70.60.50.40.30.20.10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

H
it

 R
at

io
(%

)

S
T

D
D

E
V

Weight Factor α

Hit Ratio/Load Balance (Dynamic)

Hit Ratio

STDDEV

(a) Dynamic

 16

 18

 20

 22

 24

 26

 28

 30

1.00.90.80.70.60.50.40.30.20.10

 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

H
it

 R
at

io
(%

)

S
T

D
D

E
V

Weight Factor α

Hit Ratio/Load Balance (CBMG)

Hit Ratio

STDDEV

(b) CBMG

Fig. 5. Cache Hit Rate and Load Balancing with Varying Weight Factor

 100000

 120000

 140000

 160000

 180000

 200000

1.00.90.80.70.60.50.40.30.20.10

T
im

e 
(m

se
c)

Weight Factor α

AVG Query Response Time (Dynamic)

PDF

(a) Dynamic

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 170000

 180000

1.00.90.80.70.60.50.40.30.20.10

T
im

e 
(m

se
c)

Weight Factor α

AVG Query Response Time (CBMG)

PDF

(b) CBMG

Fig. 6. Query Response Time with Varying Weight Factor

Both leveraging cached results and achieving good load balance are equally im-

portant in maximizing overall system throughput. However we note that a very small

improvement in cache hit rate might be more effective in improving average query re-

sponse time than a large standard deviation improvement in certain cases. In Figure 5(a),

the load balancing standard deviation is approximately 3 times higher when the weight

factor is 0.1 than it is 0.3. But the average query response times shown in Figure 6(a)

are similar because the cache hit rate is slightly higher when the weight factor is 0.1.

Update Interval: How frequently the scheduler updates the new boundaries is another

critical performance factor in the DEMB scheduling policy, since frequent updates will

make the boundaries of servers more quickly respond to recent changes in the query dis-

tribution. However frequent updates may cause large overheads in the front-end sched-

uler, and may not be necessary if the query distribution is stationary. Hence the update

interval should be chosen considering the trade-off between reducing scheduler over-

head and making the scheduling policy responsive to changes in the query distribution.

In the experiments shown in Figures 7 and 8, we measured the performance of the

DEMB scheduling policy varying the update interval. In this set of experiments, the α

and WS were fixed to 0.3 and 200, respectively. As we decrease the update interval,



 0

 5

 10

 15

 20

 500 450 400 350 300 250 200 150 100 50 10

 0
 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700
 750
 800

H
it

 R
at

io
(%

)

S
T

D
D

E
V

Update Interval

Hit Ratio/Load Balance (Dynamic)

Hit Ratio

STDDEV

(a) Dynamic

 16

 18

 20

 22

 24

 500 450 400 350 300 250 200 150 100 50 10

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

H
it

 R
at

io
(%

)

S
T

D
D

E
V

Update Interval

Hit Ratio/Load Balance (CBMG)

Hit Ratio

STDDEV

(b) CBMG

Fig. 7. Cache Hit Rate and Load Balancing with Varying Update Interval

 40000

 60000

 80000

 100000

 120000

 140000

 500 450 400 350 300 250 200 150 100 50 10

T
im

e 
(m

se
c)

Update Interval

AVG Query Response Time (Dynamic)

DEMB

(a) Dynamic

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 500 450 400 350 300 250 200 150 100 50 10

T
im

e 
(m

se
c)

Update Interval

AVG Query Response Time (CBMG)

PDF

(b) CBMG

Fig. 8. Query Response Time with Varying Update Interval

the boundaries are updated more frequently and they reflect the recent query distribution

well. As a result, the DEMB scheduling policy takes good advantage of clustering and

load balancing for the dynamic query distribution, as shown in Figure 7(a). As the

update interval increases, the boundaries move more slowly and DEMB suffers from

poor load balancing and cache misses.

With the stationary CBMG queries shown in Figure 7(b), the cache hit rate does not

seem to be affected by the update interval, but the standard deviation increases slightly,

although not as much as for the dynamic query distribution. This results indicate that

we should update the boundaries frequently as long as that does not cause significant

overhead in the scheduler.

Window Size: The front-end scheduler needs to store the recent queries in a queue

so that they can be used to construct query distribution and determine the boundaries

of back-end servers. With a larger window size (more queries), the front-end scheduler

can estimate query distribution more accurately. Also, a larger WS allows a query to

stay in the queue longer, i.e. the same queries will be used more often to construct

query histograms and boundaries. On the other hand, a small WS makes the front-end

scheduler uses a smaller number of recent queries to determine the boundaries, and the



query distribution estimate is more likely to have large errors. In the experiments shown

in Figures 9 and 10, we measured performance with various window sizes. The weight

factor α and the update interval UI were both fixed to 1, in order to analyze the effects

of only WS.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 25600 3200 800 200 50

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

H
it

 R
at

io
(%

)

S
T

D
D

E
V

Window Size

Hit Ratio/Load Balance (Dynamic)

Hit Ratio

STDDEV

(a) Dynamic

 0

 5

 10

 15

 20

 25

 30

 35

 40

 25600 3200 800 200 50

 0

 50

 100

 150

 200

 250

H
it

 R
at

io
(%

)

S
T

D
D

E
V

Window Size

Hit Ratio/Load Balance (CBMG)

Hit Ratio

STDDEV

(b) CBMG

Fig. 9. Cache Hit Rate and Load Balancing with Varying Window Size

 50000

 100000

 150000

 200000

 250000

 25600 3200 800 200 50

T
im

e 
(m

se
c)

Window Size

AVG Query Response Time (Dynamic)

PDF

(a) Dynamic

 60000

 70000

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 25600 3200 800 200 50

T
im

e 
(m

se
c)

Window Size

AVG Query Response Time (CBMG)

PDF

(b) CBMG

Fig. 10. Query Response Time with Varying Window Size

For the dynamic query distribution, the cache hit rate increases from 5.4% to 20%

and the standard deviation decreases slowly as the window size increases up to 1000.

That is because the scheduler estimates query distribution more accurately with a larger

number of queries. However, if the window size becomes larger than 1000, both the

cache hit rate and load balancing suffer from inflexible boundaries. Note that WS also

determines how quickly the boundaries change as the query distribution changes. A

large window size makes the scheduler consider a large number of old queries so will

make the boundaries between servers change slowly. If the query distribution changes

rapidly, a smaller window size allows the scheduler to quickly adjust the boundaries. For

the CBMG query distribution, both the cache hit rate and load balancing improves as



the window size increases. This is because the CBMG queries are relatively stationary

over time. Hence a longer record of past queries helps the scheduler to determine better

boundaries for future incoming queries.

These window size experimental results show that we need to set window size as

large as possible unless it hurts the flexibility of the scheduler. Note that the window size

should be orders of magnitude larger than the number of back-end servers. Otherwise,

the boundaries set from a small number of queries would have very large estimation

errors. For example, if the window size is equal to the number of back-end servers, the

boundaries will be simply the middle point of the sorted queries, which would make the

boundaries jump around the problem space. However a large window size has a large

memory footprint in the scheduler, so can cause higher computational overhead in the

scheduler, and the same is true for the update interval. In order to reduce the overhead

from large window sizes, but to prevent estimation errors from making the boundaries

move around too much, the scheduler can decrease the weight factor α instead, which

will give higher weight to older past boundaries and smooth out short term estimation

errors.

5.3 Comparative Study

In order to show that the DEMB scheduling policy performs well compared to other

scheduling policies, we compared it with three other scheduling policies - round-robin,

Fixed, and DEMA. For this set of experiments, we employed 50 back-end application

servers and a single front-end server. In order to measure how the other scheduling

policies behave under different conditions, we used both the dynamic and CBMG query

distributions. The parameters for the DEMB scheduling were set to good values from

the previous experiments - the weight factor α is 0.2, the update interval is 500, and

the window size is 1000. These numbers are not the best parameter values we obtained

from the previous experiments, but we will show that the DEMB scheduling policy

shows good performance even without the optimal parameter values. Figures 11, 12,

and 13 show the cache hit rate, load balance, and query response time for the different

scheduling policies.

The Fixed scheduling policy partitions the problem space into several sub-spaces

using the query probability distribution of the initial N queries, similar to the DEMB

scheduling policy (where N is the number of servers), and each server processes subse-

quent queries that lie in its sub-space. But the sub-spaces are not adjusted as queries are

processed, unlike DEMB. When the query distribution is stable, Fixed scheduling has a

higher cache hit rate than round-robin since it takes advantage of spatial locality in the

queries while round-robin does not. Since the Fixed scheduling policy does not change

the boundaries of sub-spaces once they are initialized, it obtains a higher cache hit rate

than the DEMA or DEMB scheduling policies for certain experimental parameter set-

tings, as shown in Figure 11(b). For the CBMG query distribution, there are 200 fixed

hot spots and the servers that own those hot spots and have large cache spaces obtain

very high cache hit rates. However, when the query distribution changes dynamically

the cache hit rate for the Fixed scheduling policy drops significantly, and is much lower

than that of the DEMA and DEMB scheduling policy.



 0

 5

 10

 15

 20

 25

 30

5040302010

H
it

 R
at

io
(%

)

Number of Servers

Cache Hit Ratio (Dynamic)

DEMB

DEMA

Fixed

Round Robin

(a) Dynamic

 0

 5

 10

 15

 20

 25

 30

 35

 40

5040302010

H
it

 R
at

io
(%

)

Number of Servers

Cache Hit Ratio (CBMG)

Fixed

DEMA

DEMB

Round Robin

(b) CBMG

Fig. 11. Cache Hit Rate

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

5040302010

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Number of Servers

Load Balance (Dynamic)

Fixed

DEMA

DEMB

Round Robin

(a) Dynamic

 0

 500

 1000

 1500

 2000

 2500

 3000

5040302010

S
ta

n
d

ar
d

 D
ev

ia
ti

o
n

Number of Servers

Load Balance (CBMG)

Fixed

DEMA

DEMB

Round Robin

(b) CBMG

Fig. 12. Load Balance

 1.6e+06

 800000

 400000

 200000

 100000

5040302010

T
im

e 
(m

se
c)

Number of Servers

AVG Query Response Time (Dynamic)

Fixed

DEMA

Round Robin

DEMB

(a) Dynamic

 1.28e+06

 640000

 320000

 160000

 80000

5040302010

T
im

e 
(m

se
c)

Number of Servers

AVG Query Response Time (CBMG)

Round Robin

Fixed

DEMA

DEMB

(b) CBMG

Fig. 13. Query Response Time

Although the Fixed scheduling policy outperforms DEMA and DEMB as measured

by cache hit rate when the query distribution is stable, the Fixed policy suffers from se-

rious load imbalance. Some servers process many fewer queries than others, if their sub-

spaces do not contain hot spots. Therefore the standard deviation of the Fixed schedul-

ing is the worst of all the scheduling policies, as shown in Figure 12, and the load



imbalance problem becomes more especially bad for small numbers of servers. Due

to its poor load balancing, the average query response time for the Fixed scheduling is

higher than for the other scheduling policies, as shown in Figure 13. Note that the query

response time is shown on a log scale.

For the dynamic query distribution, the DEMB scheduling policy is superior to the

other scheduling policies for all the number of servers in terms of the query response

time. DEMB’s cache hit rate is about twice that of DEMA - the second best scheduling

policy. The DEMA scheduling policy has a lower cache hit rate than DEMB because

DEMA slowly responds to rapid changes in the incoming query distribution, as we

described in Section 3.1. Note that the DEMA scheduling policy adjusts only a single

EMA point per query, while DEMB adjusts all the servers’ boundaries at every update

interval.

However, for the CBMG query distribution, the quick response to the changed query

distribution seems to lower the cache hit rate of DEMB somewhat. As we mentioned

earlier, the DEMB scheduling policy is designed to overcome the drawback of the

DEMA scheduling policy, which is seen most when the query distribution changes dy-

namically. In CBMG distribution the query distribution pattern is stable, and both the

DEMA and the DEMB scheduling policies perform equally well. In Figure 11(b), the

cache hit rate for DEMB is lower than for the DEMA scheduling policy because the

boundaries determined by DEMB are likely to move rapidly, since some spatial locality

for the queries is lost. When the boundaries are adjusted rapidly based on short term

changes from a small number of recent queries, that may improve load balance but it

will decrease the cache hit rate when the long term query distribution is stable. Due

to the DEMB scheduling policy’s fast response time, its load balancing performance is

similar to that of the round-robin scheduling policy. The DEMA scheduling policy also

balances server load reasonably well for the CBMG query distribution, but for the dy-

namic query distribution DEMA suffers from load imbalance due to its slow adjustment

of EMA points.

Figure 13 shows that the average query response time improves as we add more

servers to the system. The DEMB scheduling policy outperforms all the other schedul-

ing policies for the dynamic query distribution. For the CBMG query distribution, the

DEMB query response time is the lowest in most cases. For 50 servers, DEMB shows

the best performance although its cache hit rate is not the highest. This result shows that

load balancing plays an important role in large scale systems. However load balancing

itself is not the only factor in overall system performance because round-robin does not

show good performance.

5.4 Automated Parameter (WS) Adjustment

In the DEMB scheduling policy, the three parameters (weight factor, update interval,

and window size) determine how fast the boundaries of each server adjust to the new

query distribution. As seen in Figure 8, the update interval (UI) should be set close

to 1 to be more responsive, i.e. the boundaries of servers must be updated for every

incoming query. The weight factor (α) also determines how much weight is given to

recent queries so that the boundaries adjust to the new distribution. However, when

the window size (WS) is large enough, the current query distribution already captures



recent changes in query distribution and the weight factor (α) does not affect query

response time significantly. If the window size is not much greater than the number of

backend servers (within a factor of 2 or 3), the query response time is not as resilient

to changes in the weight factor when α is larger than 0.1, as shown in Figure 6. This is

because the large window size (WS) and the small update interval (UI) makes a single

query counted for multiple (WS) times (such as in a sliding window) to determine

the boundaries for each server. Hence, the most effective performance parameter that

system administrators can tune for the DEMB scheduling policy is the window size

(WS) .

As shown in Figure 10, a larger window size yields lower query response times

when the query distribution is stable. But if the query distribution changes rapidly, the

window size must be chosen carefully to reduce the query response time. In order to

automate selecting a good window size based on changes in the query distribution, we

make the scheduler compare the current query distribution histogram with a moving

average of the past query distribution histogram using Kullback-Leibler divergence,

which is a measure of the difference between two probability distributions [9]. If the

two distributions differ significantly the scheduler decreases the window size so that

updates to boundaries happen more quickly. When the two distributions are similar, the

scheduler gradually makes the window size bigger (but no bigger than a given maximum

size), which makes the boundaries more stable over time to achieve a higher cache

hit rate. In experiments not shown due to page limitation, we have observed that this

automated approach improves query response time significantly.

6 Conclusion and Future Work

In this paper we have described and compared distributed query scheduling policies

that take into consideration the dynamic contents of a distributed caching infrastructure

with very little overhead (O(N × HilbertLevel).

In distributed query processing systems where the caching infrastructure scales with

the number of servers, both leveraging cached results and achieving good load balance

are equally important in maximizing overall system throughput. In order to achieve load

balancing as well as to exploit cached query results, such a system must employ more

intelligent query scheduling policies than the traditional round-robin or load-monitoring

scheduling policies.

In this context, we proposed the DEMB scheduling policy that clusters similar

queries to increase the cache hit rate and assigns approximately equal numbers of

queries to all servers to achieve good load balancing. We experimentally demonstrate

that DEMB produces better query plans that provide much lower query response times

than traditional query scheduling policies.

References

1. Aron, M., Sanders, D., Druschel, P., Zwaenepoel, W.: Scalable content-aware request distri-

bution in cluster-basednetwork servers. In: Proceedings of Usenix Annual Technical Confer-

ence (2000)



2. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, Algo-

rithms and Applications. Springer (1998)

3. Catalyurek, U.V., Boman, E.G., Devine, K.D., Bozdag, D., Heaphy, R.T., Riesen, L.A.: A

repartitioning hypergraph model for dynamic load balancing. Journal of Parallel and Dis-

tributed Computing 69(8), 711–724 (2009)

4. lun Chou, Y.: Statistical Analysis. Holt International (1975)

5. Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load balancing in dy-

namic structured p2p systems. In: Proceedings of INFOCOM 2004 (2004)

6. Grinstead, C.A., Snell, J.L.: Introduction to Probability. American Mathematical Society

(1997)

7. Katevenis, M., Sidiropoulos, S., Courcoubetis, C.: Weighted round-robin cell multiplexing

in a general-purpose atm switch chip. IEEE Journal on Selected Areas in Communications

9(8), 1265–1279 (1991)

8. Kim, J.S., Andrade, H., Sussman, A.: Principles for designing data-/compute-intensive dis-

tributed applications and middleware systems for heterogeneous environments. Journal of

Parallel and Distributed Computing 67(7), 755–771 (2007)

9. Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical Statis-

tics 22(1), 79–86 (1951)

10. Menasce, D.A., Almeida, V.A.F.: Scaling for E-Business: Technologies, Models, Perfor-

mance, and Capacity Planning. Prentice Hall PTR (2000)

11. Moon, B., Jagadish, H.V., Faloutsos, C., Saltz, J.H.: Analysis of the clustering properties

of the hilbert space-filling curve. IEEE Transactions on Knowledge and Data Engineering

13(1), 124–141 (2001)

12. Nam, B., Shin, M., Andrade, H., Sussman, A.: Multiple query scheduling for distributed

semantic caches. Journal of Parallel and Distributed Computing 70(5), 598–611 (2010)

13. Pai, V., Aron, M., Banga, G., Svendsen, M., Druschel, P., Zwaenepoel, W., Nahum, E.:

Locality-aware request distribution in cluster-based network servers. In: Proceedings of

ACM ASPLOS (1998)

14. Rodrı́guez-Martı́nez, M., Roussopoulos, N.: MOCHA: A self-extensible database middle-

ware system for distributed data sources. In: Proceedings of 2000 ACM SIGMOD

15. Smith, J., Sampaio, S., Watson, P., Paton, N.: The polar parallel object database server. Dis-

tributed and Parallel Databases 16(3), 275–319 (2004)

16. Theodoridis, Y.: R-tree Portal, http://www.rtreeportal.org

17. Vydyanathan, N., Krishnamoorthy, S., Sabin, G., Catalyurek, U., Kurc, T., Sadayappan, P.,

Saltz, J.: An integrated approach to locality-conscious processor allocation and scheduling

of mixed-parallel applications. IEEE Transactions on Parallel and Distributed Systems 15,

3319–3332 (2009)

18. Wolf, J.L., Yu, P.S.: Load balancing for clustered web farms. ACM SIGMETRICS Perfor-

mance Evaluation Review 28(4), 11–13 (2001)

19. Zhang, K., Andrade, H., Raschid, L., Sussman, A.: Query planning for the Grid: Adapting

to dynamic resource availability. In: Proceedings of the 5th IEEE/ACM International Sym-

posium on Cluster Computing and the Grid (CCGrid). Cardiff, UK (May 2005)

20. Zhang, Q., Riska, A., Sun, W., Smirni, E., Ciardo, G.: Workload-aware load balancing for

clustered web servers. IEEE Transactions on Parallel and Distributed Systems 16(3), 219–

233 (2005)


