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Abstract. In order to evaluate different scheduling strategies for parallel computers, sim-
ulations are often executed. As the scheduling quality highly depends on the workload that
is served on the parallel machine, a representative workload model is required. Common
approaches such as using a probability distribution model can capture the static feature of
real workloads, but they do not consider the temporal relation in the traces. In this paper,
a workload model is presented which uses Markov chains for modeling job parameters. In
order to consider the interdependence of individual parameters without requiring large scale
Markov chains, a novel method for transforming the states in different Markov chains is
presented. The results show that the model yields closer results to the real workloads than
other common approaches.

1 Introduction

The use of parallel computers and workstation clusters has become a common approach for solving
many problems. The efficient allocation of processing nodes to jobs is the task of the scheduling
system. Here, the quality of the scheduling system has a high impact on the overall performance
of the parallel computer. To this end, many researchers have developed various job scheduling
subsystems for such parallel computers [29, 16, 15]. As already pointed out in [17, 8], the perfor-
mance of a scheduling algorithm highly depends on the workload it is applied to. There is no
single scheduling algorithm that is best for all scenarios. To this end, the evaluation of scheduling
algorithms for different workloads is an important step in designing a scheduling system. There-
fore, much effort has been put in the characterization and modeling of the workload of parallel
computers [5, 1, 7, 25].

A typical approach for the performance evaluation of a scheduling system is the application of
an existing workload trace which has been recorded on an existing machine [30, 26, 13]. However,
while this represents a realistic user behavior on a real machine, there are several drawbacks. For
instance, such a workload trace cannot directly be applied to configurations different from the
original machine. In addition, the size of the workload, that is the number of jobs in the trace,
cannot be scaled easily.

Therefore, often a statistical workload model is adopted as an alternative. The most common
approach is the use of a probability distribution function model (PDF) [17]. However the PDF
model often omits the dynamic characteristics of workloads. That is, the sequential correlation of
different jobs is not taken into account. In this paper, we propose an extended job model based on
Markov chains which uses information from the previous job to consider the sequential dependen-
cies for the next job submission. After a discussion of the necessary background in Section 2, we
discuss in Section 3 the relevant model parameters. In Section 4, the model is constructed. The
quality of the model is evaluated by comparing its outcome with real workload data in Section 5.
The paper ends with a short conclusion.

2 Background

Many parallel computers or supercomputers use a space-sharing strategy for efficient execution of
parallel computational jobs. This means that a job runs exclusively on the allocated processor set.
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Moreover, jobs are executed until completion without any preemption. The scheduling problem is
an online scenario in which the jobs are not known in advance and are continuously submitted to
the scheduling systems by the users.

A workload model is an abstract description of the parameters of the jobs in the workload. A
job consists of several parameters, for instance the number of required processing nodes, the job
runtime, or memory requirements. In this paper, we concentrate on the modeling of the required
number of nodes and the corresponding runtime. However, our approach is general and can easily
be extended to consider other parameters as well. Note, that we do not model the submission time
or inter-arrival time of jobs. For this task several other adequate models are available [4, 7].

As mentioned before, often a probability distribution function model is chosen for modeling
workload parameters. Thereby, the parameters are typically considered independently and, con-
sequently, individual distributions are created for each parameter. For example, Jann et al. used
a hyper-Erlang distribution to match the first 3 moments of an observed distribution [21]. Alter-
natively, Uri Lublin and Dror Feitelson used a three-stage hyper-gamma distribution to fit the
original data [25].

Besides the isolated modeling of each attribute, the correlations between different attributes
are also very important. Lo et al. [24] demonstrated how the different degrees of correlation
between job size and job runtime might lead to discrepant conclusions about the evaluation of
scheduling performance. To consider such correlations, Jann et al. [21] divided the job sizes into
subranges and then created a separate model for the inter-arrival time and the service time in each
range, which may have a risk of over-fitting and too many unknown parameters. Furthermore,
Lublin and Feitelson in [25] considered the runtime attribute according to a two-stage hyper-
gamma distribution with a linear relation between the job size and the parameters of the runtime
distribution so that the longer runtime can be emphasized by using the distribution with the
higher mean.

Although the PDF models can be adapted to fit the observed original distribution, the sequen-
tial dependencies in workload is lost. For instance, in [16] Feitelson et al. showed that users tend
to submit jobs which are similar to its predecessor. Therefore a more realistic model is sought
which incorporates the correlation within the sequence of job submissions.

3 Analysis

The analysis of available workload traces shows several temporal relations of job parameters which
are very complex. We examined seven traces which are publicly available in [31]. Each contains
several thousands of job which have been submitted during a time frame of several months, as
shown in Table 1. For analyzing statistical parameter of data series including temporal relations,
the software named R [20] has been chosen to extract the statistical information.

Identifier NASA CTC KTH LANL SDSC SP2 SDSC 95 SDSC 96

Machine iPSC/860 SP2 SP2 CM-5 SP2 SP2 SP2

Period 10/01/93
12/31/93

06/26/96
05/31/97

09/23/96
08/29/97

04/10/94
09/24/96

04/28/98
04/30/00

12/29/94
12/30/95

12/27/95
12/31/96

Processors 128 430 100 1024 128 416 416

Jobs 42264 79302 28490 201378 67667 76872 38719

Table 1. Workloads used in this Research.

By analyzing the workload data, it has been found that within a short examined time frame
there is only a limited variance in the number of required node and runtime that a user requests.
This has also been found by [17] who considered a time frame of one week. Moreover, jobs are often
identical if subsequently submitted by a user, [16]. For considering such continuous submission of
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Fig. 1. Continuous Submission of Jobs with Similar Node Requirements.

identical jobs, Feitelson used a Zipf distribution to model the number of repetitions [16]. However,
our examination holds for all jobs in a workload trace without differentiating the submitting user.
This is probably caused by the fact that only a limited number of users is active system within a
time frame. Moreover, the inter-arrival time between jobs is relatively small.

In addition, we found that not all jobs are submitted with the same continuity. For a job series
J in a workload, we extract the requested number of nodes uj ∈ U for each job j. We examined the
average continued appearance of a node requirement in this sequence U . That is, for each job node
requirement in the workload trace the number of direct repetitions is considered. Note, that we
consider all job submissions in a workload and not jobs submitted by the same user. As workloads
contain predominantly jobs with a power of 2 number of nodes, we restrict the examination on
such jobs requiring 1 node, 2 nodes, 4 nodes, etc. That is, for now we neglect all jobs which do
not have a power of 2 node requirement. In Figure 1 the average subsequent appearances of a
job requirement in a real workload is shown. As a reference the average number of occurrences is
shown if a simple probability distribution model is used for modeling the node requirements. This
strategy (denoted as SPM in the Figure) does model each parameter independently according to
the statistical occurrences in the original trace. It can be seen, that sequences of the same node
requirement occur significantly more often in a real workload than it would be in the PDF model.
This shows that a simple distribution model does not correctly represent this effect. Furthermore,
jobs in the real traces with less nodes requirements have a higher probability that the subsequent
node is identical than jobs requiring more nodes. That is, jobs with less parallelism have a higher
probability to be repeatedly submitted.

Even if those continuously appearing elements in U are removed, sequential dependencies can
be found. To this end, only one element are kept for each sequence of identical node requirements.
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Fig. 2. Temporal Relation of Node Requirements in U ′′.

That is we create U ′ from U . For example, an excerpt in a series of node requirements of 1, 1,
1, 2, 2, 5, 5, 5, 8, 16, 16, 16, 2, 2 is transformed to 1, 2, 5, 8, 16, 2. Note, here we also consider
jobs with node requirements that are not power of 2. In a next step we transform U ′ to U ′′ by
U ′′ = {2blog2(u

′
i)c|u′i ∈ U ′}. That is, each node requirement is rounded to the next lower power

of 2. For each distinct node requirement, we calculate the average number of nodes requested by
its successor. Figure 2 shows that the successors of those jobs with a large node requirement also
tend to request a large number of nodes for most workloads. That is, in most traces jobs with high
node requirements are followed by jobs with also a high or even higher node requirement. The
lines in the figure show the overall average for the node requirements in each workload. However,
the behavior for NASA, SDSC96 and LANL is not clear. For the NASA workload it can be noted
that the workload in general shows an unusual behavior as jobs are only submitted if enough free
resources are available. That is, jobs start immediately after their submission. Moreover, only a
small number of different node requirements occur in the traces.

There are also temporal relations in the runtime of jobs. Here, we grouped jobs by the integer
part of the logarithm of their runtime and for each group the average runtime of its successors has
been calculated. The result is shown in Figure 3.

Such sequential dependencies may become very important for optimizing many scheduling
algorithms, like e.g. backfilling. For instance, algorithms can utilize probability information about
future job arrivals. Such data can be included in heuristics about current job allocations. Therefore
a method to capture the sequential dependencies in the workload would be beneficial. As shown
in Figures 2 and 3, the characteristic of the relation of subsequent jobs varies for different node
requirements and runtimes.
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Fig. 3. Temporal Relation in the Sequence of Runtime Requirements.

4 Modeling with Markov Chains

There are several classical methods to analyze stochastic processes. For example, the ARIMA
model [3] uses lags and shifts in the historical data to uncover patterns (e.g. moving averages,
seasonality) and predict the future. However the theory of ARIMA model is based on the assump-
tion that the process is stationary, which does not hold for workloads as shown in [19]. Another
common approach is the use of Neural Networks to analyze and model sequential dependencies
[18, 6]. However, it is difficult to adapt and extend such a model. Instead, Markov chains [22] have
been chosen for modeling the described patterns in Section 3. Those chains have the important
characteristic that a transition to the next state just depends on the previous state. Therefore
Markov Chains have some kind of memory and the transition probabilities to move from one state
to the other within the whole model can be described by a transition matrix. The element (i, j)
within the matrix describes the probability to move from state i to state j if the system was in
state i.

In our workload modeling we use two Markov chains to represent the number of nodes and
the runtime requirements respectively. However, as shown above it is necessary to correlate both
chains. Similar requirements for combining Markov chains also occur in other application areas [28,
2, 27]. For instance, advanced speed recognition systems use so-called Hidden Markov Models
(HMM) to represent not only phonemes, the smallest sound units of which words are composed,
but also their combination to words. The method to correlated those different Markov models is
called ”embedded” HMM, in which each state in the model (super states) can represent another
Markov model (embedded states). However, this method is not suitable to our problem of workload
modeling, as it will dramatically increase the number of parameters. Correspondingly, the model
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becomes very hard to train. Therefore, in the following we propose a new algorithm to correlate
two Markov chains without increasing the number of states.

As mentioned above, our model is based on two independent Markov chains. Here, the first
chain is used to model the requested number of nodes. The second chain represents the runtime
requirements. At the beginning, these two chains are independently constructed and then combined
in order to create a model for generating the next incoming job. Note, as mentioned before, the
following method does not consider the modelling of inter-arrival times. Moreover, it is intended
for combination with existing submission time models.

4.1 Markov Chain Construction

First, the construction of the Markov chain for the requested number of nodes is given. The
corresponding second Markov chain for runtime requirements is similarly generated.

Assume a chain of p jobs where the series of requested nodes is described by the sequence
T = {t1, t2, · · · tp}. One of the key issues during the construction of a Markov chain is to identify
a small set of relevant states in this series. Otherwise the Markov chain would require too many
different states if all distinct node requirements in the traces would be considered.

To this end, a transformation of T is used which classifies all node requirements into power of
2 groups. Thus, the reduced sequence S = {s1, s2 · · · sp} is constructed from T as follows:

si = 2blog2tic, i ∈ [1, p] (1)

Now each distinct element in S can be considered as a separate state within the corresponding
Markov chain. The set of states L of this Markov chain can be constructed as follows:

L = {l1, l2, · · · lq|q ≤ p; ∀(i, j) : i 6= j ∧ i, j ∈ [1, q]; li 6= lj} (2)

The different values representing the states can be calculated by:

(lj = 2j−1|∃sx ∈ S : sx = 2j−1,∀j : j ≤ log2tmax) (3)

Using this transformation, the original sequence T can now be represented by using S and L.
In order to consider the state changes in the original workload, we use series U to denote the order
of occurrences of elements in L within the original stream of job submissions. Thus, we define
U = {u1, · · · , up} whereas the different states in U can be described by ui = j with lj = si; si ∈ S
and lj ∈ L for i ∈ [1, p]. That is, the sequence U consists of the indices of the elements in L
corresponding to the job sequence. As an example, consider Table 2 where the process of reducing
the distinct number of node requirements in T is shown.

Index 1 2 3 4

ti ∈ T 2 4 6 16
si ∈ S 2 4 4 16
lj ∈ L 2 4 16 -
ui ∈ U 1 2 2 3

Table 2. Example for Deriving the States of the Markov Chains.

The presented method leads to the construction of the transition matrix P for the Markov
chain, where the values can be calculated as: pij = nij/ni where nij and ni are defined as

ni = |{si = lj , j ∈ [1, p]; li ∈ L}| and (4)
nij = |{j|so = li ∧ so+1 = lj , o ∈ [1, p− 1]; i, j ∈ [1, q]}| . (5)

The transformations from T to S cause a loss of information about the precise number of
requested nodes, as they have been reduced to power of 2 values. In addition, a quality ratio cj is
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calculated for each state in the Markov chain. This ratio indicates how often the real value in the
original group is exactly matched by the representing number of nodes in this state of the chain.
More precisely, the set of quality ratios is calculated by:

C = {cj |cj =
|{i|ti = lj , i ∈ [1, p]}|
|{i|si = lj , i ∈ [1, p]}| , j ∈ [1, q]}. (6)

The definition of the quality ratios cj , j ∈ [1, q] is needed to model the exact node number of
a job. If the system is in state j, the corresponding value lj is used as the system output with the
probability of cj . With the probability of (1− cj) a uniform distribution between [lj , lj+1[ is used
to create the final value for the requested number of nodes.

As mentioned earlier the same method for constructing the Markov chain can be applied to
the runtime requirements. This yields a second Markov chain. The dimensions of these matrices
for the considered workload representations are presented in Table 3.

Dimension of
Dimension of the number of
runtime chain nodes chains cor0 cor1

NASA 16 8 0.639 0.744
SDSC 96 19 9 0.509 0.475
CTC 17 9 −0.077 −0.041
KTH 18 8 0.037 0.142
LANL 18 6 0.136 0.325
SP2 19 8 0.177 0.292
SDSC95 19 9 0.465 0.510

Table 3. Some parameters in our workload modeling.

4.2 Correlation between Runtime and Number of Nodes

It has been found that the runtime and number of nodes have a weak positive correlation in all
examined workloads, that is, the jobs requiring more nodes have a longer runtime time on average
[15]. It has been shown that such a correlation has an impact on the performance of the scheduling
algorithms [16]. Therefore as key feature, this correlation should be reflected in our model.

To this end, the two independent Markov chains, for node and runtime requirements, must be
combined to incorporate the correlation. A straight forward approach would be the merging of the
two Markov chains into a single Markov chain. However, this would yield a very high dimensional
chain based on all combinations of the states in the original two chains. Such a Markov chain is
very difficult to analyze and such an approach would not scale for incorporating additional other
job parameters.

Our algorithm is applied after a transition in both Markov chains. It adjusts the new state
in the Markov chain for node requirements according to the latest transition in the chain for the
runtime. As an example, consider the observation that jobs requiring a longer runtime also tend
to request a large number processing nodes. Therefore, if the Markov chain for the job runtime is
in a state representing a longer runtime, the state of the Markov chain for the node requirements
would also move to a state of requesting more nodes with a certain probability, an vice versa. If the
runtime requirement changes dramatically in a chain, the request for nodes will have a tendency to
change as well. That is, the transformation of the states in the different Markov chains incorporate
the correlations between the examined parameter.
The detailed correlation algorithm for the Markov chains is given in the following:

First, the correlation value of the requested number of nodes sequence and the required runtime
sequence is calculated from the original workload. In the following the transformation path for the
number of nodes is denoted by N , while R represented the runtime transformation path.
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The procedure of adjusting the state in the node requirement chain depends on the independent
state changes in the two chains. Here, we distinguish three cases. First, if the Markov chain for the
number of nodes did not change, no adjustment is applied. Second, if the state changed only in
the chain for node requirement and not for runtime, then the state in the node requirement chain
is adjusted based on the state in the runtime chain and the correlation factor cor0 between the
chains. Third, if states changed in both chains, the correlation of first-order differences cor1 and
the last change in the runtime chain are used to adjust the state in the node requirement chain.

The following mathematical description explains in more detail how the Markov chains are
combined. The parameter ni specifies the next node request in the sequences and the corresponding
mean is denoted as n. In regards to the runtime sequence similar definitions apply to ri and r.
Next, the correlation cor0 between the two sequences can be calculated as:

cor0 = cor(N, R) =
E((ni − n)(ri − r))√

E((ri − r)2) ·
√

E((ni − n)2)
(7)

Here E() denotes the expected value function. The index 0 was used to specify that the original
sequences were used without further modifications. Furthermore, the first-order difference correla-
tion cor1 is used to denote how the changes of one transformation path affect the other. In order to
define the first-order correlation precisely some more variables have to be introduced. Therefore,
two new sets are built which consist of the changes in the transformation path.

∆N = {∆ni = ni+1 − ni|∀ni : 0 < ni ≤ |N | − 1} (8)
∆R = {∆ri = ri+1 − ri|∀ri : 0 < ri ≤ |R| − 1} (9)

Second, as shown in Section 3 the elements in a sequence often do not differ. As a consequence
the sequence of first-order differences includes many zero values. As the modeling focuses on the
changes of the system behavior all elements have to be removed were the number of nodes or the
required runtime is not changing. This procedure leads to the new sets ∆N ′ and ∆R′. These two
sets can be formulated as follows:

∆N ′ = {∆ni|∀ni ∈ ∆N : ∆ni 6= 0 ∧∆ri 6= 0} (10)
∆R′ = {∆ri|∀ri ∈ ∆R : ∆ni 6= 0 ∧∆ri 6= 0} (11)

Now, the correlation cor1 can be defined as: cor1 = cor(∆N ′, ∆R′). The actual values in our
examinations for cor0 and cor1 are also presented in Table 3.

Assume that the Markov chains for the number of nodes and the required runtime have di-
mensions a and b respectively. Further assume that for the synthetically generated transformation
path of the requested number of nodes a connection from the state j to the state k exists as well
as the connection from m to n within the synthetic transformation path of the runtime.

The above mentioned procedure can be summarized in the following three rules in order to
adjust the state in the Markov chain for the requested number of nodes based on the the Markov
chain of the required runtime:

1. If j = k, no transformation is applied. As the state in the Markov chain for the number of
nodes is not changing (j = k), no adjustment by the Markov chain of the required runtime is
needed.

2. If j 6= k; m = n, the destination state k is adjusted to k = n · (a/b) with probability of
correlation c0. This means that the resulting number of nodes is changed with the probability
of correlation c0 if the active state within the Markov chain for the requested number of nodes
changed while the state in the runtime chain stayed constant. The factor a/b is used as a
normalization between the two matrices. The value of n reflects the fact that the Markov
chain of the runtime is used for the adjustment of the Markov chain for the number of nodes.
Here a job with a higher runtime should also have a higher demand on the number of nodes
as explained earlier.
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3. If j 6= k;m 6= n, the destination state k is changed to k = (n − m) · (a/b) · sign(c1) + j
with probability of the correlation |c1|. This rule is used in situations were in both Markov
chains the states are changing. Here the incremental changes can be used for the adjustment.
The term (n − m) describes the incremental change in the Markov chain for the runtime
requirement, where the sign(c1) indicates the direction of the change. Again, the factor of a/b
is used for the necessary normalization process. As the first terms only describe the change,
the originating state j is used as the basis. Similar to step 2 the changes are only applied
with a certain probability. This time c1 is used as the calculation is based on the incremental
changes.

5 Results

For our evaluation we have examined workloads from the Standard Workload Archive which are
presented in Table 1. For all of those workloads the corresponding Markov chains for the requested
number of nodes and the required runtime have been created. Using the presented modeling
algorithm new synthetical workload traces have been created with these Markov chains. The
quality of the presented modeling method is measured by comparing the original with the newly
generated traces with the following statistical and temporal criteria.

5.1 Statistical Comparison

A common method of comparing sequences is the Kolmogorov-Smirnov(KS) test [23]. Here a small
value indicates a high degree of similarity.

Another criteria in comparing different workloads is the squashed area which is the total re-
source consumptions of all jobs:

squashed area =
∑

j∈Jobs
req processorsj · run timej (12)

Furthermore, we calculate the difference of squashed area (SA) by

dSA =
synthetic SA− original SA

original SA
. (13)

KS Test KS Test Squashed Area
of Nodes of Runtime Difference

NASA 0.08 0.08 −16 %
SDSC 96 0.08 0.06 8 %

CTC 0.02 0.03 38 %
KTH 0.04 0.03 15 %

LANL 0.01 0.04 −1 %
SDSC SP2 0.02 0.04 8 %

SDSC 95 0.09 0.02 −3 %
Table 4. Statistical Comparison of the Modeled and the Original Workloads.

It can be seen in Table 4 that the explained Markov chains model match well the original
traces. In addition, Figure 4 shows the distributions of runtime and node requirements for the
KTH workload as an example. The results for squashed area as well as for the KS test are quite
acceptable. Only for the CTC workload the squashed area criterion shows an inappropriate devi-
ation in the modeled amount of workload. The squashed area or amount of total workload within
a trace has significant impact on scheduling performance [13]. However, information about this
criteria is usually not provided for most workload models.

9



0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

KTH

number of nodes

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

_
_

SIM
REAL

0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

KTH

log(runtime[s])

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
F

un
ct

io
n

0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

_
_

SIM
REAL

Fig. 4. Comparison of Modeled and Original Distributions of Runtime and Node Requirements.

Real Data Markov chain Lublin/Feitelson
Model Model

SDSC 95 0.277 0.140 0.105
SDSC 96 0.371 0.155 0.116

KTH 0.011 0.005 0.005
LANL 0.172 0.226 0.29

Table 5. Correlation of Node and Runtime Requirements.

5.2 Correlation Between Parallelism and Runtime

We compared the presented model with the model by Lublin and Feitelson [25]. In terms of
correlation between the models and the original traces it can be seen from Table 5 that in most
of the cases our model is closer to the real correlation value as in the Lublin/Feitelson model.
Note, that the results for the Lublin/Feitelson model were taken from [25]. A more comprehensive
comparison in terms of the squashed area between the models failed as a first implementation
yielded different results from the paper. This will be addressed in our future examinations.

5.3 Temporal Relations

The autocorrelation ρ1 of the original trace and the modeled workloads has been used to examine
the temporal dependencies within each sequence. Table 6 shows that the Markov chain model
correctly incorporates the temporal dependency since the ρ1 from the synthetic data are close to
the real data. The probability distribution function model does not contain such a dependency.
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The number of nodes series The runtime series
Real data MCM PDF Real data MCM PDF

SDSC 95 0.43 0.31 −0.01 0.28 0.16 0.01
SDSC 96 0.41 0.37 −0.01 0.17 0.20 0.02

KTH 0.29 0.29 0.01 0.29 0.30 −0.01
LANL 0.16 0.20 −0.01 0.18 0.19 −0.03

Table 6. Comparison of the Autocorrelation ρ1 of the Node Requirements and Runtime Sequences.

6 Conclusion

In this paper a workload model based on Markov chains has been presented. This model incorpo-
rates temporal dependencies and the correlation between job parameters. To this end, individual
Markov chains have been created for runtime and node requirements of jobs. The information have
been extracted from real workload traces.

The correlation between job parameters requires the combination of the different Markov
chains. To this end, a novel approach of transforming the states in the different Markov chains
have been proposed. Note, that these method as presented in this paper have been shown for node
and runtime requirements only. However, the approach is very general and can easily be extended
to incorporate the modelling of other job parameters.

The quality of the modeling method has been evaluated with existing real workload traces.
The presented workload model yielded good results in comparison to the real traces. Here, the
statistical characteristics as well as the temporal dependencies between jobs are resembled within
the model.

The quality criteria used are based on the assumption that the model is used to create a
stream of new jobs without further interaction. This can be used to create workload traces for the
evaluation of scheduling algorithms as used in [10, 11].

However, as found in [9, 12, 14] new scheduling systems can also benefit by dynamic adapta-
tion according to the current system state. This enables the scheduler to dynamically adjust its
parametrization and consequently its behavior. To this end, the workload modeling can also be
used to dynamically predict the next job given the last real job submission. This extension is
partially already included within our workload model as the parameters of the next created job
only depend on the last job. A qualitative evaluation has not yet been done and will be part of
future experiments. Currently, no other models are know that incorporates such job predictions.
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