
Are user runtime estimates inherently inaccurate?

Cynthia Bailey Lee, Yael Schwartzman
Jennifer Hardy, Allan Snavely

San Diego Supercomputer Center
March 2004

Abstract

Computer system batch schedulers typically require information from the user upon
job submission, including a runtime estimate. Inaccuracy of these runtime estimates,
relative to the actual runtime of the job, has been well documented and is a perennial
problem mentioned in the job scheduling literature. Typically users provide these
estimates under circumstances where their job will be killed after the provided
amount of time elapses. Also, users may be unaware of the potential benefits of
providing accurate estimates, such as increased likelihood of backfilling. This study
examines user behavior when the threat of job killing is removed, and when a tangible
reward is provided for accuracy. We show that under these conditions, about half of
users provide an improved estimate, but there is not a substantial improvement in the
overall average accuracy.

1 Introduction

It is a well-documented fact that user-provided
runtime estimates are inaccurate. Characterizations
of this error in various real workload traces can be
found in several classic and recent papers. Cirne
and Berman [1] showed that in four different
traces, 50 to 60% of jobs use less than 20% of their
requested time. Ward, Mahood and West [7] report
that jobs on a Cray T3E used on average only 29%
of their requested time. Chiang, Arpaci-Dusseau
and Vernon [4] studied the workload of a system
where there is a 1-hour grace period before jobs
are killed, but found that users still grossly
overestimate their jobs’ runtime, with 35% of jobs
using less than 10% of their requested time
(includes only jobs requesting more than one
minute). Similar patterns are seen in other
workload analyses [2,3,5].

Many factors contribute to the inaccuracy of user
estimates. All workloads show a significant portion
of jobs that crash immediately upon loading. This
is likely more indicative of users’ difficulties with
configuring their job to run correctly, than
difficulties with providing accurate runtime
estimate [2]. However, a job’s runtime may also
vary from run to run due to load conditions on the

system. In an extreme example, Nitzberg and Jones
[9] found that on an Origin system where different
jobs on the same node share memory resources,
job runtime varied 30% on a lightly loaded system,
to 300% on a heavily loaded system.

Mu’alem and Feitelson [2] note that because many
systems kill jobs after the estimated time has
elapsed, users may be influenced to “pad” their
estimates, to avoid any possibility of having their
job killed. Therefore, we believe that it is
important to be precise about what users are
typically asked to provide, which is a time after
which they would be willing to have their jobs
killed, and to distinguish this from the abstract
notion of an estimate of their jobs’ runtime. This
leads us to prefer the term, requested runtime for
the former, reserving the term estimated runtime
for a best guess the user can make without any
penalty (and possibly even with an incentive for
accuracy).

This paper focuses on two specific causes of error
in user provided runtime estimates:

(1) Requested runtimes are used as a “kill
time” in other words, jobs are killed after
the provided time has elapsed.

(2) Users may be insufficiently motivated to
provide accurate runtime estimates. Many
users are likely unaware of the potential
benefits of providing an accurate request,
such as higher probability of receiving
quicker turnaround (because of an
increased likelihood of backfilling), or this
motivation may not be strong enough to
elicit maximum accuracy.

A significant unanswered question is, can and
would users be accurate if these two barriers to
accuracy were removed? This study addresses this
question by asking users of the Blue Horizon
system at the San Diego Supercomputer Center
(SDSC) [8] for a non-kill-time estimate of their
jobs’ runtime, and offering rewards for accuracy.

The rest of the paper is organized as follows. In
Section 2, we describe the experiment design. In
Sections 3 and 4 we present the results of the
accuracy of users’ non-kill estimates, and their
confidence in their estimates, respectively. Section
5 reviews related work on the impact of user
inaccuracy on scheduler performance. Finally,
Sections 6 and 7 present the conclusions and future
work.

2 Survey Experiment Design

Users of the Blue Horizon system submit jobs by
using the command llsubmit, passing as an
argument the name of a file called the job script.
The script contains vital job information such as
the location and name of the executable, the
number of nodes and processors required, and a
requested runtime. An analysis of the requested
runtimes from the period prior to the experiment
shows that the error has a similar distribution to
that observed in other workloads. Specifically, a

majority of jobs use less than 20% of their
requested time.

During the survey period, users were prompted for
a non-kill-time estimate of their jobs’ runtime by
the llsubmit program, randomly one of every five
times they run. We asked, at the moment of job
submission, hoping that this will be the most
timely and realistic moment to measure the user’s
forecasting abilities. The traditional requested
runtime is not modified in the job script, we merely
reflect that value back to the user and ask them to
reconsider it, with the assurance that their response
in no way affects this job.

Users were notified of the study, by email and
newsletter, a week prior to the start of the survey
period. The notification included information about
prizes to reward the most accurate users (with
consideration given also to frequency of
participation). One MP3 player (64MB Nomad,
approximate value: 80 USD) and 18 USB pen
drives (64MB, approximate value: 20 USD) were
awarded. The prizes were intended to provide a
tangible motivation for accuracy and thus to elicit
the most accurate estimates users are capable of
providing.

The text of the survey is as follows. First, the user
is reminded of the requested runtime (kill time)
provided in their script. The user is then queried
for a better estimate. Finally, the user is asked to
rate their confidence in the new estimate they
provided, on a scale from 0 to 5 (5 being the
highest). This question was designed to test if users
could self-identify as good or poor estimators. The
survey does not provide default values. A sample
of the survey output is shown below in Figure 1.

% llsubmit job_script

You have been randomly selected to participate in a two-question survey #
about job scheduling <as posted on www.npaci.edu/News>. Your #
participation is greatly appreciated. If you do not wish to participate #
again, type NEVER at the prompt and you will be added to a #
do-not-disturb list. #

In the submission script for this job you requested a 01:00:00 wall-clock limit.

We understand this may be an overestimate of the wall clock time you expect the job to
take. To the best of your ability, please provide a guess as to how long you think your job
will actually run.
**NOTE: Your response to this survey will in no way affect your job’s scheduling or
execution on Blue Horizon.
Your guess (HH:MM:SS)? 00:10:00
Please rate(0-5) your confidence in your guess: (0 = no confidence, 5= most confident): 3
Thank you for your participation.
Your Blue Horizon job will now be submitted as usual.

Figure 1. Sample user survey and response.

3 User Accuracy

Over the 9-week period of the survey there were
10,397 job submissions. However, only 2,870 of
those ran until completion (many jobs are
withdrawn while still waiting in the queue or
cancelled while running). Since approximately one
out of every five job submissions were requested to
complete the survey 2,478 of the jobs that ran until
completion were not surveyed. Furthermore, we
did not survey automated submissions (81) or jobs
that requested less than 20 minutes of runtime
(172). We had 21 timeouts, where there was no
response for more than 90 seconds; and 59 jobs
that were submitted by the 11 people that decided
not to take part in the survey.

Of the 143 jobs that ran until completion and were
selected to complete the survey, 20 had equal or
slightly higher runtimes than their requested
runtime. This situation could either indicate that
the user was very accurate or, more likely, that the
job got killed once it reached its requested runtime
due to scheduling policies. We decided to discard
these survey entries since it was not possible to
determine whether the job was completed or killed
from the information we collected. In 16 of the
responses, the estimate given in response to the
survey was higher than the requested runtime in

the script. Taken at face value, this means that
upon further reflection, the user thought the job
would need more time than they had requested for
it, in which case the job is certain to be killed
before completing. Some of these responses
appeared to be garbage (e.g. “99:99:99”) from
users who perhaps did not really want to
participate in the study or just hoped a random
response had some chance of winning a prize. In
our analysis, all of these higher responses were
discarded, as well as a survey response indicating
an expected runtime of 0 seconds.

Fifty-six of the survey response runtime estimates
were the same as the requested runtime in the
script. Of the 51 responses where users provided a
tighter estimate, users cut substantially—an
average of 35%—from the requested time. The
average inaccuracy in this group decreased from
68% to 60%. By inaccuracy we mean the percent
of requested (or estimated) time that was unused or
exceeded (in the case of estimates it is possible,
though unusual, in this survey, to underestimate
the runtime), as given in the following formula:

Inaccuracy = abs(base – actual_runtime) / base

Where base is either the requested runtime or the
estimated time from the survey. So for example, a

requested time inaccuracy of 68% means either
that 32% of the requested runtime was used, or that
168% of the requested time was used.

Because not all users tightened their estimates,
overall the inaccuracy decreased from an average
of 61% to 57%. Those users who did not tighten
their estimate were notably less inaccurate than
those who did revise it; their initial inaccuracy was
55%. To fully understand our two metrics it is
helpful to understand an example. A not atypical

user requested their job to run for 120 minutes,
revised (estimated) the runtime at 60 minutes in
response to the survey, and the job actually ran for
50 seconds (!). In this example the user tightened
their estimate by 50%. But the inaccuracy of the
request is 99%, and the inaccuracy of the estimate
is improved only 1% down to 98%. Intuitively,
many users are substantially improving extreme
overestimates, still without making the bounds
very tight.

0

2

4

6

8

10

12

14

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Pe rcent Decrease

O
cc

ur
en

ce
s

Figure 2. Histogram of percent decrease from the requested time to the estimate provided in response to the survey
(includes only responses that were different from the requested time—72 responses had a 0% decrease). Categories

represent a number of respondents up to the label, e.g. 20% represents 7 responses that were between 10% (exclusive)
and 20% (inclusive) decreased from the requested time in the script.

In Figure 4 we show the comparison between the
requested runtime in the script, and the actual
runtime for the survey entries. The results are
similar to those seen in Figure 3, where we see the
same information but for the entire workload
during the survey period, suggesting that the
survey entries collected are a representative
population sample. The results are also similar to
those seen in the literature, in particular see [2].
Figure 5 shows the results if the estimate provided
in the survey is used, instead of the requested
runtime in the script. Note that no job’s actual
runtime can exceed the requested runtime, but
because the survey responses were unconstrained
in terms of being a kill time, the actual runtime can

be either more or less than this estimate. The great
majority of survey responses were still
overestimates of the actual runtime. We cannot be
sure why this is so, but it may be a lingering
tendency due to users having been conditioned to
overestimate by system kill-time policies.

Some degree of improvement can be seen in the
pattern of error, for example a cluster of points on
the right to right-bottom area of Figure 4 is largely
dissipated in Figure 5. We can see that users still
tend to round their times to 12, 24 and 36 hours in
the survey, but not quite as heavily.

0

5

10

15

20

25

30

35

40

0 4 8 12 16 20 24 28 32 36 40

Requested runtime (hrs)

A
ct

ua
l r

un
tim

e
(h

rs
)

Figure 3. Comparison of actual runtime and requested runtime for all jobs on Blue Horizon during the survey period

(Figure 4 shows the same data but only for jobs in the survey.) Note that some data points are overlapping.

Figure 4. Correlation between requested runtime and
actual runtime. Note that some data points are

overlapping.

Figure 5. Correlation between users’ survey runtime
estimates and actual job duration. Note that some data

points are overlapping.

4 User Confidence

It is likely that even the most motivated of users
will not always be able to provide an accurate
runtime request or estimate. But it may be useful if
users can at least self-identify when they are
unsure of their forecast. In our study, we asked
users to rate their confidence in the runtime
estimate they provided in response to the survey on
a scale from 0 (least confident) to 5 (most

confident). Figure 6, below, shows the distribution
of responses. In a majority (70%) of the responses,
users rated themselves as most confident or very
confident (5 or 4 rating) in the estimate. This is in
spite of the fact that, overall, the accuracy of the
requested runtimes and runtime estimates was poor
(though typical, as observed in other workloads). It
may be that users did not significantly adjust their
forecasts of their jobs’ runtime to account for
possible crashes and other problems [11,12].

0
5

10
15
20
25
30
35
40

0 10 20 30 40

Runtime estimate(hrs)

A
ct

ua
l r

un
tim

e
(h

rs
)

0
5

10
15
20
25
30
35
40

0 10 20 30 40

Requested runtime (hrs)

A
ct

ua
l r

un
tim

e
(h

rs
)

0
2%

1
2%

8%

2
3

18%

4

32%

5

38%

Figure 6. Distribution of user accuracy self-assessments (i.e. confidence).

Figure 7a. Distribution of user accuracy
self-assessments in users who did not

change their requested runtime in
response to the survey.

Figure 7b. Distribution of user accuracy
self-assessments in users did change their

requested runtime in response to the
survey.

The responses can be divided into those users who
provided a revised estimate in response to the
survey, and those who reiterated the requested
runtime in their script. In Figure 7a, we see that in
60% of responses that were the same as the
requested runtime, users rated themselves as most
confident (5), with another 22% rated very
confident (4). No users rated themselves as low or
very low confidence (1 or 0). In contrast, of those
responses that were a different estimate (Figure
7b), most users rated themselves somewhere in the
middle (4 or 3).

Psychologists Kruger and Dunning [11] have
observed that people who are most ignorant of a
subject area are more likely to overestimate their
own abilities than those who are knowledgeable.

We wondered if our results were an instance of the
same phenomenon. In other words, perhaps users
reiterated the same requested runtime out of
ignorance, and were then very self-confident, as
predicted by Kruger and Dunning. However, it
appears that users who did not change in response
to the survey, and had high confidence, did on
average have more accurate estimates (as seen in
Figure 8). For the unchanged responses, there is a
clear pattern of decreasing average inaccuracy as
the confidence increases. The same pattern is not
seen in for those survey responses that were
different from the requested runtime in the script.
There does not seem to be a strong correlation
between these users’ confidence and the accuracy
of the estimates they gave in the survey.

4%

2
14%

3

 4

22%

5

60%

4%

0

4%
1 13%

2

4

42%

16%

5

3

21%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

0 1 2 3 4 5

Confidence level
A

ve
ra

ge
 %

 in
na

cu
ra

cy

changed

not changed

Figure 8. Average percent inaccuracy of user survey responses, separated into those responses that were changed and

not changed with respect to the requested runtime in the script.

5 Impact of User Inaccuracy on

Scheduler Performance

One might ask what impact user inaccuracy has
on scheduler performance—why worry if user
estimates are inaccurate? Indeed, some studies
have shown that if workloads are modified by
setting the requested times to R * actual runtime,
average slowdown for the EASY and conservative
backfilling algorithms actually improves when R
= 2 or R = 4, compared to R = 1 (total accuracy)
[3,14]. Similar results have been shown when R is
a random number with uniform distribution
between 1 and 2, or between 1 and 4, etc. [2,14].

But simply taking the accurate time and
multiplying it by a factor does not mimic the "full
badness of real user estimates" [2]. In other
studies where real user-provided times were used
[2,3], some scheduling algorithms did perform
equivalently or slightly better, compared to the
same workload with completely accurate times.

However, some other algorithms experience
significant performance degradation as a result of
user inaccuracy [4,5]. Also, even for an algorithm
such as conservative backfilling, which shows
some improvement with inaccurate estimates, it is
at the cost of less useful wait time guarantees at
the time of job submittal, and causing an
increased tendency to favor small jobs over large
jobs (which may or may not be desirable) [4,14].

Asking the user for a more accurate time, as we
have done in this study, is not the only approach
to mitigating inaccuracy. One suggestion is to
weed out some inaccurate jobs through

speculative runs, to detect jobs that immediately
crash [5,13]. Or, the system could generate its
own estimates for jobs with a regular loop
structure, via extrapolation from timings of the
first few iterations [4]. Another proposal [6] is to
charge users for the entire time they requested, not
only the time they actually used. This idea, meant
to discourage users from “padding” their
estimates, may seem unfair to users and thus be
unattractive to implement.

6 Conclusion

Mu'alem and Feitelson [2] documented and
modeled discrepancies between user-provided
time limits and actual execution time on several
HPC systems, including Blue Horizon. We
analyze a more recent trace, with similar results.
We then ask the question, are users are capable of
providing more accurate runtime estimates?

To answer this question, we surveyed users upon
job submittal, asking them to provide the best
estimate they can of their job’s runtime, with the
assurance that their job will not be killed after that
amount of time has elapsed.

We have demonstrated that some users will
provide a substantially revised estimate but that,
on average, the accuracy of their new estimates
was only slightly better than their original
requested runtime. On the other hand, many users
were able to correctly identify themselves as more
or less accurate in their estimating than other
users.

An inherent weakness in our survey experiment
design is that we can never be sure if users are
motivated “enough” to provide the best estimates
they can. In other words, it is not clear if a bigger
or better prize offering would have elicited better
estimates from users. However, that most users
were very confident in their estimates indicates
that perhaps many were in fact exhibiting their
“best” in our study.

7 Future Work

In future work, we will measure the impact that
better user estimates have on supercomputer
performance. We intend to carry out additional
surveys to find a scheduling system that
understands user behavior and uses this
knowledge as a key scheduling factor. The survey
will possibly include educating feedback in order
to measure user’s improvement over the lifetime
of the experiment. In addition, we wish to help
users improve their estimates. One possible way
to accomplish this is by educating them about the
potential benefits of providing accurate estimates,
other than the prizes offered specifically for this
study. For example, our prototype web-based tool
Blue View visually presents the Blue Horizon
scheduler’s current plans for running and queued
jobs. We hope this tool will give incentive to the
users to give shorter time estimates with the
promise that their jobs will fit the backfill slots
shown in it. Furthermore, this tool will also give
the user the opportunity to mold their job
according to what is readily available.

8 Acknowledgements

This work was sponsored in part by NSF
cooperative agreement STI-00230925 “Data
Intensive Grid Benchmarks”, DOE SciDAC
award titled “Performance Evaluation Research
Center”, DoD HPCMP award titled “HPC
Performance Evaluation”, and NSF cooperative
agreement ACI-9619020 through computing
resources provided by the National Partnership for
Advanced Computational Infrastructure at the San
Diego Supercomputer Center. We gratefully
acknowledge all the users of Blue Horizon who
participated in the survey, and the staff who
supported the administration of the survey. We
wish to thank the workshop referees for their

thorough and very useful suggestions. Finally,
Dan Tsafrir provided helpful correspondence.

References

[1] Cirne, Walfredo and Fran Berman. "A
comprehensive model of the supercomputer
workload." Proceedings of IEEE 4th Annual
Workshop on Job Scheduling Strategies for
Parallel Processing. Cambridge, MA. 2001.

[2] Mu'alem, Ahuva W. and Dror G. Feitelson.
"Utilization, Predictability, Workloads, and User
Runtime Estimates in Scheduling the IBM SP2
with Backfilling," IEEE Trans. Parallel &
Distributed Systems, 12(6). June 2001.

[3] Srinivasan, Srividya, Rajkumar Kettimuthu,
Vijay Subramani and P. Sadayappan.
"Characterization of Backfilling Strategies for
Parallel Job Scheduling," Proceedings of 2002
International Workshops on Parallel Processing,
August 2002.

[4] Chiang, Su-Hui, Andrea Arpaci-Dusseau and
Mary K. Vernon. "The Impact of More Accurate
Requested Runtimes on Production Job
Scheduling Performance," Proceedings of the 4th
Workshop on Workload Characterization, Dror
G. Feitelson, Larry Rudolph, Uwe
Schwiegelshohn, eds. July 2002.

[5] Lawson, Barry G. and Evgenia Smirni.
"Multiple-Queue Backfilling Scheduling with
Priorities and Reservations for Parallel Systems,"
Proceedings of 8th Workshop on Job
Scheduling Strategies for Parallel Processing,
Dror G. Feitelson, Larry Rudolph, Uwe
Schwiegelshohn, eds. July 2002.

[6] Stoica, Ian, Hussein Abdel-Wahab and Alex
Pothen. "A Microeconomic Scheduler for Parallel
Computers," IPPS'95 Workshop: Job Scheduling
Strategies for Parallel Processing, Dror G.
Feitelson and Larry Rudolph, eds. April 1995.

[7] Ward, William A. Jr., Carrie L. Mahood and
John E. West. “Scheduling Jobs on Parallel
Systems Using a Relaxed Backfill Strategy.”
Proceedings of the 8th Workshop on Job

Scheduling Strategies for Parallel Processing,
Dror G. Feitelson, Larry Rudolph, eds. July 2002.

[8] Blue Horizon, National Partner for Advanced
Computing Infastructure (NPACI).
www.npaci.edu/Horizon/

[9] Jones, James Patton and Bill Nitzberg.
“Scheduling for Parallel Supercomputing: A
Historical Perspective of Achievable Utilization.”
Proceedings of the 5th Workshop on Job
Scheduling Strategies for Parallel Processing,
Dror G. Feitelson, Larry Rudolph, eds. April
1999.

[10] Kruger, Justin and David Dunning.
“Unskilled and unaware of it: How difficulties in
recognizing one's own incompetence lead to
inflated self-assessments,” Journal of Personality
& Social Psychology, 77(6). December 1999.

[11] Lovallo, Dan and Daniel Kahneman.
“Delusions of Success.” Harvard Business
Review, 81(7). July 2003.

[12] Buehler, Roger. “Planning, personality, and
prediction: The role of future focus in optimistic
time predictions.” Organizational Behavior &
Human Decision Processes, 92(1/2). September/
November 2003.

[13] Perkovic, Dejan and Peter Keleher.
"Randomization, Speculation, and Adaptation in
Batch Schedulers." Proceedings of
Supercomputing 2000. November 2000.

[14] Zotkin, Dmitry and Peter Keleher.
"Sloppiness as a Virtue: Job-Length Estimation
and Performance in Backfilling Schedulers",
D.Zotkin, P.Keleher. Proc. 8th HPDC, Redondo
Beach, CA. August 1999.

