
Parallel Job Scheduling — A Status Report

Dror G. Feitelson
School of Computer Science and Engineering

The Hebrew University of Jerusalem

91904 Jerusalem, Israel

Larry Rudolph
Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139, USA

Uwe Schwiegelshohn
Computer Engineering Institute

Universität Dortmund

44221 Dortmund, Germany

1 Introduction

Scheduling parallel jobs has been a popular research topic
for many years. A couple of surveys have been written
on this topic in the context of parallel supercomputers
[17, 20]. The purpose of the present paper is to update
this material, and to extend it to include work concerning
clusters and the grid.

The first part of the paper deals with algorithmic and re-
search issues. It covers the two main approaches in use to-
day, backfilling and gang scheduling. For each one, recent
advances are reviewed, both in terms of how to perform
the scheduling and in terms of understanding the perfor-
mance results.

The second part of the paper covers current usage. It
presents a short overview of vendor offerings, and then
reviews the scheduling frameworks used by top-ranking
parallel systems.

2 Advances in Parallel Job
Scheduling Research

There are many different ways to schedule parallel jobs,
and the threads which make them up [17]. But only a
few mechanisms are used in practice and studied in de-
tail. Two approaches that have dominated the last decade
are backfilling and gang scheduling. In this section we re-
view their variants and the connections between them. We
then review the special requirements of scheduling paral-
lel jobs on a grid, and algorithms that have been developed
to address them.

2.1 Backfilling

The basic batch scheduling algorithm is First-Come-First-
Serve (FCFS) [39]. Under this algorithm, jobs are consid-
ered in order of arrival. If there are enough processors
available to run a job, the processors are allocated and the
job is started. But if enough processors are not available,
the first job must wait for some currently running job to
terminate and free additional processors. All subsequent
jobs also wait so as not to violate the FCFS order. This
may lead to a waste of processing power as processors sit
idle waiting for enough of them to accumulate.

Backfilling is an optimization that tries to balance be-
tween the goals of utilization and maintaining FCFS or-
der. It allows small jobs to move ahead and run on pro-
cessors that would otherwise remain idle. This is done
subject to some restrictions, so as to avoid situations in
which the FCFS order is completely violated and some
jobs are never run (a phenomenon known as “starvation”).
In particular, jobs that need to wait are typically given a
reservation for some future time.

The use of reservations was included in several early
batch schedulers [26, 8]. Backfilling, in which small jobs
move forward to utilize the idle resources, was introduced
by Lifka [29]. This was done in the context of EASY,
the Extensible Argonne Scheduling sYstem, which was
developed for the first large IBM SP1 installation at Ar-
gonne National Lab.

2.1.1 Improved Algorithms

While the concept of backfilling is quite simple, it never-
theless has several variants with subtle differences. These
can be described by the settings of different parameters of
the algorithm.

The first parameter is thenumber of reservationsthat
are made. In the original EASY backfilling algorithm,

1



only the first queued job received a reservation. This
means that when the first job cannot run because suffi-
cient processors are not available, we estimate when such
processorswill be available, and reserve them for this job.
Other jobs that are backfilled may not violate this reser-
vation. Thus they must either terminate before the time of
the reservation (known as the “shadow time”), or use only
processors that are not required by the first job [29].

The problem with this is that backfilling may cause de-
lays in the execution of other waiting jobs (which are not
the first, and therefore do not get a reservation). The ob-
vious alternative is to make reservations for all jobs. This
approach has been named “conservative backfilling” [33].
However, simulation results indicate that delaying other
jobs is rarely a problem, and that conservative backfill-
ing tends to achieve reduced performance in comparison
with the more aggressive EASY backfilling. The MAUI
scheduler includes a tunable parameter that allows system
administrators to decide how many reservations will be
made [27]. Chiang et al. suggest that making 2–4 reserva-
tions is a good compromise [6].

An intriguing idea in this context is to make reserva-
tions adaptively as needed. This is realized by noting
how much different jobs have been delayed by previous
backfilling decisions. If a job is delayed by too much, a
reservation is made for this job [45]. This is essentially
equivalent to the earlier “flexible backfilling”, in which
all jobs have reservations, but backfilling is allowed to vi-
olate these reservations up to a certain slack [46]. Setting
the slack to the threshold used by adaptive reservations is
equivalent to only making a reservation if the delay ex-
ceeds this threshold.

The second parameter of the backfilling algorithm is the
order of queued jobs. The original EASY scheduler, and
many other systems and designs, use a FCFS order [29].
A general alternative is to prioritize jobs in some way,
and select jobs for scheduling (including as candidates
for backfilling) according to this priority order. Flexible
backfilling combines three types of priorities: an adminis-
trative priority set to favor certain users or projects, a user
priority used to differentiate among the jobs of the same
user, and a scheduler priority used to guarantee that no job
is starved [46]. The Maui scheduler has a priority function
that includes even more components [27].

A special type of prioritization depends on job char-
acteristics. In particular, Chiang et al. have proposed a
whole set of criteria based on resource consumption, that
are generalizations of the well-known Shortest Job First
(SJF) scheduling algorithm [6]. These have been shown
to improve performance metrics, especially those that are
particularly sensitive to the performance of short jobs,
such as slowdown.

A third parameter is the amount oflookahead into the

queue. All previous backfilling algorithms consider the
queued jobs one at a time, and try to schedule them. But
the order in which jobs are scheduled may lead to loss of
resources to fragmentation. The alternative is to consider
the whole queue at once, and try to find the set of jobs that
together maximize desired performance metrics. This can
be done using dynamic programming, leading to optimal
packing and improved performance [42].

2.1.2 Effect of User Runtime Estimates

Backfilling depends on estimates of how long each job
will run. These estimates are used to figure out when addi-
tional processors will become available, and to verify that
backfilled jobs will terminate in time so as not to violate
reservations. The source of the estimates is typically the
user who runs the job. Jobs that try to run beyond their
estimated runtime are usually terminated by the system.
Many therefore regard these estimates as upper bounds,
rather than as tight estimates.

Initial expectations were that user runtime estimates
will nevertheless be tight, as low estimates improve the
chance for backfilling. However, comparisons of user es-
timates with real runtimes show that they tend to be in-
accurate, even when users are requested to provide their
best possible estimate with no danger of having their job
killed if the estimate is too low [18, 33, 28]. Attempts to
derive better estimates automatically based on historical
information from previous runs have not been successful,
as they suffered from too many under-estimations (which
in backfilling would lead to killed jobs).

Surprisingly, several studies have demonstrated that in-
accurate runtime estimates actually lead to improved av-
erage performance [18, 33, 55]. This is not simply the re-
sult of more backfilling due to more holes in the schedule,
because inflated runtime estimates not only create holes in
the schedule, but also enlarge potential backfill jobs, mak-
ing it harder for them to fit into these holes. Rather, it is
the result of a sequence of events where small backfill jobs
prevent the holes from closing up, leading to a strong pref-
erence for short jobs and the automatic production of an
SJF-like schedule [47]. This also motivates the construc-
tion of algorithms that explicitly favor short jobs such as
those proposed in [6].

All this does not necessarily indicate that more accurate
runtime estimates are impossible and useless. First, not
all estimates are bad; In most cases, some users provide
reasonably accurate estimates while others do not. Some
studies indicate that those users who do provide reliable
estimates do indeed benefit from this, as their jobs receive
better service from the scheduler [6]. Also, while it seems
that deriving good estimates automatically is not possible
for all jobs, it might be possible to do so for short jobs and

2



for jobs that have exhibited especially small variability in
the past.

Incidently, inaccurate user runtime estimates have also
been shown to have surprising effects on performance
evaluations [16, 15]. In a nutshell, it was seen that for
workloads with numerous long single-process jobs the
inaccurate estimates allow for significant backfilling of
these jobs under the aggressive EASY backfilling, but not
under conservative backfilling. This in turn was detrimen-
tal for the performance of short jobs that were delayed by
the long backfilled jobs. But if accurate estimates were
used the effect was reversed, leading to a situation where
short jobs were favored over long ones. This has more
to do with evaluation methodology than will scheduling
technology.

2.2 Gang Scheduling

The main alternative to batch scheduling is gang schedul-
ing, where jobs are preempted and re-scheduled as a unit,
across all involved processors. The notion was introduced
by Ousterhout, using the analogy of a working set of
memory pages to argue that a “working set” of processes
should be co-scheduled for the application to make effi-
cient progress [34]. Subsequent work emphasized gang
scheduling, which is an all-or-nothing affair, i.e. eitherall
of the job’s processes run or none do.

The point of gang scheduling is that it provides an en-
vironment similar to a dedicated machine, in which all a
job’s threads progress together, and at the same time al-
lows resources to be shared. In particular, preemption is
used to improve performance in face of unknown runtims.
This prevents short jobs from being stuck in the queue
waiting for long ones, and improves fairness [40].

2.2.1 Flexible Algorithms

One problem with gang scheduling is that the requirement
that all a job’s processes always run together causes too
much fragmentation. This has led to several proposals for
more flexible variants.

One such variant, called “paired gang scheduling” is
designed to alleviate inefficiencies caused by I/O activity
[50]. In conventional gang scheduling, processor running
processes that perform I/O remain idle for the duration of
the I/O operation. In paired gang scheduling jobs with
complementary characteristics are paired together, so that
when the processes of one perform I/O those of the other
can compute. Given a good job mix, this can lead to im-
proved resource utilization at little penalty to individual
jobs.

A more general approach is to monitor the commu-
nication behavior of all applications, and try to deter-
mine whether they really benefit for gang scheduling [22].

Gang scheduling is then used for those that need it. Pro-
cesses belonging to other jobs are used as filler to reduce
the fragmentation cause by the gang scheduled jobs.

2.2.2 Dealing with Memory Pressure

Early evaluations of gang scheduling assumed that all ar-
riving jobs can be started immediately. Under high loads
this could lead to situations where dozens of jobs share
each processor. This is unrealistic as all these jobs would
need to be memory resident or else suffer from paging,
which would interfere with the synchronization among the
job’s threads.

A simple approach for avoiding this problem is to use
admission controls, and only allow additional jobs to start
if enough memory is available [3]. An alternative is
placing an oblivious cap on the multiprogramming level
(MPL), usually in the range of 3–5 jobs [31]. While this
avoids the need to estimate how much memory a new
job will need, it is more vulnerable to situations in which
memory becomes overcommitted and paging may occur.

When admission controls are used and jobs wait in the
queue the question of queue order presents itself. The
simplest option is obviously to use a FCFS order. Im-
proved performance is obtained by using backfilling, and
allowing small jobs to move ahead in the queue [53, 52].
In fact, using backfilling fully compensates for the loss
of performance due to the limited number of jobs that are
actually run concurrently [21].

All the above schemes may suffer from situations in
which long jobs are allocated resources while short jobs
remain in the queue and await their turn. The solution is to
use a preemptive long-range scheduling scheme. With this
construction, the long turm scheduler allocates memory
to waiting jobs, and then the short turm scheduler decides
which jobs will actually run out of those that are memory
resident. The long turn scheduler may decide to swap out
a job that has been in memory for a long time, to make
room for a queued job that has been waiting for a long
time. Such a scheme was designed for Tera (Cray) MTA
machine [1].

2.2.3 System Integration

The only commercially successful implementation of
gang scheduling so far was the one on the Connection
Machine CM-5. Other implementations, e.g. on the In-
tel Paragon, suffered from significant overheads and were
not generally used. But recently there have been several
advances in the implementation of gang scheduling in ex-
perimental systems.

Gang scheduling requires the context switching to be
synchronized across the nodes of the machine. This is
hard to achieve on large machines, and may suffer from

3



significant overheads. But modern interconnection net-
works provide hardware support for global operations,
and this can be exploited also in the runtime system. This
is done in STORM, where all parallel system activities are
expressed in terms of three basic primitives, which in turn
are supported by the hardware of the Quadrics network.
In particular, this design has resulted in a very scalable
implementation of gang scheduling [23].

While high performance networks enable efficient im-
plementation of system primitives, they may cause prob-
lems with multiprogramming. The difficulty arises due to
the use of user-level communication, in which user pro-
cesses access the network interface cards (NICs) directly
so as to avoid the overheads involved in trapping into the
operating system. As a result no protection is available,
and only one job can use the NICs. This can be solved
by switching communication buffers as part of the gang
scheduling’s context switch operation [14]. It is also pos-
sible that this problem will be reduced in the future, as the
memory available on NICs continues to grow.

Even tighter integration between communication and
scheduling is used in the “buffered coscheduling” scheme
proposed by Petrini and Feng [35, 36]. In this scheme
the execution of all jobs is partitioned by the system into
phases. In each phase processes are only executed un-
til they try to perform a communication operation, and
then the are blocked and the communication is buffered.
At the end of the phase all the required communications
are scheduled so as to achieve optimal performance, and
performed during the next phase. This leads to complete
overlap of computation and communication.

Gang scheduling was originally developed in order to
support fine-grain synchronization of parallel applications
[19]. But an even greater benefit may be its contribu-
tion to reducing interference [32, 37]. The problem is
that the nodes of parallel machines and clusters typically
run a full operating system, with various user-level dae-
mons that are required for various system services. These
daemons may wake up at unpredictable times in order to
perform their function. Obviously this interferes with the
application process running on the node. If such interfer-
ences are not synchronized across nodes, the application
will be slowed considerably as different processes are de-
layed. But with gang scheduling it is possible to run all
the daemons on the different nodes at the same time, and
eliminate their interference when user jobs are running.
When this is done, the full capabilities of the hardware
are achieved.

2.3 Parallel Job Scheduling and the Grid

More recently, parallel computers are becoming part of
a so called computational grid. The name grid has been

chosen in analogy to the electrical power grid where sev-
eral power plants provide numerous consumers with elec-
trical power without that the consumer is aware of the ori-
gin of the power he draws from the net. Similarly, it is
the goal of a computational grid or simply Grid to allow
users to run their jobs on any suitable computer belonging
to the Grid. This way the computational load is balanced
across many machines. Clearly, the Grid is mainly of in-
terest for large computational jobs or jobs using a large
data set as smaller jobs will usually run locally. How-
ever, the Grid is not restricted to this kind of jobs but will
cover a wide range of general services. Nevertheless at
the moment large computational jobs form the dominant
grid application.

Before addressing the scheduling problem in a grid it
is necessary to point out some differences between a par-
allel computer and the grid. A parallel computer has a
central resource management system that can control all
individual processors. However in a grid, the compute
resources typically have different owners and as in most
distributed systems there is no central control. There-
fore, a compute resource typically has its own local re-
source management system that implements the policy of
its owner. Hence, a grid scheduling architecture must be
built on top of those existing local resource management
systems. This requires communication between those dif-
ferent layers of the scheduling system in a grid [41, 49].
As in a distributed system the use of a central grid sched-
uler may result in a performance bottleneck and lead to
a failure of the whole system if the scheduler fails. It is
therefore appropriate to use a decentralized grid scheduler
architecture and distributed algorithms.

Further, grid resources are heterogeneous in hardware
and software which imposes constraints on the suitabil-
ity of a resource for a given job. In addition, not every
user may be accepted on every machine due to the imple-
mented owner policy. A grid scheduler must determine
which resources can be used for a specific submitted job
while such a problem is usually not encountered in a par-
allel processor or even in a cluster of computers [10, 12].
Moreover, the grid is subject to frequent changes as some
compute resources may be temporarily withdrawn from
the grid due to maintenance or privileged non-grid use on
request of the owner. To obtain these data, the grid sched-
uler needs a specific grid information service while the
necessary up-to-date information is always assumed to be
available in a parallel computer.

Today, the main purpose of grid computing is consid-
ered to be in the area of cross-domain load balancing. To
support this idea the Globus Toolbox provides basic ser-
vices that allow the construction of a grid scheduler. With
the help of those basic services grid schedulers are con-
structed that run on top of commercial resource manage-

4



ment systems, like LSF, PBS or Loadleveler. Further, ex-
isting Systems, like Condor [30, 38], are adapted to in-
clude grid scheduling abilities or allow integration with a
grid scheduler.

If a parallel computer is embedded in a grid, a large
variety of jobs from different users will be run on this ma-
chine. Then it will become increasingly difficult to imple-
ment the usage policy of an owner with the help of those
simple scheduling criteria that are used today, like utiliza-
tion and response time. Therefore, it can be assumed that
the grid will also change job scheduling strategies for par-
allel computers. However in practise such an effect has
not been observed yet.

Large grid application projects, like LCG, Datagrid,
GriPhyn, frequently include the construction of some grid
scheduler. Unfortunately, the scope of such a scheduler is
usually restricted to the corresponding application project.
On the other hand, there are academic projects that specif-
ically address scheduling issues like the generation, dis-
tribution and selection of resource offerings. To this end
various means are used, for instance economic methods.

In another approach, the job itself is responsible for its
scheduling. Then we speak of an application scheduler.
This is important for jobs which have a complex workflow
and are subject to complex parallelization constraints. For
example, this is the approach taken in the AppLes project
[7].

As a continuation of some metacomputing ideas it is
sometimes considered to use a computational grid as a
single parallel processor, where many computational re-
sources, that is parallel computers in the grid, are com-
bined to solve a single very large problem . In this situ-
ation, the network performance varies greatly from com-
munication within a parallel computer to communication
between two parallel computers. Some models have been
derived to evaluate the performance of so called multi site
computing [24, 4, 9, 11, 13]. However in practice, such
an approach has not been implemented with the possible
exception of the preplanned combination of a few specific
parallel computers for a specific purpose.

An important component of using the grid as a single
parallel resource is co-allocation [5, 4, 2, 43]. This means
that resources on several different machines need to be
allocated to the same job at the same time. This is hard
to accomplish due to the fact that the different resources
belong to different owners, and do not have a common
resource management infrastructure. The way to circum-
vent this problem is to try and reserve resources on the
different machines, and then to use them only if all re-
quired reservations are successful [44].

3 Parallel Job Scheduling Practice

3.1 Vendor Offerings

Commercial scheduling software for parallel jobs comes
in two types: portable, standalone systems, and compo-
nents in a specific system.

There are two main competitors in the market for
scheduling software. One is the Platform Computing
Load Sharing Facility (LSF), which is based on the Utopia
project [54]. The other is the Veridian Portable Batch Sys-
tem (PBS) [25]. Both provide similar functionality. In
particular, they provide support for various administrative
tasks, which is often lacking from research prototypes.

In addition, vendors of parallel supercomputers typi-
cally provide some sort of scheduling support with their
systems. This includes schedulers on the IBM SP, the
Cray Origin, and HP and Sun systems.

3.2 Actual Usage

In order to determine which job scheduling strategies for
parallel processors are actually applied in practice we con-
sidered the 50 most powerful parallel computers based on
actual Top500 list. Information about the strategies used
in each case where mainly retrieved from publicly avail-
able information sources like the web. In addition many
sites were contacted directly and asked to provide further
information.

Those parallel computers can be classified into 3
groups:

Parallel Vector ProcessorsOnly 4 of the computers be-
long to this class which consist of NEC’s Earth-
Simulator, the leader of the Top500 list, and 3 in-
stallations of a Cray X1.

Parallel ProcessorsAlmost 40% of the considered com-
puters are true parallel processors. Only 4 of them
are not of the types IBM SP Power3 or IBM pSeries
690.

Clusters There is a larger variety of types for clusters
although Xeon clusters clearly dominate with more
than 50% of all cluster installation among the con-
sidered computer systems.

3.2.1 Parallel Vector Processors

The Cray X1 installations all use the same scheduling sys-
tem consisting ofPBS Pro, a load balancer and a gang
scheduler. We were not able to obtain additional informa-
tion.

Scheduling is different for the Earth Simulator which
is currently the most powerful parallel processor accord-
ing to the Top500 list. The system uses a queue for small

5



batch requests (S-queue) and a queue for large batch re-
quests (L-queue) [48]. For the S-queue, ERS-II is used
as a scheduling system. Although ERS-II supports gang
scheduling this feature is not used for the S-queue. The L-
queue has a customized scheduler which does not support
gang scheduling. Further, the Earth Simulator scheduling
systems support backfilling and checkpointing.

3.2.2 Parallel Processors

Most IBM systems use LoadLeveler which supports back-
filling. Although LoadLeveler also allows job prioritiza-
tion, this is not mentioned as a feature in the description
of most installations. As most direct replies confirmed
job prioritization, we may assume that it is actually used
in most systems but nor explicitly mentioned. At least the
newer versions of LoadLeveler also support gang schedul-
ing which is also not found in most descriptions. How-
ever, at least the Max-Plank-Society in Germany explic-
itly states that gang scheduling is possible but not used.
This shows that at least some installations have decided
against gang scheduling.

The Lawrence Livermore National Labs have devel-
oped a home grown resource management system called
LCRM (Livermore Computing Resource Management
System) that supports backfilling, reservation, preemption
and gang scheduling. This system is used for the ASCI
White installation and for cluster installations at Lawrence
Livermore National Labs. The ASCI White system has
batch partition and an interactive partition but uses only a
single queue with 3 classes of jobs (expedited, normaland
stand-by). However, it does not currently use the preemp-
tion feature. The utilization is between 80% and 90%.

Reservation is also used in the installation at ECMWF
(European Centre for Medium-Range Weather Forecast).
Here, LoadLeveler is enhanced by a special job filter.
The system separates serial and parallel jobs by assign-
ing them to different classes (2 classes for serial jobs and
3 classes for parallel jobs). The utilization of this sys-
tem is between 94% and 97.5%. A similar utilization is
achieved on the above mentioned parallel processor of the
Max-Plank-Society with a more elaborate scheme of job
queues.

We were not able to obtain much information on non-
IBM parallel processors except that gang scheduling is
supported by the ASCI Red system consisting of Intel
Xeon processors and using the Paragon operating system.

3.2.3 Clusters

Various commercial resource management systems can
be found in cluster installations, including various form
of PBS [25] and LSF [54]. They are frequently com-
bined with the Maui scheduler [27]. As already mentioned

Lawrence Livermore National Labs use LCRM also for
their clusters. In many Linux clusters SLURM (Sim-
ple Linux Utility for Resource Management) is especially
used for low priority jobs [51]. The Pittsburgh Supercom-
puting Center has developed a custom scheduler called
Simon on top of OpenPBS in order to support a variety
of advanced scheduling features like advance reservation,
backfilling, and checkpointing.

In general, it can be stated that the scheduler of most
cluster installations support backfilling and job prioritiza-
tion. Gang scheduling, preemption, advance reservations
and checkpointing are more frequently found than in par-
allel processor installations. In most installations, almost
all computing nodes are in a single partition. There are
few exceptions. For instance the Pacific Northwest Na-
tional Lab has additional partitions for management and
user log-in nodes (4 nodes) as well as for the Lustre file
system nodes (34). However, these partitions are rela-
tively small in comparison to the total number of nodes
in the compute partition (940). The cluster at Los Alamos
National Labs also has file serving nodes that allow inter-
active access via LSF.

Los Alamos National Lab also uses more queues (8-9
active queues and 4-5 special purpose queues) than other
installations.In addition queues can be specifically set up
for a project. In other clusters users can submit their hobs
to at most 3 different queues.

The utilization of the systems depends on the applica-
tions and ranges from approximately 55% in 2003 (Los
Alamos National Lab) to 95% for the last 30 days (Pitts-
burgh Supercomputing Center).

References

[1] G. Alverson, S. Kahan, R. Korry, C. McCann, and
B. Smith, “Scheduling on the Tera MTA”. In
Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 19–44,
Springer-Verlag, 1995. Lect. Notes Comput. Sci.
vol. 949.

[2] S. Banen, A. I. D. Bucur, and D. H. J. Epema,
“A measurement-based simulation study of pro-
cessor co-allocation in multicluster systems”. In
Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn
(eds.), pp. 105–128, Springer Verlag, 2003. Lect.
Notes Comput. Sci. vol. 2862.

[3] A. Batat and D. G. Feitelson, “Gang scheduling with
memory considerations”. In 14th Intl. Parallel &
Distributed Processing Symp., pp. 109–114, May
2000.

6



[4] A. I. D. Bucur and D. H. J. Epema, “The influ-
ence of communication on the performance of co-
allocation”. In Job Scheduling Strategies for Par-
allel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 66–86, Springer Verlag, 2001. Lect. Notes
Comput. Sci. vol. 2221.

[5] A. I. D. Bucur and D. H. J. Epema, “The influence
of the structure and sizes of jobs on the performance
of co-allocation”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 154–173, Springer Verlag, 2000. Lect.
Notes Comput. Sci. vol. 1911.

[6] S-H. Chiang, A. Arpaci-Dusseau, and M. K. Ver-
non, “The impact of more accurate requested run-
times on production job scheduling performance”.
In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn
(eds.), pp. 103–127, Springer Verlag, 2002. Lect.
Notes Comput. Sci. vol. 2537.

[7] W. Cirne and F. Berman, “Adaptive selection of
partition size for supercomputer requests”. In
Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 187–207,
Springer Verlag, 2000. Lect. Notes Comput. Sci. vol.
1911.

[8] D. Das Sharma and D. K. Pradhan, “Job schedul-
ing in mesh multicomputers”. In Intl. Conf. Parallel
Processing, vol. II, pp. 251–258, Aug 1994.

[9] C. Ernemann, V. Hamscher, U. Schwiegelshohn,
A. Streit, and R. Yahyapour, “Enhanced Algorithms
for Multi-Site Scheduling”. In Proceedings of the
3rd International Workshop on Grid Computing,
Baltimore, Springer–Verlag, Lecture Notes in Com-
puter Science LNCS, 2002.

[10] C. Ernemann, V. Hamscher, U. Schwiegelshohn,
A. Streit, and R. Yahyapour, “On Advantages of
Grid Computing for Parallel Job Scheduling”. In
Proc. 2nd IEEE/ACM Int’l Symp. on Cluster Com-
puting and the Grid (CCGRID2002), IEEE Press,
Berlin, May 2002.

[11] C. Ernemann, V. Hamscher, A. Streit, and
R. Yahyapour, “On Effects of Machine Configura-
tions on Parallel Job Scheduling in Computational
Grids”. In International Conference on Architecture
of Computing Systems, ARCS, pp. 169–179, VDE,
Karlsruhe, April 2002.

[12] C. Ernemann, V. Hamscher, and R. Yahyapour,
“Economic Scheduling in Grid Computing”. In

Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn
(eds.), pp. 128–152, Springer Verlag, 2002. Lect.
Notes Comput. Sci. vol. 2537.

[13] C. Ernemann and R. Yahyapour,”Grid Resource
Management - State of the Art and Future Trends”,
chap. ”Applying Economic Scheduling Methods to
Grid Environments”, pp. 491–506. Kluwer Aca-
demic Publishers, 2003.

[14] Y. Etsion and D. G. Feitelson, “User-level commu-
nication in a system with gang scheduling”. In 15th
Intl. Parallel & Distributed Processing Symp., Apr
2001.

[15] D. G. Feitelson,Experimental Analysis of the Root
Causes of Performance Evaluation Results: A Back-
filling Case Study. Technical Report 2002–4, School
of Computer Science and Engineering, Hebrew Uni-
versity, Mar 2002.

[16] D. G. Feitelson, “Metric and workload effects on
computer systems evaluation”. Computer36(9),
pp. 18–25, Sep 2003.

[17] D. G. Feitelson,A Survey of Scheduling in Multi-
programmed Parallel Systems. Research Report RC
19790 (87657), IBM T. J. Watson Research Center,
Oct 1994.

[18] D. G. Feitelson and A. Mu’alem Weil, “Utilization
and predictability in scheduling the IBM SP2 with
backfilling”. In 12th Intl. Parallel Processing Symp.,
pp. 542–546, Apr 1998.

[19] D. G. Feitelson and L. Rudolph, “Gang schedul-
ing performance benefits for fine-grain synchroniza-
tion”. J. Parallel & Distributed Comput.16(4),
pp. 306–318, Dec 1992.

[20] D. G. Feitelson and L. Rudolph, “Parallel job
scheduling: issues and approaches”. In Job Schedul-
ing Strategies for Parallel Processing, D. G. Fei-
telson and L. Rudolph (eds.), pp. 1–18, Springer-
Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[21] E. Frachtenberg, D. G. Feitelson, J. Fernandez, and
F. Petrini, “Parallel job scheduling under dynamic
workloads”. In Job Scheduling Strategies for Par-
allel Processing, D. G. Feitelson, L. Rudolph, and
U. Schwiegelshohn (eds.), pp. 208–227, Springer
Verlag, 2003. Lect. Notes Comput. Sci. vol. 2862.

[22] E. Frachtenberg, D. G. Feitelson, F. Petrini, and
J. Fernandez, “Flexible coscheduling: mitigating

7



load imbalance and improving utilization of hetero-
geneous resources”. In 17th Intl. Parallel & Dis-
tributed Processing Symp., Apr 2003.

[23] E. Frachtenberg, F. Petrini, J. Fernandez, S. Pakin,
and S. Coll, “STORM: lightning-fast resource man-
agement”. In Supercomputing, Nov 2002.

[24] V. Hamscher, U. Schwiegelshohn, A. Streit, and
R. Yahyapour, “Evaluation of Job-Scheduling
Strategies for Grid Computing”. In Proc. 7th
Int’l Conf. on High Performance Computing, HiPC-
2000, pp. 191–202, Springer, Berlin, Lecture Notes
in Computer Science LNCS 1971, Bangalore, In-
dien, 2000.

[25] R. L. Henderson, “Job scheduling under the portable
batch system”. In Job Scheduling Strategies for Par-
allel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 279–294, Springer-Verlag, 1995. Lect.
Notes Comput. Sci. vol. 949.

[26] Intel Corp.,iPSC/860 Multi-User Accounting, Con-
trol, and Scheduling Utilities Manual. Order number
312261-002, May 1992.

[27] D. Jackson, Q. Snell, and M. Clement, “Core algo-
rithms of the Maui scheduler”. In Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson
and L. Rudolph (eds.), pp. 87–102, Springer Verlag,
2001. Lect. Notes Comput. Sci. vol. 2221.

[28] C. B. Lee, Y. Schwartzman, J. Hardy, and
A. Snavely, “Are user runtime estimates inherently
inaccurate?”. In 10th Job Scheduling Strategies for
Parallel Processing, Jun 2004.

[29] D. Lifka, “The ANL/IBM SP scheduling system”.
In Job Scheduling Strategies for Parallel Process-
ing, D. G. Feitelson and L. Rudolph (eds.), pp. 295–
303, Springer-Verlag, 1995. Lect. Notes Comput.
Sci. vol. 949.

[30] M. J. Litzkow, M. Livny, and M. W. Mutka, “Condor
- a hunter of idle workstations”. In 8th Intl. Conf.
Distributed Comput. Syst., pp. 104–111, Jun 1988.

[31] J. E. Moreira, W. Chan, L. L. Fong, H. Franke, and
M. A. Jette, “An infrastructure for efficient parallel
job execution in terascale computing environments”.
In Supercomputing’98, Nov 1998.

[32] R. Mraz, “Reducing the variance of point-to-point
transfers for parallel real-time programs”. IEEE
Parallel & Distributed Technology2(4), pp. 20–31,
Winter 1994.

[33] A. W. Mu’alem and D. G. Feitelson, “Utilization,
predictability, workloads, and user runtime esti-
mates in scheduling the IBM SP2 with backfill-
ing”. IEEE Trans. Parallel & Distributed Syst.
12(6), pp. 529–543, Jun 2001.

[34] J. K. Ousterhout, “Scheduling techniques for con-
current systems”. In 3rd Intl. Conf. Distributed
Comput. Syst., pp. 22–30, Oct 1982.

[35] F. Petrini and W-c. Feng, “Buffered coscheduling: a
new methodology for multitasking parallel jobs on
distributed systems”. In 14th Intl. Parallel & Dis-
tributed Processing Symp., pp. 439–444, May 2000.

[36] F. Petrini and W-c. Feng, “Time-sharing parallel jobs
in the presence of multiple resource requirements”.
In Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (eds.), pp. 113–136,
Springer Verlag, 2000. Lect. Notes Comput. Sci. vol.
1911.

[37] F. Petrini, D. J. Kerbyson, and S. Pakin, “The case of
missing supercomputer performance: achieving op-
timal performance on the 8,192 processors of ASCI
Q”. In Supercomputing, Nov 2003.

[38] J. Pruyne and M. Livny, “Parallel processing on dy-
namic resources with CARMI”. In Job Schedul-
ing Strategies for Parallel Processing, D. G. Feit-
elson and L. Rudolph (eds.), pp. 259–278, Springer-
Verlag, 1995. Lect. Notes Comput. Sci. vol. 949.

[39] U. Schwiegelshohn and R. Yahyapour, “Analysis of
First-Come-First-Serve Parallel Job Scheduling”. In
Proceedings of the 9th SIAM Symposium on Discrete
Algorithms, pp. 629–638, January 1998.

[40] U. Schwiegelshohn and R. Yahyapour, “Fairness in
Parallel Job Scheduling”. Journal of Scheduling,
3(5):297-320. John Wiley, 2000.

[41] U. Schwiegelshohn and R. Yahyapour,”Grid Re-
source Management - State of the Art and Fu-
ture Trends”, chap. ”Attributes for Communication
Between Grid Scheduling Instances”, pp. 41–52.
Kluwer Academic Publishers, 2003.

[42] E. Shmueli and D. G. Feitelson, “Backfilling with
lookahead to optimize the performance of paral-
lel job scheduling”. In Job Scheduling Strate-
gies for Parallel Processing, D. G. Feitelson,
L. Rudolph, and U. Schwiegelshohn (eds.), pp. 228–
251, Springer-Verlag, 2003. Lect. Notes Comput.
Sci. vol. 2862.

8



[43] J. M. P. Sinaga, H. H. Mohammed, and
D. H. J. Epema, “A dynamic co-allocation service
in multicluster systems”. In 10th Job Scheduling
Strategies for Parallel Processing, Jun 2004.

[44] Q. Snell, M. Clement, D. Jackson, and C. Gregory,
“The performance impact of advance reservation
meta-scheduling”. In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 137–153, Springer Verlag, 2000. Lect.
Notes Comput. Sci. vol. 1911.

[45] S. Srinivasan, R. Kettimuthu, V. Subramani, and
P. Sadayappan, “Selective reservation strategies
for backfill job scheduling”. In Job Scheduling
Strategies for Parallel Processing, D. G. Feitelson,
L. Rudolph, and U. Schwiegelshohn (eds.), pp. 55–
71, Springer-Verlag, 2002. Lect. Notes Comput. Sci.
vol. 2537.

[46] D. Talby and D. G. Feitelson, “Supporting priorities
and improving utilization of the IBM SP scheduler
using slack-based backfilling”. In 13th Intl. Parallel
Processing Symp., pp. 513–517, Apr 1999.

[47] D. Tsafrir. in preparation.

[48] A. Uno, T. Aoyagi, and K. Tani, “Job scheduling on
the earth simulator”. NEC Res. & Develop.44(1),
pp. 47–52, Jan 2003.

[49] U. Schwiegelshohn and R. Yahyapour,
“GGF-GFD.6: Attributes for Commu-
nication between Scheduling Instances”.
http://www.ggf.org/documents/GFD/GFD-I-6.pdf,
Dec 2001.

[50] Y. Wiseman and D. G. Feitelson, “Paired gang
scheduling”. IEEE Trans. Parallel & Distributed
Syst.14(6), pp. 581–592, Jun 2003.

[51] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM:
simple Linux utility for resource management”. In
Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn
(eds.), pp. 44–60, Springer Verlag, 2003. Lect. Notes
Comput. Sci. vol. 2862.

[52] Y. Zhang, H. Franke, J. Moreira, and A. Siva-
subramaniam, “An integrated approach to parallel
scheduling using gang-scheduling, backfilling, and
migration”. IEEE Trans. Parallel & Distributed
Syst.14(3), pp. 236–247, Mar 2003.

[53] Y. Zhang, H. Franke, J. E. Moreira, and A. Siva-
subramaniam, “Improving parallel job scheduling

by combining gang scheduling and backfilling tech-
niques”. In 14th Intl. Parallel & Distributed Pro-
cessing Symp., pp. 133–142, May 2000.

[54] S. Zhou, X. Zheng, J. Wang, and P. Delisle, “Utopia:
a load sharing facility for large, heterogeneous dis-
tributed computer systems”. Software — Pract. &
Exp.23(12), pp. 1305–1336, Dec 1993.

[55] D. Zotkin and P. J. Keleher, “Job-length estimation
and performance in backfilling schedulers”. In 8th
Intl. Symp. High Performance Distributed Comput.,
Aug 1999.

9


