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Abstract

Available grid technologies like the Globus Toolkit
[18] make possible for one to run a parallel applica-
tion on resources distributed across several adminis-
trative domains. Most grid computing users, however,
don’t have access to more than a handful of resources
onto which they can use this technologies. This hap-
pens mainly because gaining access to resources still
depends on personal negotiations between the user and
each resource owner of resources. To address this prob-
lem, we are developing the OurGrid resources sharing
system, a peer-to-peer network of sites that share re-
sources equitably in order to form a grid to which they
all have access. The resources are shared accordingly to
a network of favors model, in which each peer priori-
tizes those who have credit in their past history of inter-
actions. The emergent behavior in the system is that
peers that contribute more to the community are pri-
oritized when they request resources. We expect, with
OurGrid, to solve the access gaining problem for users
of bag-of-tasks applications (those parallel applications
whose tasks are independent).

1 Introduction

To use grid computing, a user must assemble a grid.
A user must not only have the technologies to use grid
computing, but also, she must have access to resources
on which she can use these technologies. For example,
to use resources through the Globus Toolkit [18], she

must have access, i.e., permission to use resources on
which Globus is installed.

Today, the access gaining to grid resources is done
via personal requests from the user to each resource’s
owner. To run her application on the workstations of
some laboratories in a university, a user must convince
the system administrator of each laboratory to give her
access to their system’s workstations. When the re-
sources the user wishes to use cross institutional bound-
aries, the situation gets more complicated, as possibly
different institutional policies come in. Thus, is very
difficult for one to gain access to more than a hand-
ful of resources onto which she can use grid computing
technologies to run her applications.

As resource owners must provide access to their re-
sources to allow users to form grids, there must be in-
terest in providing resources to grid users. Also, as
several grid users may demand the same resource simul-
taneously, there must be mechanisms for dealing with
conflicting requests for resources, arbitrating them. As
this problem can be seen as an offer and demand prob-
lem, approaches to achieve this have been based on
grid economy [2, 9, 29, 6], which means using, in grids,
economic models from real markets.

Although models that mimic real markets have the
mechanisms to solve the problems of a grid’s offer and
demand, they rely on a yet-not-available infrastructure
of electronic monetary transactions. To make possible
for users to securely verify what they have consumed
and pay for it, there must be mature and well deployed
technologies for electronic currency and banking. As
these technologies are not widely deployed yet, the ac-



tual use of the economic mechanisms and architectures
in real settings is postponed until the technologies are
mature and the infrastructure needed to use them is
available.

Nevertheless, presently there exists demand for grids
to be used in production. Aiming to provide, in short
term, an infrastructure that addresses this demand for
an expressive set of users, we are developing OurGrid.
The OurGrid design is based on a model of resource
sharing that provides equity with a minimum of guar-
anties needed. With it, we aim to provide an easy to
install, open and extensible platform, suitable for run-
ning a useful set of grid applications for users willing
to share their resources in order to obtain access to the
grid.

Namely, the type of application for which OurGrid
intends to provide resources to are those parallel appli-
cations whose task are loosely coupled known as bag-of-
tasks (BoT) applications [26]. BoT are those parallel
applications composed of a set of independent tasks
that need no communication among them during ex-
ecution. Many applications in areas such as compu-
tational biology [27], simulations, parameter sweep [3]
and computer imaging [25, 24] fit into this definition
and are useful to large communities of users.

Additionally, from the research perspective, there
exists demand for understanding grid usage require-
ments and patterns in real settings. With a system
such as OurGrid in production for real users, we will
be able to gather valuable information about the needs
and habits of grid users. This allows us to both provide
better guidance to future efforts in more general solu-
tions and to collect important data about grids’ usage,
like workloads, for example.

The remaining of this paper is structured in the
following way. In Section 2 we go into further de-
tails about the grid assembling problem, discussing re-
lated works and presenting our approach. We discuss
how BoT applications are suitable for running with re-
sources provided by OurGrid in Section 3. Section 4
describes the design of OurGrid and the network of fa-
vors model. An evaluation of the system is discussed
in Section 5. In Section 6 we expose the future steps
planned in the OurGrid development. Finally, we make
our concluding remarks in Section 7.

2 Assembling a grid

In a traditional system, like a LAN or a parallel su-
percomputer, a user obtains access to resources by ne-
gotiating with the resources’ owner the right to access
them. Once access is granted, the system’s adminis-
trator configures to the user a set of permissions and

priorities. Although this procedure is still used also in
grid computing, due to grid’s inherent wide distribu-
tion, spawning across many administrative boundaries,
this approach is not suitable.

Grid computing aims to deal with large, heteroge-
neous and dynamic users and resources sets [17]. More-
over, if we are to build large scale grids, we must be
able to form them with mutually untrusted and even
unknown parts. In this scenario, however, it is very dif-
ficult to an ordinary user to obtain access to more than
a small set of services whose owners are known. As grid
computing aims to provide access to large quantities of
resources widely distributed, giving the users the pos-
sibility of accessing only small quantities of resources
means neglecting the potential of grid computing.

The problem of assembling a grid also raises some
issues from the resource providers’ perspective. Sup-
pose a very simple scenario where just two institutions,
A and B, want to create a grid joining their resources.
Both of them are interested in having access to as many
processors as possible. Also, both of them shall want
some fairness in the sharing. Probably both of them
will want to assure that they will not only give access
to their resources to the other institution’s users, but
also that its users will access the other institution’s
resources, maybe in equal proportions. Existing solu-
tions in grid computing allow these two institutions to
define some policies in their resource sharing, creating
static constraints and guarantees to the users of the
grid [15, 28, 12]. However, if a third institution C joins
the grid, new agreements must be negotiated between
the institutions and configured on each of them. We
can easily see that these mechanisms are neither scal-
able nor flexible enough to the large scale grids scenar-
ios.

2.1 Related work

Although grid computing is a very active area of re-
search, until recently, research efforts in the dynamic
access gaining to resources did not exist. We attribute
this mainly to the recentness of grid computing, that
has made necessary to postpone the question of access
gaining until the technologies needed to use grids ma-
tured.

Past efforts have been spent in defining mechanisms
that support static access policies and constraints to
allow the building of metacomputing infrastructures
across different administrative domains like in the Con-
dor system [28] and in the Computational Co-op [12].

Since 1984 the Condor system has used different
mechanisms for allowing a Condor user to access re-
sources across institutional boundaries. After trying



to use institutional level agreements [16], Condor was
changed to a user-to-institution level [28], to provide
flexibility, as requested by its users. Recently, it was
perceived also that interoperability with grid middle-
wares was also needed, and a new architecture for ac-
cessing grid resources was developed [19]. Although it
has not dealt with dynamic access gaining, the Condor
project has made valuable contributions to understand-
ing the needs of users in accessing and using the grid.

The Computational Co-op defined a mechanism
for gathering sites in a grid using cooperatives as a
metaphor. This mechanism allows all sites to control
how much of their resources are being used by the
grid and provides guarantees on how much resource
from the grid it can use. This is done through a
proportional-share ticket-based scheduler. The tick-
ets are used by users to access both local and grid
resources, obtaining priorities as they spend the tick-
ets. However, both the need of negotiations between
the owners of the sites to define the division of the
grid tickets and the impossibility of tickets transfers or
consumption makes the Co-op not flexible enough to
environments as dynamic as grids. Moreover, just as
e-cash, it depends on good cryptography infrastructure
to make sure that tickets are not forged.

Recent effort related to access gaining in grid com-
puting is the research on grid economy. Namely,
the Grid Architecture for Computational Economy
(GRACE) [8], the Nimrod/G system [2] and the Com-
pute Power Market [9] are related to our work. The
GRACE is an abstract architecture that supports dif-
ferent economic models for negotiating access to grid
resources. Nimrod/G is a grid broker for the execu-
tion of parameter sweep applications that implements
GRACE concepts, allowing a grid client to negotiate
access to resources paying for it. The Compute Power
Market aims to provide access to resources in a de-
centralized manner, through a peer-to-peer network,
letting users pay in cash for using grid resources. An
important point to note in these approaches is that for
allowing negotiations between service consumers and
providers using secure global currencies as proposed by
Nimrod/G and Compute Power Market, an infrastruc-
ture for the secure negotiation, payments and banking
must be deployed. The level of maturity of the basis
technologies — as, for example, secure and well de-
ployed electronic money — makes necessary to post-
pone the use of economic-based approaches in real sys-
tems.

2.2 OurGrid approach

The central point of OurGrid is the utilization of
assumptions that, although more restrictive to the sys-
tem’s usefulness, are easier to satisfy than those of ex-
isting systems based on grid economy. Our assump-
tions about the environment in which the system will
operate are that (i) there are at least two peers in the
system willing to share their resources in order to ob-
tain access to more resources and (ii) the applications
that will be executed using OurGrid need no quality
of service (QoS) guarantees. With these assumptions,
we aim to build a resource sharing network that pro-
motes equity in the resources sharing. By equity we
mean that participants in the network which have do-
nated more resources are prioritized when they ask for
resources.

With the assumption that there will be at least two
resource providers in the system, we ensure that there
will exist participants in the system which own re-
sources whose access can be exchanged. This makes
possible the use of an exchange based economic model,
instead of the more commonly used price based models
2, 9].

By assuming that there are no requirements for QoS
guarantees, we put aside negotiations, once providers
need not to negotiate a product whose characteristics
won’t be guaranteed. Without negotiations, it becomes
unnecessary that participants even agree on values for
the resources allocated and consumed. This simplifies
the process, once consumers don’t have to verify that
an agreed value was really consumed and providers
don’t have to assure that resources are provided as
agreed.

Actually, in this way we are building the simplest
form of an exchanged based economic model. As
there’s no negotiation, every participant does favors
expecting to be reciprocated, and, in conflicting situ-
ations, prioritizes those who have done favors to it in
the past. The more a participant offers, the more it
expects to be rewarded. There are no negotiations or
agreements, however. Each participant accounts its fa-
vors only to himself, and cannot expect to profit from
them in other way than getting other participants to
make him favors.

As there is no cost in donating idle cycles — as they
will be forever lost if not consumed instantaneously —,
a participant in the model can only gain from donat-
ing them. As, by our first assumption, there exists at
least one other participant which is sharing her idle re-
sources, donating implies in eventually benefiting from
accessing extra resources.

As we shall see, from the local behavior of all partic-



ipants, the emergent behavior of the system promotes
equity in the arbitration of conflicting requests for the
shared resources in the system. An important point
is that the absence of QoS guarantees makes impossi-
ble to guarantee equity in the resource sharing. The
system can’t guarantee that a user will access enough
resources to compensate the amount she donated to
the community, because it can’t guarantee that there
will ever be available resources for the time needed. As
such, we propose a system that aims not to guarantee,
but to promote the resource sharing equity. Promot-
ing equity means trying, via a best-effort strategy, to
achieve equity.

The proposed assumptions about the system ease
the development and deployment of OurGrid, restrict-
ing, in turn, its utility. The necessity of the partici-
pants to own resources excludes users that don’t own
any resources, but are willing to pay (e.g. in cash)
to use the grid. Also, the absence of QoS guarantees
makes impossible the advance reservation of resources
and, consequently, preclude mechanisms that provide
synchrony to the execution of parallel applications that
need communication between tasks.

We believe, however, that even with this restrictions,
OurGrid will still be very useful. OurGrid delivers ser-
vices that are suitable to the bag-of-tasks class of ap-
plications. As stated before, these applications are rel-
evant to many areas of research, being interesting to
many users.

3 Bags-of-tasks applications

Due to the independence of their tasks, BoT appli-
cations are especially suited for execution on the grid,
where both failures and slow communication channels
are expected to be more frequent than in conventional
platforms for the execution of parallel applications.
Moreover, we argue that this class of applications can
be successfully executed without the need of QoS guar-
antees, as in the OurGrid scenario.

A BoT application can perform well with no QoS
guarantees as it (i) does not need any synchronization
between tasks, (ii) has no dependencies between tasks
and (iii) can tolerate faults caused by resources unavail-
ability with very simple strategies. Example of such
strategies to achieve fault tolerance in the OurGrid sce-
nario are replication of tasks in multiple resources or
the simple re-submition of tasks that failed to execute
[22, 25]. As such, this class of application can cope
very well with resources that neither are dedicated nor
can have their availability guaranteed, as failure in the
execution of individual tasks does not impact on the
execution of the other tasks.

Besides performing well with our assumptions, an-
other characteristic of BoT applications that matches
our approach is their users work cycle. Experience says
that, once the application is developed, users usually
carry out the following cycle: (a) plan details of the
computation, (b) run the application, (c) examine the
results, (d) restart cycle. Planning the details of the
computation means spending the time needed to de-
cide the parameters to run the application. Often, a
significant amount of time is also needed to process
and understand the results produced by a large scale
computation.

As such, during the period in which a user is run-
ning her BoT application, she wants as much resources
as possible, but during the other phases of her working
cycle, she leaves her resources idle. These idle resources
can be provided to other users to grant, in return, ac-
cess to other users’ resources, when needed. An ex-
ample of this dynamic for two BoT application users
is illustrated in Figure 1. In this Figure, the users
use resources both local and obtained from the grid
— which, in this case, are only the other user’s idle
resources — whenever they need to run their BoT ap-
plications. Note that whenever a user needs her own
resources, it has priority over the foreign user.
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Figure 1. Idle resource sharing between two
BoT users

Another point to note is that, as resources are het-
erogeneous, a user might not own the resources she
needs to run an application that poses constraints on
the resources it needs. For example, a user can own
machines running both Linux and Solaris. If she wants
to run an application that can run only on Solaris, she
won’t be able to use all of her resources. As such, it is
possible for a user to share part of her resources while
consuming other part, maybe in addition to resources
from other users.

In this way, we believe that expecting BoT appli-
cations users to share some of their resources in or-
der to gain access to more resources is very plausible.
As stated before, this kind of exchange can be car-
ried out without any impact to the resources owners,



because there are exchanged only resources that other-
wise would be idle. In return, they get extra resources
when needed to run their applications.

4 OurGrid

Based on the discussed approach we intend to de-
velop OurGrid to work as a peer-to-peer network of
resources owned by a community of grid users. By
adding resources to the peer-to-peer network and shar-
ing them with the community, a user gains access to
all the available resources on it. All the resources are
shared respecting each provider’s policies and OurGrid
strives to promote equity in this sharing.

A user accesses the grid through the services pro-
vided by a peer, which maintains communication with
other peers and uses the community services (e.g.
application-level routing and discovery) to access them,
acting as a grid broker to its users. A peer P will
be accessed by native and foreign users. Native users
are those who access the OurGrid resources through
P, while foreign users have access to P’s resources via
other peers.

A peer is both a consumer and a provider of re-
sources. When a peer P is making a favor in response
to a request from a peer @, P is acting as a provider
of resources to ), while @) is acting as a consumer of
P’s resources.

OurGrid network architecture is shown in Figure 2.
Clients are software used by the users to access the
community resources. A client is at least an applica-
tion scheduler, possibly with extra functionalities. Ex-
amples of such clients are MyGrid [14, 13], APST [10],
Nimrod/G [3] and AppLeS [7].

We plan to provide access, through OurGrid, to dif-
ferent resource types. In Figure 2, for example, the
resources of type A could be clusters of workstations
accessed via Globus GRAM, the type B resources could
be parallel supercomputers and type C resources could
be workstations running MyGrid’s UserAgent [14].

Although resources of any granularity (i.e. work-
stations, clusters, entire institutions, etc.) can be en-
capsulated in an OurGrid peer, we propose them to
manage access to whole sites instead of to individual
resources. As resources are often grouped in sites, using
this granularity in the system will give us some advan-
tages: (1) the number of peers in the system diminishes
considerably, improving the performance of searches;
(ii) the system’s topology becomes closer to its net-
work infrastructure topology, alleviating traffic prob-
lems found in other peer-to-peer systems [23]; and (iii)
the system becomes closer to the real ownership distri-
bution of the resources, as they are, usually grouped in

O OurGrid peer

Type A resource
@ Type B resource

E Type C resource

Figure 2. OurGrid network architecture

sites, each with its proper set of users and owners.

Finally, an OurGrid community can be part of a
larger set of resources that a user has access to, and
users can be native users of more than one peer, either
in the same or in different communities.

In the rest of this section, we describe in details the
key aspects of OurGrid design. In Subsection 4.1 we
present the model accordingly to which the resources
are shared, the network-of-favors. Subsection 4.2 de-
picts the protocol used to gain access to the resources
of an OurGrid community.

4.1 Thenetwork of favors

All resources in the OurGrid network are shared in a
network of favors. In this network of favors, allocating
a resource to a requesting consumer is a favor. As
such, it is expected that the consumer becomes in debt
with the owner of the consumed resources. The model
is based on the expectation that its participants will
reciprocate favors to those consumers they are in debt
with, when solicited. If a participant is not perceived
to be acting in this way, it is gradually less prioritized,
as its debt grows.

Every peer in the system keeps track of a local bal-
ance for each known peer, based on their past inter-
actions. This balance is used to prioritize peers with
more credit when arbitrating conflicting requests. For
a peer p, all consumption of p’s resources by another
peer p' is debited from the balance for p’ in p and all
resources provided by p’ to p is credited in the balance
p maintains for p’.

With all known peers’ balances, each participant can



maintain a ranking of all known participants. This
ranking is updated on each provided or consumed fa-
vor. The quantification of each favor’s value is done
locally an independently — as negotiations and agree-
ments aren’t used —, serving only to the decisions of
future resource allocations of the local peer. As the
peers in the system ask each other favors, they gradu-
ally discover which participants are able to reciprocate
their favors, and prioritize them, based on their debt
or credit.

As a consequence, while a participant prioritizes
those who cooperate with him in satisfactory ways,
it marginalizes the peers who, for any reason, do
not reciprocate the favors satisfactorily. The non-
reciprocation can happen for many reasons, like, for
example: failures on services or on the communication
network; the absence of the desired service in the peer;
or the utilization of the desired service by other users
at the moment of the request. Free-rider [4] peers may
even choose not to reciprocate favors. In all of this
cases, the non-reciprocation of the favors gradually di-
minishes the probability of the peer to access the grid’s
resources.

Note that our mechanism of prioritizing intends to
solve only conflicting situations. It is expected that, if
a resource is available and idle, any user can access it.
In this way, an ordinary user can, potentially, access all
the resources in the grid. Thus, users that contribute
very little or don’t contribute can still access the re-
sources of the system, but only if no other peer that
has more credit requests them. The use of idle and not
requested resources by peers that don’t contribute (i.e.,
free-riders) actually maximizes the resource utilization,
and does not harm the peers who have contributed with
their resources.

Another interesting point is that our system, as con-
ceived, is totally decentralized and composed of au-
tonomous entities. Each peer depends only on its local
knowledge and decisions to be a part of the system.
This characteristic greatly improves the adaptability
and robustness of the system, that doesn’t depend on
coordinated actions or global views [5].

4.2 TheOurGrid resource sharing protocol

To communicate with the community, gain access to,
consume and provide resources, all peers use the Our-
Grid resource sharing protocol. Note that the protocol
concerns only the resource sharing in the peer-to-peer
network. We consider that the system uses lower-level
protocols to other necessary services, such as peers dis-
covery and broadcasting of messages. An example of a
platform that provides these protocols is the JXTA [1]

project.

The three participants in the OurGrid resource shar-
ing protocol are clients, consumers and a providers. A
client is a program that manages to access the grid
resources and to run the application tasks on them.
OurGrid will be one of such resources, transparently
offering computational resources to the client. As such,
a client may (i) access both OurGrid peers and other
resources directly, such as Globus GRAM [15] or a Con-
dor Pool [28]; and (ii) access several OurGrid peers
from different resource sharing communities. We con-
sider that the client encompasses the application sched-
uler and any other domain-specific module needed to
schedule the application efficiently.

A consumer is the part of a peer which receives re-
quests from a user’s client to find resources. The con-
sumer is used first to request resources to providers
that are able and willing to do favors to it, and, af-
ter obtaining them, to execute tasks on the resources.
Providers are the part of the peers which manages the
resources shared in the community and provides them
to consumers.

As illustrated in Figure 3, every peer in the com-
munity has both a consumer and a provider mod-
ules. When a consumer receives a request for resources
from a local user’s client, it broadcasts to the peer-to-
peer network the desired resources’ characteristics in a
ConsumerQuery message. The resources’ character-
istics are the minimum constraints needed to execute
the tasks this ConsumerQuery message is referring to.
It is responsibility of the client to discover this charac-
teristics, probably asking this information to the user.
Note that as it is broadcasted, the ConsumerQuery
message also reaches the provider that belongs to the
same peer the consumer does.

All providers whose resources match the re-
quested characteristics and are available (accordingly
to their local policies) reply to the requester with a
ProviderW ork Request message. The set of replies re-
ceived up to a given moment defines the grid that has
been made available for the client request by the Our-
Grid community. Note that this set is dynamic, as
replies can arrive later, when the resources needed to
satisfy the request became available at more providers.

With the set of available resources, it is possi-
ble for the consumer peer to ask for its client to
schedule tasks onto them. This is done sending
a ConsumerSchedule Request message containing all
known available providers. The application scheduling
step is kept out of the OurGrid scope to allow the user
to select among existing scheduling algorithms [11, 22]
the one that optimizes her application accordingly to
her knowledge about the characteristics of the applica-
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tion.

Once the client has scheduled any number of tasks to
one or more of the providers who sent ProviderW ork-
Request messages, it sends a ClientSchedule message
to the consumer to which it requested the resources.
As each peer represents a site, owning a set of re-
sources, the ClientSchedule message can contain ei-
ther a list of ordered pairs (task,provider) or a list
of tuples (task,provider,processor). It is up to the
client deciding how to format its ClientSchedule mes-
sage. All tasks are sent through the consumer and not
directly from the client to the provider, to allow the
consumer to account its resource consumption.

To each provider P, in the ClientSchedule mes-
sage, the consumer then sends a Consumer Favor mes-
sage containing the tasks to be executed in P,, with all
the data needed to run it. If the peer who received
the Consumer Favor message finishes its tasks success-
fully, it then sends back a ProviderFavor Report mes-
sage to the corresponding consumer. After concluding
each task execution, the provider also updates its lo-
cal rank of known peers, subtracting the accounting
it made of the task execution cost from the consumer
peer’s balance. The consumer peer, on receiving the
ProviderFavor Report, also updates its local rank, but
adding the accounting it made of the reported tasks
execution cost to the provider balance. Note that the
consumer may either trust the accounting sent by the
provider or make its own autonomous accounting.

While a provider owns available resources that
match the request’s constraints and is willing to do fa-
vors, it keeps asking the consumer for tasks. A provider
may decide not to continue making favors to a con-
sumer in order to prioritize another requester who is

upper in its ranking. The provider also decides to
stop requesting tasks if it receives a message from the
consumer informing that there are no tasks left to
schedule or if it receives no response from a task re-
quest. Note that, after the first broadcast, the flow
of requests is from the providers to the consumer. As
the ProviderW orkRequest messages are the signal of
availability, we alleviate the consumer from the task of
managing the state of its current providers.

In Figure 4, a sequence diagram for an interaction
between a consumer and two providers is shown. The
provider providerl makes a favor to consumer, but
provider2 either is unable or has decided not to provide
any resources to consumer.
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’, Provider\WorkRequest
|
|
]
|
I
|

| providerl | | provider2 |
T T

ClientScheduleRequest

ClientSchedule

ConsumerFavor

ProviderFavorReport

DACD.BSUIDELEEMD.LE.EHDH_

ProviderWorkRequest

Figure 4. Sequence diagram for a consumer
and two providers interaction

Although an OurGrid network will be an open sys-
tem, potentially comprised by different algorithms and
implementations for its peers, we present in the follow-
ing sections examples of expected correct behaviors for
both the peer’s provider and consumer. The algorithms
intend to exemplify and make clearer how should a peer
behavior to obtain access to the community’s shared
resources.

4.2.1 Provider algorithm

A typical provider runs three threads: the receiver, the
allocator and the executor. The receiver and the allo-
cator execute continuously, both of them access, add,
remove and alter elements of the list of received re-
quests and of known peers. The executor is instanti-
ated by the allocator to take care of individual tasks
execution and accounting.

The receiver thread keeps checking for received re-
quests. For each of the requests received, it verifies if
the request can be fulfilled with the owned resources.
It does so by verifying if the provider owns resources
to satisfy the request’s requirements, no matter if they
are available or not, accordingly to the peer’s sharing



policies. If the consumer request can be satisfied, the
receiver adds it to a list of received requests. There are
two such lists, one for requests issued by local users and
another one for those issued by foreign users. This al-
lows us to prioritize local users requests in the schedul-
ing of tasks to the local resources. The allocator thread
algorithm is shown in Algorithm 1.

While executing, the allocator thread continuously
tries to satisfy the received requests with the available
resources. It tries to find first a request from a local
user which can be fulfilled, and if there’s none, it tries
the same with the community requests received.

The function getLocalRequestRanked(), in line la-
beled 2, returns the request with the specified posi-
tion in the priority ranking, accordingly to a local set
of policies. The policies can differ from peer to peer,
but examples of local prioritizing policies would be
FIFO or to prioritize the users who consumed less in
their past histories. The function getCommunityRe-
questRanked(), in line labeled 5, does the same thing,
but for the community requests. It must be based on
the known peers balances, that serve as a ranking to
prioritize these requests.

On lines labeled 3 and 6, the allocator verifies if
the resources necessary specified to fulfill the request
passed as a parameter are available, according to the
local policies of availability. If some request was chosen
to be answered in this iteration of the main loop, the
allocator decides which resources will be allocated to
this request (line labeled 7) and sends a message asking
for tasks to execute.

If it receives tasks to execute, it then schedule the re-
ceived tasks on the resources allocated to that request.
This is done on the ezecute() function, which creates
a provider executor thread for each task that will be
executed. The executor first sets up the environment
in which the task will execute. To set up the environ-
ment means to prepare any necessary characteristics
specified by the local policies of security. For example,
it could mean to create a directory with restricted per-
missions or with restricted size in which the task will
execute.

After the task is effectively executed and its results
have been collected and sent back, the executor must
update the credit of the consumer peer. The quanti-
fying function may differ from peer to peer. A sim-
ple example of how it could be done is to sum up
all the CPU time used by the task and multiply it
by the CPU speed, in MIPS. Once the peer has es-
timated the value of the favor it just made, it updates
the knownPeersBalances list, decreasing the respec-
tive consumer balance.

For simplicity, we are considering here that our

provider’s allocator scheduling is non-preemptive.
However, it is reasonable to expect that, to avoid im-
pacting on interactive user of the shared resources, a
provider may suspend or even kill tasks from foreign
users.

4.2.2 Consumer algorithm

As we did with the provider, this section will discuss a
simple yet functional version of a consumer algorithm.
The consumer runs three threads: the requester, the
listener and the remote executor. The requester re-
sponsibility is to broadcast client requests it receives
as ConsumerQuery messages.

After the ConsumerQuery message for a given
Client Request message has been sent, the consumer
listener thread starts waiting for its responses. It re-
ceives all the ProviderWorkRequest messages sent to
the peer, informing that the resources are available to
the Client as they arrive.

Each instance of the remote executor thread, as il-
lustrated in Algorithm 2, is responsible for sending a
set of tasks to a provider, waiting for the responses and
updating the balance of this provider in the local peer.
The quantification is shown on line labeled 1, and may
differ from peer to peer. Examples of how it can be
performed may vary from simply using the accounting
sent by the provider to more sophisticated mechanisms,
such as sending a micro-benchmark to test the resource
performance, collect the CPU time consumed and then
calculating the favor cost as a function of both. Yet
another possibility is to estimate the task size, maybe
asking the user this information, and then assigning a
cost based on this size to each task execution.

The provider’s balance is updated on line labeled 2.
Note that the usage is added to the provider’s balance,
while in the provider’s executor it was deducted.

5 Evaluation

In this section we show some preliminary results
from simulations and analytical evaluation of the Our-
Grid system. Note that, due to its decentralized and
autonomous nature, characterizing the behavior of an
OurGrid community is quite challenging. Therefore, at
this initial moment, we base our analysis on a simpli-
fied version of OurGrid, called OurGame. OurGame
was designed to capture the key features of OurGrid,
namely the system-wide behavior of the network of fa-
vors and the contention for finite resources. The sim-
plification consists of grouping resource consumption
into turns. In a turn, each peer is either a provider or
a consumer. If a peer is a consumer, it tries to consume



Data
while true do

: communityRequests, localRequests, knownPeersCredits, localPriorityPolicies

chosen = null ;
/* local users’ requests are prioritized over the community’s */;
1 if localRequests.length > 0 then
rank = 1 ;
repeat
2 actual = getLocalRequestRanked( localRequests, localPriorityPolicies, rank++ );
3 if isResourceToSatisfyAvailable( actual ) then
| chosen = actual ;
end
until ( chosen = null ) || ( rank > local Requests.length) ;
end
/* if there’s no local user’s request which can be satisfied */;
4 if ( chosen == null ) &6 ( communityRequests.lenght > 0 ) then
rank =1 ;
repeat
5 actual = getCommunityRequestRanked( communityRequests, knownPeersBalances, rank++ );
6 if isResourceToSatisfyAvailable( actual ) then
chosen = actual ;
7 resourcesToAllocate = getResourcesToAllocateTo( chosen );
end
until ( chosen != null ) || ( rank > communityRequests.length) ;
end
/* actually allocate resource to the chosen task */;
8 if chosen = null then
9 send( chosen.SrcPeerID, ProviderWorkRequest ) ;
receivedMessage = receiveConsumerFavorMessage( timeout ) ;
if receivedMessage != null then
receivedTasks = getTasks( receivedMessage );
foreach task in receivedTasks do
10 | execute( tasks, resourcesToAllocate );
end
else
11 if isRequestLocal( chosen ) then
| localRequests.remove( chosen ) ;
else
12 | communityRequest.remove( chosen ) ;
end
end
end
end

Algorithm 1: Provider’s allocator thread algorithm

all available resources. If a peer is a provider, it tries to
allocate all resources it owns to the current turn con-
sumers. In short, OurGame is a repeated game that
captures the key features of OurGrid and allows us to
shed some light over its system-wide behavior.

5.1 OurGame

Our system in this model is comprised of a commu-
nity of n peers represented by a set P = {p1,pa, ..., pn }-
Each peer pp owns a number r; of resources. All re-
sources are identical, but the amounts in each peer may
be different. Each peer can be in one of two states:
provider or consumer. When it is in the provider state,
it is able to provide all its local resources, while in the
consumer state it sends a request for resources to the
community. We consider that when a peer is in the
consumer state it consumes all its local resources and,
as such, it cannot provide resources to the community.

All requests sent by the consumers are equal, request-
ing as much resources as can be provided.

A peer Dk is a tuple
{id,r, state, ranking, p, allocationStrategy}. The
id field represents this peer identification, to be
used by other peers to control its favor balance. As
stated before, r represents p;’s amount of resources,
state represents the peer’s actual state, assuming the
provider or consumer values. The ranking is a list of
pairs (peer_id, balance), representing the known peers
ranking. In this pair, peer_id represents a known peer
and balance the credit or debit associated with this
peer. To all unknown peers, we consider balance = 0.
The p field is the probability of py of being a provider
in a given turn of the game.

The allocationStrategy element of the tuple

defines the peer’s resource allocation behav-
ior.  As instances of the allocationStrategy, we
have implemented AllForOneAllocationStrategy




Data : provider, scheduledTasks, knowPeersCredits

send( provider, ConsumerFavor );
unanswered Tasks = scheduledTasks;

while (unansweredTasks.lenght > 0 ) €6 ( timeOutHasEzpired( ) == false ) do

results = waitProviderFavorReport( providerID );
answered Tasks = results.get Tasks( );
removeReported Tasks( answered Tasks, unansweredTasks );
foreach task in answeredTasks do

if isProviderLocal ( provider ) == false then
1 usage = quantifyUsage( results );
previousBalance = getPeerBalance( knownPeerBalance, provider );
2 updatePeerBalance( knownPeersBalance, provider, ( previousBalance + usage ) );
end
end
end

Algorithm 2: Consumer’s remote executor thread algorithm

and Proportionally For All AllocationStrategy.
The former allocates all of the provider’s re-
sources to the consumer that has the greatest
balance value (ties are broken randomly).  The
Proportionally For All AllocationStrategy  allocates
the peer’s resources proportionally to all requesting
peers with positive balance values. If there are no
peers with positive balance values, it allocates to all
with zero balance values and if there are no requesting
peer with a non-negative balance value, it allocates
proportionally to all requesting peers.

In this model the time line is divided in turns. The
first action of all peers in every turn is to, accordingly
to its p, choose its state during the turn, either con-
sumer or provider. Next, all peers who are currently in
consumer state send a request to the community. All
requests arrive in all peers instantaneously, asking for
as many resources as the peer owns. As our objective
is studying how the system deals with conflicting re-
quests, all consumers always ask for the maximum set
of resources.

On receiving a request, each provider chooses, based
on its allocationStrategy which resources to allocate to
which consumers, allocating always all of its resources.
All allocations last for the current turn only. In the
end of the turn, each peer updates its ranking with
perfect information about the resources it provided or
consumed in this turn.

5.2 Scenarios

To verify the system behavior, we varied the follow-
ing parameters:

e Number of peers: We have simulated communities
with 10, 100 and 1000 peers;

e Peers strategies: Regarding the
allocationStrategy, we have simulated the

following scenarios: 100% of the peers using
AllForOneAllocationStrategy, 100%  using
ProportionallyFor All AllocationStrategy  and
the following combinations between the two
strategies in the peers: (25%, 75%), (50%, 50%)
and (75%, 25%).

e Peer probability of being a provider in a turn (p):
We have simulated with all peers having a proba-
bility of 0.25, 0.50 and 0.75 to be in the provider
state. Also, we have simulated an heterogeneous
scenario in which each peer has a probability of
being a provider given by a uniform distribution
in the interval [0.00..0.99]. We have not considered
peers with probability 1.00 of being a provider be-
cause we believe that the desire of consuming is
the primary motivation for a site to join an Our-
Grid community, and a peer would not joint it to
be always a provider.

e Amount of resources owned by a peer: All peers
own an amount of resources in a uniform distri-
bution in the interval [10..50]. We considered this
to be the size of a typical laboratory that will be
encapsulated in an OurGrid peer.

All combinations of those parameters gave us 60 sim-
ulation scenarios. We have implemented the model
and this scenarios using the SimJava [21] simulation
toolkit!.

5.3 Maetrics

Since participation in an OurGrid community is vol-
untary, we have designed OurGrid (i) to promote eq-
uity (i.e., if the demand is greater than the offer of
resources, the resources obtained from the grid should
be equivalent to resources donated to the grid), and (ii)

ISimJava is available at http://www.dcs.ed.ac.uk/home/simjava/




to prioritize the peers that helped the community the
most (in the sense that they have donated more than
they have consumed). We gauge equity using Favor
Ratio (FR) and the prioritization using Resource Gain
(RG).

The Favor Ratio FRy of a peer p; after a given
turn is defined by the ratio of the accumulated amount
of resources gained from the grid (note that this ex-
cludes the local resources consumed) by the accumu-
lated amount of resources it has donated to the grid.
More precisely, for a peer p; which, during ¢ turns,
gained g resources from the grid and donated dj, to
the grid, FFRy = gi/di. As such, F Ry represents a re-
lation between the amount of resources a peer gained
and how much resources it has donated. If FRy = 1,
peer pi has received from the grid an amount of re-
sources equal to that it donated. That is, FRy = 1
denotes equity.

The Resource Gain RGy of a peer py after a given
turn is obtained dividing the accumulated amount of
resources used by it (both local and from the grid)
by the accumulated amount of local resources it has
used. As such, let I be all the local resources a peer
pr, consumed during ¢ turns and gi the total amount of
resources it obtained from the grid during the same ¢
turns, RGy, = (I + g1)/lk. RG) measures the “speed-
up” delivered by the grid, i.e. how much grid resources
helped a peer in comparison to its local resources.

Note that RG, represents the resources obtained by
a peer when it requested resources, because whenever
a peer asks for grid resources, it is also consuming its
local resources. Thus, we can interpret RG as a quan-
tification of how much that peer was prioritized by the
community.

Thus, to verify the equity in the system-wide behav-
ior, we expect to observe that, in situations of resource
contention, FR;, = 1 for all peers py. We want also
to verify if the peers which donated more to the com-
munity are really being prioritized. To gauge this, we
will use RG}, which we expect to be greater for the
peers with the greatest differences between what they
have donated and what they have consumed from the
community.

Due to the considerations of this model, we can eas-
ily draw a relation between RGj and F'Ry. Consider
a peer pg, let rp be the amount of resources it owns,
t the number of turns executed, [ its local resources
consumed, dj the amount of resources it donated to
the community, ij, the resources that went idle because
there were no consumers in some turns in which p; was
in the provider state and pj the probability of the peer
pr being a provider in a given turn. Let us also denote
Ry, as the total amount of resources that a peer had

available during ¢ turns. As such:

Ry =t.ryg
Ry =l + dj, + ig, (1)
lk = (1 - ,ok)-Rk

From (1) and the definitions of FRy, and RGy, we
can derive that:

RGk:].-I- kaRk _ ZkFRk (2)
(T=pr) (1 —pp)try

Another relation that is useful is obtained from the

fact that the total amount of resources available in the

system is the sum of all resources obtained from the

grid, local consumed and left idle for all peers. As

all resources donated are consumed or left idle, no re-

sources are lost nor created, we can state a resource
conservation law as follows:

> Re=D g+ i+ ik (3)
J J J D

5.4 Resultsdiscussion

With the OurGame model, the scenarios in which we
instantiated the model and the metrics to measure its
characteristics presented, we shall now show the results
we have obtained so far. We will divide the discussion
between the scenarios in which all peers have the same
providing probability p and those in which pj, is given
by a uniform distribution in [0..0.99]. In each of them
we will then examine how the number of peers, the
providing probabilities p; and the allocationStrategy
they were using impacted their RG) and F' Ry, values,
and, consequently, on the network of favors behavior
and on the OurGrid resource contention.

5.4.1 Results for communities in which all
peers have equal providing probabilities

For all scenarios in which p; was equal to all peers,
both F Ry and RG}, converged. F'Rj, always converged
to 1, but RGj, converged to different values, depending
on the scenarios’ parameters.

With all peers competing with the same appetite for
resources, each peer gains back the same amount of re-
sources it has donated to the community, that explains
the convergence of F'Ry. Figure 5 shows this happen-
ing, despite variance on the amount of resources owned
by each peer. The three lines in the Figure are a peer
with the greatest rg, a peer with a mean value of ry
and a peer with the smaller r; in the scenario.
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Figure 5. FR for peers with different resource
quantities in a 10-peer community using Pro-
portionallyForAllAllocationStrategy with p =
0.25

Regarding RGy, with FRy = 1, from equation (2),
we obtain that RGy = 1+ (1ﬁ’;k) - (1_p’j).t_rk. To facil-
itate our understanding, we divide the analysis of RGy,
behavior in two situations: the scenarios in which there
are no idle resources (i.e., i, = 0) and the scenarios in
which there are idle resources (i.e., i > 0).

Analytically analyzing the scenarios, we observe
that in a given scenario, ¢ > 0 happens if there is
no consumer in some round. The probability of all
peers pi,...,pn to be in the provider state is AP =
[1i<)<n k- Thus, the number of turns in which all re-
sources in the community were idle in a given scenario
is IT = t.AP. For all scenarios but the ones with 10
peers and 0.50 or 0.75 providing probabilities, IT = 0.

In the scenarios where i, = 0, as FRy = 1 we
find, from equation (2) that RGy = 1+ pr/(1 — pg)-
As 0 < pr < 1, this means that RGy o p. As
such, the peers with greater p, are the peers which
have the greater difference between what they donated
and consumed, the fact of RGy o pi shows that the
more a peer contribute to the community, the more
it is prioritized. As, in this scenarios, all peers have
the same p, however, they all have the same RG|.
For example, in a community in which all peers have
p = 0.50, we found RG}, from all peers converged to
RG =1+410.5/(1 —0.5) = 2. As can be seen in Figure
6, for a 100-peer community.

In the scenarios in which i > 0, we also found
FQi = 1 and RGy, also converged. However, we ob-
served two differences in the metrics behavior: (i) F Ry,
took a greater number of turns to converge and (ii)
RG}, converged to a value smaller than in the scenar-
ios where i = 0. The former behavior difference hap-
pened because each peer took a longer time to rank
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Figure 6. RG in a 100-peer community using
ProportionallyForAllAllocationStrategy and
with p = 0.50

the other peers, as there happened turns with no re-
source consumption. The latter behavior difference is
explained by equation (3). As, for a given peer py, Iy
is fixed, the idle resources ij actually are resources not
consumed. This means that g, and, consequently, RGy,
decreases as iy, increases. In short, as the total amount
of resources consumed by the peers is less than the to-
tal amount of resources that were made available (i.e.,
both donated and idle), their RGy is smaller than in
the scenarios where all resources made available were
consumed.

Finally, regarding the strategy the peers used to al-
locate their resources, we found that varying the strat-
egy used by the peers did not affect significantly the
metrics behavior. The number of peers in the commu-
nity, on the other hand, naturally affects the number
of turns needed to both metrics converge. The number
of turns needed to the metrics to converge is bigger as
the size of the community grows.

5.4.2 Results for communities in which peers
have different providing probabilities

After observing the effects of each of the simulation
parameters in a community that had the same proba-
bility for consuming resources, we now discuss how the
variation on this probability affects our defined metrics.

First, in the simulations of the 10-peer communities,
we found that F'Rj. did not converge. Figure 7 shows
FRy, for three peers of a community with this num-
ber of peers and in which the providing chance p; of
each peer py is given by a uniform distribution in the
interval [0.00..0.99]. As can be seen, the peer which do-
nated less to the community — as its providing chance
is smaller that of all other peers’ in Figure 7 —, ob-



tained the greater FFR. This is easily explained if we
take a look also in the values of RG}, for these peers.
The RG), behavior for the same three peers is shown in
Figure 8. Note that, for the peer with the greatest p,
R@G}, explodes the scale in its first request, after some
turns providing, what gives us the almost vertical solid
line in the graph. Figure 8 shows how a peer is prior-
itized as it donates more resources to the community.
Consequently, the peer which provided more resources
is the peer with the greatest RG. Whenever it asks for
resources, it manages to get access to more resources
than a peer that has provided less to the community.

T T
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Figure 7. FR for three peers in a 10-peer
community with different providing proba-
bilities using ProportionallyForAllAllocation-
Strategy

The peer with the lesser providing chance obtained
more resources from the grid, and thus got a greater
F' Ry, because it actually requested more resources and
donated just a little bit. As the providing probabilities
are static, the peers with greatest probabilities pro-
vided more and didn’t asked resources often enough to
make their F'Ry raise. Thus, FR; did not converge
because there was not enough competition in these
scenarios, and there were turns in which only peers
which contributed with small amounts of resources to
the community requested resources. Note that with-
out enough competition for the resources we cannot
observe the fairness of the system. Nevertheless, by
observing RG},, we still can observe how the prioritiza-
tion was done, when the peers which contributed more
to the community did asked for resources.

An interesting behavior we have observed is that
with the growth of the community size, F' Ry, once again
converges to 1. It happens for the 100-peer and the
1000-peers communities, in our simulations. The his-
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Figure 8. RG for three peers in a 10-peer
community with different providing proba-
bilities using ProportionallyForAllAllocation-
Strategy

togram? of FR; in a 100-peer community in the turn
3000 is show in Figure 9.
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Figure 9. FR histogram in a 100-peer com-
munity with different allocation strategies on
turn 3000

The convergence of F'R;, happens due to the greatest
concurrence present, in greater communities. As there
are more peers, there are less turns in which only peers
with small p; request the resources of the community.
As such, less peers manage to obtain F' Ry as high as
happened in the 10 peers scenarios. This may still hap-
pen, if there are only peers that donate very little in
a sufficiently large number of turns. Nevertheless, this
is not prejudicial to our objectives, as these resources
could not be allocated to a peer that contributed sig-
nificantly to the community.

2We opted to show a histogram due to the great number of
peers in the simulation.



With FRy;, = 1 and i = 0, we again find that RG},
pr- This shows that peers which contributed more, that
is, which have the highest pj, were more prioritized.

We shall remark that again, our two allocation
strategies did not show impact in the simulations re-
sults. As such, in the long run, peers that allocate all
of their resources to the highest ranked peer perform
as well as peers that allocate their resources propor-
tionally to the balances of the requesters.

6 Future directions

The next steps in the OurGrid development are (i)
simulating real grid users workloads on the peers; (ii)
studying the impact of malicious peers in the system;
and (iii) the actual implementation of OurGrid. Now
we have evaluated the key characteristics of our net-
work of favors, simulating more realistic scenarios is
needed to understand the impact of the grid environ-
ment in the model presented in this work. Peer’s mali-
ciousness is important mostly in two aspects in Our-
Grid: a peer consumer shall want to assure that a
provider executed a task correctly and there must not
be possible to exploit the community using unfair ac-
counting.

More specifically in the malicious peers problem, to
deal with the need of the consumer to assure correct
task execution in unreliable providers, we plan to study
both (a) replication in order to discover providers a
consumer can trust and (b) the insertion of applica-
tion specific verification, like the techniques described
in [20]. To cope with the objective of making the
community tolerant to peers using unfair accounting,
marginalizing them, we aim to study the use of (a) au-
tonomous accounting and (b) replication to determine
if a consumer shall trust unknown providers.

We plan to start OurGrid implementation as an
extension of MyGrid® [14, 13] former work done at
UFCG. OurGrid will be able to serve as a MyGrid re-
source in the user’s grid, and will initially obtain ac-
cess to resources through the already existent MyGrid’s
Grid Machine Interface. The Grid Machine Interface is
an abstraction that provides access to different kinds of
grid resources (Globus GRAM, MyGrid’s UserAgent,
Unix machines via ssh, etc.) and will allow OurGrid to
interoperate with existing grid middleware. Interoper-
ability is important to both take advantage of existing
infrastructure and to ease the OurGrid adoption by the
community of users.

3MyGrid is open-source and it is available at

http://dsc.ufcg.edu.br/mygrid/

7 Conclusions

We have presented the design of OurGrid, a sys-
tem that aims to allow users of BoT applications to
easily obtain access and use computational resources,
dynamically forming an on-demand, large-scale, grid.
Also, opting for simplicity in the services it delivers,
OurGrid will be able to be deployed immediately, both
satisfying a current need in the BoT users community
and helping researchers in better understanding how
grids are really used in production, a knowledge that
will help to guide future research directions.

OurGrid is based on a network of favors, in which
a site donates its idle resources as a favor, expecting
to be prioritized when it asks for favors from the com-
munity. Our design aims to provide this prioritization
in a completely decentralized manner. The decentral-
ization is crucial to keep our system simple and not
dependent on centralized services that might be hard
to deploy, scale and trust.

Our preliminary results on the analysis through sim-
ulation of this design to solve the conflict for resources
in a decentralized community shows us that this ap-
proach is promising. We expect to evolve the present
design into a solution that, due to its simplicity, will
be able to satisfy a need from real grid users today.
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