
TrellisDAG:
A System for Structured DAG Scheduling

Mark Goldenberg, Paul Lu, and Jonathan Schaeffer
Department of Computing Science

University of Alberta
Edmonton, Alberta, T6G 2E8

Canada
http://www.cs.ualberta.ca/˜paullu/Trellis/�
goldenbe,paullu,jonathan � @cs.ualberta.ca

Abstract

High-performance computing often involves sets of
jobs or workloads that must be scheduled. If there are
dependencies in the ordering of the jobs (e.g., pipelines
or directed acyclic graphs) the user often has to carefully,
manually submit the jobs in the right order and/or delay
submitting dependent jobs until other jobs have finished.
If the user can submit the entire workload with depen-
dencies, then the scheduler has more information about
future jobs in the workflow.

We have designed and implemented TrellisDAG, a
system that combines the use of placeholder schedul-
ing and a subsystem for describing workflows to provide
novel mechanisms for computing non-trivial workloads
with inter-job dependencies. TrellisDAG also has a mod-
ular architecture for implementing different scheduling
policies, which will be the topic of future work. Cur-
rently, TrellisDAG supports:

1. A spectrum of mechanisms for users to specify both
simple and complicated workflows.

2. The ability to load balance across multiple adminis-
trative domains.

3. A convenient tool to monitor complicated work-
flows.

1 Introduction

High-performance computing (HPC) often involves
sets of jobs or workloads that must be scheduled. Some-
times, the jobs in the workload are completely indepen-
dent and the scheduler is free to run any job concurrently

with any other job. At other times, the jobs in the work-
load have application-specific dependencies in their or-
dering (e.g., pipelines [19]) such that the user has to care-
fully submit the jobs in the right order (either manually
or via a script) or delay submitting dependent jobs until
other jobs have finished.

The details of which job is selected to run on which
processor is determined by a scheduling policy [5]. Of-
ten, the scheduler uses the knowledge of the jobs in the
submission queue, the jobs currently running, and the
history of past jobs to help make its decisions. In par-
ticular, any knowledge about future job arrivals can sup-
plement other knowledge to make better policy choices.

The problem is that the mere presence of a job in the
submission queue is usually interpreted by the sched-
uler to mean that a job can run concurrently with other
jobs. Therefore, to avoid improper ordering of jobs, ei-
ther the scheduler has to have a mechanism to specify
job dependencies or the user has to delay the submission
of some jobs until other jobs have completed. Without
such mechanisms, managing the workload can be labour-
intensive and deprives the scheduler of the knowledge of
future jobs until they are actually submitted, even though
the workflow “knows” that the jobs are forthcoming. If
the user can submit the entire workload with dependen-
cies, then the scheduler has access to more information
about future jobs in the workflow.

We have designed, implemented, and evaluated the
TrellisDAG system for scheduling workloads with job
dependencies [10]. TrellisDAG is designed to support
any workload with job dependencies and provides a
framework for implementing different scheduling poli-
cies. So far, our efforts have focussed on the ba-
sic mechanisms to support the scheduling of workflows
with directed acyclic graph (DAG) dependencies. So
far, our policies have been simple: first-come-first-serve
(FCFS) of jobs with satisfied dependencies and simple

A: PSI−BLAST

B: Function
classifier

C: Localization
classifier

D: Create Summary

DNA/Protein
Sequences

Figure 1. Example Bioinformatics Workflow

approaches to data locality when placing jobs on proces-
sors [10]. We have not yet emphasized the development
of new policies since our focus has been on the underly-
ing infrastructure and framework.

The main contributions of this work are:

1. The TrellisDAG system and some of its novel mech-
anisms for expressing job dependencies, especially
DAG description scripts (Section 3.2.3).

2. The description of an application with non-trivial
workflow dependencies, namely building checkers
endgame databases via retrograde analysis (Sec-
tion 2).

3. A simple, empirical evaluation of the correctness
and performance of the TrellisDAG system (Sec-
tion 4).

1.1 Motivation

Our empirical evaluation in Section 4 uses exam-
ples from computing checkers endgame databases (Sec-
tion 2). However, TrellisDAG is designed to be general-
purpose and to support a variety of applications. For now,
let us consider a bioinformatics application with a sim-
ple workflow dependency with four jobs: � , � , � , and�

(Figure 1). This example is based on a bioinformat-
ics research project in our department called Proteome
Analyst (PA) [18].

In Figure 1, the input to the workflow is a large set of
DNA or protein sequences, usually represented as strings
over an alphabet. In high-throughput proteome analysis,
the input to Job � can be tens of thousands of sequences.
A common, first-stage analysis is to use PSI-BLAST [1]
to find similar sequences, called homologs, in a database
of known proteins. Then, PA uses the information from
the homologs to predict different properties of the new,
unknown proteins. For example, Job � uses a machine-
learned classifier to map the PSI-BLAST output to a pre-
diction of the general function of the protein (e.g., the

protein is used for amino acid biosynthesis). Job � uses
the same PSI-BLAST output from � and a different clas-
sifier to predict the subcellular localization of the protein
(e.g., the protein is found in the Golgi complex). Both
Jobs � and � need the output of Job � , but both �
and � can work concurrently. For simplicity, we will
assume that all of the sequences must be processed by
PSI-BLAST before any of the output is available to �
and � . Job

�
gathers and presents the output of � and

� .
Some of the challenges are:

1. Identifying that Jobs � and � can be run concur-
rently, but � and � (and � and �) cannot be con-
current (i.e., knowledge about dependencies within
the workflow).

2. Recognizing that there are, for example, three pro-
cessors (not shown) at the moment that are ready to
execute the jobs (i.e., find the processor resources).

3. Mapping the jobs to the processors, which is the role
of the scheduler.

Without the knowledge about dependencies in the
scheduler, the user may have to submit Job � , wait until

� is completed, and then submit � and � so that the or-
dering is maintained. Otherwise, if Jobs � , � , � , and

�

are all in the submission queue, the scheduler may try to
run them concurrently if, say, four processors are avail-
able. But, having the user manually wait for � to finish
before submitting the rest of the workflow could mean
delays and it does mean that the scheduler cannot see
that � , � , and

�
will eventually be executed, depriving

the policy of that knowledge of future jobs.

1.2 Related work and context

The concept of grid computing is pervasive these days
[7, 6]. TrellisDAG is part of the Trellis Project in over-
lay metacomputing [15, 14]. In particular, TrellisDAG is

layered on top of the placeholder scheduling technique
[14]. The goals of the Trellis Project are more modest
and simpler than that of grid computing. Trellis is fo-
cussed on supporting scientific applications on HPC sys-
tems; supporting business applications and Web services
are not explicit goals of the Trellis Project. Therefore,
we prefer to use older terminology—metacomputing—
to reflect the more limited scope of our work.

In computing science, the dream of metacomputing
has been around for decades. In various forms, and
with important distinctions, it has also been known as
distributed computing, batch scheduling, cycle stealing,
high-throughput computing, peer-to-peer systems, and
(most recently) grid computing. Some well-known, con-
temporary examples in this area include SETI@home
[17], Project RC5/distributed.net [16], Condor [13, 8, 3],
and the projects associated with Globus/Open Grid Ser-
vice Architecture (OGSA) [9]. Of course, there are
many, many other related projects around the world.

The Trellis philosophy has been to write the minimal
amount of new software and to require the minimum of
superuser support. Simplicity and software re-use have
been important design principles; Trellis uses mostly
widely-deployed, existing software systems. Currently,
Trellis does not use any of the new software that might
be considered part of grid computing, but the design of
Trellis supports the incorporation of and/or co-existence
with grid technology in the future.

At a high level, placeholder scheduling is illustrated
in Figure 2. A placeholder is a mechanism for global
scheduling in which each placeholder represents a po-
tential unit of work. The current implementation of
placeholder scheduling uses normal batch scheduler job
scripts to implement a placeholder. Placeholders are sub-
mitted to the local batch scheduler with a normal, non-
privileged user identity. Thus, local scheduling policies
and job accounting are maintained.

There is a central host that we will call the server. All
the jobs (a job is anything that can be executed) are stored
on the server (the storage format is user-defined; it can
be a plain file, a database, or any other format). There is
also a set of separate programs called services that form
a layer called the command-line server. Adding a new
storage format or implementing a new scheduling policy
corresponds to implementing a new service program in
this modular architecture.

There are a number of execution hosts (or computa-
tional nodes) – the machines on which the computations
are actually executed. On each execution host there is
one or more placeholder(s) running. Placeholders can
handle either sequential or parallel jobs. It can be imple-
mented as a shell script, a binary executable, or a script
for a local batch scheduler. However, it has to use the
service routines (or services) of the command-line server

to perform the following activities:

1. Get the next job from the server,

2. Execute the job, and

3. Resubmit itself (if necessary).

Therefore, when the job (a.k.a. placeholder) begins
executing, it contacts a central server and requests the
job’s actual run-time parameters (i.e., late binding). For
placeholders, the communication across administrative
domains is handled using Secure Shell (SSH). In this
way, a job’s parameters are pulled by the placeholder
rather than pushed by a central authority. In contrast,
normal batch scheduler jobs hard-code all the parameters
at the time of local job submission (i.e., early binding).

Placeholder scheduling is similar to Condor’s gliding
in and flocking techniques [8]. Condor is, by far, the
more mature and robust system. However, by design,
placeholders are not as tightly-coupled with the server
as Condor daemons are with the central Condor servers
(e.g., no I/O redirection to the server). Also, placeholders
use the widely-deployed SSH infrastructure for secure
and authenticated communication across administrative
domains. The advantage of the more loosely-coupled
and SSH-based approach is that overlay metacomputers
(which are similar to “personal Condor pools”) can be
quickly deployed, without superuser permissions, while
maintaining functionality and security.

Recently, we used placeholder scheduling to run a
large computational chemistry application across 18 dif-
ferent administrative domains, on 20 different systems
across Canada, with 1,376 processors [15, 2]. This ex-
periment, dubbed the Canadian Internetworked Scientific
Supercomputer (CISS), was most notable for the 18 dif-
ferent administrative domains. No system administrator
had to install any new infrastructure software (other than
SSH, which was almost-universally available already).
All that we asked for was a normal, user-level account.
In terms of placeholder scheduling, most CISS sites can
be integrated within minutes. We believe that the low in-
frastructure requirements to participate in CISS was key
in convincing such a diverse group of centres to join in.

1.3 Unique features of TrellisDAG

TrellisDAG enhances the convenience of monitoring
and administering the computation by providing the user
with a tool to translate the set of inter-dependent jobs
into a hierarchical structure with the naming conventions
that are natural for the application domain. As shown
in Figure 3, suppose that the computation is a 3-stage
simulation, where the first stage is represented by jobs �
and � , the second stage is represented by jobs � and

�
,

Command lines

Placeholder

Execution host 2
Placeholder

Execution host n
Placeholder

Execution host 1

Server

Service routines (command−line server)

Figure 2. Placeholder scheduling.

A B

Stage 1

D

Stage 2

C F

Stage 3

E

Figure 3. A 3-stage computation. It is convenient to inquire the status of each stage. If the second stage resulted
in errors, we may want to disable the third stage and rerun starting from the second stage.

and the third stage is represented by jobs � and � . The
following are examples of the natural tasks of monitoring
and administering such a computation:

1. Query the status of the first stage of the computa-
tion, e.g. is it completed?

2. Make the system execute only the first two stages of
the computation, in effect disabling the third stage.

3. Redo the computation starting from the second
stage.

TrellisDAG makes such services possible by provid-
ing a mechanism for a high-level description of the work-
flow, in which the user can define named groups of jobs
(e.g., Stage 1) and specify collective dependencies be-
tween the defined groups (e.g., between Stage 1 and
Stage 2).

Finally, TrellisDAG provides mechanisms such that:

1. The user can submit all of the jobs and dependen-
cies at once.

2. TrellisDAG provides a single point for describing
the scheduling policies.

3. TrellisDAG provides a flexible mechanism by
which attributes may be associated with individual
jobs. The more information the scheduler has, the
better scheduling decisions it may make.

4. TrellisDAG records the history information associ-
ated with the workflow. For our future work, the
scheduler may use machine learning in order to im-
prove the overall computation time from one trial to
another. Our system provides mechanism for this
capability by storing the relevant history informa-
tion about the computation, such as the start times
of jobs, the completion times of jobs, and the re-
sources that were used for computing the individual
jobs.

Notably, Condor has a tool called the Directed Acyclic
Graph Manager (DAGMan) [4]. One can represent a hi-
erarchical system of jobs and dependencies using DAG-
Man scripts. DAGMan and TrellisDAG share similar
design goals. However, DAGMan scripts are approxi-
mately as expressive as TrellisDAG’s Makefile-based
mechanisms (Section 3.2). It is not clear how well DAG-
Man’s scripts will scale for complicated workflows, as
described in the next section.

Also, the widely-used Portable Batch System (PBS)
has a simple mechanism to specify job dependency, but
jobs are named according to submit-time job numbers,
which are awkward to script, re-use, and do not scale to
large workflows.

2 The Endgame Databases Application

We introduce an important motivating application
– building checkers endgame databases via retrograde

analysis – at a very high level. Then we highlight the
properties of the application that are important for our
project. But, the design of TrellisDAG does not make
any checkers-specific assumptions.

A team of researchers aims to solve the game of
checkers [11, 12]. For this paper, the detailed rules of
checkers are largely irrelevant. In terms of workflow, the
key application-specific “Properties” are:

1. The game starts with 24 pieces (or checkers) on
the board. There are 12 black pieces and 12 white
pieces.

2. Pieces are captured and removed from the board
during the game. Once captured, a piece cannot re-
turn to the board.

3. Pieces start as checkers but can be promoted to be
kings. Once a checker is promoted to a king, it can
never become a checker again.

Solving the game of checkers means that, for any
given position, the following question has to be an-
swered: Can the side to move first force a win or is it a
draw? Using retrograde analysis, a database of endgame
positions is constructed [12]. Each entry in the database
corresponds to a unique board position and contains one
of three possible values: ����� , ���	�
� or

��� �� .
Such a value represents perfect information about a posi-
tion and is called the theoretical value for that position.

The computation starts with the trivial case of one
piece. We know that whoever has that last piece is the
winner. If there are two pieces, any position in which
one piece is immediately captured “plays into” the case
where there is only one piece, for which we already know
the theoretical value. In general, given a position, when-
ever there is at least one legal move that leads to a po-
sition that has already been entered in the database as
a ���	�
� for the opponent side, we know that the given
position is a ����� for the side to move (since he will
take that move, the values of all other moves do not mat-
ter); conversely, if all legal moves lead to positions that
were entered as a ����� for the opponent side, we know
that the given position is a ���	�
� for the side to move.
For a selected part of the databases, this analysis goes in
iterations. An iteration consists of going through all po-
sitions to which no value has been assigned and trying
to derive a value using the described above rules. When
an iteration does not result in any updates of values, then
the remaining positions are assigned a value of

��� ���
(since neither player can force a win).

If we could continue the process of retrograde analy-
sis up to the initial position with 24 pieces on the board,
then we would have solved the game. However, the
number of positions grows exponentially and there are

������������� possible positions in the game. That is why the
retrograde analysis is combined with the forward search,
in which the game tree with the root as the initial position
of the game is constructed. When the two approaches
“meet”, we will have perfect information about the ini-
tial position of the game and the game will be solved.

In terms of workflow, strictly speaking, the positions
with fewer pieces on the board must be computed/solved
before the positions with more pieces. In a position with
3-pieces, a capture immediately results in a 2-piece po-
sition, as per Property 2. In other words, the 2-piece
database must be computed before the 3-piece databases,
which are computed before the 4-piece databases, and so
on until, say, the 7-piece databases.

We can subdivide the databases further. Suppose that
black has 4 pieces and white has 3 pieces, which is part
of the 7-piece database (Figure 4). We note that a posi-
tion with 0 black kings, 3 white kings, 4 black checkers,
and no white checkers (denoted 0340) can never play
into a position with 1 black king, 2 white kings, 3 black
checkers, and 1 white checker (denoted 1231) or vice
versa. As per Property 3, 0340 cannot play into 1231
because the third white king in 0340 can never become
a checker again. 1231 cannot play into 0340 because
the lone black king in 1231 can never become a checker
again. If 0340 and 1231 are separate computations or
jobs, they can be computed concurrently as long as the
database(s) that they do play into (e.g., 1330) are fin-
ished.

In general, let us denote any position by four num-
bers standing for the number of kings and checkers of
each color on the board, as illustrated above. Positions����! �� �"�# �# and

� � �� �� � � # �# that have the same number of
black and white pieces can be processed in parallel if one
of the following two conditions hold:

 ��%$ �� and
� ��'& � � �

or

 ��(& �� and
� ��'$ � � ��)

Figure 4 shows the workflow dependencies for the
case of 4 pieces versus 3 pieces. Each “row” in diagram
(e.g., the dashed-line box) represents a set of jobs that
can be computed in parallel. In practice, each of these
jobs can be subdivided even further, but we do go into
any more details.

We emphasize that the workflow dependencies
emerge from:

1. The rules of checkers,

2. The retrograde analysis algorithm, and

3. The subdivision of the checkers endgame databases.

3310

2320

1330 3112

0340

4102

4003

30132122

2023

1033

1132

0043

0142

0241

43004 vs. 3

1231

2221

3211

4201

Figure 4. Example workflow dependencies in checkers endgame databases, part of the 7 piece database.

TrellisDAG does not contribute any workflow dependen-
cies in addition to those listed above.

Computing checkers endgame databases is a non-
trivial application that requires large computing capacity
and presents a challenge by demanding several proper-
ties of a metacomputing system:

1. A tool/mechanism for convenient description of a
multitude of jobs and inter-job dependencies.

2. The ability to dynamically satisfy inter-job de-
pendencies while efficiently using the application-
specific opportunities for concurrent execution.

3. A tool for convenient monitoring and administration
of the computation.

3 Overview of TrellisDAG

An architectural view of TrellisDAG is presented in
Figure 5. To run the computation, the user has to submit
the jobs and the dependencies to the jobs database us-
ing one of the several methods described in Section 3.2.
Then one or more placeholders have to be run on the exe-
cution nodes (workstations). These placeholders use the
services of the command-line server to access and mod-
ify the jobs database. The services of the command-line
server are described in Section 3.3. Finally, the monitor-
ing and administrative utilities are described in Section
3.4.

3.1 The group model

In our system, each job is a part of a group of jobs and
explicit dependencies exist between groups rather than

between individual jobs. This simplifies the dependen-
cies between jobs (i.e. the order of execution of jobs
within a group is determined by the order of their sub-
mission).

A group may either contain either only jobs or both
jobs and subgroups. A group is called the supergroup
with respect to its subgroups. A group that does not have
subgroups is said to be a group at the lowest level. In
contrast, a group that does not have a supergroup is said
to be a group at the highest level. In general, we say that
a subgroup is one level lower than its immediate super-
group.

With each group, there is associated a special group
called the prologue group. The prologue group logically
belongs to the level of its group, but it does not have any
subgroups. Jobs of the prologue group (called prologue
jobs) are executed before any job of the subgroups of the
group is executed.

We also distinguish epilogue jobs. In contrast to pro-
logue jobs, epilogue jobs are executed after all other jobs
of the group are complete. In this version of the system,
epilogue jobs of a group are part of that group and do not
form a separate group (unlike the prologue jobs).

Note the following:

1. Jobs within a group will be executed in the or-
der of their submission. In effect, they represent a
pipeline. This is illustrated in Figure 6.

2. Dependencies can only be specified between groups
and never between individual jobs. If such a depen-
dency is required, a group can always be defined to
contain one job. This is illustrated in Figure 7.

3. A supergroup may have jobs of its own. Such jobs
are executed after all subgroups of the supergroup
are completed. This is illustrated in Figure 8.

Translation and submission

Jobs databaseJobs database

Execution host 1
Placeholder

Execution host 2
Placeholder

Execution host n
Placeholder

Description layer

Placeholder scheduling

TrellisDAG

Service routines (command−line server)

Figure 5. An architectural view of TrellisDAG.

job C

job B

job A

dependencies

inter−job
Implied

Group X

job C

job B

job A

Group X

Figure 6. Dashed ovals denote jobs. The dependencies between the jobs of group X are implicit and determined
by the order of their submission.

4. Dependencies can only be defined between groups
with the same supergroup or between groups at the
highest level (i.e. the groups that do not have a su-
pergroup). This is illustrated in Figure 9.

5. Dependencies between supergroups imply pairwise
dependencies between their subgroups. These extra
dependencies do not make the workflow incorrect,
but are an important consideration, since they may
inhibit the use of concurrency. This is illustrated in
Figure 10.

Assume that we have the 2-piece databases computed
and that we would like to compute the 3-piece and 4-
piece databases. We assume that there are scripts to
compute individual slices. For example, running script
2100.sh would compute and verify the databases for
all positions with 2 kings of one color and 1 king of the
other color. The workflow for our example is shown in
Figure 11.

We can think of defining supergroups for the work-
flow in Figure 11 as shown by the dashed lines. Then,
we can define dependencies between the supergroups and
obtain a simpler looking workflow.

3.2 Submitting the workflow

There are several ways of describing the workflow.
The user chooses the way depending on how complicated
the workflow is and how he wants (or does not want) to
make use of the grouping capability of the system.

3.2.1 Flat submission script.

The first way of submitting a workflow is by using the
mqsub utility. This utility is similar to qsub of many
batch schedulers. However, there is an extra command-
line argument (i.e., -deps) to mqsub that lets the user
specify workflow dependencies. Note that the names of
groups are user-selected and are not scheduler job num-
bers; the scripts can be easily re-used. In our example,
we define a group for each slice to be computed. The
(full-size version of the) script in Figure 12 submits the
workflow in Figure 11.

Note that there are two limitations on the order of sub-
mission of the constituents of the workflow to the system:

1. The groups have to be submitted in some legal or-
der, and

job C

job B

job A

job F

job E

job D

Group X Group Y

Figure 7. The workflow dependency of group Y on group X implies the dependency of the first job of Y on the
last job of X (this dependency is shown by the dashed arc).

job C

job B

job A

Group L Group M

Group K

Group X

Figure 8. Group X has subgroups K, L, M and jobs A, B, C. These jobs will be executed after all of the jobs of
K, L, M and their subgroups are completed.

mqsub -deps "" -l "2100" -c "2100.sh"
mqsub -deps "2100" -l "1110" -c "1110.sh"
mqsub -deps "1110" -l "0120" -c "0120.sh"
mqsub -deps "2100" -l "2001" -c "2001.sh"
mqsub -deps "2100" -l "2200" -c "2200.sh"
mqsub -deps "1110 2001 2200" -l "1210" -c "1210.sh"
...snip...

Figure 12. Part of the flat submission script for the
running example.

2. The jobs within a group have to be submitted in the
correct order.

3.2.2 Using a Makefile.

A higher-level description of a workflow is possible via
a Makefile. The user simply writes a Makefile that can
be interpreted by the standard UNIX make utility. Each
rule in this Makefile computes a part of the checkers
databases and specifies the dependencies of that part on
other parts. TrellisDAG includes a utility, called mq-
translate, that translates such a Makefile in another
Makefile, in which every command line is substituted for
a call to mqsub. We present part of a translated Makefile
for our example in Figure 13.

all: 0022 0031

2100:
mqsub -deps "" -l "2100" -c "2100.sh"

1110: 2100
mqsub -deps "2100" -l "1110" -c "1110.sh"

2001: 2100
mqsub -deps "2100" -l "2001" -c "2001.sh"

0120: 1110
mqsub -deps "1110" -l "0120" -c "0120.sh"

1011: 1110 2001
mqsub -deps "1110 2001" -l "1011" -c "1011.sh"

0021: 0120 1011
mqsub -deps "0120 1011" -l "0021" -c "0021.sh"

...snip...

Figure 13. Part of the Makefile with calls to mqsub
for the running example.

Group L Group M

Group K

Group X

Group Q

Group Y

Group P

Figure 9. Groups K, L, M have same supergroup: X; therefore, we can specify dependencies between these
groups. Similarly, group Y is a common supergroup for groups P and Q. In contrast, groups K and P do not have
a common supergroup (at least not immediate supergroup) and cannot have an explicit dependency between
them.

Group K Group MGroup L

Group X

Group P Group Q Group R

Group Y

Figure 10. Group Y depends on group X and this implies pairwise dependencies between their subgroups (these
dependencies are denoted by dashed arrows).

3.2.3 The DAG description script.

Writing a flat submission script or a Makefile may be
a cumbersome task, especially when the workflow con-
tains hundreds or thousands of jobs, as in the checkers
computation. For some applications, it is possible to
come up with simple naming conventions for the jobs
and write a script to automatically produce a flat sub-
mission script or a Makefile. TrellisDAG helps the user
by providing a framework for such a script. Moreover,
through this framework (which we call the DAG descrip-
tion script), the additional functionality of supergroups
becomes available.

A DAG description script is simply a module coded
using the Python scripting language; this module imple-
ments the functions required by the TrellisDAG inter-
face. TrellisDAG has a way to transform that module
into a Makefile and further into a flat submission script
as described above.

The sample DAG description script in Figure 14 de-
scribes the workflow in Figure 11 with supergroups. Line
19 states that there are two levels of groups. A group at
level VS is identified by two integers, while a group at

level Slice is identified by four integers. The func-
tion generateGroup (lines 21-41) returns the list of
groups with a given supergroup at a given level. The
generated groups correspond to the nodes (in case of the
level Slice) and the dashed boxes (in case of the level
VS) in Figure 11. The function getDependent (lines
57-61) returns a list of groups with a given supergroup,
on which a given group with the same supergroup de-
pends. The executables for the jobs of a given group
are returned by the getJobsExecutables (lines 43-
46) function. Note that, in our example, computing each
slice involves a computation and a verification job; they
are represented by executables with suffixes .comp.sh
and .ver.sh, respectively. We will now turn to de-
scribing the getJobsAttributes function (lines 48-
51).

Sometimes it is convenient to associate more infor-
mation with a job than just the command line. Such in-
formation can be used by the scheduling system or by
the user. In TrellisDAG, the extra information associated
with individual jobs is stored as key-value pairs called
attributes. In the current version of the system, we have
several kinds of attributes that serve the following pur-

2100

0021

1011

2001

0120

1110

3 Pieces: 2 vs. 1

2200

0121

1111

0022

0220

1210

0031

0130

3100

1021

2011

3001

1120

2110

4 Pieces: 3 vs. 1 4 Pieces: 2 vs. 2

Figure 11. The workflow for the running example. The nodes are slices. The dashed lines represent the natural
way of defining supergroups; if such supergroups were defined, then the only workflow dependencies would be
expressed by the thick arrows.

poses:

1. Increase the degree of concurrency by relaxing
workflow dependencies.

2. Regulate the placement of jobs, i.e. mapping jobs
to execution hosts.

3. Store the history profile.

In this section, we concentrate on the first two kinds
of attributes.

By separating the computation of the checkers
endgame databases with their verification, we can po-
tentially achieve a higher degree of concurrency. To do
that, we introduce an attribute that allows the dependent
groups to proceed when a group reaches a certain point in
the computation (i.e. a certain number of jobs are com-
plete). We refer to this feature as early release. In our
example, the computation job of all slices will have the
release attribute set to yes.

We also take into account that verification needs the
data that has been produced during the computation.
Therefore, it is desirable that verification runs on the
same machine as the computation. Hence, we introduce
another attribute called affinity. When the affinity of
a job is set to yes, the job is forced to be executed on the
same machine as the previous job of its group.

3.3 Services of the command-line server

Services of the command-line server (see Figure 5)
are the programs through which a placeholder can access
and modify the jobs database. These services are nor-
mally called within an ssh session in the placeholder.
All of the services get their parameters on the command
line as key-value pairs. For example, if the value associ-
ated with the key id is 5, then the key-value pair on the
command line is id=5.

We start with the service called mqnextjob. The
output of this service represents the job � �

of the job
that is scheduled to be run by the calling placeholder.
For example, the service could be called as follows:

ssh server ‘‘mqnextjob
sched=SGE sched id=$JOB ID �
submit host=brule
host=‘hostname‘’’

Once the job’s � �
is obtained, we can obtain the com-

mand line for that job using the mqgetjobcommand
service. The command line is output to the standard out-
put. The placeholder has access to the attributes of a job
through the mqgetjobattribute service. The ser-
vice outputs the value associated with the given attribute.
When the job is complete, the placeholder has to inform
the system about this event. This is done using the mq-
donejob service.

1 #!/usr/bin/python
2
3 import sys
4 import math
5 import string
6
7 nPieces = int(sys.argv[1])
8
9 def getDependentSlice(slice):
10 # a checker of one of the colors might have become a king
11 return [[slice[0] + 1, slice[1], slice[2] - 1, slice[3]],
12 [slice[0], slice[1] + 1, slice[2], slice[3] - 1]]
13
14 def getDependentVS(vs):
15 # there could be a capture
16 return [[vs[0] - 1, vs[1]], [vs[0], vs[1] - 1]]
17
18 #THE INTERFACE PART
19 Levels = [[’VS’, 2], [’Slice’, 4]]
20
21 def generateGroup(level, parentGroup):
22 result = []
23 if level == ’VS’:
24 for np in range(3, nPieces + 1): # loop for number of pieces
25 #e.g. for np=4, generate [[3, 1], [2, 2]]
26 for b in range((np + 1)/2, np):
27 result.append([b, np - b])
28 else:
29 b = parentGroup[0] # number of black pieces
30 w = parentGroup[1] # number of white pieces
31 for bk in range(0, b + 1): # loop for black kings
32 for wk in range(0, w + 1): # loop for white kings
33 # number of checkers is determined
34 bc = b - bk
35 wc = w - wk
36 # savings due to symmetry
37 if bk + bc < wk + wc: continue
38 if bk + bc == wk + wc and bc < wc: continue
39 # a slice is formed
40 result.append([bk, wk, bc, wc])
41 return result
42
43 def getJobsExecutables(level, group):
44 if level != ’Slice’: return []
45 return [string.join(map(str, group), "") + ".comp.sh",
46 string.join(map(str, group), "") + ".ver.sh"]
47
48 def getJobsAttributes(level, group):
49 if level != ’Slice’: return []
50 return [["affinity=no", "release=yes"],
51 ["affinity=yes", "release=no"]]
52
53 def getJobsParameters(level, group):
54 if level != ’Slice’: return []
55 return ["", ""]
56
57 def getDependent(level, group, parentGroup):
58 if level == ’VS’:
59 return getDependentVS(group)
60 else:
61 return getDependentSlice(group)

Figure 14. The DAG description script with supergroups and attributes.

The user can maintain his own status of the running
job in the jobs database by using the mqstatus service.
The status entered through this service is shown by the
mqstat monitoring utility (see Section 3.4.1).

3.4 Utilities

The utilities described in this section are used to mon-
itor the computation and perform some basic administra-
tive tasks.

3.4.1 mqstat: status of the computation.

This utility outputs information about running jobs: job
� �

, command line, hostname of the machine where the
job is running, time when the job has started, and the sta-
tus submitted by means of calling the mqstatus ser-
vice.

3.4.2 mqdump: the jobs browser.

mqdump is an interactive tool for browsing, monitoring,
and changing the dynamic status of groups. The first
screen of mqdump for the example corresponding to the
DAG description script in Figure 14 is presented in Fig-
ure 15. Following the prompt, the user types the number
from 1 to 11 corresponding to the command that must be
executed.

As we see from Figure 15, the user can dive into the
supergroups, see the status of the computation of each
group, and perform several administrative tasks. For ex-
ample, the user can disable a group, thereby preventing
it from being executed; or, he can assert that a part of the
computation was performed without using TrellisDAG
by marking one or more groups as done.

3.5 Concluding remarks

The features of TrellisDAG can be summarized as fol-
lows (see Figure 5):

1. The workflow and its dependencies can be de-
scribed in several ways. The user chooses the mech-
anism or technique based on the properties of the
workflow (such as the level of complexity) and his
own preferences.

2. Whatever way of description the user chooses, util-
ities are provided to translate this description into
the jobs database.

3. Services of the command-line server are provided
so that the user can access and modify the jobs
database dynamically, either from the command
line or from within a placeholder.

4. mqstat and mqdump are utilities that can be used
by the user to perform monitoring and simple ad-
ministrative tasks.

5. The history profile of the last computation is stored
in the jobs’ attributes.

4 Experimental Assessment of TrellisDAG

As a case study, we present an experiment that shows
how TrellisDAG can be applied to compute part of the
checkers endgame databases. The goal of these simple
experiments is to demonstrate the key features of the sys-
tem, namely:

1. Simplicity of specifying dependencies. Simple
workflows are submitted using mqsub. For other
workflows, writing the DAG description script is a
fairly straightforward task (Figure 14), considering
the complexity of the dependencies.

2. Good use of opportunities for concurrent execu-
tion. We introduce the notion of minimal schedule
and use that notion to argue that TrellisDAG makes
good use of the opportunities for concurrency that
are inherent in the given workflow.

3. Small overhead of using the system and place-
holder scheduling. We will quantify the over-
head that the user incurs by using TrellisDAG.
Since TrellisDAG is bound to placeholder schedul-
ing, this overhead includes the overhead of running
the placeholders.

We factored out the data movement overheads in these
experiments. However, data movement can be supported
[10].

4.1 The minimal schedule

We introduce our concept of the minimal schedule.
We use this concept to tackle the following question:
What is considered a good utilization of opportunities for
concurrent execution? The minimal schedule is a map-
ping of jobs to resources that is made during a model
run – an emulated computation where an infinite num-
ber of processors is assumed and the job is run without
any start-up overhead. Therefore, the only limits on the
degree of concurrency in the minimal schedule are job
dependencies (not resources) and there are no scheduler
overheads. The algorithm for emulating a model run is
as follows:

1. Set time to 0 (i.e. ��� �) and the set of running jobs
to be empty;

Command ID Group Status Attribute Status
-------- ----- -------------------- --------------- ---------------
0. 1 VS_2_1_prologue Not started None
1. 14 VS_2_1 Not started None
2. 15 VS_2_2_prologue Not started None
3. 28 VS_2_2 Not started None
4. 29 VS_3_1_prologue Not started None
5. 46 VS_3_1 Not started None

1. Dive
2. Show dependencies
3. Enable 4. Disable
5. Not started 6. Done
7. Stop 8. Stop-Disable
9. Up
10. Refresh
11. Quit
Command?(1-11)

Figure 15. The first screen of mqdump for the running example.

2. Add all the ready jobs to the set of running jobs; For
each job, store its estimated (use the time measured
during the sequential run) time of completion. That
is, if a job � � took � � seconds to be computed in the
sequential run, then the estimated completion time
of � � is ��� � � ;

3. Find the minimal of all completion times in the set
of running jobs and set the current time � to that
time;

4. Remove those jobs from the set of running jobs
whose completion time is � ; these jobs are consid-
ered complete;

5. If there are more jobs to be executed, goto step 2.

No system that respects the workflow dependencies
can beat the model computation as described above in
terms of the makespan. Therefore, if we show that our
system results in a schedule that is close to the minimal
schedule, we will have shown that the opportunities for
concurrency are used well.

4.2 Experimental setup

All of the experiments were performed using a dedi-
cated cluster of 20 nodes with dual AMD Athlon 1.5GHz
CPUs and 512MB of memory. Since the application
is memory-intensive, we only used one of the CPUs
on each node. Sun Grid Engine (SGE) was the local
batch scheduler and the PostgreSQL database was used
to maintain the jobs database. After each run, the com-
puted databases are verified against a trusted, previously-
computed version of the database. If the ordering of
computation in the workflow is incorrect, the database
will not verify correctly. Therefore, this verification step
also indicates a proper schedule for the workflow.

4.3 Computing all 4 versus 3 pieces checkers
endgame databases

We use the grouping capability of TrellisDAG and de-
fine 3 levels: VS (as in 4 “versus” 3 pieces in the 7-piece
database), Slice and Rank (which are further subdi-
visions of the problem). Over 3 runs, the median time
was 32,987 seconds (i.e., 9.16 hours) (with a maximum
of 33,067 seconds and a minimum of 32,891 seconds).
The minimal schedule is computed to be 32,444 seconds,
which implies that our median time is within 1.7% of the
minimal schedule. Since the cluster is dedicated, this re-
sult is largely expected. However, the small difference
between the minimal schedule and the computation does
show that TrellisDAG does make good use of the avail-
able concurrency (otherwise, the deviation from the min-
imal schedule would be much greater). Furthermore, the
experiment shows that the cumulative overhead of the
placeholders and the TrellisDAG services is small com-
pared to the computation.

The degree of concurrency chart is shown in Figure
16. This chart shows how many jobs were being exe-
cuted concurrently at any given point in time. We note
that the maximal degree of concurrency achieved in the
experiment is 18. However, the total time when the de-
gree of concurrency was 18 (or greater than 12 for that
matter) is very small and adding several more processors
would not significantly affect the makespan.

The degree of concurrency chart in Figure 17 corre-
sponds to the minimal schedule. Note that the maximal
degree of concurrency achieved by the minimal sched-
ule is 20 and this degree of concurrency was achieved
approximately at the same time in the computation as
when the degree of concurrency 18 was achieved in the
real run (compare Figure 16 and Figure 17). With this
exception, the degree of concurrency chart for the mini-
mal schedule run looks like a slightly condensed version
of the chart for the real run.

0
3000

6000
9000

12000
15000

18000
21000

24000
27000

30000
33000

36000

Time, sec.

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18

C
on

cu
rr

en
cy

Figure 16. Degree of concurrency chart for the experiment without data movement.

0
3000

6000
9000

12000
15000

18000
21000

24000
27000

30000
33000

36000

Time, sec.

01 2
3 4
5 6
7 89101112

1314
151617181920

C
on

cu
rr

en
cy

Figure 17. Degree of concurrency chart for the experiment without data movement. Minimal schedule.

4.3.1 Summary

The given experiment is an example of using TrellisDAG
for computing a complicated workflow with hundreds of
jobs and inter-job dependencies. Writing a DAG descrip-
tion script of only several dozens of lines is enough to
describe the whole workflow. Also, the makespan of the
computation was close to that of the model run. Else-
where, we show that the system can also be used for
computations requiring data movement [10].

5 Concluding remarks

We have shown how TrellisDAG can be effectively
used to submit and execute a workflow represented by
a large DAG of dependencies. So far, our work has con-
centrated on providing the mechanisms and capability for
specifying (e.g., DAG description script) and submitting
entire workflows. The motivation for our work is two-
fold: First, some HPC workloads, from bioinformatics to
retrograde analysis, have non-trivial workflows. Second,
by providing scheduler mechanisms to describe work-
loads, we hope to facilitate future work in scheduling
policies than can benefit from the knowledge of forth-
coming jobs in the workflow.

In the meantime, several properties of TrellisDAG
have been shown:

1. DAG description scripts for the workflows are rela-
tively easy to write.

2. The makespans achieved by TrellisDAG are close to
the makespans achieved by the minimal schedule.
We conclude that the system effectively utilizes the
opportunities for concurrent execution, and

3. The overhead of using TrellisDAG is not high,
which is also justified by comparing the makespan
achieved by the computation using TrellisDAG with
the makespan of the model computation.

As discussed above, our future work with TrellisDAG
will include research on new scheduling policies. We be-
lieve that the combination of knowledge of the past (i.e.,
trace information on service time and data accessed by
completed jobs) and knowledge of the future (i.e., work-
flow made visible to the scheduler) is a powerful combi-
nation when dealing with multiprogrammed workloads
and complicated job dependencies. For example, there is
still a lot to explore in terms of policies that exploit data
locality when scheduling jobs in an entire workload.

In terms of deployment, we hope to use TrellisDAG
in future instances of CISS [15] and as part of the newly-
constituted, multi-institutional WestGrid Project [20] in
Western Canada. In terms of applications, TrellisDAG
will be a key component in the Proteome Analyst Project
[18] and in our on-going attempts to solve the game of
checkers.

References

[1] S. F. Altschul, T. L. Madden, A. A. Schaffer,
J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman.
Gapped BLAST and PSI–BLAST: a new genera-
tion of protein database search programs. Nucleic
Acids Res., 25:3389–3402, 1997.

[2] CISS – The Canadian Internet-
worked Scientific Supercomputer.
http://www.cs.ualberta.ca/˜ciss/.

[3] Condor. http://www.cs.wisc.edu/condor.

[4] DAGMan Metascheduler.
http://www.cs.wisc.edu/condor/
dagman/.

[5] D. G. Feitelson, L. Rudolph, U. Schwiegelshohn,
K. C. Sevcik, and P. Wong. Theory and Practice
in Parallel Job Scheduling. In D. G. Feitelson and
L. Rudolph, editors, Job Scheduling Strategies for
Parallel Processing, volume 1291 of Lecture Notes
in Computer Science, pages 1–34. Springer-Verlag,
1997.

[6] I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a Future Computing Infrastructure.
1999.

[7] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and
Steven Tecke. The Physiology of the Grid: An
Open Grid Services Architecture for Distributed
System Integration, June 2002.

[8] T. Frey, J.; Tannenbaum, M. Livny, I. Foster, and
S. Tuecke. Condor-G: a computation management
agent for multi- institutional grids. In High Per-
formance Distributed Computing, 2001. Proceed-
ings. 10th IEEE International Symposium, pages 55
– 63, San Francisco, CA, USA, August 2001. IEEE
Computer Society Press.

[9] Globus Project. http://www.globus.org/.

[10] M. Goldenberg. A System For Structured DAG
Scheduling. Master’s thesis, Dept. of Computing
Science, University of Alberta, Edmonton, Alberta,
Canada, 2003.

[11] Robert Lake and Jonathan Schaeffer. Solving the
Game of Checkers. In Richard J. Nowakowski, ed-
itor, Games of No Chance, pages 119–133. Cam-
bridge University Press, 1996.

[12] Robert Lake, Jonathan Schaeffer, and Paul Lu.
Solving Large Retrograde Analysis Problems Us-
ing a Network of Workstations. Advances in Com-
puter Chess, VII:135–162, 1994.

[13] M. J. Litzkow, M. Livny, and M. W. Mutka. Con-
dor : A hunter of idle workstations. In 8th In-
ternational Conference on Distributed Computing
Systems, pages 104–111, Washington, D.C., USA,
June 1988. IEEE Computer Society Press.

[14] Christopher Pinchak, Paul Lu, and Mark Gold-
enberg. Practical Heterogeneous Placeholder
Scheduling in Overlay Metacomputers:Early Expe-
riences. In 8th Workshop on Job Scheduling Strate-
gies for Parallel Processing, Edinburgh, Scotland,
U.K., July 24 2002.

[15] Christopher Pinchak, Paul Lu, Jonathan Schaef-
fer, and Mark Goldenberg. The Canadian In-
ternetworked Scientific Supercomputer. In 17th
Annual International Symposium on High Per-
formance Computing Systems and Applications
(HPCS), pages 193–199, Sherbrooke, Quebec,
Canada, May 11 – 14, 2003.

[16] RC5 Project. http://www.distributed.net/
rc5.

[17] SETI@home. http://setiathome.ssl.
berkeley.edu/.

[18] D. Szafron, P. Lu, R. Greiner, D. Wishart, Z. Lu,
B. Poulin, R. Eisner, J. Anvik, C. Macdonell,
and B. Habibi-Nazhad. Proteome Analyst –
Transparent High-Throughput Protein Anno-
tation: Function, Localization, and Custom
Predictors. Technical Report TR 03-05, Dept. of
Computing Science, University of Alberta, 2003.
http://www.cs.ualberta.ca/˜bioinfo/
PA/.

[19] D. Thain, J. Bent, A.C. Arpaci-Dusseau, R.H.
Arpaci-Dusseau, and M. Livny. The architectural
implications of pipeline and batch sharing in sci-
entific workloads. Technical Report 1463, Com-
puter Sciences Department, University of Wiscon-
sin, Madison, 2002.

[20] WestGrid. http://www.westgrid.ca/.

