
Bak�lling with Lookahead to Optimizethe Performane of Parallel JobShedulingEdi ShmueliDepartment of Computer SieneHaifa University, Haifa, IsraelIBM Haifa Researh Labsedi�il.ibm.om Dror G. FeitelsonShool of Computer Siene & EngineeringHebrew University, Jerusalem, Israelfeit�s.huji.a.ilAbstratThe utilization of parallel omputers depends on how jobs are pakedtogether: if the jobs are not paked tightly, resoures are lost due to frag-mentation. The problem is that the goal of high utilization may on�itwith goals of fairness or even progress for all jobs. The ommon solutionis to use bak�lling, whih ombines a reservation for the �rst job in theinterest of progress with paking of later jobs to �ll in holes and inreaseutilization. However, bak�lling onsiders the queued jobs one at a time,and thus might miss better paking opportunities. We propose the useof dynami programming to �nd the best paking possible given the ur-rent omposition of the queue. Simulation results show that this indeedimproves utilization, and thereby redues the average response time andaverage slowdown of all jobs.1 IntrodutionA parallel job is omposed of a number of onurrently exeuting proesses,whih olletively perform a ertain omputation. A rigid parallel job has a�xed number of proesses (referred to as the job's size) whih does not hangeduring exeution [2℄. To exeute suh a parallel job, the job's proesses aremapped to a set of proessors using a one-to-one mapping. In a non-preemptiveregime, these proessors are then dediated to running this job until suh timethat it terminates [3℄. The set of proessors dediated to a ertain job is alled apartition of the mahine. To inrease utilization, parallel mahines are typiallypartitioned into several non-overlapping partitions, alloated to di�erent jobsrunning onurrently, a tehnique alled spae sliing [1℄.To protet the mahine resoures and allow suessful exeution of jobs,users are not allowed to diretly aess the mahine. Instead, they submit their1

jobs to the mahine's sheduler � a software omponent that is responsiblefor monitoring and managing the mahine resoures. The sheduler typiallymaintains a queue of waiting jobs. The jobs in the queue are onsidered foralloation whenever the state of the mahine hanges. Two suh hanges arethe submittal of a new job (whih hanges the queue), and the termination ofa running job (whih frees an alloated partition) [8℄. Upon suh events, thesheduler examines the waiting queue and the mahine resoures and deideswhih jobs (if any) will be started at this time.Alloating proessors to jobs an be seen as paking jobs into the availablespae of free proessors: eah job takes a partition, and we try to leave asfew idle proessors as possible. The goal is therefore to maximize the mahineutilization. The lak of knowledge regarding future jobs leads urrent on-lineshedulers to use simple heuristis to maximize utilization at eah shedulingstep. The di�erent heuristis used by various algorithms are desribed in Setion2. These heuristis do not guarantee to minimize the mahine's idle apaity.We propose a new sheduling heuristi seeking to maximize utilization ateah sheduling step. Unlike urrent shedulers that onsider the queued jobsone at a time, our sheduler bases its sheduling deisions on the whole ontentsof the queue. Thus we named it LOS � an aronym for �Lookahead OptimizingSheduler�. LOS starts by examining only the �rst waiting job. If it �ts withinthe mahine's free apaity it is immediately started. Otherwise, a reservation ismade for this job so as to prevent the risk of starvation. The rest of the waitingqueue is proessed using an e�ient, newly developed dynami-programmingbased sheduling algorithm that hooses the set of jobs whih will maximize themahine utilization and will not violate the reservation for the �rst waiting job.The algorithm also respets the arrival order of the jobs, if possible. When twoor more sets of jobs ahieve the same maximal utilization, it hooses the setloser to the head of the queue.Setion 3 provides a detailed desription of the algorithm, followed by ashort disussion of its omplexity, and suggests optional performane optimiza-tions. Setion 4 desribes the simulation environment used in the evaluation andpresents the experimental results from the simulations in whih LOS was testedusing trae �les from real systems. Setion 5 onludes on the e�etiveness andappliability of our proposed sheduling heuristi.2 Related WorkWe will fous on the narrow �eld of on-line sheduling algorithms of non-preemptive rigid jobs on distributed memory parallel mahines, and espeiallyon heuristis that attempt to improve utilization.The base ase often used for omparison is the First Come First Serve(FCFS) algorithm [5℄. In this algorithm all jobs are started in the same or-der in whih they arrive in the queue. If the mahine's free apaity does notallow the �rst job to start, FCFS will not attempt to start any sueeding job.It is a fair sheduling poliy, whih guarantees freedom of starvation sine a job2

annot be delayed by other jobs submitted at a later time. It is also easily im-plemented. Its drawbak is the resulting poor utilization of the mahine. Whenthe next job to be sheduled is larger than the mahine free apaity, it holdsbak smaller sueeding jobs, whih ould utilize the mahine.In order to improve various performane metris it is possible to onsider thejobs in some other order. The Shortest Proessing Time First (SPT) algorithmuses estimations of the jobs' runtimes to make sheduling deisions. It sorts thewaiting jobs by inreasing estimated runtime and exeutes the jobs with theshortest runtime �rst [5℄. This algorithm is inspired by the "shortest job �rst"heuristi [11℄, whih seeks to minimize the average response time. The rationalebehind this heuristis is that if a short job is exeuted after a long one, bothwill have a long response time, but if the short job gets to be exeuted �rst, itwill have a short response time, thus the average response time is redued.The opposite algorithm, Largest Proessing Time First (LPT), exeutes thejobs with the longest proessing time �rst [15, 16℄. This poliy aims at mini-mizing the makespan, but the average response time is inreased beause manysmall jobs are delayed signi�antly.Other sheduling heuristis base their deisions on job size rather than on es-timated runtime. The Smallest Job First (SJF) algorithm [17℄ sorts the waitingjobs by inreasing size and exeutes the smallest jobs �rst. Inspired by SPT, thisalgorithm turned out to perform poorly beause there is not muh orrelationbetween the job size and it's runtime. Small jobs do not neessarily terminatequikly [18, 19℄, whih results in a fragmented mahine and thus a redution inperformane.The alternative Largest Job First (LJF) is motivated by results in bin-paking that indiate that a simple �rst-�t algorithm ahieves better pakingif the paked items are sorted in dereasing size [20, 21℄. In terms of shedul-ing it means that sheduling larger jobs �rst may be expeted to ause lessfragmentation and therefore higher utilization than FCFS.Finally, the Smallest Cumulative Demand First [17, 22, 23℄ algorithm usesboth the expeted exeution time and job size to make sheduling deisions. Itsorts the jobs in an inreasing order aording to the produt of the jobs sizeand the expeted exeution time, so small short jobs get the highest priority.It turned out that this poliy does not perform muh better than the originalsmallest job �rst [17℄.The problem with all the above shemes is that they may su�er from star-vation, and may also waste proessing power if the �rst job annot run. Thisproblem is solved by bak�lling algorithms, whih allow small jobs from the bakof the queue to exeute before larger jobs that arrived earlier, thus utilizing theidle proessors, while the latter are waiting for enough proessors to be freed[3℄. Bak�lling is known to greatly inrease user satisfation sine small jobstend to get through faster, while bypassing large ones.Note that in order to implement bak�lling, the jobs' runtimes must beknown in advane. Two tehniques, one to estimate the runtime through re-peated exeutions of the job [12℄ and the seond to get this information throughompile-time analysis [13, 14℄ have been proposed. Real implementations, how-3

ever, require the users to provide an estimate of their jobs runtime, whih inpratie is often spei�ed as a runtime upper-bound. Surprisingly, it turns outthat inaurate estimates generally lead to better performane than aurateones [10℄.Bak�lling was �rst implemented on a prodution system in the "EASY"sheduler developed by Lifka et al. [24, 25℄, and later integrated with IBM'sLoadLeveler. This version is based on aggressive bak�lling, in whih any joban be bak�lled provided it does not delay the �rst job in the queue. In fat,one of the important parameters of bak�lling algorithms is the number of jobsthat enjoy reservations. In EASY, only the �rst job gets a reservation. In on-servative bak�lling, all skipped jobs get reservations [10℄. The Maui shedulerhas a parameter that allows the system administrator to set the number of reser-vations [9℄. Srinivasan et al. [26℄ have suggested a ompromise strategy alledseletive bak�lling, wherein jobs do not get a reservation until their expetedslowdown exeeds some threshold. If the threshold is hosen judiiously, onlythe most needy jobs get a reservation.Additional variants of bak�lling allow the sheduler more �exibility. Talbyand Feitelson presented slak based bak�lling, an enhaned bak�ll shedulerthat supports priorities [6℄. These priorities are used to assign eah waitingjob a slak, whih determines how long it may have to wait before running:important jobs will have little slak in omparison with others. Bak�lling isallowed only if the bak�lled job does not delay any other job by more than thatjob's slak. Ward et al. have suggested the use of a relaxed bak�ll strategy,whih is similar, exept that the slak is a onstant fator and does not dependon priority [27℄.Lawson and Smirni presented a multiple-queue bak�lling approah in whiheah job is assigned to a queue aording to its expeted exeution time andeah queue is assigned to a disjoint partition of the parallel system on whihjobs from the queue an be exeuted [7℄. Their simulation results indiate aperformane gain ompared to a single-queue bak�lling, resulting from the fatthat the multiple-queue poliy redues the likehood that short jobs get delayedin the queue behind long jobs.3 The LOS Sheduling AlgorithmThe LOS sheduling algorithm examines all the jobs in the queue in order tomaximize the urrent system utilization. Instead of sanning the queue in someorder, and starting any job that is small enough not to violate prior reserva-tions, LOS tries to �nd a ombination of jobs that together maximize utilization.This is done using dynami programming. Setion 3.2 presents the basi algo-rithm, and shows how to �nd a set of jobs that together maximize utilization.Setion 3.3 then extends this by showing how to selet jobs that also respeta reservation for the �rst queued job. Setion 3.4 desribes the fators thate�et the algorithm time and spae omplexity, and Setion 3.5 �nalizes thealgorithm desription with two suggested optimizations aimed at improving its4

performane.Before starting the desription of the algorithm itself, Setion 3.1 formal-izes the state of the system and introdues the basi terms and notations usedlater. To provide an intuitive feel of the algorithms, eah subsetion is followedby an on-going sheduling example on an imaginary mahine of size N = 10:Paragraphs desribing the example are headed by |.3.1 Formalizing the System StateAt time t our mahine of size N runs a set of jobs R = frj1; rj2; :::; rjrg, eahwith two attributes: their size, and estimated remaining exeution time, rem.For onveniene, R is sorted by inreasing rem values. The mahine's freeapaity is n = N �Pri=1 rji:size.The queue ontains a set of waiting jobsWQ = fwj1; wj2; ::; wjqg, whih alsohave two attributes: a size requirement and a user estimated runtime, time.The task of the sheduling algorithm is to selet a subset S � WQ of jobs,referred to as the produed shedule, whih maximizes the mahine utilization.The produed shedule is saf e if it does not impose a risk of starvation.| As illustrated in Figure 1, at t = 25, our mahine runs a single job rj1with size = 5 and expeted remaining exeution time rem = 3. The mahine'sfree apaity is n = 5. The table at the right desribes the size and estimatedruntime of the �ve waiting jobs in the waiting queue, WQ.

����
����
����
����
����
����
����

����
����
����
����
����
����
����

rj1

t=25 t=28

n=
5

N
=

10

rem=3

si
ze

=
5

Time

wj size time1 7 42 2 23 1 64 2 45 3 5
Figure 1: System state and queue at t = 253.2 The Basi Algorithm3.2.1 Freedom of StarvationThe algorithm begins by trying to start the �rst waiting job.5

If wj1:size � n , it is removed from the waiting queue, added to the runningjobs list and starts exeuting.Otherwise, the algorithm alulates the shadow time at whih wj1 an beginits exeution [24℄. It does so by traversing the list of running jobs while aumu-lating their sizes until reahing a job rjs at whih wj1:size � n+Psi=1 rji:size.The shadow time is then de�ned to be shadow = t+ rjs:rem. By ensuring thatall jobs in S terminate before that time, S is guaranteed to be a safe shedule,as it will not impose any delay on the �rst waiting job, thus ensuring a freedomfrom starvation.To dismiss us of the onern of handling speial ases, we set shadow to 1if wj1 an be started at t. In this ase every produed shedule is safe, as the�rst waiting job is assured to start without delay.| The 7 proessors requirement of wj1 prevents it from starting at t = 25.It will be able to start at t = 28 after rj1 terminates, thus shadow is set to 28as illustrated in �gure 2.

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

rj1

wj1

N
=

10

t=25 t=28
(shadow)

TimeFigure 2: Computing the shadow time3.2.2 A Two Dimensional Data StrutureAfter handling the �rst job, we need to �nd the set of subsequent jobs thatwill maximize utilization. To do so, the waiting queue, WQ, is proessed usinga dynami-programming algorithm. Intermediate results are stored in a twodimensional matrix denoted M of size (jWQj+ 1)� (n+1), and are later usedfor making suessive deisions.Eah ell mi;j ontains a single integer value util, and two boolean traemarkers, seleted and bypassed.util holds the maximal ahievable utilization at t, if the mahine's free a-paity is j and only waiting jobs f1::igare available for sheduling.6

The seleted marker is set to indiate that wji was hosen for exeution(wji 2 S). The bypassed marker indiates the opposite. When the algorithm�nishes alulating M , the trae markers are used to trae the jobs whih on-strut S. It is possible that both markers will be set simultaneously in a givenell, whih means that there is more than one way to onstrut S. It is impor-tant to note that either way, jobs in the produed shedule will always ahievethe same overall maximal utilization.For onveniene, the i = 0 row and j = 0 olumn are initialized with zerovalues. Suh padding eliminates the need of handling speial ases.| In the example, M is a 6� 6 matrix. The seleted and bypassed markers,if set, are noted by - and " respetively. Table 1 desribes M 's initial values.# i (size) ; j ! 0 1 2 3 4 50 (�) 0 0 0 0 0 01 (7) 0 � � � � �2 (2) 0 � � � � �3 (1) 0 � � � � �4 (2) 0 � � � � �5 (3) 0 � � � � �Table 1: M 's initial values3.2.3 Filling MM is �lled from left to right, top to bottom, as indiated in Algorithm 1. Thevalues of eah ell are alulated using values from previously alulated ells.The idea is that if adding another proessor (bringing the total to j) allows theurrently onsidered job i to be started, we need to hek whether inluding wjiin the produed shedule inreases the utilization. If not, or if the size of job iis larger than j, the utilization is simply what it was without this job, that ismi�1;j :util.As mentioned in Setion 3.2.1, a safe shedule is guaranteed if all jobs inS terminate before the shadow time. The third line of Algorithm 1 ensuresthat every job wji that will not terminate by the shadow time is immediatelybypassed, that is, exluded from S. This is done to simplify the presentationof the algorithm. In Setion 3.3 we relax this restrition and present the fullalgorithm.The omputation stops when reahing ell mjwqj;n at whih time M is �lledwith values.| The resulting M is shown in Table 2. As an be seen, the seleted �agis set only for wj2, as it is the only job whih an be started safely withoutimposing any delay on wj1. Sine all other jobs are bypassed, the maximal7

Algorithm 1 Construting M� Note : To slightly ease the reading, mi;j :util, mi;j :seleted, andmi;j :bypassed are represented by util, seleted and bypassed respetively.for i = 1 to jWQjfor j = 1 to nif wji:size > j or t+ wji:time > shadowutil mi�1;j :utilseleted Falsebypassed Trueelse util0 mi�1;j�wji:size:util+ wji:sizeif util0 � mi�1;j :utilutil util0seleted Truebypassed Falseif util0 = mi�1;j :utilbypassed Trueelse util mi�1;j :utilseleted Falsebypassed Trueahievable utilization of the j = 5 free proessors when onsidering all i = 5jobs is m5;5:util = 2.# i (size) ; j ! 0 1 2 3 4 50 (�) 0 0 0 0 0 01 (7) 0 0 " 0" 0" 0" 0"2 (2) 0 0 " 2 - 2 - 2 - 2 -3 (1) 0 0 " 2" 2" 2" 2"4 (2) 0 0 " 2" 2" 2" 2"5 (3) 0 0 " 2" 2" 2" 2"Table 2: Resulting M3.2.4 Construting SStarting at the last omputed ell mjwqj;n, S is onstruted by following thetrae markers as desribed in Algorithm 2.It was already noted in Setion 3.2.2 that it is possible that in an arbitraryell mx;y both markers are set simultaneously, whih means that there is more8

than one possible shedule. In suh ase, the algorithm will follow the bypassedmarker.In term of sheduling wjx =2 S simply means that wjx is not started at t,but this deision has a deeper meaning in terms of queue poliy. Sine thequeue is traversed by Algorithm 2 from tail to head, skipping wjx means thatother jobs, loser to the head of the queue will be started instead, and the samemaximal utilization will still be ahieved. By seleting jobs loser to the headof the queue our produed shedule is not only more ommitted to the queueFCFS poliy, but also reeives a better sore from the evaluation metris suhas average response time, slowdown et.Algorithm 2 Construting SS fgi jWQjj nwhile i > 0 and j > 0if mi;j :bypassed = Truei i� 1else S S [fwjigj j � wji:sizei i� 1| The resulting S ontains a single job wj2, and its sheduling at t is illus-trated in Figure 3. Note that wj1 is not part of S: It is only drawn to illustratethat wj2 does not e�et its expeted start time, indiating that our produedshedule is safe.

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

���
���
���
���

���
���
���
���

wj1

wj2

rj1

N
=

10

t=25 t=28
(shadow)

TimeFigure 3: Sheduling wj2 at t = 259

3.3 The Full Algorithm3.3.1 Maximizing UtilizationOne way to reate a safe shedule is to require all jobs in S to terminate be-fore the shadow time, so as not to interfere with that job's reservation. Thisrestrition an be relaxed in order to ahieve a better shedule S0, still safe butwith a muh improved utilization. This is possible due to the extra proessorsleft at the shadow time after wj1 is started. Waiting jobs whih are expetedto terminate after the shadow time an use these extra proessors, referred toas the shadow free apaity, and run side by side together with wj1, withoute�eting its start time. As long as the total size of jobs in S0 that are stillrunning at the shadow time does not exeed the shadow free apaity, wj1willnot be delayed, and S0 will be a safe shedule.If the �rst waiting job, wj1, an only start after rjs has terminated, thanthe shadow free apaity, denoted by extra; is alulated as follows :extra = n+ sXi=1 rji:size� wj1:sizeTo use the extra proessors, the jobs whih are expeted to terminate beforethe shadow time are distinguished from those that are expeted to still run atthat time, and are therefore andidates for using the extra proessors. Eahwaiting job wji 2 WQ will now be represented by two values: its original sizeand its shadow size � its size at the shadow time. Jobs expeted to terminatebefore the shadow time have a shadow size of 0. The shadow size is denotedssize, and is alulated using the following rule:wji:ssize = � 0 t+ wji:time � shadowwji:size otherwiseIf wj1 an start at t, the shadow time is set to 1. As a result, the shadowsize ssize, of all waiting jobs is set to 0, whih means that any omputationwhih involves extra proessors is unneessary. In this ase setting extra to 0improves the algorithm performane.All these alulation are done in a pre-proessing phase, before running thedynami programming algorithm.| wj1whih an begin exeution at t = 28 leaves 3 extra proessors. shadowand extra are set to 28 and 3 respetively, as illustrated in Figure 4. In thequeue shown on the right, we use the notation sizessize to represent the twosize values. wj2 is the only job expeted to terminate before the shadow time,thus its shadow size is 0.3.3.2 A Three Dimensional Data StrutureTo manage the use of the extra proessors, we need a three dimensional matrixdenoted M 0 of size (jWQj+ 1)� (n+ 1)� (extra + 1).10

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

rj1

wj1

N
=

10

t=25 t=28

extra=3

(shadow)
Time

wj sizessize time1 77 42 20 23 11 64 22 45 33 5
Figure 4: Computing shadow and extra, and the proessed job queueEah ell m0i;j;k now ontains two integer values, util and sutil, and the twotrae markers.util holds the maximal ahievable utilization at t, if the mahine's free apa-ity is j, the shadow free apaity is k, and only waiting jobs f1::ig are availablefor sheduling.sutil hold the minimal number of extra proessors required to ahieve theutil value mentioned above.The seleted and bypassedmarkers are used in the same manner as desribedin setion 3.2.2.As mentioned in setion 3.2.2, the i = 0 rows and j = 0 olumns are initial-ized with zero values, this time for all k planes.| M 0 is a 6� 6� 4 matrix. util and sutil are noted utilsutil. The notationof the seleted and bypassed markers is not hanged and remains - and "respetively.Table 3 desribes the initial k = 0 plane. Planes 1::3 are initially similar.# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 �� �� �� �� ��2 (20) 00 �� �� �� �� ��3 (11) 00 �� �� �� �� ��4 (22) 00 �� �� �� �� ��5 (33) 00 �� �� �� �� ��Table 3: Initial k = 0 plane11

3.3.3 Filling M 0The values in every m0i;j;k ell are alulated in an iterative matter using valuesfrom previously alulated ells as desribed in Algorithm 3. The alulation isexatly the same as in Algorithm 1, exept for an addition of a slightly moreompliated ondition that heks that enough proessors are available bothnow and at the shadow time.The omputation stops when reahing ell m0jwqj;n;extra.Algorithm 3 Construting M 0� Note : To slightly ease the reading, m0i;j;k:util, m0i;j;k:sutil,m0i;j;k :seleted, and m0i;j;k:bypassed are represented by util, sutil,seleted, and bypassed respetively.for k = 0 to extrafor i = 1 to jWQjfor j = 1 to nif wji:size > j or wji:ssize > kutil m0i�1;j;k:utilsutil m0i�1;j;k:sutilseleted Falsebypassed Trueelse util0 m0i�1;j�wji:size;k�wji:ssize:util+ wji:sizesutil0 m0i�1;j�wji:size;k�wji:ssize:sutil+ wji:ssizeif util0 > m0i�1;j;k:util or(util0 = m0i�1;j;k:util and sutil0 � m0i�1;j;k:sutil)util util0sutil sutil0seleted Truebypassed Falseif util0 = mi�1;j;k:util and sutil0 = mi�1;j;k:sutilm0i;j;k:bypassed Trueelse util m0i�1;j;k:utilsutil m0i�1;j;k:sutilseleted Falsebypassed True| When the shadow free apaity is k = 0; only wj2 who's ssize = 0 anbe sheduled. As a result, the maximal ahievable utilization of the j = 5 freeproessors, when onsidering all i = 5 jobs is m05;5;0:util =2, as an be seen inTable 4. This is of ourse the same utilization value (and the same shedule)ahieved in Setion 3.2.3, as the k = 0 ase is idential to onsidering only jobsthat terminate before the shadow time.When the shadow free apaity is k = 1, wj3 who's ssize = 1 is also available12

i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 00 " 20" 20" 20" 20"4 (22) 00 00 " 20" 20" 20" 20"5 (33) 00 00 " 20" 20" 20" 20"Table 4: k = 0 plane# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20" 31" 31" 31"5 (33) 00 11 " 20" 31" 31" 31"Table 5: k = 1 planefor sheduling. As an be seen in Table 5, starting atm03;3;1 the maximal ahiev-able utilization is inreased to 3, at the prie of using a single extra proessor.The two seleted jobs are wj2 and wj3.As the shadow free apaity inreases to k = 2, wj4 who's shadow size is 2,joins wj2 and wj3 as a valid sheduling option. Its e�et is illustrated in Table6 starting at m04;4;2, as the maximal ahievable utilization has inreased to 4 �the sum of wj2 and wj4 sizes. This omes at a prie of using a minimum of 2extra proessors, orresponding to wj4's shadow size.It is interesting to examine the m04;2;2 ell, as it introdues an interestingheuristi deision. When the mahine's free apaity is j = 2 and only jobsf1::4g are onsidered for sheduling, the maximal ahievable utilization an beaomplished by either sheduling wj2 or wj4, both with a size of 2, yet wj4 willuse 2 extra proessors while wj2 will use none. The algorithm hooses to bypasswj4 and selets wj2 as it leaves more extra proessors to be used by other jobs.Finally the full k = 3 shadow free apaity is onsidered. wj5, who's shadowsize is 3 an now join wj1::wj4 as a valid sheduling option.As an be seen in Table 7, the maximal ahievable utilization at t = 25, whenthe mahine's free apaity is n = j = 5, the shadow free apaity is extra = k =3 and all �ve waiting jobs are available for sheduling is m05;5;3:util = 5. Theminimal number of extra proessors required to ahieve this utilization value is13

i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20"? 31" 42- 42-5 (33) 00 11 " 20" 31" 42" 42"Table 6: k = 2 plane# i (sizessize) ; j ! 0 1 2 3 4 50 (��) 00 00 00 00 00 001 (77) 00 00 " 00" 00" 00" 00"2 (20) 00 00 " 20 - 20 - 20 - 20 -3 (11) 00 11 - 20" 31- 31- 31-4 (22) 00 11 " 20" 31" 42- 53-5 (33) 00 11 " 20" 31" 42" 53-"Table 7: k = 3 planem05;5;3:sutil = 3.3.3.4 Construting S0Algorithm 4 desribes the onstrution of S0. It starts at the last omputedell m0jwqj;n;extra, follows the trae markers, and stops when reahing the 0boundaries of any plane.As explained in setion 3.2.4, when both trae markers are set simultane-ously, the algorithm follows the bypassed marker, a deision whih reeives abetter sore from the evaluation metris.| Both trae markers in m05;5;3, are set, whih means there is more thanone way to onstrut S0. In our example there are two possible shedules, bothutilize all 5 free proessors, resulting in a fully utilized mahine. ChoosingS0 = fwj2; wj3;wj4g is illustrated in Figure 5. Choosing S0 = fwj2; wj5g isillustrated in Figure 6.Both shedules fully utilize the mahine and ensure that wj1 will start with-out a delay, thus both are safe shedules, yet the �rst shedule (illustrated inFigure 5) ontains jobs loser to the head of the queue, thus it is more om-mitted to the queue FCFS poliy. Based on the explanation in setion 3.2.4,hoosing S0 = fwj2; wj3;wj4g is expeted to gain better results when evaluationmetris are onsidered. 14

Algorithm 4 Construting S0S0 fgi jWQjj nk extrawhile i > 0 and j > 0if m0i;j;k:bypassed = Truei i� 1else S0 S0 [fwjigj j � wji:sizek k � wji:ssizei i� 1

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

���
���
���
���

���
���
���
���
������
������
������
������

������
������
������
������

�����������������
�����������������
�����������������

�����������������
�����������������
�����������������

wj1

wj2

rj1

wj3

wj4

N
=

10

t=25 t=28
(shadow)

TimeFigure 5: Sheduling wj2; wj3 and wj4 at t = 253.4 A Note On ComplexityThe most time and spae demanding task is the onstrution of M 0. It dependson jWQj � the length of the waiting queue, n � the mahine's free apaityat t, and extra � the shadow free apaity.jWQj depends on the system load. On heavy loaded systems the averagewaiting queue length an reah tens of jobs with peaks reahing sometimeshundreds.Both n and extra fall in the range of 0 to N . Their values depend on the sizeand time distribution of the waiting and running jobs. A termination of a smalljob auses nothing but a small inrease to the system's free apaity, thus n isinreased by a small amount. On the other hand, when a large job terminates,it leaves muh free spae and n will onsequently be large. extra is a funtion of15

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

���
���
���
���

���
���
���
���

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

wj1

wj2

rj1

wj5

N
=

10

t=28t=25
(shadow)

TimeFigure 6: Sheduling wj2 and wj5 at t = 25.the size of the �rst waiting job, and the size and time distribution of the runningjobs. If wj1 is small but it an start only after a large job terminates, extra willonsequently be large. On the other hand, if the size of the terminating job issmall and wj1's size is relatively large, fewer extra proessors will be available.3.5 OptimizationsIt was mentioned in Setion 3.4 that on heavily loaded systems the averagewaiting queue length an reah tens of jobs, a fat that has a negative e�et onthe performane of the sheduler, sine the onstrution of M 0 diretly dependson jWQj. Two enhanements an be applied in the pre-proessing phase. Bothresult in a shorter waiting queue jWQ0j < jWQj and thus improve the shedulerperformane.The �rst enhanement is to exlude jobs larger than the mahine's urrentfree apaity. If wji:size > n it is lear that it will not be started in the urrentsheduling step, so it an be safely exluded from the waiting queue withoutany e�et on the algorithm results.The seond enhanement is to limit the number of jobs examined by thealgorithm by inluding only the the �rst C waiting jobs in WQ0 where C isa prede�ned onstant. We all this approah limited lookahed sine we limitthe number of jobs the algorithm is allowed to examine. It is often possible toprodue a shedule whih maximizes the mahine's utilization by looking onlyat the �rst C jobs, thus by limiting the lookahead, the same result are ahieved,but with muh less omputation e�ort. Obviously this is not always the ase,and suh a restrition might produe a shedule whih is not optimal. The e�etof limiting the lookahead on the performane of LOS is examined in Setion 4.3.| Looking at our initial waiting queue desribed in the table in Figure 4,16

it is lear that wj1 annot start at t sine its size exeeds the mahine's 5free proessors. Therefore it an be safely exluded from the proessed waitingqueue without e�eting the produed shedule. The resulting waiting queueWQ0 holds only four jobs as shown in Table 8.wj sizessize2 203 114 225 33Table 8: Optimized Waiting Queue WQ0We ould also limit the lookahead to C = 3 jobs, exluding wj5 from WQ0.In this ase the produed shedule will ontain jobs wj2, wj3 and wj4, and notonly that it maximizes the utilization of the mahine, but it is also identialto the shedule shown in Figure 5. By limiting the lookahead we improved theperformane of the algorithm and ahieved the same results.4 Experimental Results4.1 The Simulation EnvironmentWe implemented all aspets of the algorithm inluding the mentioned optimiza-tions in a job sheduler we named LOS, and integrated LOS into the frameworkof an event-driven job sheduling simulator. We used logs of the Cornell TheoryCenter (CTC) SP2, the San Diego Superomputer Center (SDSC) SP2, and theSwedish Royal Institute of Tehnology (KTH) SP2 superomputing enters asa basis [28℄, and generated logs of varying loads ranging from 0:5 to 0:95, bymultiplying the arrival time of eah job by onstant fators. For example, if theo�ered load in the CTC log is 0:60, then by multiplying eah job's arrival timeby 0:60 a new log is generated with a load of 1:0. To generate a load of 0:9, eahjob's arrival time is multiplied by a onstant of 0:600:90 . We laim that in ontrastto other log modi�ation methods whih modify the jobs' sizes or runtimes,our generated logs and the original ones maintain resembling harateristis.The logs were used as an input for the simulator, whih generates arrival andtermination events aording to the jobs harateristis of a spei� log.On eah arrival or termination event, the simulator invokes LOS whih ex-amines the waiting queue, and based on the urrent system state it deideswhih jobs to start. For eah started job, the simulator updates the system freeapaity and enqueues a temination event orresponding to the job terminationtime. For eah terminated job, the simulator reords its response time, boundedslowdown (applying a threshold of � = 10 seonds), and wait time.17

4.2 Improvement over EASYWe used the framework mentioned above to run simulations of the EASY shed-uler [24, 25℄, and ompared its results to those of LOS whih was limited to amaximal lookahead of 50 jobs. By omparing the ahieved utilization vs. theo�ered load of eah simulation, we saw that for the CTC and SDSC workloadsa disrepany ours at loads higher than 0.9, whereas for the KTH workloadit ours only at loads higher than 0.95. As suh disrepanies indiate thatthe simulated system is atually saturated, we limit the x axis to the indiatedranges when reporting our results.As the results of shedulers proessing the same jobs may be similar, we needto ompute on�dene intervals to assess the signi�ane of observed di�erenes.Rather than doing so diretly, we �rst apply the �ommon random numbers�variane redution tehnique [29℄. For eah job in the workload �le, we tabu-late the di�erene between its response time under EASY and under LOS. Wethen ompute on�dene intervals on these di�erenes using the bath meansapproah. By omparing the di�erene between the shedulers on a job-by-jobbasis, the variane of the results is greatly redued, and so are the on�deneintervals.
 0

 1000

 2000

 3000

 4000

 5000

 6000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9M
ea

n
jo

b
di

ffe
re

nt
ia

l r
es

po
ns

e
tim

e

Load

Mean job differential response time vs. Load

Easy-LOS

(a) CTC Log 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000
 20000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9M
ea

n
jo

b
di

ffe
re

nt
ia

l r
es

po
ns

e
tim

e

Load

Mean job differential response time vs. Load

Easy-LOS

(b) SDSC Log 0

 5000

 10000

 15000

 20000

 25000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95M
ea

n
jo

b
di

ffe
re

nt
ia

l r
es

po
ns

e
tim

e

Load

Mean job differential response time vs. Load

Easy-LOS

() KTH LogFigure 7: Mean job di�erential response time vs LoadThe results for response time are shown in Figure 7, and for bounded slow-down in Figure 8. The results for wait time are the same as those for responsetime, beause we are looking at di�erenes. In all the plots, the mean job dif-ferential response time (or bounded slowdown) is positive aross the entire loadrange for all three logs, indiating that LOS outperforms Easy with respet tothese metris. This observation is reinfored by that fat that all lower bound-aries of the 90% on�dene interval measured at key load values, remain abovethe load axis, indiating the auray of our results.
18

 0

 5

 10

 15

 20

 25

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

M
ea

n
jo

b
di

ffe
re

nt
ia

l b
ou

nd
ed

_s
lo

w
do

w
n

Load

Mean job differential bounded_slowdown vs. Load

Easy-LOS

(a) CTC Log 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

M
ea

n
jo

b
di

ffe
re

nt
ia

l b
ou

nd
ed

_s
lo

w
do

w
n

Load

Mean job differential bounded_slowdown vs. Load

Easy-LOS

(b) SDSC Log 0

 50

 100

 150

 200

 250

 300

 350

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

M
ea

n
jo

b
di

ffe
re

nt
ia

l b
ou

nd
ed

_s
lo

w
do

w
n

Load

Mean job differential bounded_slowdown vs. Load

Easy-LOS

() KTH LogFigure 8: Mean job di�erential bounded slowdown (� = 10) vs Load4.3 Limiting the LookaheadSetion 3.5 proposed an enhanement alled limited lookahead aimed at im-proving the performane of the algorithm. We explored the e�et of limitingthe lookahead on the sheduler performane by performing six LOS simulationswith a limited lookahead of 10, 25, 35, 50, 100 and 250 jobs respetively. Figure9 present the e�et of the limited lookahead on the mean job response time.Figure 10 presents its e�et on the mean job bounded slowdown. Again, thee�et on wait time is the same as that on response time.The notation LOS.X is used to represent LOS's result urve, where X isthe maximal number of waiting jobs that LOS was allowed to examine on eahsheduling step (i.e. its lookahead limitation). We also plotted Easy's resulturve to allow a omparison. We observe that for the CTC log in Figure 9(a) andthe KTH log in Figure 9(), when LOS is limited to examine only 10 jobs at eahsheduling step, its resulting mean job response time is relatively poor, espeiallyat high loads, ompared to the result ahieved when the lookahead restrition isrelaxed. The same observation also applies to the mean job bounded slowdownfor these two logs, as shown in �gure 10(a,). As most learly illustrated in�gures 9(a) and 10(a), the result urves of LOS and Easy interset several timesalong the load axis, indiating that the two shedulers ahieve the same resultswith neither one onsistently outperforming the other as the load inreases . Thereason for the poor performane is the low probability that a shedule whihmaximizes the mahine utilization atually exists within the �rst 10 waitingjobs, thus although LOS produes the best shedule it an, it is rarely the asethat this shedule indeed maximizes the mahine utilization. However, for theSDSC log in Figures 9(b) and 10(b), LOS manages to provide good performaneeven with a limited lookahead of 10 jobs.As the lookahead limitation is relaxed, LOS performane improves but theimprovement is not linear with the lookahead fator, and in fat the resultingurves for both metris are relatively similar for lookaheads in the range of 25�250 jobs. Thus we an safely use a bound of 50 on the lookahead, thus bounding19

 11000
 12000
 13000
 14000
 15000
 16000
 17000
 18000
 19000
 20000
 21000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

M
ea

n
jo

b
re

sp
on

se
 ti

m
e

Load

Mean job response time vs. Load

Easy
LOS.10
LOS.25
LOS.35
LOS.50

LOS.100
LOS.250

(a) CTC Log 5000
 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

M
ea

n
jo

b
re

sp
on

se
 ti

m
e

Load

Mean job response time vs. Load

Easy
LOS.10
LOS.25
LOS.35
LOS.50

LOS.100
LOS.250

(b) SDSC Log
 0

 20000

 40000

 60000

 80000

 100000

 120000

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

M
ea

n
jo

b
re

sp
on

se
 ti

m
e

Load

Mean job response time vs. Load

Easy
LOS.10
LOS.25
LOS.35
LOS.50

LOS.100
LOS.250

() KTH LogFigure 9: Limited lookahead a�et on mean job response timethe omplexity of the algorithm.The explanation is that at most of the sheduling steps, espeially under lowloads , the length of the waiting queue is kept small, so lookahead of hundreds ofjobs has no e�et in pratie. As the load inreases and the mahine advanestoward its saturation point, the average number of waiting jobs inreases, asshown in Figure 11, and the e�et of hanging the lookahead is more learlyseen. Interestingly, with LOS the average queue length is atually shorter,beause it is more e�ient in paking jobs, thus allowing them to terminatefaster.
20

 0

 5

 10

 15

 20

 25

 30

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

M
ea

n
jo

b
bo

un
de

d_
sl

ow
do

w
n(

th
re

sh
=

10
)

Load

Mean job bounded_slowdown(thresh=10) vs. Load

Easy
LOS.10
LOS.25
LOS.35
LOS.50

LOS.100
LOS.250

(a) CTC Log 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

M
ea

n
jo

b
bo

un
de

d_
sl

ow
do

w
n(

th
re

sh
=

10
)

Load

Mean job bounded_slowdown(thresh=10) vs. Load

Easy
LOS.10
LOS.25
LOS.35
LOS.50

LOS.100
LOS.250

(b) SDSC Log
 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

M
ea

n
jo

b
bo

un
de

d_
sl

ow
do

w
n(

th
re

sh
=

10
)

Load

Mean job bounded_slowdown(thresh=10) vs. Load

Easy
LOS.10
LOS.25
LOS.35
LOS.50

LOS.100
LOS.250

() KTH LogFigure 10: Limited lookahead a�et on mean job bounded slowdown (� = 10)5 ConlusionsBak�lling algorithms have several parameters. In the past, two parametershave been studied: the number of jobs that reeive reservations, and the orderin whih the queue is traversed when looking for jobs to bak�ll. We introduea third parameter: the amount of lookahead into the queue. We show that byusing a lookahead window of about 50 jobs it is possible to derive muh betterpaking of jobs under high loads, and that this improves both average responsetime and average bounded slowdown metris.A future study should explore how the paking e�ets seondary metrissuh as the queue length behavior. In Setion 3.4 we stated that on a heavilyloaded system the waiting queue length an reah tens of jobs, so a shedulerapable of maintaining a smaller queue aross large portion of the sheduling21

0
5

10
15
20
25
30
35
40
45
50

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

A
ve

ra
ge

_Q
ue

ue
_L

en
gt

h

Load

Average_Queue_Length vs Load

Easy
Los.50

(a) CTC log 0

10

20

30

40

50

60

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

A
ve

ra
ge

_Q
ue

ue
_L

en
gt

h

Load

Average_Queue_Length vs Load

Easy
Los.50

(b) SDSC log 0

20

40

60

80

100

120

140

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

A
ve

ra
ge

_Q
ue

ue
_L

en
gt

h

Load

Average_Queue_Length vs Load

Easy
Los.50

() KTH logFigure 11: Average queue length vs Loadsteps, inreases the users' satisfation with the system. Alternative algorithmsfor onstruting S0 when several optional shedules are possible might also beexamined. In Setion 3.2.4 we stated that by following the bypassed markerwe expet a better sore from the evaluation metris, but other heuristis suhas hoosing the shedule with the minimal overall expeted termination timeare also worthy of evaluation. Finally, extending our algorithm to performreservations for more than a single job and exploring the e�et of suh a heuristion performane presents an interesting hallenge.Referenes[1℄ D. G. Feitelson, "A Survey of Sheduling in Multiprogrammed Parallel Sys-tems". Researh Report RC 19790 (87657), IBM T. J. Watson ResearhCenter, Ot 1994 - The revised version, Aug 1997.[2℄ D. G. Feitelson and L. Rudolph, "Toward Convergene in Job Shedulersfor Parallel Superomputers". In Job Sheduling Strategies for Parallel Pro-essing, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag, Let. NotesComput. Si. Vol. 1162, pp. 1-26, 1996.[3℄ D. G. Feitelson, L. Rudolph, U. Shweigelshohn, K. C. Sevik and P.Wong, "Theory and Pratie in Parallel Job Sheduling". In Job ShedulingStrategies for Parallel Proessing, D. G. Feitelson and L. Rudolph (eds.),Springer-Verlag, Let. Notes Comput. Si. Vol. 1291, pp 1-34, 1997.[4℄ D. G. Feitelson and L. Rudolph, "Metris and Benhmarking for ParallelJob sheduling". In Job Sheduling Strategies for Parallel Proessing, D.G. Feitelson and L. Rudolph (eds.), Springer-Verlag, Let. Notes Comput.Si. Vol. 1459, pp. 1-24, 1998.[5℄ O. Arndt, B. Freisleben, T. Kielmann and F. Thilo, "A Comparative Studyof On-Line Sheduling Algorithms for Networks of Workstation�. ClusterComputing 3(2), pp. 95-112, 2000.22

[6℄ D. Talby and D. G. Feitelson, "Supporting Priorities and Improving Uti-lization of the IBM SP Sheduler Using Slak-Based Bak�lling". In 13thIntl. Parallel Proessing Symp. (IPPS), pp 513-517, Apr 1999.[7℄ B. G. Lawson and E. Smirni, �Multiple-Queue Bak�lling Shedulingwith Priorities and Reservations for Parallel Systems�. In Job ShedulingStrategies for Parallel Proessing, D. G. Feitelson and L. Rudolph (eds.),Springer-Verlag, Let. Notes Comput. Si. Vol. 2537, pp. 72-87, 2002.[8℄ E. Krevat, J. G. Castanos and J. E .Moreira , "Job Sheduling for the Blue-Gene/L System". In Job Sheduling Strategies for Parallel Proessing, D.G. Feitelson and L. Rudolph (eds.), Springer-Verlag, Let. Notes Comput.Si. Vol. 2537, pp. 38-54, 2002.[9℄ D. Jakson, Q. Snell, and M. Clement, �Core Algorithms of the Maui Shed-uler �. In Job Sheduling Strategies for Parallel Proessing, D. G. Feitelsonand L. Rudolph (eds.), Springer-Verlag, Let. Notes Comput. Si. Vol. 2221,pp 87�102, 2001.[10℄ A. W. Mu'alem and D. G. Feitelson, �Utilization, Preditability, Workloads,and User Runtime Estimates in Sheduling the IBM SP2 with Bak�lling�,In IEEE Trans. on Parallel and Distributed Syst. 12(6), pp. 529-543, Jun2001.[11℄ S. Krakowiak, "Priniples of Operating Systems". The MIT Press, Cam-bridge Mass., 1998.[12℄ M. V. Devarakonda and R. K. Iyer, "Preditability of Proess ResoureUsage : A Measurement Based Study on UNIX". IEEE Tans. Sotfw. Eng.15(12), pp. 1579-1586, De 1989.[13℄ V. Balasundaram, G. Fox, K. Kennedy, and U. Kremer, "A Stati Per-formane Estimator to Guide Data Partitioning Deisions". In 3rd Symp.Priniples and Pratie of Parallel Programming, pp. 213-223, Apr 1991.[14℄ V. Sarkar, "Determining Average Program Exeution Times and TheirVariane". In Pro. SIGPLAN Conf. Prog. Lang. Design and Implementa-tion, pp. 298-312, Jun 1989.[15℄ D. Karger, C. Stein and J. Wein, "Sheduling Algorithms". In Handbook ofalgorithms and Theory of omputation, M. J. Atallah, editor. CRC Press,1997.[16℄ J. Sgall, "On-Line Sheduling � A Survey�. In Online Algorithms: TheState of the Art, A. Fiat and G. J. Woeginger, editors, Springer-Verlag,1998. Let. Notes Comput. Si. Vol. 1442, pp. 196-231.[17℄ S. Majumdar, D. L. Eager, and R. B. Bunt, "Sheduling in Multipro-grammed Parallel Systems". In SIGMETRICS Conf. Measurement andModeling of Comput. Syst., pp. 104-113, May 1988.23

[18℄ S. T. Leutenegger and M.K. Vernon, "The Performane of Multipro-grammed Multiproessor Sheduling Poliies". In SIGMETRICS Conf.Measurement and Modeling of Comput. Syst., pp. 226-236, May 1990.[19℄ P. Krueger, T-H. Lai, and V. A. Radiya, "Proessor Alloation vs. JobSheduling on Hyperube Computers". In 11th Intl. Conf. Distributed Com-put. Syst., pp. 394-401, May 1991.[20℄ E. G. Co�man, Jr., M. R. Garey , D. S. Johnson, and R. E. Tarjan, "Perfor-mane Bounds for Level-Oriented Two-Dimensional Paking Algorithms".SIAM J. Comput. 9(4), pp. 808-826, Nov 1980.[21℄ E. G. Co�man, Jr., M. R. Garey, and D. S. Johnson, "ApproximationAlgorithms for Bin-Paking - An Updated Survey". In Algorithm Designfor Computer Systems Design, G. Ausiello, M. Luertini, and P. Sera�ni(eds.), pp. 49-106, Springer-Verlag, 1984.[22℄ S. T. Leutenegger and M. K. Vernon, "Multiprogrammed MultiproessorSheduling Issues". Researh Report RC 17642 (#77699), IBM T. J. Wat-son Researh Center, Nov 1992.[23℄ K. C. Sevik, "Appliation Sheduling and Proessor Alloation in Multi-programmed Parallel Proessing Systems". Performane Evaluation 19(2-3),pp. 107-140, Mar 1994.[24℄ D. Lifka, "The ANL/IBM SP Sheduling System", In Job ShedulingStrategies for Parallel Proessing, D. G. Feitelson and L. Rudolph (eds.),pp. 295-303, Springer-Verlag, 1995. Let. Notes Comput. Si. Vol. 949.[25℄ J. Skovira, W. Chan, H. Zhou, and D. Lifka, "The EASY - LoadLevelerAPI Projet". In Job Sheduling Strategies for Parallel Proessing, D. G.Feitelson and L. Rudolph (eds.), pp. 41-47, Springer-Verlag, 1996. Let.Notes Comput. Si. Vol. 1162.[26℄ S. Srinivasan, R. Kettimuthu, V. Subramani and P. Sadayappan, �Char-aterization of Bak�lling Strategies for Parallel Job Sheduling�. In Pro-eedings of 2002 Intl. Workshops on Parallel Proessing, Aug, 2002.[27℄ W. A. Ward, Jr., C. L. Mahood and J. E. West �Sheduling Jobs on ParallelSystems Using a Relaxed Bak�ll Strategy�. In Job Sheduling Strategies forParallel Proessing, D. G. Feitelson and L. Rudolph (eds.), Springer-Verlag,Let. Notes Comput. Si. Vol. 2537, pp. 88-102, 2002.[28℄ Parallel Workloads Arhive. URL http://www.s.huji.a.il/labs/parallel/workload.[29℄ A. M. Law and W. D. Kelton, Simulation Modeling and Analysis. 3rd ed.,MGraw Hill, 2000.
24

