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Abstract

In systems consisting of multiple clusters of proces-
sors which employ space sharing for scheduling jobs,
such as our Distributed ASCI1 Supercomputer (DAS), co-
allocation, i.e., the simultaneous allocation of processors to
single jobs in different clusters, may be required. We study
the performance of co-allocation by means of simulations
for the mean response time of jobs depending on a set of
scheduling decisions such as the number of schedulers and
queues in the system, the way jobs with different numbers
of components are distributed among these queues and the
priorities imposed on the schedulers, and on the composi-
tion of the job stream.

1 Introduction

Over the last decade, clusters and distributed-memory
multiprocessors consisting of hundreds or thousands of
standard CPUs have become very popular. In addition,
recent work in computational and data GRIDs [2, 8] en-
ables applications to access resources in different and pos-
sibly widely dispersed locations simultaneously—that is,
to employ processorco-allocation [5]—to accomplish their
goals, effectively creating single multicluster systems.Most
of the research on processor scheduling in parallel computer
systems has been dedicated to multiprocessors and single-
cluster systems, but hardly any attention has been devoted
to multicluster systems.

In this paper we study through simulations the perfor-
mance of processor co-allocation policies in multicluster
systems employing space sharing for rigid jobs [3], depend-
ing on several scheduling decisions and on the composition
of the job stream. The scheduling decisions we consider are

1In this paper, ASCI refers to the Advanced School for Computing and
Imaging in The Netherlands, which came into existence before, and is un-
related to, the US Accelerated Strategic Computing Initiative.

the number of schedulers and queues in the system, the way
jobs with different numbers of components are distributed
among queues and the priorities and restrictions imposed
on the schedulers. Our performance metric is the mean job
response time as a function of the utilization.

Using co-allocation does not mean that all jobs have to
be split into components and spread over the clusters, small
jobs can also be submitted as single-component jobs and go
to a single cluster. In general, there is in the system a mix of
jobs with different numbers of components. In this context,
an important decision to make is whether there will be one
global scheduler with one global queue in the system, or
more schedulers and in the second case how jobs will be
divided among schedulers.

Our results show that a multicluster which employs co-
allocation and treats all job requests as unordered requests,
i.e., the user specifies the numbers of processors needed in
separate clusters but not the clusters, also improves the per-
formance of single-component jobs by not restricting them
to a cluster, and choosing from all the clusters in the system
one where they fit. Evaluating different scheduling deci-
sions, we find the best choice to be a system where there
is one scheduler for each cluster, and all schedulers have
global information and place jobs using co-allocation over
the entire system.

Our four-cluster Distributed ASCI Supercomputer
(DAS) [6] was designed to assess the feasibility of running
parallel applications across wide-area systems [4, 9, 13].In
the most general setting, GRID resources are very heteroge-
neous; in this paper we restrict ourselves to homogeneous
multicluster systems, such as DAS. Showing the viability
of co-allocation in such systems may be regarded as a first
step in assessing the benefit of co-allocation in more general
GRID environments.



2 The Model

In this section we describe our model of multicluster sys-
tems based on the DAS system.

2.1 The DAS System

The DAS [1, 6] is a wide-area computer system consist-
ing of four clusters of identical Pentium Pro processors, one
with 128, the other three with 24 processors each. The clus-
ters are interconnected by ATM links for wide-area com-
munications, while for local communication inside the clus-
ters Myrinet LANs are used. The system was designed for
research on parallel and distributed computing. On single
DAS clusters a local scheduler is used that allows users to
request a number of processors bounded by the cluster’s
size, for a time interval which does not exceed an imposed
limit.

2.2 The Workload

Although co-allocation is possible on the DAS, so far it
has not been used enough to let us obtain statistics on the
sizes of the jobs’ components. However, from the log of
the largest cluster of the system we found that over a period
of three months, the cluster was used by 20 different users
who ran30; 558 jobs. The sizes of the job requests took 58
values in the interval[1; 128], for an average of23:34 and
a coefficient of variation of1:11; their density is presented
in Fig. 1. The results comply with the distributions we
use for the job-component sizes in that there is an obvious
preference for small numbers and powers of two.

0

1000

2000

3000

4000

5000

6000

0 20 40 60 80 100 120

N
um

be
r 

of
 J

ob
s

Nodes Requested

 

powers of 2
other numbers

Figure 1. The density of the job-request sizes
for the largest DAS cluster (128 processors)

From the jobs considered,28; 426 were recorded in the
log with both starting and ending time, and we could com-
pute their service time. Due to the fact that during working
hours jobs are restricted to at most15 minutes of service

(they are automatically killed after that period),94:45% of
the recorded jobs ran less than15minutes. Figure 2 presents
the density of service time values on the DAS, as it was ob-
tained from the log. The average service time is 356.45
seconds and the coefficient of variation is5:37. Still, not
all jobs in the log were short: the longest one took around15 hours to complete. Figure 3 divides the service times of
the jobs into eight intervals:< 10s, 10 � 30s, 30 � 60s,60 � 300s, 300 � 900s, 900 � 1800s, 1800 � 3600s, and> 3600s, each segment in the graph parallel to the horizon-
tal axis corresponds to an interval. The vertical axis coordi-
nate of any point of a segment represents the total number
of jobs in that interval.

In our simulations, beside an exponential distribution
with mean1 we also use for the service-time distribution
the distribution derived from the log of the DAS, cut off at
900 seconds (which is the run-time limit during the day).
The average service time for the jobs in the cut log is62:66
and the coefficient of variation is2:05. We made the choice
to use both distributions because with the DAS distribution
we obtain a more accurate, realistic evaluation of the DAS
performance, but in the same time this distribution might be
very specific and make our results hard to compare to those
from other systems. On the other hand, the exponential dis-
tribution is less realistic but more general and more suited
for analysis.
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Figure 2. The density of the service times for
the largest DAS cluster (128 processors)

2.3 The Structure of the System

We model a multicluster system consisting ofC clusters
of processors, clusteri havingNi processors,i = 1; : : : ; C.
We assume that all processors have the same service rate.

By a job we understand a parallel application requiring
some number of processors, possibly in multiple clusters
(co-allocation). Jobs are rigid, so the numbers of processors
requested by and allocated to a job are fixed. We call a task
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Figure 3. The service times of jobs divided
into eight main intervals

the part of a job that runs on a single processor. We assume
that jobs only request processors and we do not include in
the model other types of resources. For interarrival times
we use exponential distributions.

2.4 The Structure of Job Requests and the Place-
ment Policies

Jobs that require co-allocation have to specify the num-
ber and the sizes of their components, i.e., of the sets of
tasks that have to go to the separate clusters. The distribu-
tion of the sizes of the job components isD(q) defined as
follows: D(q) takes values on some interval[n1; n2] with0 < n1 � n2, and the probability of having job-component
sizei is pi = qi=Q if i is not a power of 2 andpi = 3qi=Q
if i is a power of 2, withQ such that thepi sum to1. This
distribution favours small sizes, and sizes that are powersof
two, which has been found to be a realistic choice [7]. A job
is represented by a tuple ofC values, each of which is either
generated from the distributionD(q) or is of size zero. We
consider onlyunordered requests, where by the components
of the tuple the job only specifies the numbers of processors
it needs in the separate clusters, allowing the scheduler to
choose the clusters for the components. Unordered requests
model applications like FFT, where tasks in the same job
component share data and need intensive communication,
while tasks from different components exchange little or no
information.

To determine whether an unordered request fits, we try
to schedule its components in decreasing order of their sizes
on distinct clusters. We use Worst Fit (WF; pick the clus-
ter with the largest number of idle processors) to place the
components on clusters.

2.5 The Scheduling Policies

In a multicluster system where co-allocation is used, jobs
can be either single-component or multi-component, and
in a general case both types are simultaneously present in
the system. It is useful to make this division since the
single-component jobs do not use co-allocation while multi-
component jobs do. A scheduler dealing with the first
type of jobs can be local to a cluster and does not need
any knowledge about the rest of the system. For multi-
component jobs, the scheduler needs global information for
its decisions.

Treating both types of jobs equally, or keeping single-
component jobs local and scheduling only multi-component
jobs globally over the entire multicluster system, having a
single global scheduler or schedulers local to each cluster,
all these are decisions that influence the performance of the
system. We consider the following approaches:

1. [GS] The system has one global scheduler with one
global queue, for both single- and multi-component
jobs. All jobs are submitted to the global queue. The
global scheduler knows at any moment the number of
idle processors in each cluster and based on this infor-
mation chooses the clusters for each job.

2. [LS] Each cluster has its own local scheduler with
a local queue. All queues receive both single- and
multi-component jobs and each local scheduler has
global knowledge about the numbers of idle proces-
sors. However, single-component jobs are scheduled
only on the local cluster. The multi-component jobs
are co-allocated over the entire system.

3. [EQ] The system has both a global scheduler with a
global queue, and local schedulers with local queues.
Multi-component jobs go to the global queue and are
scheduled by the global scheduler using co-allocation
over the entire system. Single-component jobs are
placed in one of the local queues and are scheduled
by the local scheduler only on its corresponding clus-
ter. There is no direct priority policy imposed on the
schedulers when accessing the clusters.

When both the global scheduler and some of the local
schedulers are blocked at ”full system” (the jobs at the
top of their queues do not fit) and a job departs, the sys-
tem will first unblock the local schedulers associated to
the clusters where the job ran. This favours the local
schedulers allowing them to try to place jobs before the
global scheduler, but since with the chosen job stream
compositions the load of the local queues is low (each
of them receives maximum12:5% of the jobs in the
system — see Sect. 3), it is a bearable burden for the
global scheduler. The opposite choice would be much



to the disadvantage of the jobs in the local queues be-
cause, depending on the job stream composition, up
to 75% of the jobs can be multi-component and go to
the global queue; unblocking first the global scheduler
would give little chance to the local schedulers to fit
their jobs.

4. [GP] Again both global and local schedulers with their
corresponding queues. Like before, the global queue
receives the multi-component jobs while the single-
component jobs are placed in the local queues. The
local schedulers are allowed to start jobs only when
the global scheduler has an empty queue.

5. [LP] Both global and local schedulers, but this time
the local schedulers have priority: the global scheduler
gets the permission to work only when at least one lo-
cal queue is empty. When both the global scheduler
and some of the local schedulers are blocked at ”full
system” and a job departs, the system first unblocks
the global scheduler if one or more of the local queues
are empty. If no local queue is empty only the local
schedulers are unblocked.

6. [LQ] Both global and local schedulers; at any moment
either the local schedulers are allowed to work, or the
global one, depending on the lengths of their queues.
The global scheduler is enabled if its queue is longer
than all the local queues, otherwise the local sched-
ulers are enabled. This strategy might seem to favour
the local schedulers (the global scheduler is only per-
mitted to schedule jobs when its queue is longer than
all the others), but our results show that this is not the
case. It only takes into account the fact that each of
the local schedulers accesses just one cluster, so they
can be simultaneously enabled. To allow the local
schedulers to work only when more of their queues are
longer than the global queue would be much to the dis-
advantage of the local schedulers, especially if the load
of their queues is unbalanced.

When the local queues receive only single-component jobs,
the local schedulers manage disjoint sets of resources (a lo-
cal scheduler starts jobs on a single cluster) and there is no
need for coordination among them. However, for systems
with both a global scheduler and local ones, or when the
local schedulers also deal with the multi-component jobs
and may use more clusters, the access to the data structures
used in the process of scheduling (numbers of idle proces-
sors, queue lengths) has to be mutually excusive. The global
scheduler always uses global information since it does co-
allocation over the entire system; except for the case when
they also schedule multi-component jobs, the local sched-
ulers only need access to the data associated to their own
cluster.

In the extreme case, GP can indefinitely delay the single-
component jobs, and LP can do the same with the multi-
component jobs. In practice, an aging mechanism has to be
implemented in order to prevent this behaviour.

Once a scheduler gets to run, we allow it to start as many
jobs as possible: it only suspends itself when its queue is
empty or when the job at the head of the queue does not
fit. This choice reduces the scheduling overhead when co-
ordination among schedulers is required. In all the cases
considered, both the local and the global schedulers use the
First Come First Served (FCFS) policy to choose the next
job to run.

Scheduling jobs from queues with equal priorities is
done in the following way. Whenever a job leaves the
system, and after all higher-priority queues in the system
have had the opportunity to schedule jobs, the non-empty
equal-priority queues are enabled in a sequence which only
changes when a queue turns empty or when a job arrives at
an empty queue. In the first case, the empty queue is simply
removed from the sequence of queues, and in the second
case, the queue with the new arrival is appended at the end
of it. As a consequence, the queues at the head of the se-
quence are favored, but as they will become empty once in a
while and then be appended to it, in the long run the equal-
priority queues are treated evenly.

All the local schedulers are assumed to have the same
load.

We choose not to include communication in our model
because it would not change the quality of the results since
all policies are tested with identical job streams (the same
numbers of components).

3 Performance Evaluation for the Different
Scheduling Decisions

In this section we assess the performance of multiclus-
ter systems for the six scheduling policies introduced (Sect.
2.5) depending on the composition of the job stream. Jobs
can have between1 and4 components, and the percentages
of jobs with the different numbers of components influence
the performance of the system. We consider the following
cases:� (25%; 25%; 25%; 25%)Equal percentages of 1-, 2-, 3-

and 4-component jobs are submitted to the system.� (100%; 0%; 0%;0%) There are only 1-component
jobs.� (50%; 0%; 0%;50%) Only 1- and 4-component jobs
are present in the system, in equal percentages.� (0%; 0%; 0%;100%) There are only 4-component
jobs.



� (50%; 25%; 25%; 0%) No 4-component jobs, half of
the jobs are single-component ones.� (0%; 50%; 50%; 0%) Just 2- and 3-component jobs in
equal proportions.� (50%; 50%; 0%; 0%) Only 1- and 2-component jobs
are submitted.

The simulations in this section are for a system with4 clus-
ters of 32 processors each, and the job-component sizes
are generated fromD(0:9) on [1; 8]. The simulation pro-
grams were implemented using the CSIM simulation pack-
age [11]. For all the graphs in this section we computed
confidence intervals; they are at the95%-level. For the dis-
tribution of service times we use an exponential distribution
with mean1 in Sect. 3.1 and a distribution derived from the
DAS log (see also Sect 2.2) in Sect. 3.2.

3.1 Simulations with exponential service
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Figure 4. A performance comparison of the
scheduling strategies for a job stream with
composition (25%; 25%; 25%; 25%) and expo-
nential service times

Figure 4 compares the different scheduling strategies for
a job stream containing 1-, 2-, 3- and 4-component jobs in
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Figure 5. A performance comparison of the
scheduling strategies for a job stream with
composition (100%; 0%; 0%;0%) and exponen-
tial service times
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Figure 6. A performance comparison of the
scheduling strategies for a job stream with
composition (50%; 0%; 0%; 50%) and exponen-
tial service times

equal proportions. The best performance is obtained for LS,
where all jobs go to the local schedulers and all four sched-
ulers are allowed to spread the multi-component jobs over
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Figure 7. A performance comparison of the
scheduling strategies for a job stream with
composition (0%; 0%; 0%; 100%) and exponen-
tial service times

the entire system. At any moment, the system tries to sched-
ule up to four jobs (if no queue is empty), one from each of
the four local queues, and the FCFS policy is transformed
this way into a form of backfilling with a window of size
4. This explains why LS is better than GS. A disadvantage
for LS compared to GS is that LS can place 1-component
jobs only on the cluster where they were submitted, while
the other can choose from the four clusters one where the
job fits. However, in the case from Fig. 4, only25% of
jobs have one component, so their negative influence on the
performance of LS is small.

GP, LP, EQ, and LQ try to schedule up to 5 jobs at a time,
but since75% of the jobs in the system are multi-component
and they all go to the global queue, and only the rest of25%
is distributed among the local queues, their performance is
worse than that of LS. GP displays the worst performance;
it gives priority to the global scheduler and only allows the
local schedulers to run jobs when the global queue is empty.
Even if the job at the head of the global queue does not fit,
the policy does not allow jobs from the local queues to run
and this deteriorates the performance. Since most of the
jobs are multi-component, the global queue is the longest
in most of the cases and LQ behaves similarly to GP and
its performance is the second worst. LP and EQ also run
mostly jobs from the global queue, but they do not delay
the jobs from the local queues when the job at the top of
the global queue does not fit and this improves their perfor-
mance.

Figures 5, 7 and 9 compare only the GS and LS strate-
gies. The system in Fig. 5 contains only single-component
jobs, so EQ, GP, LP, and LQ are reduced to LS. In the other
two cases there are only multi-component jobs, so EQ, GP,
LP and LQ become GS. We also used these cases to check
our simulations and gain confidence in the results.

When there are only single-component jobs in the sys-
tem (Fig. 5), GS has better performance due to the fact that
it chooses the clusters for the jobs (with WF), while with
LS jobs can be scheduled only on the clusters they were
submitted to. With single-component jobs GS does a sort
of load balancing over the entire system (it does not look
at the actual loads however) while LS keeps the clusters in
isolation.

In Figures 7 and 9 LS proves to be better because for
multi-component jobs the local schedulers are not restricted
to their own clusters and there are up to four jobs at a time
from which to choose one that fits in the system.
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Figure 8. A performance comparison of the
scheduling strategies for a job stream with
composition (50%; 25%; 25%; 0%) and expo-
nential service times

Figures 6, 8 and 10 show that for GP the performance
decreases with the increase of the percentage of jobs with3
and4 components. Since jobs with more components cause
a higher capacity loss, it is a bad choice not to allow the lo-
cal schedulers to try to fit jobs from their own queues when
the job at the head of the global queue does not fit. Waiting
for enough idle processors in multiple clusters for that job
results in a deterioration of the performance. This is shown
also by the fact that LQ has worse performance when the
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Figure 10. A performance comparison of the
scheduling strategies for a job stream with
composition (50%; 50%; 0%;0%) and exponen-
tial service times

percentage of multi-component jobs is higher. EQ has a
good performance for all chosen job mixes because it tries
to fit as many jobs at possible from all queues without tak-

ing into account the characteristics of the job stream.
The best performance in Figs. 6, 8 and 10 is displayed

by LP. This suggests that allowing first the 1-component
jobs, which are restricted to a certain cluster, to be placed
and only then trying to schedule multi-component jobs for
which the scheduler can shuffle the components to fit them,
improves the utilization of the system. It also seems that
when none of the local queues is empty it is a good choice
to delay the global jobs waiting for the local jobs to fit,
since LP constantly gives better results than EQ, while the
opposite decision taken in the case of GP made this pol-
icy constantly worse than EQ. The disadvantage of LP is
that it tends to delay the multi-component jobs, similarly as
GP delays the single-component ones. The differences in
performance are larger in Fig. 6 where there are50% 1-
component jobs and50% 4-component jobs. In Figs. 8 and
10 where there are no 4-component jobs, all strategies dis-
play more similar performance. In these two cases there are50% 1-component jobs and the rest are 2- and 3-component
jobs.

Increasing the percentage of 1-component jobs would
improve the performance of GS and deteriorate all the oth-
ers (when there are100% single-component jobs GP, EQ,
LQ and LP all become LS). Increasing the percentage of
multi-component jobs would improve the performance of
LS, but worsen it for the rest (when there are only multi-
component jobs GP, EQ, LQ and LP become GS).

In all the graphs discussed so far we looked at the to-
tal (average) response time. However, when there are both
local and global queues in the system we can expect that
the performance differs between the global and local queues
and is dependent on the policy. Figures 11 — 14 show be-
side the total average response time, the average response
times for the local queues and the global queue for the EQ,
GP, LP and LQ policies and for the four job compositions
which include both single- and multi-cluster jobs. For each
utilization value where we approximated before an average
response time for the entire system, now we also depict the
average response times for the jobs in the global and local
queues respectively.

While LP and EQ provide much better performance for
local jobs, GP and LQ are better for the global jobs. We can-
not say that LQ favours the global jobs in general, since in a
system with many single-cluster jobs it would be exactly the
opposite. LQ is also fair to all jobs from the perspective that
if there is a large job, be it single- or multi-cluster, whichis
difficult to fit on the system, not only that LQ will give that
job a chance to run probably sooner than with other policies
(unless they directly favour that type of jobs), but it will
also limit the delay for the jobs behind it in the queue. In
fact, LQ keeps the load of the queues balanced, switching
its behaviour between GP and LP depending on the queue
lengths.
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Figure 11. Comparing EQ, GP, LP and
LQ for a job stream with composition(25%; 25%; 25%;25%) and including the sep-
arate performance for the local and global
queues
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Figure 12. Comparing EQ, GP, LP and
LQ for a job stream with composition(50%; 0%; 0%;50%) and including the separate
performance for the local and global queues
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Figure 13. Comparing EQ, GP, LP and
LQ for a job stream with composition(50%; 25%; 25%;0%) and including the sepa-
rate performance for the local and global
queues
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Figure 14. Comparing EQ, GP, LP and
LQ for a job stream with composition(50%; 50%; 0%; 0%) and including the separate
performance results for the local and global
queues



On the negative side, with LQ the performance of jobs
of one type is more sensitive to the performance of jobs of
the other type than for EQ, GP or LP.

The figures show that EQ has better performance for the
local queues and worse for the global queue than LP. A rea-
son for this is that for EQ when both the global and some of
the local schedulers are blocked at ”full system” and a job
departs the local schedulers are allowed to try to schedule
jobs first. If this decision is reversed the average response
time for the local queues increases, for the global queue
decreases and the overall performance of the system is im-
proved. When none of the local queues is empty the LP
policy strongly favours the local schedulers by not letting
the global scheduler run. However, when at least one local
queue is empty, the global scheduler is blocked at ”system
full” and a job departs, first the global scheduler is allowed
to try to place jobs. This decision has a positive effect on
the overall performance but slightly deteriorates the perfor-
mance of the local queues and makes it dependent on the
global jobs: the better the global jobs fit, the worse the per-
formance of the local jobs is.

From these four policies the most practical would be LP
or EQ since the other two tend to delay the local jobs and
it can be expected that the organizations owning the differ-
ent clusters would not like their local jobs to be delayed
in favour of the global, multi-component jobs. Our results
show that, for policies like LP and EQ, even a high per-
centage of global jobs in the system does not deteriorate the
performance of the local jobs. However, the users submit-
ting multi-component jobs to a system implementing such a
policy should be aware that the performance of their jobs is
much influenced by the local jobs and it can be significantly
lower than the overall performance of the system.

In most of our graphs, at high utilizations some of the
curves are rather close and one might think that it means
that the performance is very similar. However, it only shows
that the maximum utilizations are close, and not that the
average response times are similar. Due to the steepness of
the curves at high utilizations, for the same utilization the
corresponding response times on two curves that seem very
close are very different. To show this, Fig. 15 compares the
average response time for the six policies considered for the
four job stream compositions which contain both global and
local jobs and a utilization high enough to be on the steep
side of the curves for all policies, and close to the maximum
utilization for the policy with the worst performance. The
values for the utilization in all cases correspond to a system
that is not saturated for any of the policies. Although they
only depict the response time values at a single utilization
value each, the charts in Fig. 15 are useful to show that there
are large differences in response times for utilization points
where the curves in Figs. 4 — 8 are hardly distinguishable.
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sponse times for the policies considered, for
job stream compositions (from top to bottom)
of (25%; 25%; 25%; 25%), (50%; 0%; 0%; 50%),(50%; 25%; 25%; 0%) and (50%; 50%; 0%;0%)



Since the displayed results are at different utilizations it
is not meaningful to compare the bar charts in Fig. 15 to
each other.

3.2 Simulations with the DAS service-time distri-
bution
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Figure 16. Performance comparison of the
scheduling strategies for a job-stream with
composition (25%; 25%; 25%; 25%) and a ser-
vice time distribution from the DAS
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Figure 17. Performance comparison of the
scheduling strategies for a job-stream with
composition (100%; 0%; 0%;0%) and a service
time distribution from the DAS

In this section for the service-time distributionwe use the
cut distribution derived from the DAS log. We only present
simulations for LS, LP and GS and the first four job-stream
compositions. The results are very much in line with those
from the previous section: in Figs. 16 and 19, LS displays
the best performance, in Fig. 17 GS is the best and in Fig.
18 is LP. This shows that the previous use of exponential
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Figure 18. Performance comparison of the
scheduling strategies for a job-stream with
composition (50%; 0%; 0%; 50%) and a service
time distribution from the DAS
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Figure 19. Performance comparison of the
scheduling strategies for a job-stream with
composition (100%; 0%; 0%;0%) and a service
time distribution from the DAS

distributions did not alter the results and that our conclu-
sions are valid for systems such as the DAS.

4 Related Work

Not much work has been done related to co-allocating
rigid jobs with space sharing in multicluster systems. In
[12], a queueing system in which jobs require simultaneous
access to multiple resources is studied. The interarrival and
service-time distributions are only required to be stationary.
Feasible job combinations are defined as the sets of jobs that
can be in service simultaneously. A linear-programming
problem based on an application of Little’s formula for
these feasible job combinations is formulated for finding
the maximal utilization, regardless of the scheduling pol-



icy employed. In [14], a performance comparison of two
meta-schedulers is presented. It is shown that dedicating
parts of subsystems to jobs that need co-allocation is not a
good idea. In [15], NUMA multiprocessors are split up into
processor pools of equal sizes along architectural lines. The
number of threads into which a job is split, and the num-
ber of pools—the ones with the lowest loads are chosen—
across which it is spread—a parallel job incurring more
overhead when it spans multiple pools—is controled with
parameters. The main result is that using intermediate pool
sizes and limiting the number of pools a job is allowed to
span yields the lowest response times, as this entails the
best locality. In [10], simulations of two offline algorithms
for multidimensional bin-packing, a problem that resembles
scheduling ordered jobs without communication with de-
terministic service times, are presented. These algorithms
search for items that will reduce the imbalance in the cur-
rent bin. In order to relate these algorithms to scheduling in
multiclusters with deterministic service demands, the algo-
rithms are also simulated for short item lists, with replace-
ment of items before a new bin is started.

5 Conclusions

In this paper we looked at different scheduling policies
for co-allocation in multicluster systems and evaluated the
performance of the system in terms of response time as a
function of the utilization of the system.

Co-allocation with unordered requests is a good choice
not only for large jobs, which can get to run faster if split
into more components and spread over the clusters, it also
deals well with small single-component jobs. For a high
percentage of single-component jobs, allowing them to run
on any of the clusters, even if scheduled by a single global
scheduler, proved to be a better choice than keeping them
local to the cluster they were submitted to.

For multi-component jobs, having more schedulers in the
system and distributing the jobs among them improves the
performance; any of the jobs at the heads of the queues can
be chosen to run if it fits, which generates a form of back-
filling with a window equal to the number of queues in the
system, and increases the utilization.

When there are separate queues for single- and multi-
component jobs, favouring the multi-component jobs low-
ers the performance. In order to improve the system’s per-
formance it is good to employ as many processors as possi-
ble, so if the job at the head of the global queue does not fit
it is better to try to run jobs from the other queues even if it
might delay that job, than to wait for enough free processors
for it.

If single-component jobs are restricted to one cluster, it is
better to try to place them first and when they do not fit to try
to schedule multi-component jobs since their components

can be shuffled (unordered requests) and there is a higher
chance for them to fit this way, than to fit the same set of
jobs starting with the multi-component ones.

Considering at one extreme a system with one global
scheduler which manages all the jobs using co-allocation
over the entire system, and at the other a system with a lo-
cal scheduler for each cluster, where the schedulers have
no global information and only provide resources from the
cluster they are associated to, we choose for a combination
of the two.

Our results show that from all the strategies we consid-
ered the best is to have more schedulers (for example one for
each cluster), and to drop the requirement of keeping single-
component jobs local. As long as we treat all jobs the same
and we do not know the composition of the job stream, there
is no reason to separate single- and multi-component jobs
in different queues and it is better to distribute jobs evenly
among queues. Our choice would be for the LS without re-
stricting jobs to the local clusters, since this strategy isboth
simple and brings good performance. However, we might
expect that if the clusters have different owners LP or a ver-
sion of LS that favours the local jobs would be preferred in
order to give priority to their own local jobs.

References

[1] The Distributed ASCI Supercomputer (DAS) site.
http://www.cs.vu.nl/das.

[2] The Global Grid Forum.
http://www.gridforum.org.

[3] K. Aida, H. Kasahara, and S. Narita. Job Scheduling
Scheme for Pure Space Sharing Among Rigid Jobs. In
D.G. Feitelson and L. Rudolph, editors,4th Workshop
on Job Scheduling Strategies for Parallel Process-
ing, volume 1459 ofLNCS, pages 98–121. Springer-
Verlag, 1998.

[4] H.E. Bal, A. Plaat, M.G. Bakker, P. Dozy, and R.F.H.
Hofman. Optimizing Parallel Applications for Wide-
Area Clusters. InProc. of the 12th International Par-
allel Processing Symposium, pages 784–790, 1998.

[5] K. Czajkowski, I. Foster, and C. Kesselman. Resource
Co-Allocation in Computational Grids. In8th IEEE
Int’l Symp. on High Perf. Distrib. Comp., pages 219–
228, 1999.

[6] H.E. Bal et al. The Distributed ASCI Supercomputer
Project. ACM Operating Systems Review, 34(4):76–
96, 2000.

[7] D.G. Feitelson and L. Rudolph. Theory and Prac-
tice in Parallel Job Scheduling. In D.G. Feitelson and



L. Rudolph, editors,3rd Workshop on Job Schedul-
ing Strategies for Parallel Processing, volume 1291,
pages 1–34. Springer-Verlag, 1997.

[8] I. Foster and C. Kesselman (eds).The Grid: Blueprint
for a New Computing Infrastructure. Morgan Kauf-
mann, 1999.

[9] T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and
R.A.F. Bhoedjang. MagPIe: MPI’s Collective Com-
munication Operations for Clustered Wide Area Sys-
tems. InACM SIGPLAN Symp. on Principles and
Practice of Parallel Programming, pages 131–140,
1999.

[10] W. Leinberger, G. Karypis, and V. Kumar. Multi-
capacity Bin Packing Algorithms with Applications to
Job Scheduling under Multiple Constraints. InInt’l
Conf. on Parallel Processing, pages 404–412, 1999.

[11] Mesquite Software, Inc.The CSIM18 Simulation En-
gine, User’s Guide.

[12] K.J. Omahen. Capacity Bounds for Multiresource
Queues.J. of the ACM, 24:646–663, 1977.

[13] A. Plaat, H.E. Bal, R.F.H. Hofman, and T. Kielmann.
Sensitivity of Parallel Applications to Large Differ-
ences in Bandwidth and Latency in Two-Layer In-
terconnects. Future Generation Computer Systems,
17:769–782, 2001.

[14] Q. Snell, M. Clement, D. Jackson, and C. Gregory.
The Performance Impact of Advance Reservation
Meta-Scheduling. In D.G. Feitelson and L. Rudolph,
editors,6th Workshop on Job Scheduling Strategies
for Parallel Processing, volume 1911 ofLNCS, pages
137–153. Springer-Verlag, 2000.

[15] S. Zhou and T. Brecht. Processor Pool-Based Schedul-
ing for Large-Scale NUMA Multiprocessors. InACM
Sigmetrics ’91, pages 133–142, 1991.


