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Abstract— Grid computing is a promising technology for

future computing platforms. Here, the task of scheduling

computing resources proves difficult as resources are geo-

graphically distributed and owned by individuals with dif-

ferent access and cost policies. This paper addresses the

idea of applying economic models to the scheduling task. To

this end a scheduling infrastructure and a market-economic

method is presented. The efficiency of this approach in

terms of response- and wait-time minimization as well as

utilization is evaluated by simulations with real workload

traces. The evaluations show that the presented economic

scheduling algorithm provides similar or even better average

weighted response-times as common algorithms like backfill-

ing. This is especially promising as the presented economic

models have additional advantages as e.g. support for differ-

ent price models, optimization objectives, access policies or

quality of service demands.

I. Introduction

Grid computing is expected to provide easier access to re-
mote computational resources that are usually locally lim-
ited. Distributed computer systems are joined in such a
grid environment (see [5], [12]), in which users can submit
jobs that are automatically assigned to suitable resources.
The idea is similar to metacomputing [21] where the focus
is limited to compute resources. Grid computing takes a
broader approach by including networks, data, visualiza-
tion devices etc. as accessible resources [18], [11]. In addi-
tion to the benefit of access to locally unavailable resource
types, there is also the expectation that a larger number
of resources is available for a single job. This is assumed
to result in a reduction of the average job response time.
Moreover, the utilization of the grid computers and the
job-throughput is likely to improve due to load-balancing
effects between the participating systems.

Typically the parallel computing resources are not ex-
clusively dedicated to the grid environment. Furthermore,
they are usually not owned and maintained by the same
administrative instance. Research institutes as well as lab-
oratories and universities are examples for such resource
owners. Due to the geographically distributed resources
and the different owners the management of the grid envi-
ronment becomes rather complex, especially the scheduling
of the computational tasks. To this end, economic models
for the scheduling are an adequate way to solve this prob-
lem. They provide support for individual access and service
policies to the resource owners and grid users. Especially
the ability to include cost management into the scheduling
will become an important aspect in future grid economy as
anonymous users compete for resources.

In this paper, we present an architecture and an econom-
ical scheduling model for such grid environments. First
examinations of the efficiency of this approach have been

performed by simulations. The results are discussed in
comparison to conventional scheduling algorithms that are
not based on economic models. Note, that these classic
methods are primarily optimized for response-time mini-
mization.

The following sections are organized as follows. Section 2
gives a short overview on the background of grid scheduling
and economic market methods. In Section 3 an infrastruc-
ture for a grid environment is presented that supports eco-
nomic scheduling models as well as common algorithms as
for instance backfilling. The economic scheduling method
itself is described in Section 4. The simulation and the
results for this scheduling method are shown in Section 5.
The paper ends with a brief conclusion in Section 6.

II. Background

Scheduling is the task of allocating resources to problems
over time. In grid Computing these problems are typically
computational tasks called jobs. They can be described by
several parameters like the submission time, run time, the
needed number of processors etc.

In this paper we focus only on the job scheduling part of a
grid management infrastructure. A complete infrastructure
has to address much more additional topics as e.g. network
and data management, information collection or job execu-
tion. One example for a grid management infrastructure is
Globus [10]. Note, that we examine scheduling for parallel
jobs where the job parts can be executed synchronously on
different machines. It is task of the grid scheduling system
to find suitable resources for a job and to determine the
allocation times. However, the actual transfer, execution,
synchronization and communication of a job is not part of
the grid scheduling system.

Until now mostly algorithms as e.g. FCFS and backfilling
have been used for the scheduling task [8], [17]. These clas-
sic methods have been subject to research for a long time
and have a well known behavior in terms of worst-case and
competitive analysis. These algorithms have been used for
the management of single parallel machines. In later im-
plementations they were adapted for the application in grid
environments [13], [6]. As already mentioned the require-
ments on the scheduling method differs from single machine
scheduling as the resources are geographically distributed
and owned by different individuals. The scheduling objec-
tive is usually the minimization of the completion time of a
computational job on a single parallel machine. Especially
for grid applications other objectives have to be considered
as cost, quality of service etc. To this end, other scheduling
approaches are necessary that can deal better with differ-
ent user objectives as well as owner and resource policies.



Here, naturally economic models come into mind.
An overview on such models can be found in [2] and ad-

ditionally economic concepts have been examined in the
Mariposa project restricted to distributed database sys-
tems [23]. In comparison to other economic approaches on
job scheduling (e.g. [28], [22]), our presented model sup-
ports varying utility functions for the different jobs and re-
sources. Additionally, the model is not restricted to single
parallel machines and allows co-allocation of resources from
different owners without disclosing policy information.

In this paper we just give a brief introduction on the
background needed for our scheduling setting.

A. Market Methods

Market methods, sometimes called Market oriented pro-

gramming in combination with Computer Science, are used
to solve the following problems which occur in real schedul-
ing environments ([4]):
• The site autonomy problem arises as the resources
within the system are owned by different companies.
• The heterogeneous substrate problem that results
from the fact that different companies use different resource
management systems.
• The policy extensibility problem means that local
management systems can be changed without any effects
for the rest of the system.
• The co-allocation problem addresses the aspect that
some applications need several resources of different com-
panies at the same time. Market methods allow the combi-
nation of resources from different suppliers without further
knowledge of the underlying schedules.
• The online control problem is caused by the fact that
the system works in an online environment.
The supply and demand mechanisms provide the possibility
to optimize different objectives of the market participants
under the usage of costs, prices and utility functions. It is
expected that such methods provide high robustness and
flexibility in the case of failures and a high adaptability
during changes.

Next, the definitions of market, market method and agent

will be presented briefly.
A market can be defined as a virtual market or from an
economical point of view as follows: “Generally any con-

text in which the sale and purchase of goods and services

takes place.” [26]. The minimal conditions to define a
virtual market are: “A market is a medium or context in

which autonomous agents exchange goods under the guid-

ance of price in order to maximize their own utility.” [26].
The main aspect is that autonomous agents exchange vol-
untarily their goods in order to maximize their own utility.

A market method can be defined as follows: “A market

method is the overall algorithmic structure within which a

market mechanism or principle is embedded.” [27]. It has
to be emphasized that a market method is an equilibrium
protocol and not a complete algorithm.

The definition of agent can be found in [27]: “An agent

is an entity whose supply and demand functions are equi-

librated with those of others by the mechanism, and whose

utility is increased through exchange at equilibrium ratios.”.

It is now the question how the equilibrium can be ob-
tained. One possible method is the application of auc-

tions: “An auction is a market institution with an explicit

set of rules determining resource allocation and price on

the basis of bids from the market participants.” [29]. More
details about the general equilibrium and its existence can
be found in [30].

B. Economic Scheduling in existing systems

Economic methods have been applied in various con-
texts. Besides the references explained in [2], we want to
briefly mention some other typical algorithms of economic
models.

B.1 WALRAS

The WALRAS method is a classic approach by trans-
lating a complex, distributed problem into an equilibrium
problem [1]. One of the assumptions is that agents do
not try to manipulate the prices with speculation, which is
called a perfect competition. To solve the equilibrium prob-
lem the WALRAS method uses a Double Auction. During
that process all agents send their utility functions to a cen-
tral auctioneer who calculates the equilibrium prices. A
separate auction is started for every good. At the end, the
resulting prices are transmitted to all agents. As the utility
of goods may not be independent for the agents, they can
react on the new equilibrium prices by re-adjusting their
utility functions. Subsequently, the process starts again.
This iteration is repeated until the equilibrium prices are
stabilized.

The WALRAS method has been used for transportation
problems as well as for processor rental([14]). The trans-
portation problem requires to transport different goods
over an existing network from different start places to dif-
ferent end places. The processor rental problem consists
of allocating one processor for different processes, while all
processes have to pay for the utilization.

B.2 Enterprise

Another application example for market methods is the
Enterprise [25] system. Here, machines create offers for
jobs to be run on these machines. To this end, all jobs
describe their necessary environment in detail. After all
machines have created their offers the jobs select between
these offers. The machine that provides the shortest re-
sponse time has the highest priority and will be chosen by
the job. All machines have a priority scheme where jobs
with a shorter run time have a higher priority.

Under the premise of these methods, we present in the
next sections our infrastructure and scheduling method for
the grid job scheduling.

III. Infrastructure

The scheduling model presented in the paper has been
implemented within the NWIRE (Net-Wide-Resources)
management infrastructure which has been developed at
our institute [20]. The general idea is that local manage-
ment structures provide remote access to resources, which
are represented by CORBA objects. The scheduling part



is using those structures to trade resources between them.
While staying locally controlled, the resources are offered
throughout the connected management-systems.

To address the site autonomy problem, NWIRE struc-
tures the system into separate domains, that are consti-
tuted by a set of local resources and local management
instances. Each so called MetaDomain is controlled by a
MetaManager, as shown in Figure 1.

MetaDomainMetaDomain

NetworkMetaManager

Scheduler

MetaManager

Resource 1

Resource k

Scheduler

Resource m

Fig. 1. Structure of NWIRE

This MetaManager administers the local resources and
answers to local job requests. Additionally, this Meta-
Manager consists of a local scheduler and acts as a bro-
ker/trader to other remote MetaDomains respectively their
MetaManagers. That is the local MetaManager can offer
local resources to other domains or tries to find suitable
resource allocations for local requests.

The MetaManager can discover other domains by usage
of directory services as well as exploring the neighborhood
similar to peer-to-peer network strategies. If necessary,
requests can be forwarded to the MetaManager of other
domains. Parameters in the request are used to control
depth and strategy of this search. Information on the lo-
cation of specific resource types can be cached for later
requests. Each MetaManager maintains a list with links
to other dedicated MetaManagers. This list can be set up
by the administrator to comply with logical or physical re-
lationships to other domains, e.g. according to network or
business connections. Additionally, directory services can
be introduced to find specific resource types. Information
on remote resources can be cached and used to select suit-
able MetaManagers to which a request is forwarded.

This concept provides several advantages e.g. an in-
creased reliability and fail-safety as the domains act in-
dependently. A failure at one site has only local impact as
the overall network is still intact. Another feature is the
ability to allow different implementations of the scheduling
and the offer generation. According to the policy at an
institution, the owner can setup an implementation that
suites his needs best. Note, the policy on how offers for re-
mote job requests are created does not have to be revealed.

This scheduling-infrastructure provides the base to im-
plement different strategies for the scheduler. This includes

the ability to use conventional methods like for instance
backfilling. Within the NWIRE system, this is achieved by
using so called requests for the information exchange be-
tween the user and the components involved in the schedul-
ing. The request is a flexible description of the conditions
of a set of resources that are necessary for a job.

IV. Economic Scheduling

interrogation of

new
request

request
for the new
create offers

local machines

first selection

remote domains

second selection

create offer

Fig. 3. General application flow.

This section includes a
description of the schedul-
ing algorithm that has
been implemented for the
presented infrastructure.
The general application
flow can be seen in Fig-
ure 3. In contrast to [3],
our scheduling model does
not rely on a single cen-
tral scheduling instance.
Moreover, each domain
acts independently and
may have different objec-
tive policies. Also the job
requests of the users can
have individual objective
functions. The schedul-
ing model has the task to
combine these objectives
to find the equilibrium of
the market. This is a
derivation of the previ-
ously presented methods
of WALRAS and Enter-

prise.
In our scheduling model all users submit their job re-

quests to the local MetaManager of the domain as shown
in Figure 2. For example, the user specifies that his job re-
quires 3 processors with certain properties as for instance
the architecture. Additionally a utility function UF is
supplied by the user. For instance the user in our exam-
ple is interested in the minimization of the job start time,
which can be achieved by maximizing the utility function
UF = (−StartT ime).

The estimated job run-time is also given in addition to
an earliest start and latest end time. Note, that a job is al-
located for the requested run-time and is terminated if the
job exceeds this time. If a job finishes earlier, the resulting
idle time of resources can be allocated to later submitted
jobs. These idle resources can be further exploited by in-
troduction of a rescheduling step which has not been ap-
plied in this work. Rescheduling can be used to re-allocate
jobs while maintaining the guarantees of the previous allo-
cations. This can be compared with backfilling, although
guaranteed allocations, e.g. due to remote dependencies by
co-allocation, must be fulfilled. The rescheduling may re-
quire additionally requests for offers.

The request is analyzed by the scheduler of the receiving
MetaManager. The scheduler creates, if possible, offers for
all local machines. After this step, a first selection takes



Fig. 2. Scheduling Steps

place where only the best offers are kept for further pro-
cessing. According to the job parameters and the found
offers, the request is forwarded to the schedulers of other
domains. This is possible as long as the number of hops

(search depth of involved domains) for this request is not
exceeded and the time to live for this request is still valid.
In addition none of the domains must have received this
request before. The remote domains create new offers and
send their best combinations back. If a job has been pro-
cessed before no further offers are generated. A second
selection process takes place in order to find the best offers
among the returned result of this particular domain.

Note, that these method is an auction with neither a
central nor a decentral auctioneer. Moreover, the different
objective functions of all participants are used for equili-
bration. For each potential offer o for request i the utility
value UVi,o is evaluated and returned within the offer to
the originating MetaDomain that received the user’s re-
quest. The utility values is calculated by the user supplied
utility function UFi which can be formulated with the job
and offer parameters. Additionally to this parameter set
~Pu the machine value MVi,j of the corresponding machine
j can be included.

UVi,o = UFi( ~Pu,MVi,j)

MVi,j = MF ( ~Pm)

The machine value results from the machine objective
function MF which can depend on a parameter set ~Pm.

The originating MetaManager selects the offer with the
highest utility value UVi,o. In principle this MetaManager

serves the tasks of an auctioneer.
Next, we examine the local offer generation in more de-

tail. To this end the application flow is shown in in Fig-
ure 4.

Within the Check Request phase it is determined if either
the best offer has to be automatically selected or if the user
is going to select the best offer interactively among a given
number of possible offers.

In the same step the user‘s budget is checked if it is
sufficient in order to process the job at the local machines.
The actual accounting and billing was not part of this study
and requires additional work. Furthermore in this step, it
is verified if local resources meet the requirements of the
request. Next, the necessary scheduling parameters are
extracted which are included in the request e.g. the earliest
start time of the job, the deadline (end time), the maximum
search time, the time until the resources will be reserved for
the job (reservation time), the expected run time and the
number of required resources. Another parameter is the
utility function which is applied in the further selection
process.

If not enough resources can be found during the Check

Request phase, but all other requirements can be fulfilled by
the local resources, a multi-site scheduling will be initiated.
In this case additional and modified offers are requested
from remote domains to meet in combination the original
job requirements. This is an example of co-allocating re-
sources from different owners.

The next step Search for free intervals within the sched-

ule tries to find all free time intervals within the requested
time frame on the suitable resources. As a simple exam-
ple assume a parallel computer with dedicated processors



as the resources. The example schedule is given in Figure
5. The black areas within the schedule are already allo-
cated by other jobs. The job in our example requests three
processors and has a start time A, an end time D and a
run time less than (C − B). First, free time intervals are
extracted for each processor. Next, the free intervals of
several processors are combined in order to find possible
solutions. To this end, a list is created with triples of the
form {time, processor number, +/-1} which means that the
processor with the specified processor number is free (+1)
or not free (-1) at the examined time.

The generated list is used to find possible solutions as
shown in the following pseudo-code:

list tempList;

LOOP:while(generatedList not empty)

{

get the time t of the next element in the

sourceList;

test for all elements in tempList whether

the difference between the beginning of

the free interval and the time t is bigger

or equal to the run time of the job;

if(number of elements in tempList, which

fulfill the time condition, is bigger

or equal the needed number of

processors)

{

create offers from the elements of

the tempList;

}

if(enough offers found)

{

finish LOOP;

}

add or substract the elements of the

sourceList to or from tempList which

have time entry t;

}

The given algorithm creates potential offers that include
e.g. start time, end time, run time and the requested num-
ber of processors as well as the user utility value (UVi,o).

Note, that it is not yet shown how the offer is created
from the elements of this list. Such an algorithm will be
presented in the following. The goal is to find areas of
enough resources within the schedule for a given list of free
time intervals. This has to take into account that resources
have possibly different start and end times. The resulting
areas are characterized by the earliest start and latest end
time. To this end a derivation of a bucket sort is used.
In the first step all intervals with the same start time are
collected in the same bucket. In the second step for each
bucket the elements with the same end time are collected in
new buckets. At the end each bucket has a list of resources
available between the same start and end time.

For the example above, the algorithm creates three buck-
ets as shown in Figures 6, 7 and 8. After the creation of

buckets suitable offers are generated either with elements
from one bucket if the bucket includes enough resources
or by combining elements of different buckets. Additional
care must be taken as elements from different buckets can
have different start and end times. The maximum start
and the minimum end time must be calculated. In our
example only bucket 1 can fulfill the requirements alone
and therefore an offer can be build e.g. with resources 1, 2
and 5.

Check Request

Request

Search for free
Intervals within

the schedule

grain selection
of an interval

fine selection
of an interval

create
offer

[no Multi−Site]

[Multi−Site]

Fig. 4. Local offer creation.

In order to generate
different offers a bucket
for which an offer was
only possible by its own
elements is modified to
contain one resource less
than the required num-
ber. Afterwards, the pro-
cess is continued. If
yet not enough solutions
are found and no further
bucket can fulfill the re-
quest by itself as well as
the number of remaining
elements of all buckets is
greater or equal to the re-
quested resource number,
new solutions are gener-
ated by combinations of
bucket elements in regard
to the intersecting time
frames.

In our example, to-
gether with the solu-
tion build from bucket
1 the whole set of solu-
tions would be: {{1,2,5},
{1,2,3}, {1,2,4}, {1,2,7},

{1,3,4}, {1,3,7}, {1,4,7}, {2,3,4}, {2,3,7}, {3,4,7}}.
After the end of the Search for free intervals within the

schedule phase from Figure 4 a grain selection of one of
these intervals takes place in the next phase. In principle
a large number of solutions are possible by modifying the
start and end time for the job in every combination and
then selecting the interval with the highest utility value.
In practice this is not applicable in regards to the run-
time of the algorithm. Therefore a heuristic is used by
selecting the combination having the highest utility value
for the earliest start time. Next, the start and end time are
modified to improve this utility value. The modification
with the highest value is selected as the resulting offer (in
phase “fine selection of an interval” in Figure 4).

A number of steps can be defined which specifies the
number of different start and end times within the given
time interval. Note, that the utility function is not con-
strained in terms of monotony. Therefore, the selection
process above is heuristic.

After this phase the algorithm is finished and possible
offers are generated.

The utility functions of the machine owner and the user



have not been specified yet. This method allows both of
them to define their own utility function. In our imple-
mentation any mathematical formula, using any valid time
and resource variables, is supported. Overall, the result-
ing value for the user’s utility function is maximized. The
linkage to the objective function of the machine owner is
created by the price for the machine usage which equals
the machine owner’s utility function. The price may be
included in the user’s utility function.
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Fig. 5. Start Situation.
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The owner of the machine can build the utility function
with additional variables that are defined by the resulting
schedule. Figure 9 shows variables that are used in our im-
plementation. The variable under specifies the area in the
schedule in which the corresponding resources (processors)
are unused before the job allocation. over determines the
area of unused resources after the job to the next job start
on the according resources or to the end of the schedule.
The variable left right specifies the area on the left and
right side of the job. The variable utilization specifies the

utilization of the machine if the job is allocated. This is de-
fined by the relation between the sum of all allocated areas
to the whole available area from the current time instance
to the end of the schedule.

Note, that the network has explicitly not been consid-
ered. Further work can easily extend the presented model
to include network dependencies into the selection and eval-
uation process. For example, the network latency and
bandwidth during job execution can be considered by pa-
rameterizing the job run-time during the scheduling.

However, the network is regarded in terms of resource
partitioning and site autonomy. The presented model fo-
cuses on the cooperation scheme and economic schedul-
ing scheme between the MetaManagers of independent do-
mains. Herein, a MetaManager can allocate jobs without
direct control over remote resources and without the expo-
sure of local control.

V. Simulation and Evaluation

In this section the simulation environment is described.
First, the resource configurations that are used for our eval-
uation are described followed by an introduction of the ap-
plied job model.

A. Resource Configurations

All three examined resource configurations have in com-
mon a sum of 512 processors. The configurations differ in
the processor distribution on machines as shown in Table I.

identifier configuration maximum sum
size

m128 4 · 128 128 512
m256 2 · 256 256 512
m384 1 · 384 + 1 · 64 + 4 · 16 384 512
m512 1 · 512 512 512

TABLE I

Used resource configurations.

The configurations m128 and m256 are configurations
that resemble companies with several branch offices or a
combination of universities. The configuration m384 char-
acterizes a large data processing center which is connected
to several smaller client sites. The configurations m128 and
m256 are balanced in the sense of an equal number of pro-
cessors at each machine. The configuration m384 in com-
parison is unbalanced. The resource configuration m512
serves as a reference with a single large machine executing
all jobs.

In order to apply economic scheduling methods utility
functions are required as mentioned before. In the follow-
ing 6 different owner objective functions have been chosen
for the first evaluation. Further extensive study is neces-
sary to optimize the objective functions in regards to better
results. The first one describes the most general owner util-
ity function from which all others are derived. The owner
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Fig. 9. Parameters for the calculation of the owner utility function.

machine function MF1 consists of several terms. The first
term:

NumberOfProcessors · RunTime

calculates the area that the job is using within the sched-
ule. The second term calculates the free areas before and
after the job as well as the parallel idle time for the other
resources within the local schedule (see Figure 9.):

over + under + left right.

The last term of the formula is:

1 − left right rel,

where left right rel describes the relation between the free
areas to the left and right of the job within the schedule
(left right) and the area actual used by the job. A small
factor describes that the free areas on both sides are small
in comparison to the job area. This leads to the following
objective function MF1 and its derivations MF2 - MF6:

MF1 = (NumberOfProcessors · RunTime + over

+ under + left right) · (1 − left right rel),

MF2 = (NumberOfProcessors · RunTime + over

+ under + left right),

MF3 = (NumberOfProcessors · RunTime + over

+ under) · (1 − left right rel),

MF4 = (NumberOfProcessors · RunTime + left right)

· (1 − left right rel),

MF5 = (NumberOfProcessors · RunTime + over

+ left right) · (1 − left right rel),

MF6 = (NumberOfProcessors · RunTime + under

+ left right) · (1 − left right rel).

B. Job Configurations

Unfortunately, no real workload is currently available for
grid computing. For our evaluation we derived a suitable
workload from real machine traces. These traces have been
obtained from the Cornell Theory Center and are based on
an IBM RS6000/SP parallel computer with 430 nodes. For
more details on the traces and the configuration see the
description of Hotovy [15]. The workload is available from
the standard workload archive [24].

In order to use these traces for this study it was neces-
sary to modify the traces to simulate submissions at inde-
pendent sites with local users. To this end, the jobs from
the real traces have been assigned in a round-robin fashion
to the different sites. It is typical for many known work-
loads to favor jobs requiring a power of 2 nodes. The CTC
workload shows the same characteristic. The modeling of
configurations with smaller machines would put these ma-
chines into disadvantage if the number of nodes is not a
power of 2. To this end, our configurations consist of 512
nodes. Nevertheless, the traces consist of enough workload
to keep a sufficient backlog on conventional scheduling sys-
tems (see [13]). The backlog is the amount of workload that
is queued at any time instance if there are not enough free
resources to start the jobs. A sufficient backlog is impor-
tant as a small or even no backlog indicates that the system
is not fully utilized. In this case there is not enough work-
load available to keep the machines working. Many sched-
ulers, e.g. the mentioned backfilling strategy, require that
enough jobs are available for backfilling in order to utilize
idle resources. This case usually leads to a bad scheduling
quality and unrealistic results. Note, that backlog analysis
is only possible for the conventional scheduling algorithms.
The economic method does not use a queue as the job al-
location is directly scheduled after submission time.

Over all the quality of a scheduler is highly dependent
on the workload. To minimize the risk to achieve singular



effects the simulations have been done for 4 workload sets:
II.

identifier description

10 20k org An extract of the original CTC traces
from job 10000 to 20000.

30 40k org An extract of the original CTC traces
from job 30000 to 40000.

60 70k org An extract of the original CTC traces
from job 60000 to 70000.

syn org The synthetically generated workload
derived from the CTC workload traces.

TABLE II

The used workloads

The synthetic workload is very similar to the CTC data
set, see [16]. It has been generated to prevent that singular
effects in real traces, e.g. machine down times, do not affect
the accuracy of the result. Also the usage of 3 extracts of
the real traces are used to get information on the consis-
tency of the results for the CTC workload. Each workload
set consists of 10000 jobs which corresponds to a period of
more than three months in real time.

The same workloads have been applied for the simula-
tions with conventional scheduling systems in [13], [6]. This
allows the comparison of economic systems in this work to
the non-economic scheduling systems in [13], [6], [7].

Additionally, a utility function for each job is necessary
in economic scheduling to represent the preferences of the
corresponding user. To this end, the following 5 user utility
functions (UF) have been applied for our first evaluations.

The first user utility function prefers the earliest start
time of the job. All processing costs are ignored.

UF1 = (−StartT ime).

The second user utility function only considers the calcu-
lation costs caused by the job.

UF2 = (−JobCost).

The last user utility functions are combinations of the first
two, but with different weights.

UF3 = (−(StartT ime + JobCost))

UF4 = (−(StartT ime + 2 · JobCost))

UF5 = (−(2 · StartT ime + JobCost)).

C. Results

Discrete event-based simulations have been performed
according to the previously described architecture and set-
tings.

Figure 10 shows a comparison of the average weighted re-
sponse time for the economically based and for the conven-
tional first-come-first-serve/backfilling scheduling system.
The average weighted response time is the sum of the corre-
sponding run and wait times weighted by the resource con-
sumption which is the number of resources multiplied with
the job execution time. Note that the mentioned weight

prevents any prioritization of small over wider jobs in re-
gard to the average weighted response time if no resources
are left idle [19]. The average weighted response time is
a mean for the schedule quality from the user perspective.
A shorter AWRT indicates that the users have to wait less
for the completion of their jobs.

For both systems the best achieved results have been
selected. Note, that the used machine and utility func-
tions differ between the economic simulations. The results
show for all used workloads and all resource configura-
tions that the economically based scheduling system has
the capability to outperform the conventional first-come-
first-serve/backfilling strategy.

Backfilling can be outperformed as the economic schedul-
ing system is not restricted in the job execution order.
Within this system a job, that was submitted after another
already scheduled job, can be started earlier, if correspond-
ing resources can be found. The conventional backfill-
ing strategy used with the first-come-first-serve algorithm
([17]) can only start jobs earlier if all jobs that were trans-
mitted before are not additionally delayed. The EASY
backfilling lowers this restriction to not delay the first job in
the queue ([9]) does not result in a better performance. The
restriction of out-of-order execution in backfilling prevents
job starvation. The economic method does not encounter
the starvation problem as the job execution is immediately
allocated after submission.

Figure 10 only shows the best results for the economic
scheduling system. Now, in Figure 11, a comparison be-
tween the economic and the conventional scheduling sys-
tem for only one machine/utility function combination is
presented.

The used combination of MF1 and UF1 leads to schedul-
ing results that can outperform the conventional system
for all used workloads and configurations m128 and m512.
Note, that the benefit of the economic method was achieved
by applying a single machine/utility function combina-
tion for all workloads. This indicates that suitable ma-
chine/user utility functions can provide good results for
various workloads.

Figure 12 presents the AWRT combined with the average
weighted wait time (AWWT) using the same weight selec-
tion. In all cases the same resource configuration as well as
the same machine/utility function combination are used.
The time differences between the simulations for both re-
source configurations are small. This shows that the algo-
rithm for multi-site scheduling (for resource configuration
m128), although it is more complex, does not result in a
much worse response time in comparison to a single ma-
chine. Note, that multi-site execution is not penalized by
an overhead in our evaluation. Therefore, the optimal ben-
efit of job splitting is examined and only the capability of
supporting multi-site in an economic environment over re-
mote sites is regarded. Here, effects of splitting jobs may
even improve the scheduling results.

Figure 13 demonstrates that the average weighted re-
sponse as well as the average weighted wait time do not
differ significantly between the different resource configu-
rations. In this case, the machine configurations prove lim-



Fig. 10. Comparison between Economic and Conventional Scheduling.

Fig. 11. Comparison between Economic and Conventional Scheduling for the Resource Configurations m128 and m512 using MF1 - UF1.

ited impact on the effect on multi-site scheduling. Here,
the overall number of processors is of higher significance in
our economic algorithm. Configurations with bigger ma-
chines have smaller average weighted response times than
configurations with a collection of smaller machines.

The influence of using different machine/utility function
combinations for a resource set is shown in Figure 14. Here,
the squashed area (the sum of the products of the run time
and the number of processors) is given for different resource
configuration. The variant m128 is balanced in the sense of
having equal sized machines. The desired optimal behavior
is usually an equal balanced workload distribution on all
machines.

The combination of (MF1, UF1) leads to a workload

distribution where the decrease of the local squashed area
is nearly constant between the machines ordered by their
number as shown in Figure 14. The maximum difference
between the squashed areas is about 18%.

In the second case, the combination (MF1, UF2)
presents a better outcome in sense of a nearly equally dis-
tributed workload.

The third function combination (MF2, UF2) leads to an
unbalanced result. Two of the machines execute about 67%
of the overall workload and the two remaining machines the
rest.

Simulation results are shown for keeping the same ma-
chine/utility function combinations in Figure 15. The com-
bination of (MF1, UF2) does not perform very well in terms



Fig. 12. AWRT and AWWT for m128 and m512 using several workloads, machine function MF1 and utility function UF1.

Fig. 13. AWRT and AWWT for all Resource Configurations and the syn org workload in combination with MF1 - UF1.

of the utilization as all machines achieve less than 29%.
This indicates in combination with Figure 14 that a well
distributed workload corresponds with a lower utilization.
The combination of (MF1, UF1) leads to a utilization be-
tween 61% and 77% on all machines. The third examined
combination (MF2, UF2) shows a very good utilization of
two machines (over 85%) and a very low utilization on the
others (under 45%). In this case the distributed workloads
correlates with the utilization of the machines.

After the presentation of the distributed workload and
the corresponding utilization the AWWT and AWRT,
shown in Figure 16 clearly indicates that only the function
combination (MF1, UF1) leads to reasonable scheduling re-
sults. The results from Figures 14,15 and 16 demonstrate
that different machine/utility function combinations may
result in completely different scheduling behaviors. There-
fore an appropriate selection of these functions is important
for an economic scheduling system.

In the following the comparison of different ma-
chine/utility functions is shown for the resource configura-

tion m128. In Figure 17 the average weighted response time
is drawn for all different machine function in combination
with utility function UF 3. The average weighted response
time for the machine function MF 2 performs significantly
better than all other machine functions. Here, the factor
1 − leftrightrel, which is used in all other machine func-
tions, does not work well for this machine configuration. It
seems to be beneficial to use absolute values for the areas
instead, e.g. (NumberOfProcessors · RunTime + over +
under + left right). Unexpectedly, Figure 17 also shows
that the intended reduction the free areas within the sched-
ule before the job starts, with attribute under, results in
very poor average weighted response times (see the results
for MF1, MF3, MF6).

As machine function (MF2) provided significantly bet-
ter results, different user utility functions are compared in
combination with MF2 in Figure 18.

Utility function UF1, which only takes the job start time
into account, results in the best average weighted response
time. In this case, no attention was paid to the result-



Fig. 14. The used Squashed Area of simulations with m128 and syn org using different machine and utility functions.

Fig. 15. The resulting utilization of simulations with m128 and syn org using different machine and utility functions.

Fig. 16. The resulting average weighted response and wait times of simulations with m128 and syn org using different machine and utility
functions.



ing job cost. For our selection of the machine objective
function this means that minimization of the free areas
around the job is not regarded. The utility functions that
include this job cost deliver inferior results in terms of the
average weighted response times. The second best result
originates from the usage of the utility function UF3. In
opposite to UF1 the starting time and the job costs are
equally weighted. All other utility combinations in which
either only the job costs (UF2E) or unbalanced weights for
the starting time and the job costs are used, lead to higher
response times.

Note that the execution time of the simulations on a
SUN-Ultra III machine varied according to the chosen
machine and user utility functions. For an example the
scheduling of 10000 jobs required about 1 hour, which
means that the scheduling of one job lasts about one sec-
ond on average. Nevertheless, this highly depends on the
number of available resources. In an actual implementa-
tion the search time can be limited by a parameter given
by the user or chosen by a heuristic based on job length
and/or job arrival rate.

VI. Conclusion

In this paper we presented an infrastructure and an eco-
nomic scheduling system for grid environments. The qual-
ity of the algorithm has been examined by discrete event
simulations with different workloads (4, each with 10.000
jobs), different machine configurations (4, each with a sum
of 512 processors) and several parameter settings for owner
and user utility functions.

The results demonstrate that the used economical model
provides results in the range of conventional algorithms in
terms of the average weighted response time. In compari-
son, the economical method leaves a much higher flexibil-
ity in defining the desired resources. Also the problems
of site autonomy, heterogenous resources and individual
owner policies are solved by the structure of this economic
approach. Moreover, the owner and user utility function
may be set individually for each job request. Additionally,
features as co-allocation and multi-site scheduling over dif-
ferent resource domains are supported. Especially the pos-
sible advance reservation of resources is an advantage. In
comparison to conventional scheduling systems there is in-
stant feedback by the scheduler on the expected execution
time of a job already at submit time. Note that conven-
tional schedulers based on list scheduling as e.g. backfilling
can provide estimates or bounds on the completion time.
However, the economic method presented in this paper
leads to a specific allocation in start and end-time as well
as the resource. Guarantees can be given and maintained
if requested. This includes the submission of jobs that re-
quest a specific start and end-time which is also necessary
for co-allocating resources.

Note, that the examined utility functions in the simula-
tions are first approaches and leave room for further analy-
sis and optimization. Nevertheless, the results presented in
this paper indicate that an appropriate utility function for
a given resource configuration delivers steady performance
on different workloads.

Further research is necessary to extend the presented
model to incorporate the network as a limited resource
which has to be managed and scheduled as well. In this
case a network service can be designed similar to a man-
aged computing resource which provides information on of-
fers or guarantees for possible allocations, e.g. bandwidth
or quality-of-service features.

A more extensive parameter study for comprehensive
knowledge on their influence on cost and execution time is
necessary. To this end, future work can analyze scenarios
in which different objective functions are assigned to each
domain. Also the effect of a larger number of machines and
domains in the grid must be evaluated.

The presented architecture in general provides support
for re-scheduling, that means improving the schedule by
permanently exploring alternative offers for existing allo-
cations. This feature should be examined in more detail
for optimizing the schedule as well as for re-organizing the
schedule in case of a system or job failure.



Fig. 17. The resulting average weighted response for resource configuration m128, utility function UF 3 and several machine functions.

Fig. 18. The resulting average weighted response for resource configuration m128, machine function MF 2 and several utility functions.
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