
Coscheduling under Memory Constraints in a NOW Environment�
Francesc Giné, Francesc Solsona

Departament d’Informàtica i Eng. Ind.
Universitat de Lleida, Spain
{sisco,francesc}@eup.udl.es

Porfidio Hernández, Emilio Luque
Departament d’Informàtica

Universitat Autònoma de Barcelona, Spain
{p.hernandez,e.luque}@cc.uab.es

Abstract

Networks of Workstations (NOW) have become impor-
tant and cost-effective parallel platforms for scientific com-
putations. In practice, a NOW system is heterogeneous and
non-dedicated. These two unique factors make scheduling
policies on multiprocessor/multicomputer systems unsuit-
able for NOWs. However, the coscheduling principle is still
an important basis for parallel process scheduling in these
environments.

We propose a new coscheduling algorithm for reducing
the number of page faults across a non-dedicated cluster
by increasing the execution priority of parallel tasks with
lower page fault rate. Our method is based on knowledge
of events obtained during execution, as communication ac-
tivity and memory size of every task. The performance of
our proposal has been analyzed and compared with other
coscheduling implementations by means of simulation.

1 Introduction

The studies in [5] indicate that the workstations in a
NOW are normally underloaded. This has invited re-
searchers to develop different techniques in an attempt to
adapt the traditional uniprocessor time-shared schedulerto
the new situation of mixing local and parallel workloads
[1, 10]. Basically, there are two methods of making use of
these CPU idle cycles, task migration [6, 7] and time-slicing
scheduling [8, 9]. In a NOW, in accordance with the re-
search carried out by Arpaci [10], task migration overheads
and the unpredictable behavior of local users may lower the
effectiveness of this method.

In a time-slicing environment, two issues must be ad-
dressed: how to coordinate the simultaneous execution of
the processes of a parallel job, and how to manage the inter-
action between parallel and local user jobs. One alternative
is coscheduling [12, 14, 22].�This work was supported by the CICYT under contract TIC98-0433

Coscheduling ensures that no process will wait for a
non-scheduled process for synchronization/communication
and will minimize the waiting time at the synchronization
points. Thus, coscheduling may be applied to reduce mes-
sages waiting time and make good use of the idle CPU cy-
cles when distributed applications are executed in a clus-
ter or NOW system. Coscheduling decisions are made
taking implicit runtime information of the jobs into ac-
count, basically execution CPU cycles and communication
events [12, 13, 14, 15, 16, 22]. Our framework will be
focused on an implicit coscheduling environment, such as
scheduling the correspondents -the most recent communi-
cated processes- in the overall system at the same time,
taking into account both high message communication fre-
quency and low penalty introduction into the delayed pro-
cesses. The implicit property is also applied for coschedul-
ing techniques that are not controlled by dedicated nodes or
daemons.

However, the performance of a good coscheduling pol-
icy can decrease drastically if memory requirements are not
kept in mind [2, 3, 11, 18, 19, 20, 21, 28, 29]. Most of
them [2, 18, 21, 20] have proposed different techniques to
minimize the impact of the real job memory requirements
on the performance of a gang scheduling policy (original
coscheduling principle, mostly applied and implemented
in MPP’s). However, to our knowledge, there is an ab-
sence of research into minimizing the impact of the mem-
ory constraints in an implicit coscheduling environment.
We are interested in proposing implicit coscheduling tech-
niques with memory considerations. That is to cosched-
ule distributed applications taking into account dynamic al-
location of memory resources due to the execution of lo-
cal/distributed jobs by using implicit information (that ob-
tained by observing local events in each cluster node).

In a non-dedicated system, the dynamic behavior of local
applications (which consequently also varies its allocated
resident memory) or a distributed job mapping policy with-
out memory considerations cannot guarantee that parallel
jobs have enough resident memory as would be desirable
throughout their execution. In these conditions, the local

scheduler must coexist with the operating system’s demand-
paging virtual memory mechanism. In an uniprocessor sys-
tem, paging improves memory and CPU utilization by al-
lowing processes to run with only a subset of their code and
data to be resident in main memory. However in distributed
(cluster or NOW) environments, the traditional benefits that
paging provides on uniprocessors may decrease depending
on various factors, such as for example: the interaction be-
tween the CPU scheduling discipline, the synchronization
patterns within the application programs, the page reference
patterns of these applications [3, 28] and so on.

Our main aim is to reduce the number of page faults in a
non-dedicated coscheduling system, giving more execution
priority to the distributed tasks with lower fault page proba-
bility, letting them finish as soon as possible. Thus, on their
completion, the released memory will be available for the
remaining (local or distributed) applications. Consequently,
major opportunities arise for advancing execution for all the
remaining tasks.

However, the execution of the distributed tasks must not
disturb local (or user) task interactivity, so excessive local-
task response time should be avoided. It means that a pos-
sible starvation problem of this kind of tasks must be taken
into account.

In this paper, a new coscheduling environment over a
non-dedicated cluster system is proposed. The main aim
of this new scheme is to minimize the impact of demand
paged virtual memory, with prevention of local-task starva-
tion capabilities. The good performance of this model is
demonstrated by simulation.

The rest of the paper is organized as follows. In section
2, the main aim of our work is explained. Next, in section 3,
the system model used is defined. A coscheduling algorithm
based on this model is presented in section 4. The perfor-
mance of the proposed coscheduling algorithm is evaluated
and compared in section 5. Finally, the conclusions and fu-
ture work are detailed.

2 Memory Constraints Motivation

Extensive work has been performed in the coscheduling
area, but memory consideration effects in cluster computing
performance have scarcely been studied. This fact, together
with the different works done with coscheduling techniques
[16, 23, 17], gives us a real motivation for an insight into
coscheduling of distributed applications with memory con-
straints.

The execution performance of fine-grained distributed
applications -those with high synchronization- could be im-
proved by applying a generic coscheduling technique in
cluster computing (section 2.1). However, the coschedul-
ing techniques do not always improve performance. When
task memory requirements in any particular cluster node

overload the main memory, if virtual memory is supported
by the o.s., the page fault mechanism (the swapper) is ac-
tivated. The swapper interchanges blocks (the secondary
memory transfer unit) of pages between the main and sec-
ondary memories. The swapper speed is usually at least one
order of magnitude lower than the network latency. Thus,
high or moderate page fault frequency in one node can drop
distributed application performance drastically [3, 28, 29],
overtaking widely in this way coscheduling benefits. In sec-
tion 2.2, a solution for solving this situation is proposed

2.1 Coscheduling Benefits

How a coscheduling technique increases the perfor-
mance of distributed applications and the page fault mecha-
nism disturbs its progression is shown by means of the fol-
lowing real example.

Two different environments were evaluated and com-
pared between them, the plain Linux scheduler, (denoted
asLINUX), and one implicit coscheduling policy, denoted
asCOS-for further information, see [17]- implemented in a
real Linux cluster made up of 4 PC’s with the same charac-
teristics (350Mhz Pentium II processor, 128 MB of RAM,
512 KB of cache, Linux o.s. (kernel v. 2.2.14) and PVM
3.4.0). COS policy is based on giving more scheduling pri-
ority to tasks with more message sending and receiving fre-
quency. The well known NAS [30] parallel benchmarksMG
is used in this trial. Also, two synthetic local tasks have been
executed jointly with the MG benchmark in each node.

Fig. 1(a) shows the good performance of theCOSpol-
icy in relation toLINUX one in the execution of the MG
benchmark when the main memory is not overloaded. As
it was expected, COS policy gives priority the execution of
the MG benchmark due to its intensive communication.

Fig. 1(b) shows the performance of the MG benchmark
when it does not fit in its resident memory set because mem-
ory requirements of local tasks have been increased. As
it can be seen on this figure, the page faulting mechanism
(one or two orders of magnitude slower than the network
latency) will corrupt the performance of distributed applica-
tions. This adverse effect is increased in applications with
intensive communication because every page fault causes
cascading delays on other nodes, thus decreasing the over-
all system performance. This fact points to the idea that
memory requirements should be taken into account on the
coscheduling processes with the aim of reducing the prob-
ability of page faults. This is certainly the main aim of this
article.

2.2 Motivation

The following example (see Fig. 2) will help us to ex-
plain how the reduction of page fault rate is achieved and

0

100

200

300

400

500

600
E

xe
cu

tio
n

tim
e(

s)

COS LINUX

policies

(a) MG fits in the main memory

0

100

200

300

400

500

600

E
xe

cu
tio

n
tim

e(
s)

COS LINUX

policies

(b) MG does not fit in the main memory

Figure 1. Execution times (in seconds) for MG application

as, a consequence, the global performance is improved.

Let two intensive message-passing distributed applica-
tions,J1 andJ2 and a clusterC made up of three homo-
geneous machines,N1, N2 andN3 with a main memory
size ofM units. Each distributed application is composed
of three tasks, each one is mapped in a different machine.
Moreover, one local task is executed in every node. It is
assumed that tasks memory requirements do not fit in the
main memory of such node. The memory requirements of
distributed tasksJ1, J2 and local task (LOCAL) are denoted
asm1, m2 andmL, respectively. Figure 2 shows the con-
tents of the swap memory (at the top) and main memory (in
the middle) for nodeN3 through the time. At the bottom, a
two dimensional timing diagram representing the accumu-
lative CPU time (in the Y axis) and the total executing time
(executing plus waiting time, in the X axis) is also shown.

It can be seen that without any memory control policy,
(Fig. 2 (a)) the local task is finished after300 units, whereas
taskJ1 andJ2 finish after450 units and500 units, respec-
tively. Figure 2 (b) shows the execution times obtained by
applying a memory control policy consisting of giving more
execution priority to the distributed task with the lowest
page fault rate. That, in turn, means that the main mem-
ory space allocated to taskJ1 -it has smaller memory re-
quirements thanJ2- is increased with time until it has all its
address space residents in main memory, at the expense of
memory space reduction for taskJ2. Thus, taskJ1 finishes
its execution sooner than in case (a) (at time350). WhenJ1 finishes execution, it frees its assigned memory and so
the memory available for taskJ2 is considerably increased,
leading to a speedy execution of such task.

From the comparison of both techniques (fig. 2(a) and
(b)), we can conclude that, by applying a memory policy
control, the execution times for both distributed tasks,J1

andJ2, have been reduced whereas local task one (taskL)
has been maintained. It is worth pointing out that although
the progression of taskJ2 during the first three periods is
slower in case (b), whenJ1 is finished, theJ2 CPU execu-
tion rate rises significantly because all the resources (CPU
and memory) are available.

Note that this memory control policy should be applied
with priority to distributed tasks with high synchronization
requirements because, as synchronization grows more fre-
quently, the impact of delaying any one node by a page fault
is increased drastically. It suggests that the above memory
policy should be applied in combination with a coschedul-
ing technique based on communication activity. Section 4
explains how this coordination is achieved.

3 System Model

In this section, our model for cluster systems is ex-
plained. It provides for the execution of various distributed
application at the same time. This model assumes that all
the nodes in a non-dedicated cluster (or NOW) are under
the control of our coscheduling scheme and also that the
distributed applications are composed by a suite of tasks
which are allocated and executed in the nodes making up the
cluster. Also, every local coscheduler will take autonomous
decisions based on local information provided explicitly or
implicitly for the majority of existing time-sharing operat-
ing systems.

The model description is divided into two basic sub-
models, basic coscheduling and memory model. This way,
the model will be more easily understood and a clearer sep-
aration between the basic underlying system requirements
and the memory ones is performed.

In developing the model, various assumptions are made.

���
���
���

���
���
���

m

m

m
2

1

L

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

��

��

���
���
���

���
���
���

������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

������������
������������
������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������
������������
������������

����
����
����
����
����

����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

100 300 500
Time Time

Time Time

200 400 100 200 300 400 500

C
P

U
 T

im
e

C
P

U
 T

im
e

L

M
 u

ni
ts

Finish L Finish L

Node N behavior

Main Memory

1 1

2

3

Swap Memory Swap Memory

Main Memory

(a)Without memory control policy (b) With memory control policy

Finish J
Finish J

Finish J

Finish J

J
J2 2
1

M
 u

ni
ts

Time Time

Figure 2. Coscheduling under memory constraints

Some of them are chosen with the aim of simplifying the
model as much as possible. We are interested in developing
a model that could be implemented further in a time-sharing
o.s. Linux [25], due to its free property, fits in our purpose.
Therefore, some assumptions are made taking Linux prop-
erties into account.

3.1 Basic Coscheduling Model

The model represents a cluster system for executing both
distributed and local applications, so some preliminary as-
sumptions must be performed. If different applications must
be run in the cluster jointly, the underlying o.s. must be
time-sharing. In a time-sharing cluster node, a task may be
in different states (ready to run or simply ready, blocked,
etc).

In this environment, tasks cannot communicate with
their correspondents release the CPU before the expiration
of their Time Slice and chance to the blocked state. It is as-
sumed that incoming (out-going) messages to (from) a clus-
ter node are buffered in a Receiving Message Queue,RMQ
(Sending Message Queue,SMQ). This is a non-arbitrary as-
sumption. For example, Unix-like systems [4], with the
standardde factoTCP(UDP)/IP protocol, maintain (with

particular differences) some sort of these buffers.
Let a clusterC = fNkg, k = 1:::n and a taskl, de-

noted astaskl, of nodek (Nk). Every task belongs to a par-
allel/local job, denoted asJob. Next, some basic notation
(and used in the remainder of this article) is summarized as
follows:� RQ[k℄: pointer to the task on the positionk of the

Ready Queue (RQ). Special cases are k =0 (top) andk = 1 (bottom) of RQ. “Top” task is the currently ex-
ecuting task in the CPU and “bottom” is the latest one
to be executed.� taskl:�mes: number of current receiving-sending
messages fortaskl. It is defined as follows:taskl:�mes = taskl:re+ taskl:send (1)

,wheretaskl:re is the number of receiving messages
for taskl in the RMQ queue andtaskl:send is the
number of sending messages fortaskl in the SMQ
queue.� taskl:mes: Past receiving-sending message number
for taskl. This is defined as follows:taskl:mes = P �taskl:mes+(1�P)�taskl:�mes; (2)

whereP is the percentage assigned to the past mes-
sages (taskl:mes) and(1 � P) is the percentage as-
signed to the current messages (taskl:�mes). This
field will be used to distinguish between local tasks
(taskl:mes = 0) and distributed tasks (taskl:mes 6=0). Based on experimental results [17], aP = 0:3 has
been chosen.� taskl:de: number of times that taskl has been over-
taken in the RQ by another task due to a coscheduling
cause, since the last time such a task reached the RQ.
This field will be used to avoid the starvation of the
local and distributed tasks.

Note that some of this information is not explicitly main-
tained by the operating system, but can be easily obtained.
For example, in a Linux o.s.,taskl will be represented by
the task_structstructure (the Linux PCB, Process Control
Block). Thede field is not provided by the Linux o.s. but it
could be added to thetask_structstructure.

3.2 Memory Model

The Memory Management Unit (MMU) of each node is
based on pages with an operating system which provides
demand-paging virtual memory.

If the referenced page by a task is not in itsresident set
(allocated pages in the main memory), a page fault will oc-
cur. This fault will suspend the task until the missing page is
loaded in the resident set. Next, such a task will be reawak-
ened and moved to the RQ. Meanwhile another task could
be dispatched for execution into the CPU.

The page replacement algorithm is applied to all the
pages of the memory regardless of which process "owns"
them (global replacement policy). Thus, the task resident
size may vary randomly. Every node, taking into account
some existing operating system trends, usesthe Last Re-
cently Used (LRU) replacement algorithm,in which the
chosen page for replacement is the one that has not been
referenced for a longest time. One example is the Linux
o.s. that runsthe clock algorithm[25] (a LRU approxima-
tion algorithm).

Some studies [24, 3] have shown the relation between
the task page faults rate with respect to its resident set
size and memory pattern access (locality). Locality is nor-
mally related to procedures, functions or some other kind of
program-code association. Theworking setof a task [24],
denoted astask:wrk; is a technique for obtaining an ap-
proximation to the locality. A task working set at timet
with parameter� is defined as the set of pages touched by
the task during the last� time units (t-� ,t). Large� values
can overlap various localities. On the other hand, low values
for � , may produce poor locality approximations [3].

We propose to calculate the page fault probability for
each task. This way, it will be possible to determine which
tasks have their locality resident in main memory. Low
(high) page fault probability for a task will mean that its re-
spective resident set fits (does not fit) its associated locality
very well.

The proposed algorithm with memory constraints (see
next section) will use the following notation (all of them
use the memory concepts explained above):� taskl:vir�mem : virtual memory size for taskl.� taskl:res�mem: resident memory size for taskl.� taskl:nrpg�fault: number of times page faults have

been detected for taskl.� taskl:pg�fault: page fault probability for taskl. It is
computed as follows:� 0 if(taskl:wrk < taskl:res�mem)taskl:res�memtaskl:wrk if(taskl:wrk � taskl:res�mem) (3)� Nk:M : main memory size of the node k. Given that
a homogeneous cluster is assumed, this parameter will
be denoted simply asM .� Nk:mem: memory requirements into nodek. It is
computed as follows:Nk:mem =Xl taskl:vir�mem (4)

It is important to note that all the above fields are gener-
ally provided by the Linux operating system. For example,taskl:res�mem, taskl:vir�mem andtaskl:nrpg�fault
are maintained in thetask_structstructure, whereasNk:M
is a global system parameter. Although Linux does not pro-
vide the working set of every task directly, it can be easily
obtained from kernel space.

4 CSM: Coscheduling Algorithm under
Memory Constraints

In this section, a local coscheduling algorithm with
memory constraints (CSM, Algorithm 1) is proposed and
discussed. Next, how CSM achieves the global coordina-
tion through the cluster is explained.

4.1 CSM Algorithm

The CSM algorithm must decide which task is going to
run next, according to three different goals:

1. In a NOW, parallel applications must coexist with
the operating system’s demand-paged virtual memory.
Paging is typically considered [18, 21] to be too expen-
sive due to its overhead and adverse effect on commu-
nication and synchronization. So, one of the aims will
be to minimize the number of page faults throughout
the cluster.

2. The coscheduling of the communication-
synchronization processes. No processes will
wait for a non-scheduled process (correspondents) for
synchronization/communication and the waiting time
at the synchronization points will be minimized.

3. The performance of the local jobs. CSM algorithm
should avoid the starvation of the local processes, min-
imizing the overhead produced by the execution of par-
allel jobs.

Algorithm 1 is implemented inside a generic routine (called
insert_RQ). This is the routine chosen to implement our
coscheduling algorithm because all the ready-to-run tasks
must pass it before being scheduled. TheINITIALIZATION
section is the place where the different initializations (these
may be global variables) are done. Note that an originalin-
sert_RQroutine should only contain one line of the form
(RQ[1℄ := taskh), which should inserttaskh at the bot-
tom of the RQ.

If the RQ is empty (line 3),taskh is inserted on the top;
otherwise the algorithm works to find the position of the
RQ where the task should be inserted in accordance with
the starvation condition, communication rates and the page
fault probabilities.

CSM is applied mainly to distributed tasks (those withtaskh:mes 6= 0). It has no effect on the local tasks (gener-
ally tasks without remote communication,taskh:mes = 0),
which are inserted at the bottom of the RQ (RQ[1℄ :=taskh in line 4).

The only way that CSM algorithm can know which task
is currently executing in another node is taking the recep-
tion of the messages into account. For this reason, if the
task to be inserted on the RQ has any incoming message in
the RMQ queue (taskh:re 6= 0) and the main memory in
such node is overloaded (Nk:mem > Nk:M), the inserted
task is led to thetop of the RQ (RQ[0℄). Thus, CSM ap-
plies adynamic technique[15] to ensure that fine-grained
distributed applications are coscheduled. In this technique,
the more scheduling priority is assigned to tasks the more
the receiving frequency is.

For the rest of the cases, theSCHED_CONDfunction
together with theSTARV_COND onewill establish the task
ordering in the RQ.

From line 15 to 21, the scheduling condition is estab-
lished according to memory constraints. If the memory re-
quirements of all the resident tasks in such node (Nk:mem)

exceed the main memory size (M), theSCHED_CONDwill
depend on the page fault probability of the distributed tasks(RQ[i℄:pg�fault > taskh:pg�fault, line 17). This mode
will be denoted as CSM mode. So, CSM gives more prior-
ity to the tasks with less probability of making a page fault.
Taking into account the page replacement algorithm defined
in the previous section, the pages associated with tasks with
less chance of being scheduled will get old early. So, every
time a page fault happens, the older pages will be replaced
by the missing page. It means that with time, more memory
resources will be allocated to tasks distributed with a lower
page fault rate. In terms of locality, the local scheduler will
settle for the resident set of such distributed tasks as can fit
its locality.

Algorithm 1 CSM algorithm
1 procedure insert_RQ (taskh :task)

2 INITIALIZATION

3 if(RQ[0℄ = NULL) RQ[0℄ := taskh;
4 else if (taskh:mes = 0) RQ[1℄ := taskh; //Local task

5 else if((taskh:re 6= 0) and (Nk:mem > M)) RQ[0℄ := taskh;
//Dynamic mode

6 else

7 i :=1;
8 while(STARV_COND(i) and SCHED_COND(i,taskh))

9 RQ[i℄:de ++;

10 i��;

11 endwhile;

12 RQ[i℄ := taskh;

13 endif;

14 endprocedure

15 function SCHED_COND(i:int, taskh :task) return boolean

16 if(Nk :mem > M)

17 return(RQ[i℄:pg�fault > taskh:pg�fault); //CSM mode

18 else

19 return(RQ[i℄:mes < taskh:mes); //Predictive mode

20 endif;

21 endfunction

22 function STARV_COND(i:int) return boolean

23 consMNOL;MNOD; //MNO�Maximum Nr. Overtakes (L:Local,
D:Distributed);

24 if(RQ[i℄:mes = 0) return (RQ[i℄:de < MNOL);
25 else return (RQ[i℄:de < MNOD);
26 endfunction

Otherwise, when memory requirements of all the tasks fit
in main memory, another implicit coscheduling technique
is applied. The condition shown in line 19(RQ[i℄:mes <taskh:mes) is based on thepredictive technique, [14, 23].
In predictive coscheduling, in contrast to the dynamic
coscheduling, both send and receiving frequencies are taken

into account. The reason for doing it this way is that dis-
tributed tasks which only receive messages have normally
less need to be coscheduled with their correspondents than
those which perform both, sending and receiving.

The STARV_CONDfunction, defined from line 22 to
26, avoids both the starvation of local tasks and distributed
ones. For this reason, the insertingtaskh overtakes only
the tasks whosedelayfield (RQ[i℄:de) is not higher than a
constant namedMNOL (Maximum Number of Overtakes)
for local tasks orMNOD for distributed ones. The task fieldde is used to count the number of overtakes (by distributed
tasks) since the last time the task reached the RQ. In line 9,
this field is increased. The default value forMNOL is 2, as
higher values may decrease the response time (or interactive
performance) of local tasks excessively. Thus, starvationof
local tasks (normally of the interactive kind and not com-
municating tasks) is avoided. It’s worthwhile to point the
necessity of evaluating also the fielddefor distributed tasks
in order to avoid the starvation of a parallel job with a high
page fault rate. For instance, if it wasn’t taken into account,
a continuous stream of parallel jobs with small memory re-
quirements could provoke that a parallel job with a high
page fault rate was always pushed to the end of the RQ. The
value ofMNOD constant will be evaluated experimentally.

How CSM algorithm maintains the coordination be-
tween the local decision takes in every node through the
cluster is explained in the next section.

4.2 Global Coordination

As it has been explained above, CSM takes decisions lo-
cally. Also, depending on the characteristics of its resident
tasks, it can work in different modes (Dynamic, Predictive
or CSM). Thus, global coordination (through all the cluster)
of the tasks making up distributed applications is performed
in an independent manner in each cluster node, and depends
on the three different execution modes:

1. Predictive mode: it establishes the task progression
with high communication rates in nodes where main
memory is not exhausted.

2. Dynamic mode: when the main memory is exhausted,
CSM gives priority to the reception of messages in
order to achieve the coscheduling between distributed
tasks with high communication rates.

3. CSM mode: this mode works out in nodes where the
main memory is exhausted. It schedules first tasks with
lower page fault rate. This behavior favors tasks with
locality fitting in its resident set. So jobs with smaller
memory requirements will get priority implicitly with
regard to jobs with bigger ones. Thus, in this situation,
CSM behaves as a Small Job First policy

The above explained behavior could damage the perfor-
mance of parallel jobs with little synchronization and high
memory requirements. This is because CSM algorithm
gives priority to the execution of jobs with small memory
requirements in nodes whose main memory has been ex-
hausted. CSM, by means of the starvation condition, avoids
this situation. In the same way, distributed jobs with small
memory requirements have associated a low execution time
[2]. As a consequence, the memory released by these small
jobs will be available for the remaining (local or distributed)
applications sooner and then, they will be able to speed up
its execution.

It’s worthwhile to point out that decision taken by ev-
ery local CSM scheduler depends on the ones made in the
overall nodes of the cluster system. That is to say, a read-
justment between the node modes in the overall system will
be produced continuously.

There is an special case which requires particular atten-
tion. Suppose that CSM in one node gives priority to a
task which belongs to a particular distributed application,
while CSM in another node gives priority to a task which
belongs to another distributed application. In this situation,
the slowdown introduced in the implicated distributed ap-
plication should be minimized by the starvation condition
and the implemented dynamic mode, which maintains the
synchronization between tasks.

Finally, note that the CSM behavior would lead to a FIFO
coscheduling policy when all the distributed applications
had similar memory requirements .

5 Experimentation

In this section, some simulation results are presented that
compare the performance of the CSM policy, described in
section 4, with other coscheduling algorithms. First, the
simulation environment and the metrics used are presented.
Then, the results obtained in the simulations are described
and commented on.

5.1 Simulation and Metrics

Every node of the cluster has been simulated as shown in
fig. 3. In this model, based on [26], when a tasks quantum is
expired, the task is removed from the CPU and is reinserted
in the RQ whenever the task has not finished all its request-
ing time. If a task does not expire its quantum due to a com-
munication primitive or a page fault requesting service, it
will be inserted in the SLEEP QUEUE. The local SCHED-
ULER will fix the order of the tasks in the RQ according to
four different policies, around-robin policy(RR),a predic-
tive coscheduling policy(PRED),a dynamic coscheduling
policy (DYN) anda coscheduling policy with memory con-
straints (CSM). The PRED policy will correspond to the

READY QUEUE

SLEEP QUEUE

CPU
Departures

NODE[i] SCHEDULER

New Arrivals

Figure 3. Simulation of a node

predictive mode of algorithm 1, whereas CSM policy will
be the complete algorithm 1. DYN policy will correspond
to the dynamic mode (line 5) described in section 4 without
the memory constraints.

The chosen global simulation parameters are the follow-
ing:� Total processing requirement (Job:t): the total

processing requirement is chosen from a hyper-
exponential distribution with meant. It models
the high variability that is expected in parallel super-
computing environments [27]. It is assumed that jobs
can belong to three different classes - local tasks, small
and large parallel jobs.Small/localandlarge jobs have
a mean processing requirement of 300 and 3600 sec-
onds, respectively. Each generated job is alarge dis-
tributed one with probabilitypdt, and asmallone with
probability 1 -pdt. The density function is a Bernoulli
with a pdt probability.� Job size of distributed tasks (Job:size): job size is
an integer that is calculated by2k within the range[1; :::; n=8℄ for small jobs and[n=4; :::; n℄ for large
jobs, wheren is the number of nodes in the cluster. It’s
assumed that a local task is a job with aJob:size = 1.
By default, a value of n=32 is chosen. A static mapping
of one distributed task per node is assumed. The map-
ping policy is based on obtaining an uniform memory
load (Nk:mem) around the cluster.� Mean inter-arrival time (mit): mean time for arriving
distributed (local) tasks to the cluster (node). The cho-
sen density function is a Poisson with mean= mit. The
value for themit parameter (for a predetermined aver-
age memory load of the cluster) has been calculated by
means of the following equation:mean�load = mean�size� t� (PkNk:mem)mit� n2 �M (5)

wheren denotes the number of nodes in the cluster,M
the main memory size of a node andmean�size the
mean job size, respectively. Note that amem�load <1 means a mean memory requirements per node
smaller than the main memory size (M), whereas a

mem�load > 1 denotes a mean memory require-
ments per node bigger than the main memory size
(M). Themean�size is defined as follows:mean�size = Pk Jobk:sizeK (6)

whereK is the number of executed jobs on the cluster.� Memory size of the tasks (taskl:vir�mem): an uni-
form distribution has been chosen for assigning a vari-
able memory size (in page size units, the page size =
4KB) to each task in the range: [1,...,mest] for local,
[mest,...,2*mest] for small and [2*mest,...,4*mest] for
large tasks (mest=8Kpages). Initially, the number of
pages in the task resident set (taskl:res�mem) will
be computed according to the following equation:(taskl:vir�mem if(Nk:mem < M)(taskl:vir�mem)�MNk:mem if(Nk:mem �M) (7)

whereNk:mem is defined according to the equation 4.
However, during the simulationtaskl:res�mem will
be readjusted according to the scheduling frequency of
a task and the page replacement algorithm explained in
section 3.� Mean service time (time slice): mean time in serving
tasks (by the CPU). The chosen density function is an
exponential with mean= 100ms.� Message frequency (taskl:mes): the own message
receiving-sending frequency is generated for each dis-
tributed task. The time between successive arrivals
(sending) is simulated by means of an exponential dis-
tribution with mean=mfreq.� Working set: in the 1970s, several empirical studies
independently revealed important properties of pro-
gram behavior [24]. These studies showed that pro-
grams tend to consist ofphaseswhich clearly dominate
the fraction of total memory references andtransitions
which account for a considerable fraction of the pro-
gram’s page fault. The working set size during every
phaseis computed by means of a normal distribution
with mean=0:5� taskl:vir�mem for local tasks and a
mean=0:8 � taskl:vir�mem for distributed tasks, ac-
cording to the experimental results shown in [3]. The
length of every phase will be calculated by means of an
exponential distribution with mean=0; 1 � (taskl:t).
Thus a new working set will be established after every
phase.� Page fault probability (taskl:pg�fault): every time
that a task is scheduled in the CPU, a new page refer-
ence belonging to the working set of such task is gen-
erated. The density function is uniformly discrete. In

the case that the referenced page was not in its asso-
ciated memory resident set, a new page fault would be
generated. The page fault probability will be computed
according to equation 3.� Page fault latency: although the page fault latency can
vary considerably depending on the cause of a page
fault, in order to simplify it, a constant latency of 20
ms is assumed.� Physical memory size (M): by default, a value of 32K
pages is chosen.

The performance of CSM policy with respect to another
coscheduling technique (RR and PRED) will be validated
by means of three different metrics:� Mean page fault number: it is defined as follows:mean�pg�fault = PkNk:(Pl taskl:nrpg�faultload)n

(8)
where n is the number of nodes of the cluster,taskl:nrpg�fault is the number of page faults and
load is the number of executed tasks into nodek.� Correlation: this parameter shows how good is the co-
ordination between decision taking by CSM algorithm
in different nodes. It is defined as follows:Correlation = 100�Pk(Jobk :(trfast�trslowJobk :t)K 0 �100

(9)
whereK 0 is the number of parallel jobs executed into
the cluster,Jobk:trfast andJobk:trslow are the faster
and slower response time of a task belonging to the
job k, respectively. Note that according to the imple-
mented mapping policy every node has at most one
task belonging to a specific job.� Slowdown: It is defined as follows:Slowdown = Pk Jobk:trPk Jobk:t (10)

whereJobk:tr andJobk:t are the response time and
execution time of the jobk. For instance, let us sup-
pose that 1000 jobs were executed in an experiment.
The mean response time of these 1000 jobs was 50
minutes, and their mean execution time on processors
was 25 minutes. Then, the Slowdown metric would be
2.

To sum up, the main goal of the CSM algorithm is to min-
imize themean_pg_faultandSlowdownmetrics and maxi-
mize theCorrelationmetric.

5.2 Evaluation of the CSM Performance

With the aim of verifying the good behavior of our sim-
ulator, a static workload made up of twolarge parallel jobs
-J1 andJ2- and twolocal tasks -L1 andL2- in every node
of our cluster has been simulated. Traces of the evolution
of the memory resident size (taskl:res�mem) -at the top of
fig. 4- and the progression of accumulative CPU time along
the return time (CPU plus waiting time) -at the bottom of
fig. 4- has been obtained with PRED and CSM algorithms
for every task of one specific node (N1). In this experiment,
the communication frequency of both parallel jobs was ini-
tialized with the same value, attention being focused on the
influence of memory constraints over the performance of
the distributed tasks.

By analyzing the evolution of the CPU time obtained
with PRED algorithm (fig. 4(c)), we see how distributed
applications are considerably favored with respect to the lo-
cal ones, as was expected. It must be taken into account that
predictive algorithm gives more execution priority to tasks
with higher communication frequency. The analysis of its
memory resident size (fig. 4(a)) reflects how distributed
tasks increase its memory resources and CPU accumulative
time as soon as the execution of local tasks is finished.

Figure 4(b) and (d) reflects the behavior of CSM algo-
rithm on nodeN1. At first sight, it can be seen that the
execution priority and the memory resources allocated to
task J1 are much bigger than those in taskJ2. In fact,
when taskJ1 starts its execution, the overall memory re-
quirements of such node are below100%, and therefore all
the initial memory resources requirements forJ1 are satis-
fied. WhenJ2 begins its execution, 10s after thatJ1, the
memory requirements in such node exceed100% of the
main memory andJ2 cannot fit its working set in its res-
ident set. Therefore, as CSM gives more execution priority
to tasks with lower page fault rate,J1 advances execution
faster thanJ2. WhenJ1 execution finishes (after 5400s) -3072s before PRED case -, theJ2 accumulated CPU time
rises sharply and proportionally to its memory resident size.
For this reason,J2 under CSM execution control has also a
response time slightly better than with PRED case.

A dynamic workload has been used in next trials to ver-
ify the good performance of CSM algorithm. With this
aim, three different environments has been simulated with
amem�load parameter equal to0:7, 1:0 and1:5, respec-
tively. Every result shown in this section represents the av-
erage of 10 experiments, each of which runs 1000 jobs. This
way, how CSM works under different memory constraints
is analyzed in detail.

0

5000

10000

15000

20000

25000

30000

2000 4000 6000 8000

R
es

id
en

t M
em

or
y

S
iz

e
(p

ag
es

)

Time (s)

Predictive Algorithm

J1
J2
L1
L2

(a) res-mem for PRED algorithm

0

5000

10000

15000

20000

25000

30000

2000 4000 6000 8000

R
es

id
en

t M
em

or
y

S
iz

e
(p

ag
es

)

Time (s)

CSM Algorithm

J1
J2
L1
L2

(b) res-mem for CSM algorithm

0

500

1000

1500

2000

2500

3000

3500

4000

2000 4000 6000 8000

C
P

U
 T

im
e

(s
)

Time (s)

J1
J2
L1
L2

(c) CPU time for PRED algorithm

0

500

1000

1500

2000

2500

3000

3500

4000

2000 4000 6000 8000

C
P

U
 T

im
e

(s
)

Time (s)

A1
A2
L1
L2

(d) CPU time for CSM algorithm

Figure 4. PRED vs CSM behavior on node N1
Correlation(parallel jobs)

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

0,25 0,5 0,75 1

pdt

C
or

re
la

tio
n

RR
DYN
CSM

Figure 5. Correlation metric: CSM vs DYN and
RR Algorithm

Analysis with low memory requirements

Smalldistributed jobs withpdt probability andlocal tasks
with (1�pdt) probability have been generated in this exper-
imentation. Thus, amem�load parameter equal to0:7 cor-

responds with an averageloadper node equal to2:8. In this
subsection, the behavior of CSM algorithm is compared to
the RR and dynamic (DYN) coscheduling algorithm. Note
that under low memory requirements CSM algorithm works
under the predictive mode explained in section 4.

Fig. 5 shows the level of correlation obtained with the
three coscheduling policies. The three policies reach a high
correlation (over75%). While DYN is independent of the
pdt probability and so of the kind of task (parallel or lo-
cal), RR and CSM algorithms decrease with respect topdt
probability. RR correlation decreases with the rise ofpdt
because more parallel tasks are blocked waiting for a com-
munication event, whereas CSM correlation decreases be-
cause in every node it can gives priority to a task belonging
to different parallel jobs. For instance, while in nodeNk jobJi could get top priority because it has the higher receive-
sending message frequency, in the nodeNk+i, another jobJj could get top priority overJi for the same reason. Note
that this situation is more plausible when more parallel jobs
are executing concurrently in the cluster -pdt near1-. How-
ever, CSM obtains the best correlation for allpdt values.

Fig. 6 (a) shows the obtainedSlowdownmetric for par-

Slowdown(parallel jobs)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0,25 0,5 0,75 1

pdt

S
lo

w
do

w
n

(a) Slowdown for parallel jobs

Slowdown(local tasks)

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

0,25 0,5 0,75

pdt

S
lo

w
do

w
n

RR

DYN

CSM

(b) Slowdown for local tasks

Figure 6. Slowdown metric: CSM vs DYN and RR Algorithm

allel jobs with respect thepdt probability. The good perfor-
mance obtained for the CSM mode demonstrates its effec-
tiveness in making use of the coscheduling potential. This
is due to the fact that the CSM technique takes both the
current received-sending messages and the past messages
into account whereas dynamic only works with the current
received messages. This implies that more coscheduling
chances are given in the CSM model. The high slowdown
introduced by RR mode is a consequence of the low corre-
lation reached by this technique.

Fig. 6 (b) shows the slowdown metric for local tasks.
As it was expected, DYN and CSM techniques introduce a
little more overhead than RR technique. It’s worthwhile to
point that CSM and DYN policies obtain similar results with
this metric. The reason is that the number of delayed tasks
is similar, and thus the introduced overhead is also equal.
The dynamic policy increases executing priority of the dis-
tributed tasks fewer times than the CSM. However, when
a distributed task increases its priority under DYN policy,
it overtakes many more tasks than the CSM does (always
moved on top of the RQ), and the consequence is that both
methods introduce the same overhead.

In [23] a detailed comparison of the predictive technique,
used by CSM algorithm, with another coscheduling tech-
niques by means of simulation can be found, whereas [17]
shows a real implementation of the predictive coscheduling
over Linux o.s. together with a detailed experimental anal-
ysis of its good performance.

Analysis with medium memory requirements

In this experiment amem�load = 1 has been chosen.
This trial reflects the situation where memory requirements
in some node can overload its main memory size due, for
instance, to the activity of the local owner of such node.

Thus, the three metrics (mean_pg_fault, correlation and
slowdown) will be evaluated with respect to the message
frequency for every implemented coscheduling policy: RR,
PRED and CSM. In this trial, the three kinds of tasks (local,
small and large) have been generated with apdt value of0:5. Taking this parameters into account, the simulated en-
vironment corresponds with an averageloadper node equal
to 3:2.

Firstly, the influence of the MNOD constant (Maximum
number of Overtakes for distributed tasks) over the perfor-
mance of distributed tasks has been evaluated. Fig. 7 shows
the slowdown obtained for small parallel jobs (fig. 7(a))
and large ones (fig. 7(b)) under different values of com-
munication frequency and MNOD constant. Note how a
MNOD constant greater than the mean load per node does
not have any sense because a task can not overcome more
tasks than mean required in such node. As it was expected,
the slowdown for large jobs decreases with respect to the
value of the MNOD constant. On the other hand, the per-
formance of small tasks increases with the value of MNOD
due to the fact that tasks with lower page fault rate have
more opportunities for overcoming such distributed tasks
with higher page fault rate. In both graphs, the slowdown
decreases with respect communication frequency because
CSM gives priority to the RQ top of such tasks with any
waiting receive-send message and thus CSM favors inten-
sive communication task execution. Taking this results into
account, aMNOD = 2 has been chosen in this experimen-
tation.

Fig. 8(a) and (b) shows the mean_pg_fault and
correlation metric, respectively. The behavior of the
mean_pg_fault reflects as CSM reaches totally its purpose
of diminishing the number of page faults. The compari-
son of this parameter between RR and PRED algorithms

1
2

3

0,01
0,02

0,04

0,1

0,2

1

0

1

2

3

4

5

S
lo

w
do

w
n

freq

MNOD

Slowdown (small Jobs)

(a) slowdown for small jobs

1
2

3

0,01
0,02

0,04
0,1

0,2

1

0

1

2

3

4

5

S
lo

w
do

w
n

freq

MNOD

Slowdown (large Jobs)

(b) slowdown for large jobs

Figure 7. Variation of the slowdown metric with respect comm unication frequency and MNOD con-
stant (mean_load=1)

mean_pg_fault

0

50

100

150

200

250

300

0,01 0,02 0,04 0,1 0,2 1freq

RR

PRED

CSM

(a) mean-pg-fault

correlation (parallel jobs)

0%

20%

40%

60%

80%

100%

0,01 0,02 0,04 0,1 0,2 1freq

RR
PRED
CSM

(b) correlation

Figure 8. mean_pg_fault and correlation metric (mean_load =1)

reflects that both makes a similar number of pages faults.
The analysis of the correlation metric (fig. 8(b)) shows that
CSM reaches the best result for intensive communication
jobs whereas PRED correlation overcomes CSM correla-
tion for non-intensive communication tasks. This is because
CSM coordination under medium/high memory constraints
is based on the current received messages whereas PRED
takes an average receive-sending messages into account. As
it was expected, RR reaches the worst coordination between
nodes.

Fig. 9(a) and (b) shows the slowdown metric for small
and large distributed jobs, respectively. For small jobs and
as it was reflected in the correlation metric, CSM obtains the
best results for higher communication frequencies whereas
for lower communication frequencies, CSM and PRED ob-

tain similar results. On the other hand, the performance of
large jobs for the three coscheduling techniques is signifi-
cantly worse. Large jobs performance feels more the effects
of page faults and for this reason the slowdown is greater
than for small ones. CSM and PRED techniques show a
similar performance for large jobs. Although CSM, as it is
reflected in fig. 8 (a), has a lower number of page faults than
in other modes and so, it should be reflected in the gain of
this algorithm, the mechanism of priority of this algorithm
damages the performance of large jobs. Thus, CSM should
take into account an agreement between theMOND value
and the priority for lower page faults rate tasks.

Slowdown(small jobs)

0

1

2

3

4

5

6

0,01 0,02 0,04 0,1 0,2 1freq

RR
PRED
CSM

(a) slowdown for small jobs

Slowdown(large jobs)

0

1

2

3

4

5

6

0,01 0,02 0,04 0,1 0,2 1freq

RR
PRED
CSM

(b) slowdown for large jobs

Figure 9. Slowdown for parallel jobs (mean_load=1)

Analysis with high memory requirements

In this experiment, amem�load = 1:5, apdt = 0:5 and aMNOD = 3 constant have been chosen. This trial reflects
the situation, where memory requirements in the majority of
nodes overload its main memory size. This simulated envi-
ronment corresponds with an averageload per node equal
to 4:1.

Fig. 10 (a) and (b) shows themean_pg_faultandcorrela-
tion metric, respectively. Themean_pg_faultmetric evolu-
tion reaffirms the good behavior of CSM algorithm pointed
in the previous trial (mem_load=1) together with the poor
results obtained by PRED and RR algorithms. The analysis
of the correlation metric reveals how the negative impact
of the page faults is increased for intensive communication
tasks. As a consequence of the low page fault rate reached
by CSM together with the coordination mechanisms imple-
mented in such algorithm (see section 4.2), it obtains the
best coordination between remote nodes for high memory
requirements.

Figure 11 shows the slowdown metric for small jobs (a)
and large parallel jobs (b), respectively. CSM reaches the
best performance for small jobs as a consequence of its
good obtained mean_pg_faultandcorrelation metric. This
good trend is also reflected for large parallel jobs. Although
CSM, as it was explained in section 4.2, favors the execu-
tion of the smallest jobs against the large ones, the interac-
tion between low page faults rates and theMNOD constant
implemented in CSM for avoiding the starvation of such
kind of tasks, lead to the good behavior of CSM with re-
spect to RR and PRED techniques.

Slowdown of local tasks under memory constraints

The local tasks slowdown obtained in both simulated en-
vironments above analyzed (mem�load = 1 and1:5) is
shown in fig. 12 (a) and fig. 12 (b), respectively. In gen-
eral, RR mode obtains the best results, although CSM and
PRED results are very close to the RR ones. This is be-
cause of the influence of the implemented mechanism to
avoid the starvation of local tasks. The delay introduced in
themean�load = 1 case is not very high -in all the cases
is lower than 4.25- and so the response time (the most im-
portant parameter for measuring interactivity) of the local
tasks will be acceptable. Note that this difference will de-
pend on the value assigned to theMNOL constant and the
characteristics of the distributed tasks, as for example the
communication frequency and memory requirements. It is
worthwhile to point out that both coscheduling techniques
(PRED and CSM) introduce the same overhead for local
tasks, as both use the same mechanism to avoid local task
starvation. As it was expected, when themean�load is in-
creased (see fig. 12 (b)) the slowdown obtained is worse.
One aspect that is not reflected in this figure because our
simulator does not take it into account, is the influence of
the context switches over the local task performance. In this
case, we think that the local tasks performance with CSM
algorithm would slightly improve with respect to the other
modes because the reduction of page faults obtained with
this technique would provoke lower context switches and,
as a consequence, an improvement of the performance.

6 Conclusions and Future Work

Demand-paged virtual memory attempts to optimize
both CPU and physical memory use. The tradeoffs, which
are well known for uniprocessors, are not nearly so clear for

mean_pg_fault

0

5000

10000

15000

20000

25000

30000

0,01 0,02 0,04 0,1 0,2 1freq

RR
PRED
CSM

(a) mean-pg-fault

correlation (parallel jobs)

0%

20%

40%

60%

80%

100%

0,01 0,02 0,04 0,1 0,2 1freq

RR
PRED
CSM

(b) correlation

Figure 10. mean_pg_fault and correlation metric (mean_loa d=1.5)

Slowdown(small jobs)

0

1

2

3

4

5

6

7

8

0,01 0,02 0,04 0,1 0,2 1freq

RR
PRED
CSM

(a) slowdown for small jobs

Slowdown(large jobs)

0

1

2

3

4

5

6

7

8

0,01 0,02 0,04 0,1 0,2 1freq

RR
PRED
CSM

(b) slowdown for large jobs

Figure 11. Slowdown for parallel jobs (mean_load=1.5)

NOW environments.

In this paper, a new coscheduling algorithm, abbreviated
as CSM, for reducing the number of page faults across a
non-dedicated cluster has been presented. CSM policy in-
creases the execution priority of parallel tasks with lower
page fault rates and simultaneously, it avoids local-task star-
vation. The performance of this proposal has been tested
and compared with another coscheduling policies by means
of simulation. The results obtained have demonstrated its
good behavior, reducing theSlowdownof distributed tasks
and maintaining the response time of local tasks with re-
spect to another coscheduling policy.

According to the good performance of the CSM al-
gorithm, future work will be directed towards investigat-
ing new coscheduling algorithms under memory constraints
and implementing these in real PVM and/or MPI environ-

ments over time-sharing operating systems (such as the
LINUX o.s.).

A new improvement to be introduced into our coschedul-
ing system, would be to adjust the length of the quantum to
the real necessity of the distributed tasks. This means that
for parallel tasks with high CPU time requests, relatively
coarse grain time sharing is probably necessary to provide
good service to these jobs while not penalizing smaller jobs.
So, our purpose would be to increase the length of quantum
progressively by an amount proportional to context switch-
ing overhead. This way, our algorithm would amortize the
context switch overhead associated to processes with large
CPU requirements.

Slowdown(local jobs)

0

1

2

3

4

5

6

0,01 0,02 0,04 0,1 0,2 1freq

RR
PRED
CSM

(a) slowdown for local tasks(mean-load=1)

Slowdown(local jobs)

0

1

2

3

4

5

6

0,01 0,02 0,04 0,1 0,2 1freq

RR
PRED
CSM

(b) slowdown for local tasks(mean-load=1.5)

Figure 12. Slowdown for local tasks

References

[1] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C.
Sevcik and P. Wong. “Theory and Practice in Parallel
Job Scheduling”.In Job Scheduling Strategies for Par-
allel Processing, D.G. Feitelson and L. Rudolph (eds),
Lecture Notes in Computer Science, Vol. 1291, 1997.

[2] S. Setia, M.S. Squillante and V.K. Naik. “The Impact
of Job Memory Requeriments on Gang-Scheduling
Performance”.In Performance Evaluation Review,
March 1999.

[3] D. Burger, R. Hyder, B. Miller and D. Wood. “Paging
Tradeoffs in Distributed Shared-Memory Multipro-
cessors”.Journal of Supercomputing,vol. 10, pp.87-
104, 1996.

[4] M. Bach. “The Design of the UNIX Operating Sys-
tem”. Prentice-Hall International Editions, 1986.

[5] T. Anderson, D. Culler, D. Patterson and the Now
team.” A case for NOW (Networks of Workstations)”.
IEEE Micro, 1995.

[6] M. Litzkow, M. Livny and M. Mutka.” Condor - A
Hunter of Idle Workstations”. 8th Int’lConference of
Distributed Computing Systems, 1988.

[7] S. Russ, J. Robinson, B. Flachs and B. Heckel. “The
Hector Distributed Run-Time Environment”.IEEE
trans. on Parallel and Distributed Systems, Vol.9 (11).
1988.

[8] A.C. Dusseau, R.H. Arpaci and D.E. Culler. “Effective
Distributed Scheduling of Parallel Workloads”.ACM
SIGMETRICS’96, 1996.

[9] M. Crovella et al. “Multiprogramming on Multipro-
cessors”.3rd IEEE Symposium on Parallel and Dis-
tributed Processing, 1994.

[10] R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu,
T.E. Anderson and D.A. Patterson. “The Interaction
of Parallel and Sequential Workloads on a Network of
Workstations”.ACM SIGMETRICS’95, 1995.

[11] D.G. Feitelson. “Memory Usage in the LANL CM-5
Workload”. In Job Scheduling Strategies for Parallel
Processing, Lecture Notes in Computer Science, vol.
1291, pp. 78-84, 1997.

[12] J.K. Ousterhout. “Scheduling Techniques for Concur-
rent Systems.” In3rd. Intl. Conf. Distributed Comput-
ing Systems, pp.22-30, 1982.

[13] F. Petrini and W. Feng. “Buffered Coscheduling: A
New Methodology for Multitasking Parallel Jobs on
Distributed Systems”.International Parallel & Dis-
tributed Processing Symposium, Cancun, 2000.

[14] P.G. Sobalvarro and W.E. Weihl. “Demand-based
Coscheduling of Parallel Jobs on Multiprogrammed
Multiprocessors”.IPPS’95 Workshop on Job Schedul-
ing Strategies for Parallel Processing, 1995.

[15] P.G. Sobalvarro, S. Pakin, W.E. Weihl and A.A. Chien.
“Dynamic Coscheduling on Workstation Clusters”.
IPPS’98 Workshop on Job Scheduling Strategies for
Parallel Processing,1998.

[16] F. Solsona, F. Giné, P. Hernández and E. Luque. “Im-
plementing Explicit and Implicit Coscheduling in a
PVM Environment”.6th International Euro-Par Con-
ference (Europar’2000), Lecture Notes in Computer
Science, vol. 1900, 2000.

[17] F. Solsona, F. Giné, P. Hernández and E. Luque.
“Predictive Coscheduling Implementation in a non-
dedicated Linux Cluster”.To appear in 7th Interna-
tional Euro-Par Conference (Europar’2001),August
2001.

[18] S. Setia. “The Interaction between Memory Allocation
and Adaptive Partitioning in Message Passing Multi-
computers”. InIPPS Job Scheduling Workshop, Apr.
1995.

[19] E. Parsons and K. Sevcik. “Coordinated Allocation
of Memory and Processors in Multiprocessors”. In
Proc. ACM Sigmetrics/Performance’96, pp. 57-67,
May 1996.

[20] W. Leinberger, G. Karypis and V. Kumar. “Gang
Scheduling for Distributed Memory Systems”.6th
International Euro-Par Conference (Europar’2000),
Lecture Notes in Computer Science, vol. 1900, 2000.

[21] A. Batat and D. G. Feitelson. “Gang Scheduling
with Memory Considerations”.Intl. Parallel and Dis-
tributed Processing Symposium, pp. 109-114, May
2000.

[22] A.C. Arpaci-Dusseau, D.E. Culler and A.M. Main-
waring.”Scheduling with Implicit Information in Dis-
tributed Systems”.ACM SIGMETRICS’98, 1998.

[23] F. Solsona, F. Giné, P. Hernández and E. Luque.
“CMC: A Coscheduling Model for non-Dedicated
Cluster Computing”. To appear inIPDPS’2001, April
2001.

[24] P.J. Denning. “Working Sets Past and Present”.IEEE
Transactions on Software Engineering, vol. SE-6, No
1, January 1980.

[25] M. Beck et al. “LINUX Kernel Internals”.Addison-
Wesley, 1996.

[26] L. Kleinrock. “Queuing Systems”.John Wiley and
Sons, 1976.

[27] D. Feitelson and B. Nitzberg. “Job Characteristics of a
Production Parallel Scientific Workload on the NASA
Ames IPSC/860”. InProceedings of the IPPS’95
Workshop on Job Scheduling Strategies for Parallel
Processing, pp. 215-227, April 1997.

[28] K.Y. Wang and D.C. Marinescu. “Correlation of the
Paging Activity of Individual Node Programs in the
SPMD Execution Model”. In28th Hawaii Intl. Conf.
System Sciences, vol. I, pp. 61-71, Jan 1995.

[29] V.G.J. Peris, M.S. Squillante and V.K. Naik. “Analysis
of the Impact of Memory in Distributed Parallel Pro-
cessing Systems”. InProceedings of ACM SIGMET-
RICS Conference, pp. 158-170, May 1993.

[30] Parkbench Committee. Parkbench 2.0.
http://www.netlib.org/parkbench, 1996.

