
Time-Sharing Parallel Jobs in the Presene ofMultiple Resoure RequirementsFabrizio Petrini and Wu-hun FengComputing, Information, & Communiations DivisionLos Alamos National Laboratory, NM 87544, USA,fabrizio�lanl.gov, feng�lanl.govAbstrat. Bu�ered osheduling is a new methodology that an sub-stantially inrease resoure utilization, improve response time, and sim-plify the development of the run-time support in a parallel mahine. Inthis paper, we provide an in-depth analysis of three important aspetsof the proposed methodology: the impat of the ommuniation patternand type of synhronization, the impat of memory onstraints, and theproessor utilization.The experimental results show that if jobs use non-bloking or olletive-ommuniation patterns, the response time beomes largely insensitiveto the job ommuniation pattern. Using a simple job aess poliy, wealso demonstrate the robustness of bu�ered osheduling in the preseneof memory onstraints. Overall, bu�ered osheduling generally outper-forms bak�lling and bak�lling gang sheduling with respet to responsetime, wait time, run-time slowdown, and proessor utilization.Keywords: Parallel Job Sheduling, Distributed Operating Systems, Com-muniation Protools, Performane Evaluation.1 IntrodutionThe sheduling of parallel jobs has long been an ative area of researh [8, 9℄. Itis a hallenging problem beause the performane and appliability of parallelsheduling algorithms is highly dependent upon fators at di�erent levels: theworkload, the parallel programming language, the operating system (OS), andthe mahine arhiteture. The importane of job sheduling strategies stemsfrom the impat that they an have on the resoure utilization and the responsetime of the system.Time-sharing sheduling algorithms are partiularly attrative beause theyan provide good response time without migration or preditions on the exeu-tion time of the parallel jobs. However, time-sharing has the drawbak that om-muniating proesses must be sheduled simultaneously to ahieve good perfor-mane. With respet to performane, this is a ritial problem beause the soft-ware ommuniation overhead and the sheduling overhead to wake up a sleepingproess dominate the ommuniation time on most parallel mahines [14℄.



Over the years, researhers have developed parallel sheduling algorithmsthat an be loosely organized into three main lasses, aording to the degreeof oordination between proessors: gang sheduling (GS), loal sheduling (LS)and impliit or dynami osheduling (DCS).On the one end of the spetrum, GS [7℄ ensures that the sheduling of om-muniating jobs is oordinated by onstruting a stati global list of the order inwhih jobs should be sheduled. A simultaneous ontext-swith is then requiredaross all proessors. Unfortunately, these straightforward implementations areneither salable nor reliable. Furthermore, GS requires that the shedule of om-muniating proesses be preomputed, whih ompliates the osheduling oflient-server appliations and requires pessimisti assumptions about whih pro-esses ommuniate with one another. Finally, expliit osheduling of paralleljobs interats poorly with interative jobs and jobs performing I/O [17℄.At the other end of the spetrum is LS, where eah proessor independentlyshedules its proesses. This is an attrative time-sharing option due to its easeof onstrution. However, the performane of �ne-grained ommuniation jobsan be orders of magnitude worse than with GS beause the sheduling is notoordinated aross proessors [11℄.An intermediate approah developed at UC Berkeley and MIT is DCS [1℄[19℄ [4℄ [25℄. With DCS, eah loal sheduler makes independent deisions thatdynamially oordinate the sheduling ations of ooperating proesses arossproessors. These ations are based on loal events that our naturally withinommuniating appliations. For example, on message arrival, a proessor spe-ulatively assumes that the sender is ative and will probably send more messagesin the near future. The main drawbaks of dynami osheduling inlude the highoverhead of generating interrupts upon message arrival and the limited vision ofthe status of the system that is based on speulative information. Some aspetsof these limitations are addressed in [18℄ with a tehnique alled Periodi Boost.Rather than sending an interrupt for eah inoming message, the kernel period-ially examines the status of the network interfae, thus reduing the overheadfor ommuniation-intensive workloads.We reently proposed a new approah to job multitasking, alled bu�eredosheduling (BCS) [6℄. BCS shows promise in integrating the positive aspetsof GS, e.g., global oordination of jobs, along with positive aspets of DCS, e.g.,inreased resoure utilization obtained by overlapping omputation and om-muniation of di�erent jobs. The bene�ts of BCS inlude higher throughput,dramati simpli�ation of run-time support, redued ommuniation overhead,eÆient global implementation of ow-ontrol strategies and fault-tolerant pro-tools, and aurate performane modeling. Here, we fous on the performaneof BCS in the presene of memory onstraints.Like DCS, BCS must address a ouple of important problems. A �rst prob-lem is the impat of the memory hierarhy: All the bene�ts obtained with jobmultitasking an be wiped out if the memory requirements of multiple jobs ex-eed the physial memory available and overow in the swap spae. Seondarymemory an be orders of magnitude slower. A seond problem is the impat of



the type of the job ommuniation and synhronization on the overall through-put. This problem leads to another losely related problem: the hoie of thetime-slie length. While a long time-slie an hide the overhead and inrease thesalability of BCS, it an also inrease the proessor idle time due to blokingommuniation.In this paper, we analyze the above problems with a detailed simulationmodel driven by a real workload drawn from an atual superomputing envi-ronment at Lawrene Livermore National Labs. By onsidering a simple job-sheduling algorithm that limits the aess into the system of those jobs thatexeed the memory requirements, we evaluate the system response time andutilization under various types of workloads and system parameters.The rest of the paper is organized as follows. Setion 2 briey reviews BCS.Setion 3 desribes the job aess poliy that takes into onsideration the mem-ory requirements, Setion 4 the experimental framework and Setion 5 the re-sults of the simulations. Some onsiderations on the potential advantages onthe development of system-level and user-level software are listed in Setion 6,the relations between BCS and the Bulk-Synhronous Parallel model of parallelomputation are desribed in Setion 7, followed by a onlusion in Setion 8.2 Bu�ered CoshedulingTo implement job multitasking, BCS relies on two tehniques. First, the ommu-niation generated by eah proessor is bu�ered and performed at the end of regu-lar intervals (or time-slies) in order to amortize the ommuniation and shedul-ing overhead. By delaying ommuniation, we allow for the global sheduling ofthe ommuniation pattern. Seond, a strobing mehanism performs a total ex-hange of ontrol information at the end of eah time-slie in order to move fromisolated sheduling algorithms [1℄ (where proessors make deisions based solelyon their loal status and a limited view of the remote status) to more outward-looking or global sheduling algorithms. An important harateristi of BCS isthat, instead of overlapping omputation with ommuniation and I/O within asingle parallel program, all the ommuniation and I/O whih arises from a setof parallel programs an be overlapped with the omputations in those programs.This approah represents a signi�ant improvement over existing work re-ported in the literature. It allows for the implementation of a global shedulingpoliy, as done in GS, while maintaining the overlapping of omputation andommuniation provided by DCS.2.1 Communiation Bu�eringRather than inurring ommuniation and sheduling overhead on a per-messagebasis, BCS aumulates the messages generated by eah proess and tries toamortize the overhead over a set of messages. Spei�ally, the ost of the systemalls neessary to aess the kernel data strutures for ommuniation is amor-tized over a set of system alls rather than being inurred on eah individual



system all. This implies that BCS an be tolerant to the potentially high laten-ies that an be introdued in a kernel all or in the initialization of the networkinterfae ard (NIC) that an reside on a slow I/O bus.2.2 Strobing HeartbeatsVirtually all the existing researh in parallel job sheduling use isolated algo-rithms, whih speulatively make sheduling deisions based on a limited knowl-edge of the status of the mahine, rather than algorithms whih use non-isolated(or even global) knowledge. In order to provide the above apability, we pro-pose a strobing mehanism to support the sheduling of a set of parallel jobswhih share a parallel mahine. Let us assume that eah parallel job runs onthe entire set of p proessors, i.e., jobs are time-sharing the whole mahine. Ourgoal is to synhronize the proessors of the parallel mahine at the end of atime-slie in order to perform a total exhange of information regarding theirstatus. To amortize the overhead, all the ommuniation operations are bu�eredand exeuted at the end of the time-slie. The strobing mehanism performsan optimized total-exhange of ontrol information (whih we all heartbeat orstrobe) and triggers the downloading of any bu�ered pakets into the network.At the start of the heartbeat, eah proessor downloads a personalized broadastinto network. After downloading the heartbeat, the proessor ontinues runningthe urrently ative job. (This ensures omputation is overlapped with om-muniation.) When p heartbeats arrive at a proessor, the proessor will entera phase where its kernel will download any bu�ered pakets. Eah heartbeatontains information on whih proesses have pakets ready for download andwhih proesses are asleep waiting to upload a paket from a partiular proes-sor. This information is haraterized on a per-proess basis, so that on reeptionof the heartbeat, every proessor will know whih proesses have data headingfor them, and whih proesses on that proessor they are from.Figure 1 shows how omputation and ommuniation an be sheduled overa generi proessor. At the beginning of the heartbeat, t0, the kernel downloadsontrol pakets into the network for a total exhange. During the exeution ofthe heartbeat, another user proess gains ontrol of the proessor; and at the endof the heartbeat, the kernel shedules the pending ommuniation, aumulatedin the previous time-slies (before t0), to be delivered in the urrent time-slie[t0; t2℄. From the ontrol information exhanged between t0 and t1, the proessorwill know (at t1) the number of inoming pakets that it is going to reeive inthe ommuniation time-slie as well as the soures of the pakets and will startthe downloading of outgoing pakets. It is worth noting that the potentially highoverhead of the strobing algorithm is simply removed from the ritial path byrunning another proess. Thus, we an tolerate the lateny of a global exhangeof information without experiening performane degradation.



t 0

δ

������
������
������

������
������
������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������

�����
�����
�����

�����
�����
�����

STROBE

K

t t t1 2 3

STROBE

TIME

Computation

Communication

K

K = kernelFig. 1. Sheduling Computation and Communiation. Communiation aumulated inthe time-slie up to t0 is downloaded into the network between t1 and t2 (after theheart beat). Æ � length of a time-slie = t2 � t0.3 Job Aess ControlSheduling parallel jobs by sharing proessors not only spatially but also tem-porally provides an extra degree of exibility and a onsiderable performaneadvantage. Unfortunately, this advantage an be limited by multiple resourerequirements, e.g., memory hierarhy requirements. If the jobs mapped on aproessing node exeed the physial memory available and use the virtual mem-ory, the advantages of job multitasking an be nulli�ed.In order to avoid suh problem we onsider a very simple job aess on-trol poliy, whih allows jobs into the system only if their memory requirementsdo not exeed the physial memory available. For instane, Figure 2 shows theOusterhout matrix of an 8-proessor system with a multiprogramming level ofthree and 512 MB of physial memory per proessor Pi. Job J5 requires 2 pro-essors and 256 MB of memory per proessor. Thus, it an only be mapped ontotwo of the four two-proessor slots available due to memory onstraints.
P0

time-slice 0

time-slice 1

P P P P P P1 2 3 4 5 P6 7

time-slice 2

J 0 64MB

J 5 256MB

J 64MB

J

J

J

1

2

3 4

128MB

256MB128MBFig. 2. Ousterhout Matrix of an 8-Proessor System with 512-MB Memory/Proessorand Multiprogramming Level of 3.



In our experiments, we ombine the above aess ontrol poliy with anaggressive bak�ll heuristi [24℄, whih selets any job from the ready queuethat does not interfere with the expeted start time of the �rst bloked job. Asshown in [27℄, this tehnique, when used with GS, an provide improvementsover a wide spetrum of performane riteria. However, this greedy method doesnot look at the additional resoure requirements of the jobs in the ready queueor the urrent state of the system resoure loads, thus leaving room for futureimprovements.GS an re-use some of the unused slots in the Ousterhout matrix if a jobassigned to a given time-slie an atomially �t into one or more empty slots inanother time-slie. This is the ase of jobs J1 and J3 in Figure 2, whih an berun on the two slots available in time-slie 1, as shown in Figure 3.
P0

time-slice 0

time-slice 1

P P P P P P1 2 3 4 5 P6 7

time-slice 2

J 0 64MB

J 64MB1

J 3 128MB

J

J 2

4

128MB

256MBFig. 3. Empty slot utilization with GSWhile GS annot �ll in the two unused slots in the time-slies 0 and 2 withjob J2, BCS an potentially use their proessing time, beause the grain size ofthe resoure alloation is the proess and not the entire job. The ommuniationpattern of the jobs, the loal proess sheduling algorithms, and many otherfators an inuene how the resoures made available by the empty slots anbe used by di�erent jobs.4 Experimental FrameworkBefore presenting the experimental results, we provide details on our simulationplatform, the workloads used to drive the simulator, and the metris of interest.4.1 Simulation ModelIn order to eÆiently simulate and analyze di�erent job sheduling strategiesfor parallel omputers in depth, we developed a novel simulator alled the JobSheduling Simulator (JSS). With JSS, the user an explore the Cartesian prod-ut generated by di�erent dimensions of the design spae. A �rst dimension ismahine sheduling: JSS provides spae sharing and two basi forms of timesharing | gang sheduling (GS) and bu�ered osheduling (BCS). A seond di-mension is the seletion algorithm of the ready-jobs queue. Jobs an be seleted



in FCFS (First Come First Served) order or bak�lled using a onservative oran aggressive poliy. Conservative bak�lling searhes the ready queue for jobsthat an be sheduled immediately, with the onstraints that these jobs annotinterfere with the expeted start time of the jobs whih ome before them inthe ready queue. Aggressive bak�lling is a weaker version of onservative bak-�lling, whih selets any job from the queue whih does not interfere with theexpeted start time of the �rst job in the ready queue. Both onservative andaggressive bak�lling an dramatially improve the overall mahine utilizationand response time over FCFS but require a reasonably good estimate of the jobrun-time.Both GS and BCS an have a parametri multiprogramming level (MPL) andtimes-slie length and an use the job aess ontrol poliy desribed in Setion3. With GS, the user an also set the delay assoiated with job ontext-swithat the end of eah time-slie.In our BCS implementation, the user an de�ne the system parameters as theproess ontext-swith penalty, ommuniation bandwidth between proessors,and the algorithms to globally shedule the ommuniation pattern. In order toexplore how the various aspets of omputation and ommuniation inuenethe overall performane of BCS, JSS provides an API, omposed of a limitedbut representative subset of MPI, that inludes bloking and non-bloking om-muniation primitives and synhronization primitives. The urrent implementa-tion of JSS abstrats the main harateristis of eah job using four parametershg; v; omm; syni, where g represents the omputational grain size, v the loadimbalane, omm the ommuniation pattern, and syn the type of synhro-nization. A parallel job onsists of a group of P proesses, and eah proess ismapped on a proessor throughout the exeution. Proesses alternate phases ofpurely loal omputation with interproess ommuniation, as shown in Figure4. Eah proess ompute loally for a time uniformly seleted in the interval(g � v2 ; g + v2 ). By adjusting g, we model parallel programs with di�erent om-putational granularities. By varying v, we hange the degree of load-imbalaneaross proessors. The ommuniation phase onsists of an optional sequene ofommuniation events. The parameter omm de�nes one of the three ommu-niation patterns: Barrier, News and Transpose. Barrier does not perform anyommuniation and an be used to analyze how bu�ered osheduling respondsto load imbalane. The other two patterns onsist of a sequene of point-to-point ommuniations. The ommuniation pattern generated by News is basedon a stenil with a grid where eah proess exhanges information with its fourneighbors. This pattern represents those appliations that perform a domain de-omposition of the data set and limit their ommuniation pattern to a �xed setof partners. Transpose is a ommuniation-intensive workload that emulates theommuniation pattern generated by the FFT transpose algorithm [12℄, whereeah proess aesses data of all other proesses. Finally, syn desribes the typeof synhronization in a job: we an have either bloking ommuniation (B),where eah point-to-point ommuniation is implemented with bloking sendsand reeives or non-bloking ommuniation (NB), where the ommuniation



primitives do not require an expliit handshake between sender and reeiver andare terminated by a global barrier synhronization.
local 

computation

communication  (optional)

begin barrier (optional)

end barrier (optional)

computation
granularity (g)

load
variation (v)

time processes

Fig. 4. Overlap of Computation and Communiation
Parameter ValueProessors 32Main memory per proessor 512 MBJob ontext-swith (GS) 1 msProess ontext-swith (BCS) 100 �sMessage size (BCS) 4KBCommuniation Bandwidth (BCS) 100 MB/sTable 1. Experimental System Parameters and Values.Table 1 desribes some of the system parameters used during the experi-mental evaluation. We onsider an arhiteture with 32 proessors where eahproessor is equipped with 512 MB of main memory.4.2 WorkloadsA ruial aspet in the performane evaluation of job sheduling strategies isthe availability of realisti workloads that an be represented with a ompatmathematial formulation. Parallel workloads are often dispersive: job inter-arrival time distribution and job exeution time distribution have a oeÆientof variation that is greater than one, i.e., they are long tailed. These distributionsan be �tted adequately with Hyper Erlang Distributions of Common Order [13℄.Our experiments use a workload diretly extrated from a real superomputing



environment, ASCI Blue-Pai� at Lawrene Livermore National Laboratory.Our modeling proedure involves the following steps.1. The jobs are �rst grouped into lasses, based on the number of proessorsthey require. Eah lass is a bin in whih the upper boundary is a power oftwo.2. The original workload ontains jobs varying in size from one to 256 proes-sors. However, due to the large amount of details involved in the simulationof bu�ered osheduling, we have limited ourselves to 32 proessors, selet-ing jobs that fall within this limit. The resulting workload is a subset of theoriginal workload and ontains all the jobs that request up to 32 proessors.It is worth noting that suh a workload is extremely demanding, when runon a mahine with only 32 proessors.3. We then model the inter-arrival time and the exeution time distributionsfor eah lass through Hyper Erlang Distributions of Common Order.4. Next we generate various syntheti workloads from the observed workloadby multiplying the average job exeution time by a load fator from 0:1 to1:6 in steps of 0:1. For a �xed inter-arrival time, inreasing job exeutiontime typially inreases resoure utilization, until the system saturates. Theload fator 1:0 identi�es the observed workload.5. Eah job requires an amount of main memory whih is exponentially dis-tributed around a given mean value, whih represents the maximum memoryrequirements over all proesses belonging to a job.When simulating bu�ered osheduling, we need an extra degree of detailto haraterize how omputation, ommuniation and synhronization are per-formed inside eah job. Thus, the modeling proedure requires some extra steps.1. Based on the workload haraterization, we pik a job template for eah jobin a workload.2. Based on the job template, we determine the omputation and ommunia-tion patterns of the job.Table 2 outlines the �ve workload haraterizations used in the experiments:eah one is omposed of three job templates, desribed using the notation de�nedin Setion 5. Jobs in a workload an be assigned one of the three templateswith equal probability. These haraterizations display di�erent ommuniationand synhronization patterns. In the �rst one (workload 0) all the jobs performan intensive ommuniation pattern (Transpose) using bloking ommuniation.The seond workload uses the same ommuniation pattern together with non-bloking ommuniation. The same harateristis distinguish workloads 2 and3. They use the same ommuniation pattern, News, but a di�erent type ofsynhronization. In the �fth workload, jobs do not perform any ommuniation:the goal of this workload is to identify the impat of load imbalane.4.3 MetrisThe experimental evaluation onsiders metris that are important from both thesystem's and user's perspetives.



Workload Job Template 0 Job Template 1 Job Template 20 h50; 25; T ra;Bi h100; 50; T ra;Bi h200; 100; T ra;Bi1 h50; 25; T ra;NBi h100; 50; T ra;NBi h200; 100; T ra;NBi2 h50; 25; News;Bi h100; 50; News;Bi h100; 100; News;Bi3 h50; 25; News;NBi h100; 50; News;NBi h200; 100; News;NBi4 h50; 25; Barrier;NBi h100; 50; Barrier;NBi h200; 100; Barrier;NBiTable 2. Five Workloads: Eah with an equal mix of three job lasses. The job gran-ularity and skew are expressed in ms.{ Wait Time: The time spent by a job waiting in the ready queue before it issheduled.{ Exeution Time: The atual job run time.{ Response Time: The sum between wait and exeution time.{ System Utilization: The system utilization identi�es the mahine utilizationat the job alloation level. Intuitively, the system utilization is the frationof the sheduling matrix that is �lled with jobs.{ Proessor Utilization: The proessor utilization is the fration of time CPUspent is useful omputation. It is worth noting that, in the general ase, theproessor utilization is always smaller than the system utilization, beausethe proessors an be idle during the job exeution.{ Exeution Time Slowdown: The exeution time slowdown is the ratio be-tween the exeution time and the job run time in a dediated environment.The exeution time slowdown is 1:0 with spae sharing and a number largerthan 1:0 in a time shared environment.5 Experimental ResultsThe experimental results try to provide insight into three important aspetsof bu�ered osheduling: (1) the impat of the ommuniation pattern and thetime-slie length on the response time, (2) the impat of memory onstraintswith the job aess ontrol poliy outlined in setion 3 and the (3) the proessorutilization. In all three ases we ompare bu�ered osheduling with aggressivebak�lling (BF), a sheduling poliy that an obtain exellent performane re-sults with spae sharing [24℄, and with bak�lling gang sheduling (BGS), theextension of this tehnique to gang sheduling, reently proposed in [27℄.5.1 Impat of Communiation, Synhronization and Time-slieLengthThe hoie of the time-slie for BCS is the result of a ompromise between om-peting fators. On the one hand, a large time-slie ould easily hide the overheadassoiated with the strobing algorithm and the proess ontext-swithes, thus al-lowing the salability of BCS to arhitetures with a large number of proessors.



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e 
tim

e 
(s

ec
)

Load Factor

Response time vs load, timeslice 10 ms

workload 0
workload 1
workload 2
workload 3
workload 4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e 
tim

e 
(s

ec
)

Load Factor

Response time vs load, timeslice 5 ms

workload 0
workload 1
workload 2
workload 3
workload 4

b)a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e 
tim

e 
(s

ec
)

Load Factor

Response time vs load, timeslice 50 ms

workload 0
workload 1
workload 2
workload 3
workload 4

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e 
tim

e 
(s

ec
)

Load Factor

Response time vs load, timeslice 100 ms

workload 0
workload 1
workload 2
workload 3
workload 4

c) d)Fig. 5. Response time for various time-slies, ommuniation and synhronization pat-terns. In all graphs the MPL is 3.
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e 
tim

e 
(s

ec
)

Load factor

Response time vs load, Multiprogramming level 3

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e 
tim

e 
(s

ec
)

Load factor

Response time vs load, Multiprogramming level 2

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

b)a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e 
tim

e 
(s

ec
)

Load factor

Response time vs load, Multiprogramming level 4

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
es

po
ns

e 
tim

e 
(s

ec
)

Load factor

Response time vs load, Multiprogramming level 8

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

c) d)Fig. 6. Response time versus load for various MPLs. The graphs ompare BCS withBF and BGS.



On the other hand, it inreases the likelihood of having idle proessors, due tobloking ommuniation and global synhronization, thus limiting the potentialinrease in resoure utilization.Figure 5 shows how the response time is inuened by inreasing the time-slie from 5 ms to 100 ms. All the experiments use a MPL equal to three. Fromthe graphs, we an learly see that workloads with a large amount of blokingommuniation (templates 0 and 2) an be eÆiently supported only with smalltime-slies. This is partiularly true for workload 0 whih is extremely sensitiveto the inrease in the time-slie beause it is ommuniation intensive.Looking at the graphs generated by templates 1 and 3 we an see that theyalmost overlap with all time-slies. These workloads share the same form of syn-hronization, obtained with a global barrier, though they have fairly di�erentommuniation patterns. We explored this aspet in depth using many otherommuniation patterns, workloads templates, number of proessors, and arhi-tetural harateristis (not shown here for brevity), and we have found out thatthis is a strong property of BCS. With BCS, the overall performane is relativelyinsensitive to the ommuniation pattern when the ommuniation is performedwith non-bloking alls or, more generally, with a olletive ommuniation pat-tern. The rationale behind this property is related to the fat that the run-timesupport annot eÆiently shedule bloking ommuniation, while it an rear-range non-bloking primitives. This leads to a nearly optimal overlap betweenomputation and ommuniation when we use relative large MPLs. Also, thereis an extra advantage in using olletive ommuniation patterns (e.g., broad-asts, satter & gather, multiasts) beause the information provided by theommuniation pattern an be diretly passed to the run-time support, whihan thus perform e�etive global optimizations. This is not true in the generalase; in fat, many parallel appliations possess a well de�ned ommuniationstruture that is lost in the ompilation proess (e.g., beause it is mapped inan unstrutured ommuniation graph of bloking alls).5.2 Impat of Memory ConstraintsThis setion analyzes the mahine response time, the wait time, and exeutiontime slowdown in onjuntion with the memory-aware job sheduling poliy de-sribed in Setion 3. In all experiments we use the workload template number 3and we onsider workloads with inreasing average memory requirements, rang-ing from 0 MB (i.e., no memory onstraints), to 256 MB, half the size of physialmemory available on eah proessor.From Figure 6 we an draw the following onsiderations:{ BCS outperforms GS in all on�gurations. This is more pronouned at higherloads, beause BCS an overlap omputation with ommuniation and anre-use omputing resoures at the proess-level granularity rather than atthe job level, as shown in Setion 3.{ There is no penalty in using an arbitrarily large MPL with BCS. For a givenaverage memory requirement, the system onverges to a given state and does



not experiene any degradation when we further inrease the MPL. Thatstate is mainly determined by the ratio between the job average memoryrequirements and the atual physial memory available.{ When the memory requirements are high (e.g. 256 MB), BCS onverges tobak�lled spae-sharing (BF). Intuitively, when the memory onstraints donot allow job multitasking, the system onverges to spae sharing. This isnot true for GS as it experienes sharp degradation in response-time perfor-mane, as shown if Figure 6 d) with 128 and 256 MB.
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ai

t t
im

e 
(s

ec
)

Load factor

Wait time vs load, Multiprogramming level 3

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ai

t t
im

e 
(s

ec
)

Load factor

Wait time vs load, Multiprogramming level 2

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

b)a)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ai

t t
im

e 
(s

ec
)

Load factor

Wait time vs load, Multiprogramming level 4

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
ai

t t
im

e 
(s

ec
)

Load factor

Wait time vs load, Multiprogramming level 8

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

c) d)Fig. 7. Wait Time versus Load for Various MPLs.Figure 7 provides insight on the wait time for the same set of experiments ofFigure 6. The graphs learly show how time sharing an dramatially redue thewait time over spae sharing. BCS redues the wait time further over bak�lledgang sheduling (BGS), in partiular with high MPLs.The redution of the wait time obtained inreasing the MPL, usually impliesan inrease of the job exeution time. In the worst ase, the slowdown an be ashigh as the MPL. In Figure 8 we an see that BCS limits the slowdown whenwe inrease the MPL and outperforms BGS in all on�gurations, again thanksto the re-use of empty slots in the sheduling matrix at the proess level ratherthan the job level.



1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

 ti
m

e 
sl

ow
do

w
n

Load factor

Run time slowdown vs load, Multiprogramming level 4

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

 ti
m

e 
sl

ow
do

w
n

Load factor

Run time slowdown vs load, Multiprogramming level 2

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

 ti
m

e 
sl

ow
do

w
n

Load factor

Run time slowdown vs load, Multiprogramming level 3

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB

1

2

3

4

5

6

7

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
un

 ti
m

e 
sl

ow
do

w
n

Load factor

Run time slowdown vs load, Multiprogramming level 8

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB

c) d)

b)a)

Fig. 8. Exeution Time Slowdown versus Load for Various MPLs.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

F
ra

ct
io

n 
of

 ti
m

e

Load factor

Processor utilization vs load, Multiprogramming level 8

buffered, 0 MB
buffered, 64 MB
buffered, 128 MB
buffered, 256 MB
gang, 0 MB
gang, 64 MB
gang, 128 MB
gang, 256 MB
backfilling

Fig. 9. Proessor Utilization versus Load for BCS and BGS.



5.3 Proessor UtilizationMost results on job sheduling strategies fous on system utilization rather thanproessor utilization and show that both BF and BGS an get more than 90%under many workloads. Figure 9 extends these results by analyzing the proessorutilization obtained by BF, BGS and BCS.We observe the following:{ Though BGS improves response time over BF, it does not improve systemand proessor utilization. The slight derease in performane is due to thejob ontext-swithing overhead.{ With BCS, we an get a proessor utilization that asymptotially reah 85%,while BGS and BF approah 60%. This is one of the main advantages of BCSover BGS and BF.{ Proessor utilization is sensitive to a job's average memory request when weuse time sharing: the higher the memory request, the lower the proessorutilization.{ The results address the overlapping of omputation and ommuniation only.We expet that the resoure utilization gap between BF, BGS and BCS willinrease further in the presene of I/O.6 DisussionThe potential tehnial impat of BCS is signi�ant for a large lass of parallelmahines and distributed systems, ranging from Linux lusters to the larger andmore sophistiated massively parallel mahines. To the best of our knowledge,this is the �rst methodologial attempt to globally optimize the resoures of aparallel mahine rather than using the limited loal knowledge available on eahproessor.While BCS enhanes overall system performane, partiularly with respetto proessor utilization and response time, BCS also naturally provides system-level and user-level advantages whih we disuss in this setion.6.1 System-Level AdvantagesFirst, the ommuniation is optimized in several ways. The ost of the systemalls neessary to aess the kernel data strutures is amortized over a set ofuser alls. This implies that the methodology is tolerant to the potential highlatenies that an be introdued in a kernel all. BCS an obtain omparableperformane to user-level network interfaes (e.g., FM [16℄ or ST [22℄) withoutusing speialized hardware.Seond, the global knowledge of the ommuniation pattern provided by thetotal exhange allows for the implementation of eÆient ow-ontrol strategies.For example it is possible to avoid ongestion inside the network by arefullysheduling the ommuniation pattern and limit the negative e�ets of hot spotsby damping the maximum amount of information addressed to eah proessor



during a time slie. The same information an be used at kernel level to providefault tolerane in the ommuniation. For example the knowledge of the numberof inoming pakets greatly simpli�es the implementation of reeiver-initiatedreovery protools. By globally sheduling a ommuniation pattern, it is alsopossible to obtain an aurate estimate of the ommuniation time with simpleanalytial models. By knowing the maximum amount of information that anbe delivered in a time-slie, it is possible to minimize the size of the ommuni-ation bu�ers in eah network interfae. This is a ruial problem in a massivelyparallel arhiteture. Let's onsider, for example, a mahine with 10000 proes-sors - the approximate number of proessors expeted to be in the next ASCIsuperomputers. Given that eah proessor an potentially reeive a messagefrom all the remaining 9999 proessors, it must reserve a proportional amountof network interfae memory (typially few MB for eah potential partner). Thisis infeasible with urrent network tehnology and poses a serious limit to theeÆient implementation of large sale parallel mahines.Third, beause ommuniation is bu�ered and delayed to the beginning ofthe next time-slie, we an always implement zero- (or low-, if we desire faulttolerant ommuniation) opy ommuniation. Fault tolerane in general analso be enhaned by exploiting the synhronization point at the end of eahtime slie to inrementally take a snapshot of the status of the mahine.Fourth, an important advantage of time-sharing parallel jobs is a better uti-lization of the resoures. When we onsider I/O, there an be several orders ofmagnitude of di�erene between the omputational grain of the parallel applia-tion and the aess time of seondary storage. The usual approah of overlappingomputation with I/O, for example using user-level threads, an only providea limited return in the presene of a single parallel job. By overlapping the a-tivities of multiple parallel jobs we an potentially hide most of the lateny.The same argument an be applied to hide the non-uniform latenies of largelusters of SMPs. The higher lateny of the inter-luster ommuniation an beoverlapped with the exeution of another parallel job.Fifth, by time-sharing parallel jobs it is possible to obtain better responsetime and quality of servie for ritial appliations. Time-sliing an be used togive good average ompletion times for dynamially hanging workloads, whileretaining fast response times for interative jobs.Sixth, beause of the deep pipelines and wide out-of-order supersalar arhi-tetures of ontemporary proessors, an interrupt may need to nullify a largenumber of in-ight instrutions [15℄. Larger register �les require existing systemsoftware to save and restore a substantial amount of proess state. The redu-tion of the interrupt frequeny provided by BCS an substantially improve theperformane on these proessors.Seventh, BCS an also eÆiently support future proessor arhitetures, suhas Simultaneous Multi-threading (SMT) [3℄ [5℄, that time-share multiple pro-esses at hardware level.



6.2 User-Level AdvantagesThe typial approah to developing parallel software is by using low-level pro-gramming models suh as MPI. At that level the user is exposed to a largenumber of details. The user must identify the form of parallelism in the ap-pliation and deompose it in a set of parallel threads, partition the data setamong these threads, map the threads and the data set on a parallel arhi-teture, de�ne ommuniation and synhronization between these threads. Thisdevelopment proess is typially spei� to a partiular appliation or lass ofuser appliations.As a onsequene, it is extremely diÆult and very expensive to build softwareusing suh programming models. Beause both orretness and performane anonly be ahieved by attention to many details, writing optimized MPI programsis a lengthy proess, and the result is often mahine-dependent1.The alternative of using high level programming models, for example au-tomati parallelization of legay Fortran odes, is not mature yet and musttrade generality in the parallelization proess with eÆieny, making onserva-tive hoies. BCS has the potential of solving this tradeo� between high devel-opment osts and high eÆieny vs. low development ost and low eÆieny bytolerating several types of ineÆienies related to the parallelization proess.In a bu�ered osheduled system, time-sliing a olletion of bad programs(i.e., unbalaned omputation or ommuniation) may give the same behavioras a single well-behaved program. Therefore, programs running on a parallel ma-hine need not be arefully balaned by the user to ahieve good performane.Multiprogramming an provide opportunities for �lling in the \spare ommuni-ation, omputation and I/O yles" when user programs are sparse, by merging,for example, many sparse ommuniation patterns together to produe a denserommuniation pattern.This an have a huge impat on the parallelization of existing legay odes. Ifsuessful, the implementation of BCS ould provide a dramati redution in thedevelopment times and osts of parallel software. Also, the proposed methodologyis valid in general, and not spei� to any partiular lass of appliations (e.g.,moleular dynamis, linear solvers, simulations et.), nor to a partiular mahinearhiteture (e.g., Cray T3E, SGI, IBM SP).Finally BCS greatly simpli�es the performane evaluation of a parallel ap-pliation. With BCS the amount of work done by all proessors, a metri verylose to the sequential omplexity of an algorithm, beomes as important as theritial path of the omputation.7 BCS vs BSPOne of the goals of BCS is to transform a olletion of unstrutured parallel jobsin a single, well-behaved Bulk-Synhronous Parallel (BSP) omputation [26℄ [23℄.1 Though portable to other mahines, MPI programs need to go through a non trivialre-optimization proess, when moved from one parallel mahine to another.



A BSP omputation onsists of a sequene of parallel supersteps. During asuperstep, eah proessor an perform a number of omputation steps on valuesheld loally at the beginning of the superstep and an issue various remote readand write requests that are bu�ered and delivered at the end of the superstep.This implies that ommuniation is learly separated from synhronization, i.e.it an be performed in any order, provided that the information is deliveredat the beginning of the following superstep. However, while the supersteps inthe original BSP model an be variable in length, BCS generates omputationand ommuniation slots whih are �xed in length and are determined by thetime-slie.One important bene�t of the BSP model is the ability to aurately preditthe exeution time requirements of parallel algorithms and programs. This isahieved by onstruting analytial formulae that are parameterized by a fewonstants whih apture the omputation, ommuniation, and synhronizationperformane of a p-proessor system. These results are based on the experi-mental evidene that the generi olletive ommuniation pattern generatedby a superstep alled h-relation2 an be routed with preditable time [10℄ [21℄.This implies that the maximum amount of information sent or reeived by eahproessor during a ommuniation time-slie an be statially determined andenfored at run time by a global ommuniation sheduling algorithm. For ex-ample, if the duration of the time-slie is Æ and the permeability of the network(i.e., the inverse of the aggregate network bandwidth) is g, the upper boundhmax of information, expressed in bytes, that an be sent or reeived by a singleproessor is hmax = Tg :Furthermore, by globally sheduling a ommuniation pattern, as desribed inSetion 2, we an derive an aurate estimate of the ommuniation time withsimple analytial models already developed for the BSP model [21℄ [2℄ [20℄.Unfortunately, BSP omputations are overly restritive, and many importantappliations annot be eÆiently expressed using this model. With BCS, we aninherit the nie mathematial framework of BSP, without foring the user towrite BSP programs.8 Conlusion and Future WorkIn this paper, we presented bu�ered osheduling (BCS), a new methodology formultitasking jobs in parallel and distributed systems. By leveraging the positiveaspets of gang sheduling and dynami osheduling, this methodology ansigni�antly improve resoure utilization as well as redue response and waittimes of parallel jobs.2 h denotes the maximum amount of information sent or reeived by any proessduring the superstep.



Using our Job Sheduling Simulator in the presene of memory onstraints,we illustrated that bak�lling in ombination with spae sharing or time shar-ing improves overall system performane. Furthermore, we showed that BCSgenerally outperformed bak�lled gang sheduling and bak�lled spae sharing.We also examined how BCS performed with respet to three parameters: typeof job ommuniation and synhronization, memory onstraints, and proessorutilization. We were pleasantly surprised to �nd that the performane of BCSwas relatively insensitive to the ommuniation pattern when the ommuniationwas non-bloking ommuniation or, more generally, a olletive-ommuniationpattern. In addition, what we originally thought to be a weakness in BCS [6℄, i.e.,memory onstraints imposed by BCS, only results in the performane of BCSdegrading to being omparable to BF and not signi�antly worse as with BGS.Finally, the proessor utilization with BCS exeeds bak�lling gang sheduling(BGS) and BF by as muh as 40%.Referenes1. Andrea C. Arpai-Dusseau, David Culler, and Alan M. Mainwaring. Shedulingwith Impliit Information in Distributed Systems. In Proeedings of the 1998 ACMSigmetris International Conferene on Measurement and Modeling of ComputerSystems, Madison, WI, June 1998.2. Douglas C. Burger and David A. Wood. Auray vs. Performane in ParallelSimulation of Interonnetion Networks. In Proeedings of the 9th InternationalParallel Proessing Symposium, IPPS'95, Santa Barbara, CA, April 1995.3. Keith Diefendor�. Compaq Chooses SMT for Alpha: Simultaneous MultithreadingExploits Instrution- and Thread-Level Parallelism. Miroproessor Report, 13(16),Deember 1999.4. Andrea C. Dusseau, Remzi H. Arpai, and David E. Culler. E�etive DistributedSheduling of Parallel Workloads. In Proeedings of the 1996 ACM SigmetrisInternational Conferene on Measurement and Modeling of Computer Systems,Philadelphia, PA, May 1996.5. Susan J. Eggers, Henry M. Levy, and Jak L. Lo. Multithreading: A Platform forNext-Generation Proessors. IEEE Miro, 17(5), September/Otober 1997.6. Fabrizio Petrini and Wu-hun Feng. Bu�ered Cosheduling: A New Methodol-ogy for Multitasking Parallel Jobs on Distributed Systems. In Proeedings of theInternational Parallel and Distributed Proessing Symposium 2000, IPDPS2000,Canun, MX, May 2000.7. Dror G. Feitelson and Morris A. Jette. Improved Utilization and Responsive-ness with Gang Sheduling. In Dror G. Feitelson and Larry Rudolph, editors,Job Sheduling Strategies for Parallel Proessing, volume 1291 of Leture Notes inComputer Siene. Springer-Verlag, 1997.8. Dror G. Feitelson and Larry Rudolph. Parallel Job Sheduling: Issues and Ap-proahes. In Dror G. Feitelson and Larry Rudolph, editors, Job Sheduling Strate-gies for Parallel Proessing, volume 949 of Leture Notes in Computer Siene.Springer-Verlag, 1995.9. Dror G. Feitelson and Larry Rudolph. Toward Convergene in Job Shedulersfor Parallel Superomputers. In Dror G. Feitelson and Larry Rudolph, editors,Job Sheduling Strategies for Parallel Proessing, volume 1162 of Leture Notes inComputer Siene. Springer-Verlag, 1996.



10. Alex Gerbessiotis and Fabrizio Petrini. Network Performane Assessment underthe BSP Model. In International Workshop on Construtive Methods for ParallelProgramming, CMPP'98, Marstrand, Sweden, June 1998.11. A. Gupta, A. Tuker, and S. Urushibara. The Impat of Operating System Shedul-ing Poliies and Synhronization Methods on the Performane of Parallel Applia-tions. In Proeedings of the 1991 ACM SIGMETRICS Conferene, pages 120{132,May 1991.12. Anshul Gupta and Vipin Kumar. The Salability of FFT on Parallel Comput-ers. IEEE Transations on Parallel and Distributed Systems, 4(8):922{932, August1993.13. Joefon Jann, Pratap Pattnaik, Hubertus Franke, Fang Wang, Joseph Skovira, andJoseph Riordan. Modeling of Workload in MPPs. In Dror G. Feitelson and LarryRudolph, editors, Job Sheduling Strategies for Parallel Proessing, volume 1291of Leture Notes in Computer Siene, pages 95{116. Springer-Verlag, 1997.14. Vijay Karamheti and Andrew A. Chien. Do Faster Routers Imply Faster Com-muniation? In First International Workshop, PCRCW'94, volume 853 of LNCS,pages 1{15, Seattle, Washington, USA, May 1994.15. Stephen W. Kekler, Andrew Chang, Whay S. Lee, Sandeep Chatterje, andWilliam J. Dally. Conurrent Event Handling through Multithreading. IEEETransations on Computers, 48(9):903{916, September 1999.16. Mario Lauria and Andrew Chien. High-Performane Messaging on Workstations:Illinois Fast Messages (FM) for Myrinet. In Proeedings of Superomputing '95,November 1995.17. Walter Lee, Matthew Frank, Vitor Lee, Kenneth Makenzie, and Larry Rudolph.Impliations of I/O for Gang Sheduled Workloads. In Dror G. Feitelson and LarryRudolph, editors, Job Sheduling Strategies for Parallel Proessing, volume 1291of Leture Notes in Computer Siene. Springer-Verlag, 1997.18. Shailabh Nagar, Ajit Banerjee, Anand Sivasubramaniam, and Chita R. Das. ACloser Look At Cosheduling Approahes for a Network of Workstations. InEleventh ACM Symposium on Parallel Algorithms and Arhitetures, SPAA'99,Saint-Malo, Frane, June 1999.19. William E. Weihl Patrik Sobalvarro, Sott Pakin and Andrew A. Chien. DynamiCosheduling on Workstation Clusters. In Dror G. Feitelson and Larry Rudolph,editors, Job Sheduling Strategies for Parallel Proessing, volume 1459 of LetureNotes in Computer Siene, pages 231{256. Springer-Verlag, 1998.20. Fabrizio Petrini. Total-Exhange on Wormhole k-ary n-ubes with Adaptive Rout-ing. In Proeedings of the 12th International Parallel Proessing Symposium,IPPS'98, Orlando, FL, Marh 1998.21. Fabrizio Petrini and Maro Vanneshi. EÆient Personalized Communiation onWormhole Networks. In The 1997 International Conferene on Parallel Arhite-tures and Compilation Tehniques, PACT'97, San Franiso, CA, November 1997.22. Ian R. Philp and Y. Liong. The Sheduled Transfer (ST) Protool. In Proeedingsof Workshop on Communiation, Arhiteture, and Appliations for Network-basedParallel Computing, January 1999.23. D. B. Skilliorn, Jonathan M. D. Hill, and W. F. MColl. Questions and Answersabout BSP. Journal of Sienti� Programming, 1998.24. Joseph Skovira, Waiman Chan, Honbo Zhou, and David Lifka. The EASY-LoadLeveler API Projet. In Dror G. Feitelson and Larry Rudolph, editors, JobSheduling Strategies for Parallel Proessing, volume 1162 of Leture Notes in Com-puter Siene, pages 41{47. Springer-Verlag, 1996.



25. Patrik Sobalvarro and William E. Weihl. Demand-Based Cosheduling of ParallelJobs on Multiprogrammed Multiproessors. In Proeedings of the 9th InternationalParallel Proessing Symposium, IPPS'95, Santa Barbara, CA, April 1995.26. Leslie G. Valiant. A Bridging Model for Parallel Computation. Communiationsof the ACM, 33(8):103{111, August 1990.27. Yanyong Zhang, Hubertus Franke, Jos�e Moreira, and Anand Sivasubramaniam.Improving Parallel Job Sheduling by Combining Gang Sheduling and Bak�llingTehniques. In Proeedings of the International Parallel and Distributed ProessingSymposium 2000, IPDPS2000, Canun, MX, May 2000.


