
Resource Allocation Schemes for Gang Scheduling

B. B. Zhou

School of Computing and Mathematics

Deakin University

Geelong, VIC 3217, Australia

D. Walsh R. P. Brent

Department of Computer Science Oxford University Computing Laboratory

Australian National University Wolfson Building, Parks Road

Canberra, ACT 0200, Australia Oxford OX1 3QD, UK

Abstract

Gang scheduling is currently the most popular

scheduling scheme for parallel processing in a time

shared environment. In this paper we first describe

the ideas of job re-packing and workload tree for ef-

ficiently allocating resources to enhance the perfor-

mance of gang scheduling. We then present some ex-

perimental results obtained by implementing four dif-

ferent resource allocation schemes. These results show

how the ideas, such as re-packing jobs, running jobs in

multiple slots and minimising the average number of

time slots in the system, affect system and job perfor-

mance when incorporated into the buddy based alloca-

tion scheme for gang scheduling.

1 Introduction

Many job scheduling strategies have been intro-
duced for parallel computing systems. (See a good sur-
vey in [4].) These scheduling strategies can be classi-
fied into either space sharing, or time sharing. Because
a time shared environment is more difficult to establish
for parallel processing in a multiple processor system,
currently most commercial parallel systems only adopt
space sharing such as the LoadLeveler scheduler from
IBM for the SP2 [9]. However, one major drawback of
space sharing is the blockade situation, that is, small
jobs can easily be blocked for a long time by large
ones. For parallel machines to be truly utilised as
general-purpose high-performance computing servers
for various kinds of applications, time sharing has to
be seriously considered.

It is known that coordinated scheduling of parallel

jobs across the processors is a critical factor to achieve
efficient parallel execution in a time-shared environ-
ment. Currently the most popular strategy for coor-
dinated scheduling is explicit coscheduling [7], or gang

scheduling [5]. With gang scheduling processes of the
same job will run simultaneously for a certain amount
of time which is called, scheduling slot, or time slot.
When a time slot is ended, the processors will context-
switch at the same time to give the service to processes
of another job. All parallel jobs in the system take
turns to receive the service in a coordinated manner.
If space permits, a number of jobs may be allocated in
the same time slot and run simultaneously on differ-
ent subsets of processors. Thus gang scheduling can
be considered as a scheduling strategy which combines
both space sharing and time sharing together.

Currently most allocation strategies for gang
scheduling only consider processor allocation within
the same time slot and the allocation in one time slot is
independent of the allocation in other time slots. One
major disadvantage in this kind of resource allocation
is the problem of fragmentation. Because resource al-
location is considered independently in different time
slots, some freed resources due to job termination may
remain idle for a long time even though they are able
to be re-allocated to existing jobs running in other
time slots. One way to alleviate the problem is to
allow jobs to run in multiple time slots whenever pos-
sible [2, 10]. When jobs are allowed to run in multiple
time slots, the buddy based allocation scheme will per-
form much better than many other existing allocation
schemes in terms of average job turnaround time [2].

The buddy based scheme was originally developed
for memory allocation [8]. To allocate resources to a
job of size p using the buddy based scheme, the pro-



cessors in the system are first divided into subsets of
size n for n/2 < p ≤ n. The job is then assigned
to one such subset if there is a time slot in which all
processors in the subset are idle. Although the buddy
scheme causes the problem of internal fragmentation,
jobs with about the same size tend to be head-to-head
aligned in different time slots. If one job is completed,
the freed resources can easily be reallocated to other
jobs running on the same subset of processors. There-
fore, jobs have a better chance to run in multiple time
slots.

To alleviate the problem of fragmentation we pro-
posed another scheme, namely job re-packing [11]. In
this scheme we try to rearrange the order of job ex-
ecution on the originally allocated processors so that
small fragments of idle resources from different time
slots can be combined together to form a larger and
more useful one in a single time slot. When this
scheme is incorporated into the buddy based system,
we can set up a workload tree to record the work-
load conditions of each subset of processors. With
this workload tree we are able to simplify the search
procedure for resource allocation and also to balance
the workload across the processors.

In this paper we shall present some simulation re-
sults to show how the ideas, such as re-packing jobs,
running jobs in multiple slots and minimising the num-
ber of time slots in the system, affect system and
job performance when incorporated into the buddy
scheduling system. In Section 2 we briefly discuss job
re-packing. The construction of the binary workload
tree for the buddy based system is described in Sec-
tion 3. Section 4 first discusses four different allocation
schemes to be compared and the workload model used
in our experiments and then presents some simulation
results. Finally the conclusions are given in Section 5.

2 Job Re-Packing

One way to alleviate the problem of fragmentation
is to allow jobs to run in multiple time slots whenever
possible. A simple example is depicted in Fig. 1. In
this example the system has eight processors and orig-
inally three slots are created to handle the execution
of nine jobs. Now assume that two jobs J ′ and J ′′ in
slot S2 are terminated. If jobs are allowed to run in
multiple time slots, jobs J1 and J2 in slot S1 and job J7

on S3 can occupy the freed resources in S2, as shown
in Fig. 1(b). Therefore, most processors can be kept
busy all the time. However, this kind of resource re-
allocation may not be optimal when job performance
is considered. Assume now there arrives a new job

which requires more than one processor. Because the
freed resources have been reallocated to the running
jobs, the fourth time slot has to be created and then
the performance of the existing jobs which run in a
single time slot will be degraded.

Now consider job re-packing. We first shift jobs J1

and J2 from slot S1 to slot S2 and then move jobs J5

and J6 down to slot S1 and job J7 to slot S2. After
this rearrangement or re-packing of jobs, time slot S3

becomes completely empty. We can then eliminate
this empty slot, as shown in Fig. 1(c). It is obvious
that this type of job re-packing can greatly improve
the overall system performance. Note that during the
re-packing jobs are only shifted between rows from
one time slot to another. We actually only rearrange
the order of job execution on their originally allocated
processors in a scheduling round and there is no pro-
cess migration between processors involved. This kind
of job rearrangement is particularly suitable for dis-
tributed memory machines in which process migration
is expensive.

Since processes of the same job need coordination
and they must be placed in the same time slots all the
time during the computation, therefore, we cannot re-
pack jobs in an arbitrary way. A shift is said to be
legal if all processes of the same job are shifted to
the same slot at the same time. In job re-packing we
always utilise this kind of legal shift to rearrange jobs
between time slots so that small fragments of available
processors in different time slots can be combined into
a larger and more useful one. This kind of job re-
packing can effectively be done based on the following
two simple properties [11].

Property 1 Assume that processors are logically or-

ganised as a one-dimensional linear array. Any

two adjacent fragments of available processors can be

grouped together in a single time slot.

Property 2 Assume that processors are logically or-

ganised as a one-dimensional linear array. If every

processor has an idle fragment, jobs in the system can

be re-packed such that all the idle fragments will be

combined together in a single time slot which can then

be eliminated.

Note that adopting job re-packing may increase the
scheduling overhead in a clustered computing system
because messages notifying the changes in the global
scheduling matrix have to be broadcast to processors
so that the local scheduling tables on each processor
can be modified accordingly. However, there is no need
to frequently re-pack jobs between time slots. The re-
packing is applied only when the working condition



J

J 7

J

P7P6P5

S 1

S 2

S 3 J 5 J 5 J 5 J 6 J 6 J 7 J 7

J 4 J 4

J 1 J 1 J 2 J 2 J 3 J 3 J 3

P1 P2 P3 P4 P5 P6 P7 P8

4

(J’) (J") (J")(J’)(J’) (J’)

J

1 P

P4P3P2P

S 3

S 2

S 1

J 5 J 5 J 5 J 6 J 6 J 7

2 P

1P

J 4

8

1 J 1 J 2 J 2

J 1 J 1 J 2 J 2

J 7 J 7

J 3 J 3

7

3

P

2 J 2

P3 P4 P5 P6

J J

P8

7S 2

S 1

J 1 J 1 J J

5 3J

4 J 4

J 5 J

7

J 5 J 36 J 6 J 3 J

(b)

(a)

(c)

Figure 1: An example of alleviating the fragmentation problem by (b) running jobs in multiple time slots and (c)
re-packing job to reduce the total number of time slot.

is changed, e.g., when a job is terminated, or when
a new job arrives. Thus the extra system cost intro-
duced by the re-packing may not be high. In the next
section we shall see that, when job re-packing is incor-
porated in the buddy based system, we can set up a
workload tree. With this workload tree the procedure
for searching available resources can be simplified and
then the overall system overhead for resource alloca-
tion is actually reduced.

3 Workload Tree

Based on job re-packing we can set up a workload

tree (WLT) for the buddy scheduling system, as de-
picted in Fig. 2, to balance the workload across the
processors and also to simplify the search procedure
for resource allocation.

The workload tree has logN + 1 levels where N is
the number of processors in the system. Each node in
the tree is associated with a particular subset of pro-
cessors. The node at the top level is associated with
all N processors. The N processors are divided into
two subsets of equal size and each subset is then asso-
ciated with a child node of the root. The division and
association continues until the bottom level is reached.
Each node in the tree is assigned an integer value. At
the bottom level the value assigned to each leaf node
is equal to the number of idle time slots on the associ-
ated processor. For example, the node corresponding

to processor P1 is given a value 0 because there is no
idle slot on that processor, while the value assigned
to the last node is equal to 2 denoting there are cur-
rently two idle slots on processor P8. For a non-leaf
node the value will be equal to the sum of the values
of its two children when both values are nonzero. Oth-
erwise, it is set to zero denoting the associated subset
of processors will not be available for new arrivals.

For the conventional allocation method, adding this
workload tree may not be able to assist the deci-
sion making for resource allocation. This is because
the information contained in the tree does not tell
which slot is idle on a processor, but processes of the
same job have to be allocated in the same time slot.
With job re-packing, however, we know that on a one-
dimensional linear array any two adjacent fragments of
available processors can be grouped together to form
a larger one in a single time slot according to Prop-
erty 1 presented in the previous section. To search
for a suitable subset of available processors, therefore,
we only need to check the values at a proper level.
Consider the situation depicted in Fig. 2 and assume
that a new job of size 4 arrives. In this case we need
only to check the two nodes at the second level. Since
the value of the second node at that level is nonzero
(equal to 5), the new job can then be placed on the
associated subset of processors, that is, the last four
processors. To allocate resources we may first re-pack
job J6 into time slot S1 and then place the new job in
time slot S3. Since the workload conditions on these



0 3 2 3

0 5

0

0 0 1 2

WLT

1 1 1 2

S 1

S 2

S 3 J 5 J 5 J 6J 6J 5

J 3 J 3 J 4 J 4J 4J 3 J 3

J 1J 1 J 2 J 2

P2 P3 P4 P5 P6 P7 P8P1

Figure 2: The binary workload tree (WLT) for the buddy based allocation system.

processors are changed after the allocation, the values
of the associated nodes need to be updated accord-
ingly.

There are many other advantages in using this
workload tree. To ensure a high system and job perfor-
mance it is very important to balance workloads across
the processors. Using the workload tree it will become
much easier for us to handle the problem of load bal-
ancing. Because the value of each node reflects the
information about the current workload condition on
the associated processor subset, the system can easily
choose a subset of less active processors for an incom-
ing job by comparing the node values at a proper level.

To enhance the efficiency of resource utilisation jobs
should be allowed to run in multiple time slots if there
are free resources available. Although the idea of run-
ning jobs in multiple time slots was originally proposed
in [2, 10], there were no methods given on how to effec-
tively determine whether an existing job on a subset
of processors can run in multiple time slots. Using
the workload tree this procedure becomes simple. In
Fig. 2, for example, the rightmost node at the third
level of the workload tree is nonzero and job J2 is
currently running within the associated subset of pro-
cessors. It can then be allocated an additional time
slot (S3 in this case) and run in multiple time slots.

To enhance the system and job performance it is
also important to minimise the number of time slots
in the system. (See our experimental results presented
in the next section.) Since the root of the workload
tree is associated with all the processors, we are able
to know quickly when a time slot can be deleted by
simply checking the node value. If it is nonzero, we

immediately know that there is at least one idle slot on
each processor. According to Property 2 presented in
the previous section these idle fragments can be com-
bined together in a single time slot which can then
be eliminated. Assume that job J1 in Fig. 2 is termi-
nated. The values of the leaf nodes associated with
processors P1 and P2 become nonzero. This will cause
the value of their parent node to become nonzero. The
information about the change of workload condition
is continuously propagated upward and then the root
value will become nonzero. It is easy to see in this
particular example that, after job J2 is legally shifted
to time slot S3, time slot S1 will become completely
empty and can then be deleted.

4 Experiments

In this section we present some experimental results
to show how the techniques of re-packing jobs, running
jobs in multiple slots and minimising the average num-
ber of time slots in the system, affect system and job
performance when incorporated into the buddy based
allocation system for gang scheduling.

4.1 Allocation schemes

Four different resource allocation schemes are eval-
uated in the experiment. The first one is just the
conventional buddy (BC) system in which the work-
load balancing is not seriously considered and each
job only runs in a single time slot. The second scheme
(BR) utilises the workload tree to balance the work-



load across the processors and re-packs jobs when nec-
essary to reduce the average number of time slots in
the system, but it does not consider to run jobs in mul-
tiple time slots. The third allocation scheme (BRMS)
is a modified version of the second one, in which jobs
are allowed to run in multiple time slots whenever pos-
sible. When a job is given an extra time slot in this
scheduling scheme, it will keep running in multiple
time slots to completion and never relinquish the extra
resources gained during the computation. The fourth
allocation scheme (BRMMS) is designed to consider
the minimisation of the average number of time slots
in the system while allowing jobs to run in multiple
slots. In this scheme jobs running in multiple time
slots may have to relinquish the additional resources
gained during the computation if a new arrival cannot
fit into the existing time slots, or if a time slot in the
system can be deleted. Therefore, we can expect that
the average number of time slots in the system will
never be greater than the number created by using
the second scheduling scheme BR.

4.2 The workload model

Experimental results show that the choice of work-
load alone does not significantly affect the relative
performance of different resource management algo-
rithms [6]. To compare the performance of the above
four different resource allocation schemes, we adopted
one workload model proposed in [1]. Both job run-
times and sizes (the number of processors required) in
this model are distributed uniformly in log space (or
uniform-log distributed), while the interarrival times
are exponentially distributed. This model was con-
structed based on observations from the Intel Paragon
at the San Diego Supercomputer Center and the IBM
SP2 at the Cornell Theory Center and has been used
by many researchers to evaluate their parallel job
scheduling algorithms.

Since the model was originally built to evaluate
batch scheduling policies, we made a few minor mod-
ifications in our simulation for gang scheduling. In
many real systems jobs are classified into two classes,
that is, interactive and batch jobs. A batch job is one
which tends to run much longer and often requires
a larger number of processors than interactive ones.
Usually batch queues are enabled for execution only
during the night. In our experiments we only consider
interactive jobs. Job runtimes will have a reasonably
wide distribution, with many short jobs but a few rel-
atively large ones and they are rounded to the number
of time slots within a range between 1 and 120. As-
suming the length of a time slot is five second, the

longest job will then be 10 minutes and the average
job length is about two minutes.

4.3 Results

We assume that there are 128 processors in the sys-
tem. During the simulation we collect the following
statistics:

• average processor active ratio ra: the average
number of time slots in which a processor is active
divided by the overall system computational time
in time slots. If the resource allocation scheme is
efficient, the obtained result should be close to the
estimated average system workload ρ which is de-
fined as ρ = λp̄t̄/P where λ is job arrival rate, t̄
and p̄ are the average job length and size and P
is the total number of processors in the system.

• average number of time slots na: If ti is the to-
tal time when there are i time slots in the sys-
tem, the average number of time slots in the
system during the operation can be defined as
na =

∑nl

i=0
iti/

∑nl

i=0
ti where nl is the largest

number of time slots encountered in the system
during the computation.

• average turnaround time ta: The turnaround
time is the time between the arrival and comple-
tion of a job. In the experiment we measured the
average turnaround time tta for all 200 jobs. We
also divided the jobs into three classes, that is,
small (between 1 and 12 time slots), medium (be-
tween 13 and 60) and large (greater than 60) and
measured the average turnaround time for these
classes, tsa, tma and tla, respectively.

We conducted two experiments. In our first experi-
ment we measured transient behaviors of each system.
Each time only a small set of 200 jobs were used to
evaluate the performance of each scheduling scheme.
For each estimated system workload, however, 20 dif-
ferent sets of jobs were generated using the workload
model and the final results are the average of the 20
runs for each scheduling scheme.

Some experimental results are given in Table 1.
First consider that jobs only run in a single time slot.
When job re-packing is applied to reduce the number
of time slots in the system and the workload tree is
used to balance the workload across the processors,
we expect that both job performance and system re-
source utilisation should be improved. Our experi-
mental results confirm this prediction. It can be seen



scheme ρ ra nl na tta tsa tma tla
BC 0.20 0.19 3 1.16 31.10 5.67 40.52 112.45
BR 0.19 3 0.45 30.01 5.52 39.29 108.18
BRMS 0.19 4 0.57 29.25 5.37 37.86 106.56
BRMMS 0.19 3 0.44 28.66 5.24 37.09 104.68

BC 0.50 0.46 6 2.84 70.00 14.04 89.27 246.08
BR 0.46 5 2.27 58.65 11.68 75.23 206.45
BRMS 0.45 15 6.11 57.28 15.99 73.83 184.98
BRMMS 0.47 5 2.06 44.05 8.77 55.82 159.75

BC 0.70 0.55 10 5.23 129.65 25.03 166.21 456.72
BR 0.58 8 4.09 102.21 20.27 130.17 359.00
BRMS 0.53 30 14.39 96.95 35.78 128.23 271.12
BRMMS 0.61 7 3.58 66.23 13.96 83.19 234.05

BC 0.90 0.58 14 7.62 189.60 35.91 246.73 670.42
BR 0.65 11 6.00 150.18 29.50 195.49 526.64
BRMS 0.56 43 20.17 120.53 51.84 170.61 356.94
BRMMS 0.68 10 5.51 98.51 20.80 124.69 345.48

Table 1: Some experimental results obtained in the first experiment.

from the table that scheme BR consistently outper-
forms BC under all categories although the improve-
ment is not significant for the estimated system work-
load ρ = 0.20.

When jobs are allowed to run in multiple time slots,
situations become a bit more complicated. We can
see that both nl and na are dramatically increased
when the third scheduling scheme BRMS is adopted.
In order to give a better view for the comparison we
show three pictures for average turnaround time for
all jobs tta, average turnaround time for short jobs tsa

and average processor active ratio ra, respectively.

The average turnaround time for all jobs is depicted
in Fig. 3. It is seen that schemes BRMS and BRMMS
which allow jobs to run in multiple slots can reduce tta.
This is understandable since a job running in multiple
slots may have a shorter turnaround time. An interest-
ing point, however, is that applying BRMS will result
in a much longer average turnaround time for short
jobs as shown in Fig. 4. From the user’s perspective it
is short jobs that need to be completed more quickly.
The main reason why BRMS can cause a longer aver-
age turnaround time for short jobs may be as follows:
If jobs are allowed to run in multiple slots and do not
relinquish additional slots gained during the compu-
tation, the number of time slots in the system may
become very large most of the time. Note that long
jobs will stay in the system longer and then have a
better chance to run in multiple time slots. However,
the system resources are limited. When a short job ar-

rives, it can only obtain a very small portion of CPU
utilisation if allocated only in a single time slot.

It seems that we can increase the average proces-
sor active ratio if jobs are allowed to run in multiple
time slots. However, another interesting point is that
using the allocation scheme BRMS will eventually de-
crease the efficiency in resource utilisation. As shown
in Fig. 5 the average processor active ratio can even
be lower than that obtained by using the conventional
buddy scheduling scheme BC. The main reason may
be that, when a job running in multiple slots finishes,
the processors on which it was running will be idle in
those time slots until a change in workload condition
occurs such as a new job arriving to fill the freed re-
sources, or some slots becoming totally empty which
can be eliminated.

In our second experiment we measured the steady
state performance of each system by increasing the
number of jobs in each job set to 20,000. Some exper-
imental results are depicted in Table 2. The results are
obtained by taking the average of 5 runs using different
job sets. It can be seen that the allocation scheme BR
performs much better than BRMS. This conforms that
simply running jobs in multiple time slots can eventu-
ally decrease the efficiency of system resource utilisa-
tion and degrade the overall performance of jobs.

It can be seen from the above tables and pic-
tures that BRMMS is the best of the four allocation
schemes. It consistently outperforms all other three
schemes under all categories. To improve job and sys-



��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��

��
��
��

BC:

BR-MMS:

BR:

BR-MS:

���
���
���
���

���
���
���
���

��
��
��
��
��
��
��

��
��
��
��
��
��
��

����
����
����

����
����
����

��
��
��
��

��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��������������������������������������������������������������������

����

����

����

����

����

����

p = 0.20 p = 0.50 p = 0.70 p = 0.90

150.0

30.0

60.0

90.0

120.0

180.0

Figure 3: Average turnaround time for all jobs tta.

��

��

��

��

30.0

40.0

50.0

10.0

20.0

��
��
��

��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

BC:

BR-MMS:

BR:

BR-MS:

������������������������������������������������������������������
���
���
���

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����

���
���
���

���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��

��
��
��

���
���
���
���
���

���
���
���
���
���

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

p = 0.20 p = 0.50 p = 0.70 p = 0.90

Figure 4: Average turnaround time for small jobs tsa.

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��

��
��
��

BC:

BR-MMS:

BR:

BR-MS:

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��

.10

.20

.30

.40

.50

.60

.70

p = 0.20 p = 0.50 p = 0.70 p = 0.90

Figure 5: Average processor active ratio ra.



scheme ρ ra nl na tta tsa tma tla
BC 0.20 0.20 6 1.21 32.15 5.70 40.62 114.25
BR 0.20 6 0.46 30.97 5.52 39.16 109.77
BRMS 0.20 7 1.20 30.99 5.51 39.11 110.15
BRMMS 0.20 6 0.45 29.58 5.21 37.20 105.60

BC 0.50 0.49 18 3.64 91.09 17.33 115.54 317.90
BR 0.49 13 2.60 68.32 12.95 86.93 237.94
BRMS 0.49 17 3.78 78.78 15.64 99.75 272.78
BRMMS 0.49 12 2.30 48.93 9.47 61.25 172.04

BC 0.70 0.68 79 35.28 874.81 166.87 1097.78 3077.22
BR 0.69 26 7.21 177.75 34.23 224.62 620.55
BRMS 0.69 64 23.37 441.42 91.33 551.02 1531.94
BRMMS 0.69 23 5.39 94.78 20.10 118.61 326.51

BC 0.90 0.69 645 346.33 8713.93 1603.65 10955.74 30834.47
BR 0.85 123 62.48 1151.24 296.40 1952.93 5438.99
BRMS 0.82 357 202.71 3836.59 800.92 4830.35 13191.87
BRMMS 0.86 90 39.94 716.46 151.14 887.45 2490.94

Table 2: Some experimental results obtained in the second experiment.

tem performance, jobs should be allowed to run in
multiple time slots so that free resources can be more
efficiently utilised. However, simply running jobs in
multiple time slots cannot guarantee the improvement
of performance. The minimisation of average number
of time slots in the system has to be seriously consid-
ered.

5 Conclusions

One major drawback of using gang scheduling for
parallel processing is the problem of fragmentation.
A conventional way to alleviate this problem was to
allow jobs to run in multiple time slots. However, sim-
ply adopting this idea alone may cause several prob-
lems. The first obvious one is the increased system
scheduling overhead. This is because simply running
jobs in multiple time slots can greatly increase the av-
erage number of time slots in the system and then
the system time will be increased to manage a large
number of time slots. The second problem is the un-
fair treatment to small jobs. Long jobs will stay in
the system for relatively a long time and then have a
better chance to run in multiple time slots. However,
the system resources are limited and in consequence a
newly arrived short job may only obtain relatively a
very small portion of CPU utilisation. Another very
interesting point obtained from our experiment is that
simply running jobs in multiple time slots may not

solve the problem of fragmentation, but on the con-
trary it may eventually degrade the efficiency of sys-
tem resource utilisation.

With job re-packing we try to rearrange the order of
job execution on their originally allocated processors
to combine small fragments of available processors into
a larger and more useful one. Based on job re-packing
we can set up a workload tree to greatly improve the
performance for the buddy scheduling system. With
the workload tree we are able to simplify the search
procedure for resource allocation, to balance the work-
load across the processors and to quickly detect when
a job can run in multiple time slots and when the
number of time slots in the system can be reduced.
More importantly we are able to properly combine
the ideas of job re-packing, running jobs in multiple
time slots and minimising the average number of time
slots in the system together to reduce job turnaround
times and to enhance the efficiency of system resource
utilisation. Our experimental results show that this
combined allocation scheme, i.e., our fourth alloca-
tion scheme BRMMS can indeed improve the system
and job performance significantly. Because there is no
process migration involved, this scheme is particularly
suitable for clustered parallel computing systems.

It should be noted that in our experiment we as-
sumed that the memory space is unlimited and char-
acteristics of jobs are totally unknown. In practice,
however, the size of memory in each processor is lim-
ited. Thus jobs may have to come to a waiting queue



before being executed and large running jobs may have
to be swapped when the system becomes busy. Along
with the rapid development of high-performance com-
puting libraries characteristics of jobs may no longer
be considered completely unknown before being ex-
ecuted. These conditions will be considered in our
future research.

References

[1] A. B. Downey, A parallel workload model and its
implications for processor allocation, Proceedings

of 6th International Symposium on High Perfor-

mance Distributed Computing, Aug 1997.

[2] D. G. Feitelson, Packing schemes for gang
scheduling, In Job Scheduling Strategies for Par-

allel Processing, D. G. Feitelson and L. Rudolph
(eds.), Lecture Notes Computer Science, Vol.
1162, Springer-Verlag, 1996, pp.89-110.

[3] D. G. Feitelson and L. Rudolph, Distributed hier-
archical control for parallel processing, Computer,
23(5), May 1990, pp.65-77.

[4] D. G. Feitelson and L. Rudolph, Job scheduling
for parallel supercomputers, in Encyclopedia of
Computer Science and Technology, Vol. 38, Mar-
cel Dekker, Inc, New York, 1998.

[5] D. G. Feitelson and L. Rudolph, Gang scheduling
performance benefits for fine-grained synchroni-
sation, Journal of Parallel and Distributed Com-

puting, 16(4), Dec. 1992, pp.306-318.

[6] V. Lo, J. Mache and K. Windisch, A compara-
tive study of real workload traces and synthetic
workload models for parallel job scheduling, In
Job Scheduling Strategies for Parallel Processing,
D. G. Feitelson and L. Rudolph (Eds.), Lecture
Notes Computer Science, Vol. 1459, Springer-
Verlag, 1998, pp.25-46.

[7] J. K. Ousterhout, Scheduling techniques for con-
current systems, Proceedings of Third Interna-

tional Conference on Distributed Computing Sys-

tems, May 1982, pp.20-30.

[8] J. L. Peterson and T. A. Norman, Buddy systems,
Comm. ACM, 20(6), June 1977, pp.421-431.

[9] J. Skovira, W. Chan, H. Zhou and D. Lifka, The
EASY - LoadLeveler API project, In Job Schedul-

ing Strategies for Parallel Processing, D. G. Feit-
elson and L. Rudolph (Eds.), Lecture Notes Com-
puter Science, Vol. 1162, Springer-Verlag, 1996.

[10] K. Suzaki, H. Tanuma, S. Hirano, Y. Ichisugi and
M. Tukamoto, Time sharing systems that use a
partitioning algorithm on mesh-connected paral-
lel computers, Proceedings of the Ninth Interna-

tional Conference on Distributed Computing Sys-

tems, 1996, pp.268-275.

[11] B. B. Zhou, R. P. Brent, C. W. Johnson and
D. Walsh, Job re-packing for enhancing the per-
formance of gang scheduling, Proceedings of 5th

Workshop on Job Scheduling Strategies for Paral-

lel Processing, San Juan, April 1999, pp.129-143.


