
A Critique of ESPDror G. FeitelsonS
hool of Computer S
ien
e and Engineering,The Hebrew University, 91904 Jerusalem, Israel,feit�
s.huji.a
.il,WWW home page: http://www.
s.huji.a
.il/~feitAbstra
t. This note is an elaboratin of a panel presentation, and ismeant as a
onstru
tive
ritique of ESP. It should be remembered thatthe bottom line is that ESP is a big step in an important dire
tion |otherwise we wouldn't bother with this dis
ussion...1 Introdu
tionThe evaluation of parallel systems is very important, mainly for
ostly a
quisi-tion de
isions, and has therefore been pra
ti
ed for a long time. However, su
hevaluations typi
ally fo
us on the
omputational aspe
ts of the system. They typ-i
ally use a small set of ben
hmark appli
ations, and measure the performan
eof these appli
ations in isolation [2, 3, 7, 1℄. The results re
e
t the performan
eof the pro
essor, the memory hierar
hy, the inter
onne
tion network, and therelationship between these fa
tors.ESP is di�erent | it targets the system-level performan
e rather than thehardware [8℄. Issues in
lude the eÆ
ien
y of the s
heduling, its
exibility, andmundane details su
h as booting time. While this is a very wel
ome shift in fo
us,there are some potential problems that have to be addressed. The purpose ofthis note is to point them out.2 Good PointsThe most important point in ESP is the obje
tive of in
luding the system inthe evaluation. This should not be underestimated. Many large-s
ale parallelsystems,
osting tens of millions of dollars, su�er from very low utilization (e.g.[6℄). This is at least partly due to the fa
t that vendors emphasize single-jobperforman
e, and that is where they invest most of their development e�ort. Itis high time that system performan
e re
eive similar treatment.The way to measure system performan
e is to measure how the system per-forms under a representative workload. The
hoi
e of workload is
ru
ial, asdi�erent workloads
an lead to very di�erent performan
e results. It seems thatESP has made a very reasonable
hoi
e in this respe
t. The proposed workload
onforms to various features of workloads observed in produ
tion installations[4℄, in
luding

72{ The distribution of job sizes, whi
h is mostly powers of two, but not only{ The existen
e of a large varian
e in the distribution of runtimes{ The repetition of
ertain jobsThe size of the test | 82 jobs | is also a reasonable
ompromise betweenthe desire to have enough jobs to exer
ise the system s
heduler, and the need to
omplete the test in a reasonable time (a few hours).3 Debatable PointsWhile ESP is in general a very promising system-level ben
hmark, the details ofits de�nition
ontain some potential problems. Some of these originate from theattempt to bundle everything into a result that is expressed as a single number.3.1 The arrival patternThe ESP ben
hmark is
omposed of a set of 82 jobs. 80 of these jobs arrivein three bat
hes 10 minutes apart. While the set of jobs is �xed, their divisioninto these three bat
hes is randomized. The other two jobs are so-
alled \full
on�guration jobs" that require all the pro
essors in the system, and arrivelater.There are two problems with this arrival pattern. One is that essentially allthe jobs arrive at the beginning, within 20 minutes of a test that takes severalhours. In parti
ular, there is a distin
t possibility that towards the end of thetest the system will start to drain and utilization will drop. In a real setting,where jobs
ontinue to arrive, this would not happen.The se
ond problem is that the user feedba
k
y
le is missing. In real systems,users often do not submit additional work until their previous work is done. Thistends to automati
ally spread out the load, and redu
es the risk that the systemwill saturate; it is part of the on-line nature of real s
heduling work. EPS, onthe other hand, is
loser to o�-line s
heduling, with all jobs available (nearly) atthe outset.While these problems are very disturbing, there is no obvious way to solvethem. Changing the arrival pattern so as to spread the jobs out throughout thetest risks all sorts of intera
tions with the load, espe
ially
onsidering that thejobs have di�erent runtimes on di�erent platforms. A partial solution might beto ignore idle time at the end of the test, and not in
lude it in the utilizationmeasure. This at least redu
es the e�e
t of the system drainage towards the end.This idea is elaborated upon in Se
tion 3.4.3.2 In
luding booting the systemThe ESP metri
 of eÆ
ien
y
al
ulates the useful
omputation time as a fra
tionof the total runtime in
luding a system boot. This implies an expe
tation thatthe system will be booted every 82 jobs, whi
h is unreasonable and puts too

73mu
h emphasis on booting. It also gives vendors an oppportunity to improvetheir s
ore signi�
antly by redu
ing boot time, without any modi�
ations to thes
heduler, whi
h is more important for normal use.The
orre
t way to in
orporate booting time would be to estimate the MTTB| the mean time to boot. Systems with a high MTTB would add less of theboot time to the denominator of the metri
 formula. However, there is no easyway to estimate the MTTB of a system. It may therefore be preferable to leavebooting time as a separate metri
, rather than trying to in
orporate it into theeÆ
ien
y metri
.3.3 Features and restri
tionsThe de�nition of ESP makes spe
ial provisions for the full-
on�guration jobs:they are given higher priority, and must be run as soon as possible after beingsubmitted. This favors
omputers with the
apability to
he
kpoint
urrent jobs,be
ause they
an then make room for the full
on�guration jobs immediately.Computers la
king this
apability are for
ed to idle their nodes as they
olle
tthem when the
urrent jobs terminate. Ba
k�lling is deemed undesirable, as itmay a
tually delay the high-priority full-
on�guration jobs (even if the
onserva-tive version is used). As a side issue, even if ba
k�lling is used, it is not
lear whatruntime estimates should be given, as a

urate estimates are not ne
essarily thebest, but normal user estimates are worse [5℄.While favoring ma
hines with
he
kpoint and restart is reasonable for asystem-level metri
, the e�e
t in this
ase may be too extreme. A more bal-an
ed approa
h would be to �rst run the workload with no spe
ial requirements,and allowing all the features that exist in the s
heduler. Then a se
ond testwould be administered to see how well the system handles spe
ial requirements,su
h as the need to run
ertain jobs immediately. This would then be able touse spe
ialized metri
s, su
h as the waiting time of the high-priority jobs. Withthe
urrent eÆ
ien
y metri
, the advantage of
he
kpointing jobs in order torun the full
on�guration jobs immediately only has a se
ondary e�e
t on thes
ore, and might have pra
ti
ally no e�e
t if ba
k�lling is used. A system with-out
he
kpointing or preemption that
auses a high-priority job to wait shouldbe penalized by more than some added idle time.Finally, submitting the �rst full
on�guration job after all the others, andrequiring the se
ond to terminate within 90% of the test duration, are arti�
ialme
hanisms to ensure that the full
on�guration jobs are not pla
ed at the ends.The
ause of this problem is that the test length, only 82 jobs, may be too short.Alternative solutions are therefore to either enlarge the test, or use only a singlefull
on�guration job.3.4 Cal
ulating the s
oreThe ESP eÆ
ien
y metri
 is supposed to lie in the range [0; 1℄, with a value of1 representing the perfe
t s
ore. However, due to the impossibility of a perfe
tpa
king, a s
ore of 1 is unattainable (even if the booting time is not in
luded).

74In fa
t, the top possible s
ore is unknown, partly be
ause this also depends onthe runtimes of the jobs on the measured system and on the randomized orderin whi
h they are submitted.One way to ensure that a top s
ore of 1 is attainable is to ignore idle timeat the end of a s
hedule. Thus the denominator of the eÆ
ien
y metri
 will notbe P � T , but ratherPPi=1 Tpi , where Tpi is is the time from the start of the testto the last instant in whi
h pro
essor pi is used. With this de�nition, a largest-job-�rst algorithm that does not reuse any pro
essor on
e it is idled
an
reatea perfe
t pa
king, with all the idle time at the end. The problem is that this is avery wasteful s
hedule, and is based on avoiding any attempts for dense pa
king| exa
tly the opposite of what we want!To prevent su
h situations, it is possible to use a prede�ned s
heduling algo-rithm as the
omparison point. For example, we
an
hoose \most work �rst"(MWF), whi
h sorts the jobs a

ording to the produ
t of their runtime andnumber of pro
essors. Using this referen
e algorithm, we
al
ulate the IAE (idleat end) time as follows:IAEMWF = PXi=1 TMWF � TMWFpiwhere TMWF is the total time for the s
hedule generated by MWF, and TMWFpiis the last instant pro
essor pi is used under MWF. The eÆ
ien
y metri
 of ESPis then
al
ulated as P82j=1 pj � tjP � T � IAEMWFi.e. the IAE time
al
ulated for the referen
e algorithm is dedu
ted from thedenominator. This avoids the unfair penalty due to drainage at the end to somedegree. while it may happen that a superb s
heduling algorithm would
reate adense pa
king leading to a metri
 larger than 1, this is not very probable, andeven if it happens there is a good interpretation: the algorithm is better thanMWF.3.5 Using real appli
ationsThe question of using real vs. syntheti
 appli
ations is perhaps the hardest tosettle. Real appli
ations have the advantage of being good for
omprehensive sys-tem valuation, in
luding the pro
essor, the
ommuni
ations infrastru
ture, thememory hierar
hy, and so on. They really evaluate how all the system
ompo-nents work together, and foster a very wide interpretation for the word \system".However, due to the way in whi
h they intera
t with the hardware, realappli
ations are problemati
 if you want to evaluate the \system" in a morenarrow interpretation, namely the operating system
omponents su
h as thes
heduler. For example, the runtimes of di�erent jobs may be totally di�erent ondi�erent platforms, and even the relations between the jobs (whi
h is longer thanthe other) may
hange. Therefore s
hedulers on di�erent platforms are a
tually

75fa
ed with a di�erent workload when s
heduling the same real appli
ations! Ifyou want to
ompare only the s
hedulers, this will not do.It seems that in the
ase of ESP the
hoi
e of using real appli
ations is the
orre
t one. This is so for two reasons:{ ESP is designed to evaluate full system performan
e. This indeed in
ludesthe s
heduler, but is not limited to the s
heduler. Thus if the s
heduler on a
ertain platform bene�ts from the fa
t that
ertain jobs run faster on thatplatform, so be it | the platform is indeed better.{ Using syntheti
 appli
ations requires the ben
hmark designer to give answersto many hard questions, that are impli
itly hidden by the
hoi
e of job mix.These in
lude1. What should the memory requirements of the jobs be?2. What degree of lo
ality should they display?3. What should be the granularity of
ommuni
ations?4. What should be the patterns of
ommuni
ations?5. How mu
h I/O should the appli
ations perform?6. What should be the
orrelations among the above parameters?These questions should be answered based on a detailed workload analysis,whi
h is extremely hard to do. No real data about these issues exists to date.However, di�erent installations may opt to use di�erent sets of appli
ations thatare more representative of their lo
al workload. If this happens, ESP will be
omemore of a framework than a well-de�ned metri
.4 Con
lusionsIt seems that there are a number of points in the
urrent ESP de�nition thatshould be addressed. However, this
ritique should not be understood as sayingthat ESP is bad. On the
ontrary, it is a very signi�
ant �rst step in a veryimportant dire
tion. It is just that the problem of how to evaluate a
ompletesystems is a hard one, and
annot be expe
ted to be solved in one step.Referen
es1. D. H. Bailey, E. Barsz
z, L. Dagum, and H. D. Simon, \NAS parallel ben
hmarkresults". IEEE Trans. Parallel & Distributed Syst. 1(1), pp. 43{51, Feb 1993.2. G. Cybenko, L. Kipp, L. Pointer, and D. Ku
k, \Super
omputer performan
e eval-uation and the Perfe
t Ben
hmarks". In Intl. Conf. Super
omputing, pp. 254{266,Jun 1990.3. J. J. Dongarra, \Performan
e of various
omputers using standard linear equationssoftware". Comput. Ar
h. News 18(1), pp. 17{31, Mar 1990.4. A. B. Downey and D. G. Feitelson, \The elusive goal of workload
hara
terization".Perf. Eval. Rev. 26(4), pp. 14{29, Mar 1999.5. D. G. Feitelson and A. Mu'alem Weil, \Utilization and predi
tability in s
hedulingthe IBM SP2 with ba
k�lling". In 12th Intl. Parallel Pro
essing Symp., pp. 542{546,Apr 1998.

766. J. P. Jones and B. Nitzberg, \S
heduling for parallel super
omputing: a histori
alperspe
tive of a
hievable utilization". In Job S
heduling Strategies for Parallel Pro-
essing, D. G. Feitelson and L. Rudolph (eds.), pp. 1{16, Springer-Verlag, 1999.Le
t. Notes Comput. S
i. vol. 1659.7. J. P. Singh, W-D. Weber, and A. Gupta, \SPLASH: Stanford parallel appli
ationsfor shared-memory". Comput. Ar
h. News 20(1), pp. 5{44, Mar 1992.8. A. Wong, L. Oliker, W. Kramer, T. Kaltz, and D. Bailey, \System utilization ben
h-mark on the Cray T3E and IBM SP2". In Job S
heduling Strategies for ParallelPro
essing, D. G. Feitelson and L. Rudolph (eds.), p. 58{70, Springer Verlag, 2000.Le
t. Notes Comput. S
i. vol. 1911.

