
Improving Parallel Job Sheduling UsingRuntime MeasurementsFabriio Alves Barbosa da Silva1, Isaa D. Sherson1;21 Universit�e Pierre et Marie Curie, Laboratoire ASIM, LIP6, Paris, Frane.fabriio.silva�lip6.fr2 Information and Comp. Siene, University of California, Irvine, CA 92717 U.S.A.isaa�ui.eduAbstrat. We investigate in this paper the use of runtime measure-ments to improve job sheduling on a parallel mahine. Emphasis is ongang sheduling based strategies. With the information gathered at run-time, we de�ne a task lassi�ation sheme that is used to provide betterservie to I/O bound and interative jobs under gang sheduling throughthe utilization of idle times due to idle slots and bloked tasks and alsoby ontrolling the spinning time of a task as a funtion of the work-load on node. Simulation results are presented and show improvementsin both throughput and mahine utilization for a gang sheduler usingruntime information ompared with gang shedulers for whih this typeof information is not available.1 IntrodutionIn this paper we analyze the utilization of runtime information in parallel jobsheduling to improve throughput and utilization on a parallel omputer. Ourobjetive is to use information suh as number of I/O alls, duration of I/Oalls, number of messages arrived, number of messages sent, number of barriers,time spent in spinning while waiting for message/synhronization arrival andother information available as a funtion of the arhiteture in order to assoiatea spei� task in a given moment of time to one lass belonging to a set ofprede�ned lasses with the help of fuzzy sets and Bayesian estimators. Observethat the lassi�ation of a task may hange over time, sine we onsider, as in[2℄, that harateristis of jobs may hange during exeution.Some possible uses for the task lassi�ation information are, for instane,to deide whih task to shedule next, to deide what to do in the ase of anidle slot in gang sheduling, or to de�ne spinning time of a task as a funtionof the total workload on a proessor. One possible utilization of these oneptsis to give better servie to I/O bound jobs in gang sheduling, by using tasklassi�ation to identify I/O bound tasks in order to reshedule them in idleslots or if a gang sheduled task bloks itself. This approah is di�erent from theone proposed in Lee et al. [19℄ sine it does not interrupt running jobs.In this paper we will give emphasis to gang sheduling based strategies.Gang sheduling an be de�ned as follows: Given a job omposed of N tasks, in



gang sheduling these N tasks ompose a proess working set[21℄, and all tasksbelonging to this proess working set are sheduled simultaneously in di�erentproessors, i.e., gang sheduling is the lass of algorithms that shedule on thebasis of whole proess working sets. Gang sheduling allows both the time sharingas well as the spae sharing of the mahine, and it was originally introdued byOusterhout[21℄. Performane bene�ts of gang sheduling the set of tasks of ajob has been extensively analyzed in [16, 10, 13, 29℄ Paking shemes for Gangsheduling were analyzed in [9℄.In setion 2 we disuss some previous work in parallel/distributed job shedul-ing that onsiders the use of runtime information to modify sheduling-relatedparameters at runtime. Setion 3 presents the task lassi�ation mehanismbased on runtime information we use in this paper. How to use this informa-tion to improve throughput and utilization in parallel job sheduling through apriority omputation mehanism is disussed at setion 4. Setion 5 disusses theutilization of task lassi�ation information to ontrol spin time in order to givebetter servie to I/O bound and interative jobs in gang sheduling. Our exper-imental results are presented and disussed in setion 6 and setion 7 ontainsour �nal remarks.2 Previous WorkIn [1℄, Arpai-Dusseau, Culler and Mainwaring use information available at runtime (in this ase the number of inoming messages) to deide if a task shouldontinue to spin or blok in the pairwise ost bene�t analysis in the impliitosheduling algorithm.In [14℄, Feitelson and Rudolph used runtime information to identify ativityworking sets, i.e. the set of ativities (tasks) that should be sheduled together,through the monitoring of the utilization pattern of ommuniation objets bythe ativities. Their work an be onsidered omplementary to ours in the sensethat our objetive here is not to identify ativity working sets at runtime but toimprove throughput and utilization of parallel mahines for di�erent shedulingstrategies using suh runtime information.In [19℄, Lee et al., along with an analysis of I/O impliations for gang shed-uled workloads, presented a method for runtime identi�ation of gangedness,through the analysis of messaging statistis. It di�ers from our work in the sensethat our objetive is not to expliitly identify gangedness, but to provide a tasklassi�ation, whih may vary over time as a funtion of the appliation, whihan also be used to verify the gangedness of an appliation in a given momentof time among other possibilities.This paper is an extension of some of our previous work [24, 25℄ where wedesribe the Conurrent Gang sheduling algorithm. In this work we present amore robust task lassi�ation sheme, and we investigate new ways of providingbetter servie to I/O and interative appliations in gang sheduling, throughutilization of idle slots and idle time due to bloked tasks and by the variation



of the spinning time of a task, taking into aount the determination of the spintime information about other tasks.3 Task Classi�ation using Runtime informationAs desribed in the introdution, our objetive is the utilization of various run-time measurements, suh as I/O aess rates and ommuniation rates, to im-prove the utilization and throughput in parallel job sheduling. This is ahievedthrough a task lassi�ation sheme using runtime information. In this setionwe detail the task lassi�ation made by the operating system based on run-time measurements using fuzzy logi theory. A disussion of the utilization ofBayesian estimators to inrease the robustness of the �rst sheme based on fuzzylogi follows, and a \fuzzy" variation of the Bayesian estimator is presented.3.1 Task Classi�ationWe will use the information gathered at runtime to allow eah PE to lassify eahone of its alloated tasks into lasses. Examples of suh lasses are: I/O intensive,ommuniation intensive, and omputation intensive. Eah one of these lasses issimilar to a fuzzy set [30℄. A fuzzy set assoiated with a lass A is haraterized bya membership funtion fA(x) with assoiates eah task T to a real number in theinterval [0,1℄, with the value of fA(T ) representing the \grade of membership"of T in A. Thus, the nearer the value of FA(T ) to unity, the higher the gradeof membership of T in A, that is, the degree to whih a task belongs to a givenlass. For instane, onsider the lass of I/O intensive tasks, with its respetiveharateristi funtion fIO(T ). A value of fIO(T ) = 1 indiates that the taskT belongs to the lass I/O intensive with maximum degree 1, while a value offIO(x) = 0 indiates that the task T has exeuted no I/O statement at all.Observe the deterministi nature of grade of membership assoiations. It is alsoworth noting that the atual number of lasses used on a system depends on thearhiteture of the mahine.The information related to a task is gathered during system alls and ontextswithes. Information that an be used to ompute the grade of membership arethe type, number and time spent on system alls, number and destination ofmessages sent by a task, number and origin of reeived messages, and othersystem dependent data. These informations an be stored, for instane, by theoperating system on the internal data struture related to the task.When applying fuzzy sets for task lassi�ation, the value of f(T ) for a lassis omputed by the PE in a regular basis, at the preemption of the related task.As an example, let's onsider the I/O intensive lass. The exat way of omputingbeing system dependent, one way of doing the omputation is as follows: On eahI/O related system all, the operating system will store information related tothe all on the internal data struture assoiated to the task, and at the end ofthe time slie, the sheduler omputes the time spent on I/O alls in the previousslie. One possible way of omputing the grade of membership of a task based



on duration of system alls to the lass I/O intensive is to onsider an average ofthe time spent in I/O is made over the last N times where the task was sheduled(N an be, for instane, 3). This average determines the grade of membershipof a partiular task to the lass I/O intensive. As many jobs proeed in phases,the reason for using an average over the last N times a task was sheduled isdetetion of phase hange. If a task hanges from a I/O intensive phase to aomputation intensive phase, this hange should be deteted by the sheduler.In general, the omputation of the degree of membership of a task to the lassI/O intensive will always be a funtion of the number and/or duration of the I/Osystem alls made by the task. The same is valid for the ommuniation intensivelass; the number and/or duration of ommuniation statements will de�ne thegrade of membership of a task to this lass. For the lass omputing intensive,grade of membership will also be a funtion of system alls and ommuniationstatements, but in another sense: for a smaller the number of system alls andommuniations there is a inrease of the grade of membership of a given taskto the lass omputing intensive.In the next subsetion we present a more robust way for omputing the gradeof membership of a task related to a lass than the average over N slies presentedin this subsetion, through the use of Bayesian estimators.3.2 Task Classi�ation using Bayesian EstimatorsThe objetive of this setion is to introdue a more robust task lassi�ationmehanism than the one desribed in the last setion, whih is the average ofthe last N measurements, using elements of Bayesian deision theory. Bayesiandeision theory is a formal mathematial struture whih guides a deision makerin hoosing a ourse of ation in the fae of unertainty about the onsequenesof that hoie[17℄. In partiular we will be interested in this setion in de�ninga task lassi�er using a Bayesian estimator adapted to the fuzzy theory.A Bayesian model is a statistial desription of an estimation problem whihhas two main omponents. The �rst omponent, the prior model p(u) (this prob-ability funtion is also known as prior probability distribution) is a probabilistidesription of the world or its properties before any sense data is olleted.The seond omponent, the sensor model p(dju), is a desription of the noisyor stohasti proess that relate the original (unknown) state u to the sampledinput image or sensor values d. These two probabilisti models an be ombinedto obtain a posterior model, p(ujd) (posterior probability distribution), whih isthe probabilisti desription of the urrent estimate of u given the data d. Toompute the posterior model we use Bayes' rule:p(ujd) = p(dju)p(u)p(d) (1)where p(d) =Xu p(dju)p(u) (2)



The fuzzy version of equation 1 to ompute the grade membership of a taskT to a lass i as a funtion of measurement E an be written as[18℄:SE(i) = Si(E)fi(T )Pk1 Sj(E)fj(T ) (3)Where Sj(k) represents subsethood between two fuzzy sets j and k. In ourase Si(E) is the subsethood between the two fuzzy sets represented by mea-surement E on task T and lass i, that is, the grade of membership of task Trelative to lass i onsidering only the data gathered at measurement E. fi(T )is the grade of membership of task T relative to lass i before measurement E.SE(i) in our ase represents the grade of membership of task T relative to lassi after the measurement E and beomes fi(T ) in the next interval omputation.4 Sheduling Using Runtime measurementsIn this setion we will illustrate one possible use of task lassi�ation to improvesheduling in parallel mahines. Our emphasis here is to improve throughputand utilization of gang shedulers. Observe that the strategies desribed in thissetion an be applied to a large number of gang sheduler implementations,inluding traditional gang shedulers[3, 15℄ and distributed hierarhial ontrolshedulers [11, 12℄.We may onsider two types of parallel tasks in a gang sheduler: Those thatshould be sheduled as a gang with other tasks in other proessors and thosefor whih gang sheduling is not mandatory. Examples of the �rst lass aretasks that ompose a job with �ne grain synhronization interations [13℄ andommuniation intensive jobs[8℄. Seond lass task examples are loal tasks ortasks that ompose an I/O bound parallel job, for instane. On the other handa traditional UNIX sheduler does a good job in sheduling I/O bound taskssine it gives high priority to I/O bloked tasks when data beome availablefrom disk. As those tasks typially run for a small amount of time and thenblok again, giving them high priority means running the task that will takethe least amount of time before bloking, whih is oherent to the theory ofuniproessors sheduling where the best sheduling strategy possible under thesum of ompletion times is Shortest Job First [20℄( in [20℄ authors de�ne thesum of ompletion times as total ompletion time). Another example of jobswhere gang sheduling is not mandatory are embarrassingly parallel jobs. Asthe number of iterations among tasks belonging to this lass of jobs are small,the basi requirement for sheduling an embarrassingly parallel job is to givethose jobs the greater possible fration of CPU time, even in an unoordinatedmanner.Di�erentiation among tasks that should be gang sheduled and those forwhih a more exible sheduler is better is made using the grade of membershipinformation omputed by eah PE (as explained in the last subsetion) for eahtask alloated to a proessor. The grade of membership of the task urrently



sheduled is omputed at the next preemption of the task, and it is that in-formation that is used to deide if gang sheduling is mandatory or not for aspei� task.When using task lassi�ation information, the loal task sheduler on eahPE omputes a priority for eah task alloated to the PE. This priority de�nesif a task T is a good andidate for being resheduled if another task bloks orin ase of a idle slot. The priority of eah task is de�ned based on the grade ofmembership of a task to eah one of the major lasses desribed before. As anexample of the omputation of the priority of a task T in a PE we have:Pr(T ) = max(� � fIO; fCOMP ) (4)Where fIO; fCOMP are the grade for membership of task T to the lassesI/O intensive and Computation intensive. The objetive of the parameter � isto give greater priority to I/O bound jobs (� > 1). The hoies made in equation4 intend to give high priority to I/O intensive jobs and omputation intensivejob, sine suh jobs an bene�t the most from unoordinated sheduling. Themultipliation fator � for the lass I/O intensive gives higher priority to I/Obound tasks over omputation intensive tasks, sine those jobs have a greaterprobably to blok when sheduled than omputing bound tasks. By other side,ommuniation and synhronization intensive jobs have low priority sine theyrequire oordinated sheduling to ahieve eÆient exeution and mahine uti-lization[13, 8℄. A ommuniation intensive phase will reet negatively over thegrade of membership of the lass omputation intensive, reduing the possibilityof a task be sheduled by the loal task sheduler. Among a set of tasks of thesame priority, the loal task sheduler uses a round robin strategy. The loal tasksheduler also de�nes a minimum priority �. If no parallel task has priority largerthan �, the loal task sheduler onsiders that all tasks in the PE do intensiveommuniation and or synhronization, thus requiring oordinated sheduling.Observe that there is no starvation of ommuniation intensive jobs, as they willbe sheduled in a regular basis by the gang sheduler itself, regardless of thedeisions made by the loal task shedulers.Observe that the parameters � and � de�ne the bounds of the variation ofthe priority of a task in order to it be onsidered to resheduling, as stated inthe next proposition.Proposition 1. � � Pr(T ) � �, in order to a task be onsidered for reshedul-ing.Proof. � is the lower bound by de�nition. For the upper bound, observe thatfmaxIO = 1. So, as � > 1, the upper bound is �� 1 = �Simulations in [25℄ of a sheduling algorithm (Conurrent Gang) that usesa simpler version of the priority mehanism/task lassi�ation desribed herehave shown that the priority omputation has better performane than otheralgorithms that an be used to hoose the task that runs next, suh as roundrobin.



Interative tasks an be regarded as a speial type of I/O intensive task,where the task waits for a input from the user at regular intervals of time. Thesetasks also su�er under gang sheduling, and should have priority as I/O intensivetasks.5 Adjusting Spinning Time as a funtion of the workloadAnother parameter that an be adjusted in order to improve throughput of I/Obounds and interative jobs in gang sheduling is the spinning time of a task. Ourobjetive is to make hanges not only as a funtion of the runtime measurementsof the related job, but also onsidering other jobs where tasks are alloated tothe same proessor. We onsider that a typial workload will be omposed ofa mix of jobs of di�erent types and it is important to ahieve a ompromise inorder to give a good response for all types of jobs.The antiipated bloking of a job performing synhronization or ommuni-ation an bene�t those jobs that do not need oordinated sheduling, suh asI/O intensive and embarrassingly parallel. So the idea is to determine the spin-ning time of a task as a funtion of the workload alloated in a proessor. Forinstane, in a given moment of time if a proessor has many I/O intensive jobsalloated to it, this would have a negative impat in spinning time duration. Asdesribed in [1℄, a minimum spin time should be guaranteed in order to insurethat proesses stay oordinated if already in suh a state (baseline spin time).This minimum amount of time ensures the ompletion of the ommuniation op-eration when all involved proesses are sheduled and there is no load imbalaneamong tasks of the same job.Considering gang sheduling the spinning time of a task may vary betweena baseline spin time and a spin only state with no bloking. The main externalfator that will have inuene in the variation of the spin time is the numberof interative and I/O bound tasks in the workload alloated to one proessor.A large number of these tasks would imply a smaller spinning time, in order touse the remaining time until the next global preemption to shedule those tasks,providing better servie to I/O bound and interative tasks. The algorithm wepropose to set up the spinning time as a funtion of the workload on a given PEfor a gang sheduling based algorithm is as follows: If there is one or more tasksin a PE lassi�ed as I/O intensive or interative, a task doing ommuniationwill blok just after the baseline spin time if the two following onditions aresatis�ed:{ At least one of the tasks lassi�ed as interative or I/O bound is ready{ There is a minimum amount of time Æ between the end of baseline and thenext ontext swith epoh.If any of the two onditions are not satis�ed the task doing ommuniationwill spin until reeiving the waited response. The Æ time is a funtion of theontext swith time of the mahine. Given , the ontext swith time of themahine, it is lear that Æ > . We an de�ne that Æ > 2�, in order to give the



job at least the same amount of CPU time that the system will spend in ontextswith. In our experiments we empirially de�ne it as being 4 times the averageamount of time required for a ontext swith.If both onditions are satis�ed, the tasks will spin for a time orrespondingto the baseline spin time, and if no message is reeived the task bloks and theI/O bound or interative task an be sheduled. The reason of minimizing thespinning time is the need of I/O and interative tasks to reeive better servie ingang sheduling, and the fat that in gang sheduling tasks are oordinated dueto the sheduling strategy itself; so an appliation with no load imbalanes wouldneed only the time orresponding the baseline to omplete the ommuniation.The ontrol of spin time using task lassi�ation information is another meh-anism available to the sheduler to provide better servie to I/O bound and inter-ative jobs under gang sheduling along with the priority omputation desribedin the previous setion. Observe that the spin time ontrol as a funtion of theworkload is always used in onjuntion with the priority mehanism desribedin setion 4.6 Experimental ResultsIn this setion we present some simulation results that ompares the performaneof a gang sheduler that uses the algorithms desribed in setions 4 and 5 withanother gang sheduler without suh mehanisms, both of them using the samepaking strategy (�rst �t). The implementation of gang sheduler used in thissetion is a simple one; our objetive is to measure the bene�ts of using runtimemeasurements and task lassi�ation information by omparing a given shedulerthat makes use of runtime information with another one that does not onsider it.First we desribe our simulation methodology, and then we present and ommentthe results obtained in our simulations.6.1 Simulation MethodologyTo perform the atual experiments we used a general purpose event driven sim-ulator being developed by our researh group for studying a variety of problems(e.g., dynami sheduling, load balaning, et). This simulation was �rst de-sribed in [23℄ and for the experiments of this setion we used an improvedversion that supports the hange of the spinning time of a task during a simu-lation.We have modeled in our simulations a network of workstations onneted bya network haraterized by LogP[6, 5℄ parameters. The LogP parameters orre-sponds to those of a Myrinet network, and they were the similar to the ones usedin [1℄, with Lateny being equal to 10 �s, and overhead to 8.75 �s. We de�nedthe baseline spin time as being equal to a request-response message pair, whihin the LogP model is equal to 2L+4o. Therefore, the baseline time is equal to55 �s. The number of proessors onsidered were 8 and 16. I/O requests of ajob were direted to the loal disk of eah workstation, and onseutive requests



were exeuted on a �rst ome �rst serve basis. Quantum size is �xed as beingequal to 200 ms and ontext swith time equal to 200 �s.The values of the � and � parameters used for simulations were � = 2 and� = 0:3. As stated in proposition 1 the priority should vary inside the boundsde�ned by � and � in order to a task be onsidered to reshedule.For de�ning job inter arrival, time, job size and job duration we used astatistial model proposed in [7℄. This is model of the workload observed on a 322-node partition of the Cornell Theory Center's IBM SP2 from June 25, 1996 toSeptember 12,1996. The model is based on �nding Hyper-Erlang distributions ofommon order that math the �rst three moments of the observed distributions.As the harateristis of jobs with di�erent degrees of parallelism di�er, the fullrange of degrees of parallelism is �rst divided into subranges. This is done basedon powers of two. A separate model of the inter arrival times and the servietimes (runtimes) is found for eah range. The de�ned ranges are 1, 2, 3-4, 5-8,9-16, 17-32, 33-64, 65-128, 129-256 and 257-322. For the simulations for a 16proessors mahine we used 5 ranges, and for a 8 proessors mahine 4 ranges.The time unit of the parameters found in [7℄ was seonds, and the duration ofall simulations was de�ned as being equal to 50000 seonds. A number of jobsare submitted during this period in funtion of the inter arrival time, but notneessarily all submitted jobs are ompleted by the end of simulation. A longtime was hosen in order to minimize the inuene of start-up e�ets.In order to avoid the saturation of the mahine, we limited the number oftasks that an be alloated to a node at a given moment of time to 10. If a jobarrives and there is no set of proessors available with less than 10 tasks alloatedto them, the task waits until the required number of proessors beome available.We use a mix of four types of syntheti appliations in our experiments:{ I/O - This job type is omposed of bursts of loal omputations followed bybursts of I/O ommands, as represented in �gure 1. This pattern reets theI/O properties of many parallel programs, where exeution behavior an benaturally partitioned into disjoint intervals, eah of whih onsist of a singleburst of I/O with a minimal amount of omputation followed by a singleburst of omputation with a minimal amount of I/O [22℄. The interval om-posed of a omputation burst followed by an I/O burst are know as phases,and a sequene of onseutive phases that are statistially idential are de-�ned as a working set. The exeution behavior of an I/O bound program istherefore omprised as a sequene of I/O working sets. This general model ofprogram behavior is onsistent with results from measurement studies [26,27℄. The time duration of the I/O burst was equal to 100 ms in average. Theratio of the I/O working set used in simulations was 1/1, that is, for a burstof 100 ms of I/O there was a burst of 100 ms of omputation in average.Observe that I/O requests from di�erent jobs to the same disk are queuedand served by arrival order.{ Embarrassingly parallel - In this kind of appliation onstituent proesseswork independently with a small amount or no ommuniation at all a-



mong them. Embarrassingly parallel appliations require fair sheduling ofthe onstituent proesses, with no need for expliit oordinated sheduling.{ Msg - In this type of syntheti appliation we model message passing job-s, where messages are exhanged between two proesses hosen at random.Eah proess sends or reeives a message every 10 ms in average. The om-muniation semantis used here were the same of the PVM system[4℄, that is,asynhronous sends and bloking reeives. For the modi�ed version of gangsheduler, the one that inorporates spin ontrol and priority omputation,the spinning time of the reeive all will be de�ned by the spin ontrol meh-anism desribed in setion 5. The pure gang sheduler only implements thespin only mehanism, sine the original gang shedulers do not know whatto do if a task bloks.{ BSP - This type of appliation models Bulk Synhronous Parallel (BSP)style jobs[28℄, where there is a sequene of supersteps, eah superstep be-ing omposed of a mix of omputation/ommuniation statements, with allproesses being synhronized between two supersteps. In this type of appli-ations, there is a synhronization all every 50 ms (in average) and all om-muniation/omputation generated previous to the barrier all is ompletedbefore the job proeeds in the next omputation/ommuniation superstep.Again, there is a spin time assoiated with the barrier and ommuniationalls.
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Fig. 1. I/O bound job with one I/O working setIn all simulations, the same sequene of jobs were submitted to both a Gangsheduler with the priority omputation and spin time ontrol mehanisms de-sribed in setion 4 and 5 and another gang sheduler without suh mehanisms.A di�erent sequene is generated for eah experiment. The paking strategy was�rst �t without thread migration. Eah workload was omposed of a mix of the4 types of jobs previously de�ned:



{ IO- This workload was omposed of I/O bound jobs only. As I/O boundjobs su�er under gang sheduling, this workload was simulated in order toevaluate the performane impat of the modi�ed gang sheduler if omparedto a traditional gang sheduler.{ IO/Msg - This workload was omposed of a mix of IO and Msg jobs. At eahjob arrival, the job type was hosen aording with a uniform distribution,with a probability of 0.5 to both jobs{ IO/BSP - As in the previous workload, both job types had the same prob-ability of being hosen at eah job arrival.{ IO/Msg/Embarrassingly - Sine the priority mehanisms intends to give bet-ter servie to I/O bound and Compute intensive bounds, we inluded theEmbarrassingly parallel type in the IO/Msg workload, to verify is there isany improvements in throughput due to the inlusion of omputing intensivejobs.{ IO/BSP/Embarrassingly - Same ase for the IO/BSP workload. As in pre-vious ases, at eah job arrival all three job types have equal probability tobe hosen.{ Emb/Msg and Emb/BSP - These workloads were added to evaluate theimpat of the priority mehanism over workloads that do not inlude I/Obound jobs. They are omposed of Embarrassingly parallel jobs with Msgand BSP job types respetively. In this ase the spin ontrol is not ativatedsine it is oneived to provide better servie to I/O bound and interativetasks only, as these are the type of jobs that have poor performane undergang sheduling.A seond set of experiments were performed using the workloads IO/BSPand IO/Msg to ompare the performane of a gang sheduler with both thepriority omputation and spin ontrol mehanisms with another gang shedulerhaving only the priority ontrol mehanism in order to evaluate the impat ofthe spin ontrol in the results presented.6.2 Simulation ResultsSimulations results for the IO workload are shown in �gure 2. In the utilizationolumn, the mahine utilization (omputed as a funtion of the total idle time ofthe mahine on eah simulation) of the modi�ed gang sheduler was divided bythe mahine utilization of the non-modi�ed version of the gang sheduler. In thethroughput olumn, the throughput of the modi�ed gang sheduler (The numberof jobs ompleted until the end of the simulation, 50000 seonds) is divided by thethroughput in the original gang. We an see a very signi�ant improvement of themodi�ed gang over the original gang sheduler, due to the priority mehanism.To explain the reason of suh improvement, tables 1 and 2 show the atualresults of simulations for 8 and 16 proessors mahines under the I/O boundworkload. In [22℄ , Rosti et al. suggest that that the overlapping of the I/Odemands of some jobs with the omputational demands of other jobs may o�era potential improvement in performane. The improvement shown in �gure 2 is



due to this overlapping. The detetion of I/O intensive tasks and the immediatesheduling of one of these tasks when another task doing I/O bloks results in amore eÆient utilization of both disk and CPU resoures. As we onsider an I/Oworking set omposed by a burst of 100 ms of omputation followed by anotherburst of 100 ms of I/O, the sheduler implementing the priority mehanismalways tries to overlap the I/O phase of a job with the omputation phase ofanother, whih explains the results obtained. In the ideal ase, the shedulingstrategy will be able to interleave the exeution of appliations suh that the ratioof the per-phase omputation and I/O requirements is maintained very lose to1, thus ahieving a total overlapping of omputation and I/O. For this workload,sine the utilization of the mahine is doubled by using runtime information, wean onlude that the overlap of I/O phase is almost 100%, sine the durationof the I/O phase is in average equal to the duration of the omputation phaseand the utilization obtained for the gang sheduler without runtime informationis due only to the omputation phase. The di�erenes between throughput andutilization are due to long-running jobs that have not yet ompleted by theend of the simulation (50000 seonds). Another interesting point is that, in bothmahines, about half of the ompleted jobs were 1 task jobs, sine a large amountof jobs generated by the workload model were 1 task jobs.
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Fig. 2. I/O bound workload with one I/O working setTable 1. Experimental results - I/O intensive workload - 8 Proessors8 Proessors Jobs Completed Utilization (%)With Runtime Information. 60 84Without Runtime Information 40 42



Table 2. Experimental results - I/O intensive workload - 16 Proessors16 Proessors Jobs Completed Utilization (%)With Runtime Information. 55 84Without Runtime Information 36 43For the IO/Msg workload, results are shown in �gure 3. Again, the mod-i�ed gang ahieved better results for both throughput and utilization. SineGang shedulers have good performane for ommuniation bound jobs, the im-provement due the utilization of runtime measurements and task lassi�ation issmaller if ompared to the results obtained for the IO workload, as the mahineutilization of the gang sheduler without runtime information is better in thisase if ompared to the results related to the previous workload. Tables 3 and4 show the absolute mahine utilization for the experiments using the IO/Msgworkload. As the mahine utilization for the regular gang sheduler is around60%, an improvement in utilization as observed with the IO workload is no longerpossible.
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Fig. 3. IO/Msg workloadTable 3. Experimental results - IO/Msg workload - 8 Proessors8 Proessors Jobs Completed Utilization (%)With Runtime Information. 50 82Without Runtime Information 43 63Results for the IO/Msg/Emb workload are shown in �gure 4. The greaterexibility of the modi�ed gang algorithm to deal with I/O intensive and embar-



Table 4. Experimental results - IO/Msg workload - 16 Proessors16 Proessors Jobs Completed Utilization (%)With Runtime Information. 53 79Without Runtime Information 40 62
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Fig. 4. IO/Msg/Emb workloadrassingly parallel jobs results in an inrease in throughput and utilization. It isworth noting, however, that the inuene of idle time due to I/O bound jobs isredued, with the regular gang sheduler having even better mahine utilizationif ompared to results for the IO/Msg workload, as shown in tables 5 and 6.Table 5. Experimental results - I0/Msg/Emb workload - 8 Proessors8 Proessors Jobs Completed Utilization (%)With Runtime Information. 47 83Without Runtime Information 40 72When we substitute the Msg workload for the BSP workload in the previ-ous experiments, results are similar in both relative and absolute values. Thereason is that both types of jobs are ommuniation/synhronization inten-sive, taking advantage of the gang sheduling strategy. Results for IO/BSP andIO/BSP/Emb workloads are shown in �gures 5 and 6 respetively. As in pre-vious ases, there is improvement over the gang sheduler without the priorityomputation and spin ontrol mehanisms in both utilization and throughput.Again, the ombination of the priority and spin ontrol mehanisms explains thebetter results obtained by the sheduler using runtime measurements for bothworkloads.To evaluate the impat of the spin ontrol mehanism in the total perfor-mane of the modi�ed gang sheduler, we ompared the performane between
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Fig. 5. IO/BSP workload
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Fig. 6. IO/BSP/Emb workload
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Fig. 7. Evaluation of the spin ontrol mehanism - IO/BSP workload



Table 6. Experimental results - IO/Msg/Emb workload - 16 Proessors16 Proessors Jobs Completed Utilization (%)With Runtime Information. 61 81Without Runtime Information 51 70a modi�ed gang with both the priority and spin ontrol mehanisms and otherversion of the modi�ed gang where only the priority omputation was ative.Results for workloads IO/Bsp and IO/Msg are shown in �gures 7 and 8 respe-tively. In �gures 7 and 8 the performane of the sheduler with spin ontrol andpriority mehanism is divided by the performane of the gang sheduler with thepriority omputation only. The gain in throughput is due to the better servieprovided to I/O bound jobs, while in utilization gang sheduling with only thepriority mehanism has slightly better performane. This an be explained bythe fat the I/O bound jobs run for some time and then blok again, while BSPand Msg jobs keep spinning and runs again after reeiving the message. As saidbefore, the objetive of the spin ontrol mehanism is to ahieve a ompromise inorder to have a better performane for I/O intensive tasks, beause these taskssu�er under gang sheduling. In gang sheduling with spin ontrol and priority,this ompromise is ahieved by given a better a servie to I/O bound jobs, havingas onsequene a redution in the spin time of synhronization/ommuniationintensive tasks.
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Fig. 8. Evaluation of the spin ontrol mehanism - IO/Msg WorkloadTo evaluate the performane impat for workloads with no I/O intensive jobs,we have simulated two workloads omposed of embarrassingly parallel jobs withMsg and BSP jobs respetively. Comparative results are displayed in �gures 9and 10. Sine gang sheduling has a good performane for both synhronizationand ommuniation intensive jobs, the improvement is redued if ompared to



the previous workloads. Observe that the performanes of both the regular gangsheduler and the gang sheduler using runtime information are quite similar.The main improvement in these ases is in utilization and its due mainly to thesheduling of tasks belonging to embarrassingly parallel jobs on idle slots in theOusterhout matrix[21℄, that is, those time slies where a proessor do not has aparallel task to shedule.
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Fig. 9. Emb/Msg workload
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Fig. 10. Emb/BSP workload7 ConlusionIn this paper we present some possible uses of runtime measurements for im-proving throughput and utilization in parallel job sheduling. We believe that
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