
E�ect of Job Size Characteristics

on Job Scheduling Performance

Kento Aida

Department of Computational Intelligence and Systems Science,

Tokyo Institute of Technology

4259, Nagatsuta, Midori-ku, Yokohama-shi 226-8502, JAPAN

phone: +81-45-924-5168 fax: +81-45-924-5165

E-mail: aida@dis.titech.ac.jp

Abstract

A workload characteristic on a parallel computer de-

pends on an administration policy or a user commu-

nity for the computer system. An administrator of

a parallel computer system needs to select an ap-

propriate scheduling algorithm that schedules mul-

tiple jobs on the computer system e�ciently. The

goal of the work presented in this paper is to inves-

tigate mechanisms how job size characteristics a�ect

job scheduling performance. For this goal, this pa-

per evaluates the performance of job scheduling algo-

rithms under various workload models, each of which

has a certain characteristic related to the number

of processors requested by a job, and analyzes the

mechanism for job size characteristics that a�ect job

scheduling performance signi�cantly in the evalua-

tion. The results showed that: (1) most schedul-

ing algorithms classi�ed into the �rst-�t scheduling

showed best performance and were not a�ected by

job size characteristics, (2) certain job size charac-

teristics a�ected performance of priority scheduling

signi�cantly. The analysis of the results showed that

the LJF algorithm, which dispatched the largest job

�rst, would perfectly pack jobs to idle processors at

high load, where all jobs requested power-of-two pro-

cessors.

1 Introduction

Space sharing is one of the job scheduling strategies

that are often used on large-scale parallel comput-

ers. For instance, in pure space sharing among rigid

jobs, a submitted job requests a certain number of

processors, and a job scheduler dispatches the job

to idle processors. Here, the number of processors

that execute the job is the same as that requested

by the job. A job scheduler needs to select a job to

dispatch in appropriate order so as to execute multi-

ple jobs e�ciently. Many job scheduling algorithms,

e.g. conventional FCFS (First Come First Served),

LJF [1], Back�lling [2, 3], Scan [4], etc., have been

proposed, and performance of these algorithms have

been evaluated.

Many previous performance evaluation works as-

sumed that characteristics of parallel jobs, or a paral-

lel workload, followed a simple mathematical model.

However, recent analysis of real workload logs, which

are collected from many large-scale parallel comput-

ers in production use, shows that a real parallel work-

load has more complicated characteristics [5, 6, 7, 8].

For instance, (1) a percentage of small jobs, which re-

quest small number of processors, is higher than that

of large jobs, which request a large number of pro-

cessors, (2) a percentage of jobs that request power-

of-two processors is high, etc.

These job characteristics seem to a�ect job

scheduling performance. Particularly, the e�ect of

job size characteristics seems to be strong in pure

space sharing among rigid jobs. Many researchers in-

vestigated performance of job scheduling algorithms

under more realistic workloads, which have above

job size characteristics [5, 6, 7, 9]. For instance, Lo,

Mache and Windisch compared performance of job

scheduling algorithms under various workload mod-

els. They showed that the ScanUp algorithm [4]

performed well, or increased processor utilization, as

the proportion of jobs requesting power-of-two pro-

cessors in the workload increased. However, mecha-

nisms how the job size characteristics a�ect perfor-

mance of job scheduling algorithms have not yet been

clear.

This paper presents performance evaluation of job

scheduling algorithms under various workload mod-

els, each of which has a certain characteristic re-

lated to the number of processors requested by a

1

job. The goal of the work presented in this paper

is to investigate mechanisms how the job size char-

acteristics a�ect job scheduling performance. For

this goal, this paper also analyzes the mechanism for

job size characteristics that a�ected job scheduling

performance signi�cantly in the evaluation. First,

this paper shows �ve workload models used in the

performance evaluation. Each model has a single

characteristic for job size. For instance, a percent-

age of small jobs is high in one workload model,

and all jobs request power-of-two processors in the

other one. Because a real workload has a combi-

nation of the multiple characteristics, the workload

models in this paper are not suitable to investigate

practical performance of job scheduling algorithms.

However, it is meaningful to investigate the e�ect by

the individual characteristic on job scheduling per-

formance in order to investigate the mechanisms how

the job size characteristics a�ect job scheduling per-

formance. Next, the paper classi�es job scheduling

algorithms into three groups by techniques mainly

used in the algorithms. These groups are FCFS,

priority scheduling and �rst-�t scheduling. Finally,

the paper shows performance evaluation results by

simulation and analyzes the result that showed most

signi�cant change. The evaluation results showed

that: (1) most scheduling algorithms classi�ed into

the �rst-�t scheduling showed best performance and

were not a�ected by job size characteristics, (2) cer-

tain job size characteristics a�ected performance of

priority scheduling signi�cantly. The analysis of the

results showed that the LJF algorithm, which dis-

patched the largest job

1

�rst, would perfectly pack

jobs to idle processors at high load, where all jobs

requested power-of-two processors.

Generally, a workload characteristic on a parallel

computer depends on an administration policy or a

user community. An administrator of a parallel com-

puter needs to select an appropriate scheduling algo-

rithm that schedules multiple jobs on the computer

e�ciently. The results in this paper will be useful in-

formation for administrators of parallel computers.

The rest of the paper is organized as follows. Sec-

tion 2 gives a job scheduling model including work-

load models assumed in this paper. Section 3 de-

scribes job scheduling algorithms evaluated in the

paper. Section 4 presents and discusses performance

evaluation results. Finally, Section 5 presents con-

clusions and future work.

1

The largest job indicates the job that requests the largest

number of processors.

2 Job Scheduling Model

This section gives a job scheduling model including

workload models assumed in this paper.

2.1 Parallel Computer

A parallel computer assumed in this paper is a multi-

processor system that consists of m processors. The

processors are connected equally by a crossbar switch

network or a multistage interconnection network.

Thus, this paper assumes that locations of proces-

sors that execute a single job a�ect the execution

time of the job negligibly, and that the locations of

other jobs executed on the computer a�ect the exe-

cution time of the job negligibly too.

2.2 Job Scheduler

Figure 1 illustrates a model of a job scheduler as-

sumed in this paper. In the �gure, a job submitted

by a user arrives at the shared job queue, and the job

scheduler obtains the number of processors requested

by the job (job size)

2

. No other information is given

to the job scheduler.

The job scheduler gathers status of processors, idle

or busy, and dispatches a job in the shared job queue

to idle processors. Here, there are two policies to ex-

ecute a job. In the �rst policy, a job scheduler dis-

patches a job to S processors and guarantee the job

to be executed on S processors until its completion.

Here, S denotes job size. In the second policy, a job

scheduler does not guarantee the job to be executed

on S processors, that is, the number of processors to

execute the job depends on a congestion level of jobs

on the parallel computer. A job executed in the �rst

policy is called a rigid job [10]. In this paper, all jobs

that arrive at the shared job queue will be executed

as rigid jobs.

2.3 Workloads

A job assumed in this paper has three parameters:

(1) the number of processors that a job requests, or

job size, (2) execution time and (3) arrival time.

2.3.1 Job Size

Recent analyses of real workload logs, which are col-

lected from many large-scale parallel computers in

production use, show that job size in real parallel

workloads has following characteristics [5, 6, 7, 8]:

2

This paper assumes that job size is speci�ed by a user.

2

Job Scheduler
PE

PE

PE

PE
Jobi

A Job Scheduler
dispatches a job
to the requested
number of
processors using
a certain
scheduling
algorithm

A Job arrives

status of
processors

A Job finishes
shared job
queue

PE
Jobj

Jobm is executed
on 3 processors

Jobn is executed
on 2 processorsJob Number of

 requested PE's
Jobi 5
Jobj 8
 : :
Jobm 3
Jobn 2
 : :

Figure 1: A Model for a Job Scheduler

(1) A percentage of small jobs, which request a

small number of processors, is higher than that

of large jobs, which request a large number of

processors.

(2) A percentage of jobs that request power-of-two

processors is high.

(3) A percentage of jobs that request square of n

processors is high.

(4) A percentage of jobs that request multiples of

10 processors is high.

In order to discuss an e�ect of each characteris-

tic on job scheduling performance, this paper uses

following workload models in the performance eval-

uation. Each model is distinguished from others by

distribution of job size. These models except the

Uniform model were created from the Feitelson 1996

Model [5, 8].

(a) Uniform model

Job size is an integer that follows the Uniform

distribution within the range [1,m]. This model

is very simple synthetic model that used in many

previous performance evaluation works.

(b) Harmonic model

Job size is an integer that follows the Harmonic

distribution within the range [1,m]. The proba-

bility that jobsize = n is proportional to 1=n

1:5

.

This model represents the job size characteristic

(1) in the above.

(c) Power2 model

Job size is an integer that is calculated by 2

k

within the range [1,m]. (k is an integer.) The

probability of each value is uniform. This model

represents the job size characteristic (2).

(d) Square model

Job size is an integer that is calculated by k

2

within the range [1,m]. (k is an integer.) The

probability of each value is uniform. This model

represents the job size characteristic (3).

(e) Multi10 model

Job size is an integer that is calculated by 10 � k

within the range [1,m]. (k is an integer.) The

probability of each value is uniform. This model

represents the job size characteristic (4).

2.3.2 Execution Time

Execution time of a job follows the 3 Stage Hyper-

exponential Distribution, which is de�ned in the Fei-

telson 1996 Model, in all workload models.

2.3.3 Arrival Time

Job arrival is assumed to be Poisson in all workload

models. This paper represents a congestion level of

jobs on a parallel computer by load, which is de�ned

by the following formula.

load =

� � p

m � �

3

Table 1: A Summary of Job Scheduling Algorithms

algorithm technique

priority �rst-�t

FCFS no no

LJF yes no

SJF yes no

FCFS/First-Fit no yes

LJF/First-Fit yes yes

SJF/First-Fit yes yes

Here, � denotes an arrival rate of a job, and � indi-

cates mean service rate on a parallel computer, that

is, 1=� represents mean execution time of a job. Also,

p and m denote mean job size in a workload and the

number of processors on a parallel computer respec-

tively.

3 Job Scheduling Algorithm

This section describes job scheduling algorithms

evaluated in this paper. This paper classi�es job

scheduling algorithms into three groups by tech-

niques mainly used in the algorithms. These groups

are FCFS, priority scheduling and �rst-�t scheduling.

Table 1 summarizes classi�cation of the algorithms,

and details of the algorithms are as follows.

3.1 FCFS

FCFS (First Come First Served) is a simple and con-

ventional algorithm. In the FCFS scheduling, a job

scheduler dispatches a job at the top of a shared job

queue to idle processors whenever enough idle pro-

cessors to execute the job are available.

3.2 Priority Scheduling

Scheduling algorithms classi�ed into the priority

scheduling give certain priority to each job in a

shared job queue and dispatches the job with highest

priority to idle processors. This paper evaluates two

algorithms classi�ed into this groups: LJF (Largest

Job First) and SJF (Smallest Job First). Both algo-

rithms give each job a priority that is calculated by

the job size. From an implementation point of view,

a job scheduler sorts jobs in a shared job queue by the

job size, and then dispatches a job at the top of the

shared job queue to idle processors whenever enough

idle processors to execute the job are available. The

LJF sorts jobs to the non-increasing order, that is a

job scheduler dispatches the largest job, the job with

the largest job size, �rst. On the other hand, the

SJF sorts jobs to the non-decreasing order, or a job

scheduler dispatches the smallest job �rst.

LJF [1], Scan [4] and Subhlok96 [6] can be clas-

si�ed into this group, because a job scheduler dis-

patches the largest/smallest job �rst in these algo-

rithms.

3.3 First-Fit Scheduling

Scheduling algorithms classi�ed into the �rst-�t

scheduling dispatch jobs in a �rst-�t manner, or a

job scheduler searches jobs in a shared job queue

and dispatches the �rst job for which enough idle

processors are available. This paper evaluates three

algorithms classi�ed into this group: FCFS/First-

Fit, LJF/First-Fit and SJF/First-Fit. In the

FCFS/First-Fit, a job scheduler searches jobs in a

shared job queue from the top to the bottom, and dis-

patches the �rst job with job size that is not greater

than the number of idle processors.

The LJF/First-Fit and the SJF/First-Fit use tech-

niques both in the priority scheduling and in the �rst-

�t scheduling. In the LJF/First-Fit, a job scheduler

sorts jobs in a shared job queue to the non-increasing

order of job size, and then dispatches jobs in the

same way as FCFS/First-Fit. The SJF/First-Fit dis-

patches job in the same way as the LJF/First-Fit

except that a job scheduler sorts jobs to the non-

decreasing order of job size.

Back�lling [2, 3], FCFS-�ll [11], LSF-RTC [2] and

FPFS [12] can be classi�ed into this group.

4 Performance Evaluation

This section shows simulation results to evaluate

performance of job scheduling algorithms under the

workload models described in Section 2. The simu-

lation model follows the model described in Section

2. Here, the number of processors on a parallel com-

puter, or m, is 128, and maximum execution time of

a job is limited to 12 hours. Scheduling overhead is

assumed to be negligible.

Performance of job scheduling algorithms is mea-

sured by two metrics: processor utilization and slow-

down ratio. Processor utilization is the percent-

age that processors are busy over entire simulation.

Slowdown ratio, SR, shows normalized data for mean

response time, and it is derived by the following for-

mula [9].

SR =

T

mean response

T

mean execution

(1)

Here, T

mean response

and T

mean execution

denote

mean response time of a job and mean execution

4

time of a job respectively. For instance, let us sup-

pose that 10000 jobs were executed in an experiment.

The mean response time of these 10000 jobs was 5

hours, and their mean execution time on processors

was 2 hours. Then, the slowdown ratio is 2.5.

Job scheduling algorithms evaluated by the simu-

lation are those in Table 1 and Back�lling [2, 3]. The

Back�lling is a similar algorithm to the FCFS/First-

Fit except that it dispatches jobs in a more conserva-

tive way. In the Back�lling, a job scheduler estimates

the time when a job waiting at the top of a shared

job queue will be dispatched, and then dispatches

other waiting jobs for which enough idle processors

are available, so long as they do not delay the start

time of the waiting job at the top of the shared job

queue

3

. The Back�lling can not be performed in the

job scheduling model described in Section 2 because

a job scheduler needs to obtain execution time of

each job in advance

4

. However, this paper assumes

that a job scheduler under the Back�lling obtains

execution time of each job when a job arrives, and

shows results for the Back�lling in order to see di�er-

ence between the performance of the Back�lling and

that of the FCFS/First-Fit. In addition, scheduling

performed by the SJF/First-Fit is same as that by

the SJF. Thus, results of the SJF/First-Fit are omit-

ted from the paper.

Results shown in this section represent the average

of 100 experiments, each of which runs 10000 jobs.

The load does not vary during the experiment. The

results have con�dence intervals of �10% or less at

95% con�dence level. Performance evaluation results

under each job model described in Section 2 are as

follows:

4.1 Uniform

Figure 2 and Figure 3 show processor utilization

and slowdown ratio respectively under the Uniform

model. Both for processor utilization and for slow-

down ratio, algorithms both in the priority schedul-

ing and in the �rst-�t scheduling showed better per-

formance as compared with the FCFS, except that

the LJF slightly degraded slowdown ratio. In the pri-

ority scheduling algorithms, the LJF showed better

processor utilization than the SJF. The maximum

improvement by the LJF on the FCFS was 16%

5

.

The algorithm that showed the best performance in

the �rst-�t scheduling was the LJF/First-Fit, and

3

There are variations of the Back�lling. The algorithm

used in this paper is called aggressive back�lling [13].

4

Recall that information that a job scheduler obtains from

a job is only the job size in this model.

5

The improvement indicated by \%" means

higher utilization�lower utilization

lower utilization

[%] in this paper.

it improved processor utilization compared with the

FCFS by 34% maximum.

When job size of a job at the top of a shared

job queue is larger than the number of idle proces-

sors, the FCFS blocks dispatch of jobs even when

there are enough idle processors for other jobs in

the shared job queue. This paper calls this situa-

tion blocking. The reason for low performance of the

FCFS is that frequent blocking left many processors

to be idle, that is, a job scheduler wasted many pro-

cessor resources. In other words, the reason why

the priority scheduling and the �rst-�t scheduling

showed better performance than the FCFS is that

they avoided wasting processor resources by sorting

jobs or by searching jobs. The rest of this section

discusses these reasons in detail.

First, this section discusses performance of the

LJF. A scheduling problem discussed here can be re-

garded as the one-dimensional bin-packing problem,

in which a job scheduler attempts to pack jobs into

the idle processor space

6

. In the one-dimensional

bin-packing problem, it is proved that waste of space

in a bin is reduced by putting items into the non-

increasing order of the item's size [14]. The LJF

improved processor utilization because of this na-

ture of the one-dimensional bin-packing problem. On

the other hand, the LJF blocks dispatch of many

small jobs by giving priority to larger jobs. Conse-

quently, the LJF made response time of many small

jobs longer, and then slowdown ratio under the LJF

was slightly higher than that under the FCFS

Next, the reason why the SJF showed better per-

formance compared with the FCFS is that the SJF

reduced the occurrence of blocking. Blocking is

caused by the situation that a larger job at the top of

a shared job queue waits for dispatch while smaller

jobs, for which enough idle processors are available,

exist in the queue. In the SJF, a job scheduler gave

priority to smaller jobs, and it prevented that a larger

job blocked dispatch of many smaller jobs. For this

reason, the SJF improved processor utilization. Also,

the reason why slowdown ratio under the SJF was

much lower than those both under the FCFS and

under the LJF is that a large number of smaller jobs

were dispatched prior to a small number of larger

jobs.

Job scheduling algorithms in the �rst-�t schedul-

ing including the Back�lling showed best perfor-

mance under the Uniform workload. The reason for

this best performance is that they prevented the oc-

currence of blocking e�ciently by searching jobs in

a shared job queue and dispatching a job for which

6

This paper use the term "idle processor space" to refer to

a bin that has capacity of the number of idle processors.

5

0

20

40

60

80

100

u
ti

liz
a

ti
o

n
 [

%
]

0.2 0.4 0.6 0.8 1.0

load

Backfilling

LJF/First-Fit

FCFS/First-Fit

SJF

LJF

FCFS

Figure 2: Processor Utilization (Uniform)

0

4

8

12

16

20

sl
o

w
d

o
w

n
 r

a
ti

o

0.2 0.4 0.6 0.8 1.0

load

Backfilling

LJF/First-Fit

FCFS/First-Fit

SJF

LJF

FCFS

Figure 3: Slowdown Ratio (Uniform)

enough idle processors are available. Although the

priority scheduling also improved performance, they

could not prevent blocking as su�ciently as the �rst-

�t scheduling. For further analysis for performance

of the �rst-�t scheduling under the Uniform model,

see [12].

4.2 Harmonic

Figure 4 and Figure 5 show processor utilization

and slowdown ratio respectively under the Harmonic

model. There are several di�erences between results

under the Uniform model and those under the Har-

monic model. The major di�erence is observed in

performance of the SJF. Processor utilization by the

0

20

40

60

80

100

u
ti

liz
a

ti
o

n
 [

%
]

0.2 0.4 0.6 0.8 1.0

load

Backfilling

LJF/First-Fit

FCFS/First-Fit

SJF

LJF

FCFS

Figure 4: Processor Utilization (Harmonic)

0

4

8

12

16

20
sl

o
w

d
o

w
n

 r
a

ti
o

0.2 0.4 0.6 0.8 1.0

load

Backfilling

FPMPFS

FPFS

LPFS

MPFS

FCFS

Figure 5: Slowdown Ratio (Harmonic)

SJF under the Harmonic model was higher than that

under the Uniform model. It showed better perfor-

mance than the LJF. The SJF improved processor

utilization compared with FCFS by 32% maximum,

while the improvement under the Uniform model was

13%.

The reason for the performance di�erence is as fol-

lows: In order to improve processor utilization, it is

e�ective to pack multiple jobs e�ciently and to ex-

ecute them concurrently, e.g. packing a large job

with multiple small jobs, packing multiple small jobs

and etc., so that waste of processor resources will

be reduced. In the Uniform model, job size of jobs

that arrive at a shared job queue follows the uni-

form distribution. A job scheduler dispatches small

6

jobs prior to large jobs. Consequently, when the job

scheduler dispatches a large job that remains in the

shared job queue, there are not enough small jobs

to be packed with the large job in the queue. On

the other hand, under the Harmonic model, an ar-

rival rate of small jobs is much higher than that of

large jobs. It means that the probability that small

jobs arrive soon after the job scheduler dispatches

a large job is much higher. Thus, these small jobs

will be packed with the large job. For this reason,

the SJF under the Harmonic model packed multiple

jobs more e�ciently compared with that under the

Uniform model.

In addition, slowdown ratio by the SJF under the

Harmonic model was much lower than that under

the Uniform model. It was close to slowdown ra-

tio by the FCFS/First-Fit and the LJF/First-Fit,

which were also much lower than that under Uni-

form Model. Their slowdown ratio remained small

at higher load, e.g. lower than six at load = 0:9,

while their slowdown ratio under the Uniform model

went to in�nity at load > 0:8. The reason why these

scheduling algorithms showed lower slowdown ratio

is that these dispatched a large number of small jobs

prior to a small number of large jobs, where the num-

ber of small jobs under the Harmonic model was

much greater than that under the Uniform model.

For instance, 90% of jobs requested 16 processors or

less and 58% of jobs requested two processors or less

in the experiment.

The next major di�erence observed in the results

is performance of the Back�lling. While the Back�ll-

ing showed almost same performance as other algo-

rithms in the �rst-�t scheduling under the Uniform

Model, the performance of the Back�lling was lower

than the others under the Harmonic model. For in-

stance, the Back�lling improved processor utilization

compared with the FCFS by 31% maximum, while

the improvement by the FCFS/First-Fit was 40%. It

is supposed that the reason is due to the conserva-

tive way to dispatch jobs in the Back�lling. Further

discussion about this reason is required but it will be

the author's future work.

4.3 Power2

Figure 6 and Figure 7 show processor utilization and

slowdown ratio respectively under the Power2 model.

The major di�erence between results under the Uni-

form model and those under the Power2 model is

performance of the LJF. Processor utilization by the

LJF under the Power2 model was higher than that

under the Uniform model. The LJF improved pro-

cessor utilization compared with the FCFS by 48%

0

20

40

60

80

100

u
ti

liz
a

ti
o

n
 [

%
]

0.2 0.4 0.6 0.8 1.0

load

Backfilling

LJF/First-Fit

FCFS/First-Fit

SJF

LJF

FCFS

Figure 6: Processor Utilization (Power2)

0

4

8

12

16

20
sl

o
w

d
o

w
n

 r
a

ti
o

0.2 0.4 0.6 0.8 1.0

load

Backfilling

LJF/First-Fit

FCFS/First-Fit

SJF

LJF

FCFS

Figure 7: Slowdown Ratio (Power2)

maximum, while the improvement under the Uni-

form model was 16%. It was close to that of the

FCFS/First-Fit, which improved processor utiliza-

tion compared with the FCFS by 51% maximum.

Lo, Mache and Windisch compared the perfor-

mance of job scheduling algorithms under di�erent

workloads, each of which has a di�erent proportion

of jobs that request power-of-two processors. They

showed that the ScanUp algorithm [4] performed

well, or increased processor utilization, as the pro-

portion of jobs requesting power-of-two processors

in a workload increased. Both results by Lo and by

this paper are consistent from the point of view that

a job scheduling algorithm performs well under the

workload in which the proportion of jobs requesting

7

power-of-two jobs is high.

The reason for the high processor utilization by

the LJF under the Power2 model is that the LJF

packed jobs very e�ciently. In order to show the rea-

sons more precisely, this paper regards the scheduling

problem discussed here as the one-dimensional bin-

packing problem again. The goal is to pack items,

or jobs, into the bin, or the idle processor space, ef-

�ciently. Here, job size is 2

n

(n is an integer within

the range [0,7]), and capacity of the idle processor

space is 2

7

.

Let us assume that there are jobs, J

i

's. The sub-

script denotes the order of the dispatch, that is, J

i

is dispatched prior to J

i+1

. P

i

denotes job size of J

i

,

and IP indicates the number of idle processors. Let

us suppose that s jobs has been dispatched by the

LJF algorithm and they are still in execution, that

is, processors are executing J

1

:::J

s

. Then, the num-

ber of processors that are currently idle is derived by

formula (2) [15].

IP = c

1

�min(P

1

; :::; P

s

) � 128 (2)

c

1

is an integer and c

1

� 0

Because the LJF dispatches a larger job prior to a

smaller job, J

s

is the smallest job among jobs in ex-

ecution. Thus,

IP = c

1

� P

s

: (3)

Here, there is a relation represented by (4) between

job size of the job at the top of a shared job queue,

namely P

s+1

, and job size of J

s

, or P

s

.

P

s

= 2

c

2

� P

s+1

� 128 (4)

c

2

is an integer and c

1

� 0

Therefore, (5) is derived from both (3) and (4).

IP = c � P

s+1

� 128 (5)

c = c

1

� 2

c

2

The formula (5) indicates that the number of idle

processors will always be an integer multiple (possi-

bly zero) of job size of the job at the top of a shared

job queue, when the LJF performs job scheduling.

Consequently, while enough number of jobs wait in

a shared job queue, the LJF will pack jobs so as to

�ll idle processors perfectly.

The discussion mentioned above is valid for o�-line

bin-packing, or the assumption that all jobs have ar-

rived at a shared job queue before a job scheduler

starts to perform the scheduling. The job scheduling

model in this paper could not be regarded as the o�-

line bin-packing. However, simulation log indicated

that scheduling performed in the simulation showed

partially same behavior as the discussion above when

load was high, that is, many jobs were dispatched like

o�-line bin-packing at high load. Thus, the reason

why processor utilization by LJF under the Power2

model was high can be explained by the above dis-

cussion.

While processor utilization by the LJF was high,

slowdown ratio was not so good. The reason is same

as that under the Uniform model, that is, the LJF

blocked dispatch of many small jobs by giving pri-

ority to larger jobs. Also, the reason why slowdown

ratio by the LJF/First-Fit was worse than that by

the FCFS/First-Fit is the same as the previous rea-

son.

In addition, as the results under the Harmonic

model, performance of the Back�lling was also lower

than the FCFS/First-Fit under the Power2 model.

The Back�lling improved processor utilization com-

pared with the FCFS by 28% maximum, while the

improvement by the FCFS/First-Fit was 51%.

4.4 Square and Multi10

Figure 8 and Figure 9 show processor utilization un-

der the Square model and the Multi10 model respec-

tively. Both results were almost same as that un-

der the Uniform model. Also, slowdown ratio under

these both models were also similar to that under

the Uniform model. This paper omits graphs for the

slowdown ratio.

4.5 Feitelson Model

Finally, Figure 10 shows processor utilization under

the Feitelson 1996 model [5, 8]. The Feitelson 1996

model is a well-known realistic workload model that

is created by logs of six large-scale parallel computers

in production use. A workload in this model has all

characteristics that previous �ve models have.

Under this model, processor utilization was simi-

lar to that under the Power2 model. It mean that

the characteristic, a percentage of jobs that request

power-of-two processors is high, signi�cantly a�ected

performance of job scheduling algorithms in the Fei-

telson model. In other words, it seems that the pro-

portion of jobs requesting power-of-two processors

has strong e�ect on job scheduling performance in

the real workload.

5 Conclusions

The goal of the work presented in this paper is to

investigate mechanisms how job size characteristics

a�ect job scheduling performance. This paper pre-

sented overall performance evaluation to show e�ect

8

0

20

40

60

80

100

u
ti

liz
a

ti
o

n
 [

%
]

0.2 0.4 0.6 0.8 1.0

load

Backfilling

LJF/First-Fit

FCFS/First-Fit

SJF

LJF

FCFS

Figure 8: Processor Utilization (Squares)

0

20

40

60

80

100

u
ti

liz
a

ti
o

n
 [

%
]

0.2 0.4 0.6 0.8 1.0

load

Backfilling

LJF/First-Fit

FCFS/First-Fit

SJF

LJF

FCFS

Figure 9: Processor Utilization (Multi10)

of an individual job size characteristic on job schedul-

ing performance, and analyzed the evaluation result

that showed most signi�cant change.

The evaluation results showed that:

(1) The �rst-�t scheduling except the Back�lling

showed best performance and were not a�ected

by job size characteristics.

(2) Job size characteristics modeled by the Har-

monic model and that by the Power2 model af-

fected performance of priority scheduling signif-

icantly. Particularly, the e�ect of the job size

characteristic under the Power2 model on the

LJF performance was most signi�cant among

the results. It improved processor utiliza-

0

20

40

60

80

100

u
ti

liz
a

ti
o

n
 [

%
]

0.2 0.4 0.6 0.8 1.0

load

Backfilling

LJF/First-Fit

FCFS/First-Fit

SJF

LJF

FCFS

Figure 10: Processor Utilization (Feitelson)

tion compared with the FCFS by 48% maxi-

mum, while the improvement under the Uniform

model was 16%.

(3) The analysis of scheduling performed by the LJF

under the Power2 model showed that the LJF

would perfectly pack jobs to idle processors un-

der the Power2 model, when load on a parallel

computer was high.

The analysis for the results in this paper has not

yet been complete in order to achieve the goal. There

are results that need more precise analysis, e.g. the

e�ect on performance of the Back�lling. Further-

more, Scheduling algorithms evaluated in this pa-

per, except the FCFS and the Back�lling, are not

starvation-free. Thus, these scheduling algorithms

need to be performed with some aging technique

in order to improve practicability. However, the

aging may a�ect performance of the job schedul-

ing algorithms. It seems that this is a reason why

the Back�lling showed lower performance than the

FCFS/First-Fit. The author has evaluated the ef-

fect of an aging technique on the performance of the

FCFS/First-Fit [12]. In this FCFS/First-Fit with

aging, a job scheduler suppress to search jobs in a

shared job queue when there exists a job waiting for

long time (more than the pre-de�ned threshold), and

dispatches this job �rst. The results showed that

processor utilization of the FCFS/First-Fit with ag-

ing was degraded compared with that without ag-

ing. There are many aging techniques [4, 12] for job

scheduling algorithms, and e�ects of the aging tech-

niques on job scheduling performance seems to be

9

various. Discussion about the e�ects is the author's

future work.

References

[1] K. Li and K. Cheng. Job Scheduling in a Parti-

tionable Mesh Using a Two-Dimensional Buddy

System Partitioning Scheme. IEEE Trans. on

Parallel and Distributed Systems, 2(4):413{422,

1991.

[2] D. A. Lifka. The ANL/IBM SP Scheduling Sys-

tem. In Job Scheduling Strategies for Parallel

Processing, Lecture Notes in Computer Science

949, pages 295{303. Springer-Verlag, 1995.

[3] J. S. Skovira, W. Chan, and H. Zhou. The

EASY - LoadLeveler API Project. In Job

Scheduling Strategies for Parallel Processing,

Lecture Notes in Computer Science 1162, pages

41{47. Springer-Verlag, 1996.

[4] P. Krueger, T. Lai, and V. A. Dixit-Radiya.

Job Scheduling Is More Important than Pro-

cessor Allocation for Hypercube Computers.

IEEE Trans. on Parallel and Distributed Sys-

tems, 5(5):488{497, 1994.

[5] D. G. Feitelson. Packing Scheme for Gang

Scheduling. In Job Scheduling Strategies for

Parallel Processing, Lecture Notes in Computer

Science 1162, pages 89{110. Springer-Verlag,

1996.

[6] J. Subhlok, T. Gross, and T Suzuoka. Impact

of Job Mix on Optimizations for Space Sharing

Scheduler. In Proc. of Supercomputing '96, 1996.

[7] A. B. Downey. A parallel workload model and

its implications for processor allocation. In Proc.

the 6th International Symposium of High Per-

formance Distributed Computing, pages 112{

123, 1997.

[8] Parallel Workloads Archive.

http://www.cs.huji.ac.il/labs/parallel/workload/.

[9] V. Lo, J. Mache, and K. Windisch. A Com-

parative Study of Real Workload Traces and

Synthetic Workload. In Job Scheduling Strate-

gies for Parallel Processing, Lecture Notes in

Computer Science 1459, pages 25{46. Springer-

Verlag, 1998.

[10] D. G. Feitelson and L. Rudolph. Toward Con-

vergence in Job Schedulers for Parallel Super-

computers. In Job Scheduling Strategies for Par-

allel Processing, Lecture Notes in Computer Sci-

ence 1162, pages 1{26. Springer-Verlag, 1996.

[11] R. Gibbons. A Historical Application Pro�ler

for Use by Parallel Schedulers. In Job Schedul-

ing Strategies for Parallel Processing, Lecture

Notes in Computer Science 1291, pages 58{77.

Springer-Verlag, 1997.

[12] K. Aida, H. Kasahara, and S. Narita. Job

Scheduling Scheme for Pure Space Sharing

Among Rigid Jobs. In Job Scheduling Strategies

for Parallel Processing, Lecture Notes in Com-

puter Science 1459, pages 98{121, 1998.

[13] H. Franke, J. Jann, J. E. Moreira, P. Pattnaik,

and M. A. Jette. An Evaluation of Parallel

Job Scheduling for ASCI Blue-Paci�c. In Proc.

SC99, 1999.

[14] E. G. Co�man, M. R. Garey, and D. S. Johnson.

Approximation Algorithms for Bin-packing - An

Updated Survey. In Algorithm Design for Com-

puter System Design, pages 49{106. Springer-

Verlag, 1984.

[15] E. G. Co�man, M. R. Garey, and D. S. Johnson.

Bin Packing with Divisible Item Sizes. Journal

of Complexity, 3:406{428, 1987.

10

