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Abstract

We consider the problem of secure routing in ad hoc networks that may have Byzan-

tine faults. We propose a general Byzantizer framework. The Byzantizer is a security

algorithm that transforms any ad hoc routing algorithm (conforming to some specific

requirements) into a routing algorithm that is resilient to Byzantine faults. The pro-

tocol is efficient in terms of storage and computational power requirements and thus

it is suitable to ad hoc networks and in particular to sensor networks.

Keywords: Distributed Algorithms, Ad Hoc and Sensor Networks, Ad Hoc Routing,

Byzantine Faults, Locality Aware Algorithms.
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Chapter 1

Introduction

Ad hoc wireless networks have been a focus of research in recent years. These net-

works require no infrastructure, each node takes part in the process of forwarding

packets and acts as an intermediate router. Achieving security in ad hoc networks is

more challenging than in wired networks because no centralized administration or a

trusted authority exist and thus nodes cannot be completely trusted. This problem

is enhanced in sensor networks in which each node has a limited computational and

battery power and a limited storage capability.

Under these conditions efficient and secure routing protocols are challenging to

design. There are several existing routing protocols that are suitable for the dynamic

nature of these networks and to the limited capabilities of the nodes. However, many

of them do not consider security [11, 26]. Routing algorithms that are resilient to

Byzantine faults are even more challenging, since a Byzantine node is a faulty node

that can exhibit any arbitrary behavior either alone or in collusion with other faulty

nodes.

Avramopoulos et al. [1, 2] present a routing algorithm resilient to Byzantine faults

for general networks and not necessarily ad-hoc wireless networks. Their algorithm

guarantees that as long as there is a non-faulty path between the source and the

destination the packets will be delivered from the source to the destination. The

algorithm is based on source routing and it is assumed that each node knows the

global topology of the network and thus it can calculate the shortest path by using a

modified Bellman-Ford shortest path algorithm. Because of these assumptions their

solution is not scalable and a substantial storage capability is needed. In addition,

the complexity of acquiring global network topology by each node in a way that is

resilient to Byzantine faults is not discussed in the article. Further more, their fault
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knowledge mechanism is limited and thus faulty nodes may still participate in paths

after they have already caused faults in previous paths.

1.1 Our Contribution

We consider ad hoc routing algorithms that have local routing functions. Specifically,

we assume each node decides to which 1-hop neighbor to forward a message only based

on its 1-hop neighbors and the given message, (for example see [12, 13]). We have

designed a Byzantizer protocol that transforms any such ad hoc routing algorithm

into a routing algorithm that is resilient to Byzantine faults.

Unlike [1] which requires each node to maintain global knowledge, in our solution

each node requires only local-neighborhood network topology knowledge. Hence our

algorithm is scalable and its storage requirement and messages’ size is suitable for ad

hoc networks. Security is achieved while using only symmetric cryptography (as in

[1]) and thus the Byzantizer is efficient in terms of computational and battery power.

The Byzantizer allows to isolate the faulty nodes and it guarantees that as long as

there is a path between the source and the destination that is at more than 3f+3 hops

from any faulty node, where f is the maximal number of faulty nodes, the packets will

be delivered from the source to the destination. Using a competitive ad hoc routing

scheme, like [13], our Byzantizer obtains the first competitive ad hoc routing scheme

in a Byzantine failure model.
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Related Work

Security challenges and solutions for routing in ad hoc networks and sensor networks

were discussed in [26] and [11], respectively. Message authentication is an essential

component in any security design. Three cryptographic primitives are widely used

to authenticate messages, digital signature, hmac1 and one way hmac key chain2.

A digital signature is based on asymmetric cryptography, an hmac is based on sym-

metric cryptography and a one way hmac key chain is based on a one way function.

Authenticated public keys can be acquired by using a Certificate Authority (CA).

[28, 15] modified the traditional CA solution such that it will be suitable for ad hoc

networks. In ad hoc networks nodes cannot be fully trusted and thus their solution

distributes the certificate authority among several nodes. In [28], the certificate au-

thority consists of a specific group of nodes, whereas in [15], any group of k nodes can

sign a certificate. Symmetric keys can be generated with a digital signature scheme.

Another approach is to use multi-space pairwise key distribution techniques ([7, 14]).

In [14], the setup server generates a set of polynomials. For each node, the setup

server randomly picks a subset of polynomials and assigns polynomial shares of these

polynomials. Two nodes can establish a pairwise key if they share a common polyno-

mial. [7] uses a similar idea but instead of polynomials matrices are used. It should be

noted that multi-space pairwise key distribution techniques do not guarantee that any

two nodes are able to generate a pairwise key. One way key chain can be used once

the receiver has an authentic element of the key chain. An authenticated key can be

acquired, for example, by using a digital signature or a symmetric key. Observe that

1To avoid ambiguity we use MAC to refer to Medium Access Control and HMAC to refer to
Keyed Hash Message Authentication Code.

2One way hmac key chain is also know as one way key chain
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digital signatures are more expensive in terms of battery and computational power

than hmac and one way key chain.

Perrig et al. have presented tesla [22] and later µtesla [23] which provides an

efficient authenticated broadcast primitive. The authentication is based on one-way

key chain and late key disclosure rather than asymmetric cryptography. The sender

generates a one-way key chain. Time is divided into uniform time intervals and each

key is associated with one time interval. The hmac s of messages in the same interval

will be generated with the same key. In the setup phase the receiver acquires an

authenticated key of the sender. When the sender wants to send a message it first

sends the message itself with an hmac and later it sends the key for this hmac.

When the message is received it is checked that the message is safe, i.e. that the key

has not been disclosed yet, and if it is safe it is stored. When the key is received

it is authenticated by using the last authentic key. Once the key is authenticated

it is used to authenticate the message. The µtesla guarantees that if the sender is

non-faulty and sends a message and a non-faulty receiver has a µtesla authenticated

key of the sender and it authenticates the µtesla hmac of the message, then this

is the original message generated by the sender. A µtesla authenticated key can

be acquired without requiring global topology knowledge, for example, by generating

a symmetric key using multi-space pairwise key distribution techniques or by using

asymmetric cryptography. Authenticated public keys can be acquired, for example,

by assuming that there is a setup server that has a private/public key pair. The setup

server assigns each node with a private/public key pair and with a digital signature of

the node’s public key using the private key of the server. Moreover, each node knows

the public key of the server, and thus each node can authenticate the public keys of

the other nodes.

Perlman [21] overcomes Byzantine faults in wired networks by using digital signa-

tures and by flooding the network. As stated before, digital signatures are expensive

and thus the proposed protocols may not be suitable for ad hoc networks. In addition

the state at each node is proportional to the number of nodes in the network, since

each node knows the public keys of all the other nodes and thus such a solution is

not scalable and requires global network knowledge.

Smith et al. [25] address the problem of securing distance vector routing protocols.

In distance vector routing protocols each node maintains a routing table listing all

possible destinations within the network and sends routing updates. Their solution

overcomes Byzantine faults by using digital signatures, sequence numbers and by

adding the second-to-last hop in the path to a destination in the routing table update.
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Since global topology knowledge is required and messages include routing tables, this

protocol is expensive in terms of node state and packet overhead. SEAD ([8]) is

another example of distance vector protocol. In SEAD, authentication is achieved by

using sequence numbers and one way key chain.

Bradley et al. [6] address the problem of misbehaving routers in wired network.

Their solution overcomes routers that perform the selective forwarding attack or

routers that mis-route packets. The first attack is countered by the use of the con-

servation of flow where each router validates that the number of bytes going into a

neighboring router must equal the number of bytes coming out of this router. The

second is countered by the use of copies of the routing tables. Each router has the

routing tables of its neighbors and thus it can know whether they mis-route packets.

Their solution does not work when faulty routers collude and it requires that each

router must have a non-faulty neighbor.

Marti et al. [16] take advantage of the promiscuous mode in wireless networks in

order to identify faults. Each node that sends a message, listens to the next node’s

transmissions. If the next node does not forward the message, then it is misbehaving.

In such a case, a message is sent to the source notifying it of the misbehaving node.

As they state, their methods for detection may fail at the presence of collisions and

they do not consider a collusion of faulty nodes. Moreover, there is no way for the

source, or any other node the receives a misbehavior report to validate its authenticity

or correctness. As a result, the faulty node can disable the network operation.

Zapata and Asokan [27] consider the problem of incorporating security mechanisms

into routing protocols for ad hoc networks. They have looked at AODV ([20]) in

detail and developed a security mechanism to protect its routing information. Their

solution uses digital signatures for the authentication of the non-mutable parts of

the messages and one way key chains to secure the hop count information (the only

mutable information in the messages). Their solution is not scalable since each node

should know the public keys of all the other nodes and their technique of securing the

hop count may not be applicable to other messages, where the mutable part consists

of fields other then hop count.

Hu et al. [9] present the Ariadne routing protocol which is based on DSR [10]

and uses tesla. The routing begins when the source sends a request that includes a

time interval, which is the pessimistic arrival time of the message at the destination,

and an hash which is initialized to the hash of the non-mutable fields of the request.

The nodes are accumulated along the route as in DSR. Each node appends its name,

its tesla hmac and generates a new hash based on the current hash. The tesla
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key used is the key for the time interval specified in the request. The destination

verifies the hash chain and that the keys of the tesla have not been disclosed yet. If

the destination determines that the request is valid it generates a reply to the source

which is sent along the path obtained by reversing the path of the request. When a

node receives the reply, it waits until it is able to disclose its key and then it adds the

key to the reply. When the source receives the reply it verifies the tesla hmac s.

Source routing is expensive in terms of node state and packet overhead and thus this

solution is not scalable and may require a global network knowledge.

The SRP algorithm ([18]) is another example of an algorithm that is based on

source routing. In this algorithm the source and the destination have a symmetric

key which is used for calculating an hmac for the request and the reply. Intermediate

nodes do not verify the message and thus the security is at the end to end level and

not per hop. As a result, an adversary can change the message and only the end

point (the source or the destination) can identify it. A complementary approach is

taken by the SMT ([19]) protocol. Given the topology of the network, the source

determines a set of diverse paths connecting the source and the destination. The

source disperses each outgoing message into a number of pieces. At the destination,

a dispersed message is successfully reconstructed, provided that sufficiently many

pieces are received. As in the SRP protocol, it is assumed that the source and the

destination have a symmetric key which is used for calculating an hmac. Both SRP

and SMT are expensive in terms of node state and thus they are not scalable.

Awerbuch et al. [5, 4] present the On Demand Secure Byzantine Routing protocol

(ODSBR). Their solution involves flooding the network and using source routing and

digital signatures, which are expensive as already stated. Each node maintains a

weight list and the source includes its weight list in the request message that is

flooded in the network. The path is accumulated in the message as the message is

forwarded. Each receiving node uses the source’s weight list to calculate the weight

of the accumulated path, and only if its weight is smaller than the previously seen

paths, the message is sent. The weight list may comprise the entire network and thus

it requires a substantial storage capability. Their fault detection protocol that uses

symmetric keys is started by the source upon identifying a fault. The idea behind

this protocol is to use a binary search on the path in order to identify the faulty link.

During the search, intermediate nodes, in addition to the destination, send acks to

the source and thus when an ack is not received by the source, the faulty link can be

identified. Once identified, the source’s weight list is updated.
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High Level Description

We begin with a high level description of the Byzantizer. Consider a message sent

from a source to a destination. We denote by ameba a sequence of f + 1 distinct

nodes1 along the path between the source and the destination. The nodes of the

ameba are the nodes that participate in the routing at some stage of the protocol.

The nodes transfer the data and decide on how to extend the path in order to reach

the destination. The path of the ameba may fold onto itself so each node may appear

more than once in the ameba and thus the total number of nodes in the ameba may

be bigger than f + 1. The ameba advances by agreeing on the next node that should

be included in the ameba. This is decided based on the routing algorithm and the

network topology. Once agreement is achieved, the new node is added to the ameba

and unnecessary nodes are removed, such that only f + 1 distinct nodes are included

in the ameba.

Messages are used to synchronize between the nodes. These messages are authen-

ticated by using keyed-hash message authentication codes. Each time a node joins

the ameba it sends an ack to inform the other nodes that it has joined the ameba.

Timeouts are used to identify and handle faults. When a fault is identified a fault

announcement (fa) is generated to inform the nodes in the neighborhood of the fault

about its existence. Once an fa is generated the ameba and the local neighborhood of

the generator of the fa do not participate in future routing and the current messages

are lost. Each time an fa is generated it is guaranteed that at least one of the edges

of a faulty node will not be used in future routings. The idea is to isolate the faulty

nodes. If an fa was generated and the current message was lost, the source of the

1By distinct nodes we mean nodes with distinct ids.
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message sends a new message. After sending at most τ ·f +1 messages, where τ is the

maximal degree of a faulty node, the message will reach the destination. Of course

once all the faulty nodes are isolated the messages always reach the destination (if

there exists a path in the remaining graph).

Designing the algorithm requires handling three main challenges. One, how to

ensure that at any time the ameba contains f + 1 distinct nodes regardless of the

fact that the path may include cycles. Two, how the nodes of the ameba can reach

agreement regarding the next node in an efficient manner. Three, how to bound

the radius of influence a faulty node may have. This difficulty arises since fas are

broadcasted to the local neighborhoods and non-faulty nodes do not accept these

fas at the same time; thus there is a need to coordinate these nodes such that no

additional fas will be generated.

Ensuring that the ameba contains f + 1 distinct nodes is done by allowing the

ameba to expand or shrink as needed. An efficient agreement is achieved by assuming

that each node knows its O(f)-hop local neighborhood and thus it can identify the

f + 1 distinct nodes that follow it along the path. A message includes a list of

nodes and in particular it includes f distinct next nodes. When a node receives a

message, it first verifies the path in the message (the ameba), i.e. it verifies that its

calculation of the f distinct next nodes agrees with the list of nodes in the message.

If the verification succeeds the node determines the f + 1st next node by adding it

to the message so when its next node receives the message, the message will include

f distinct next nodes.

Coordination among the non-faulty nodes is achieved in the following way. Once

an fa is accepted and a node is suspected, it does not immediately stop participating

in the routing. Instead this node still participates in the routing until it can assume

that all nodes that should accept this fa have accepted it and only then the suspected

node stops participating in the routing. This idea is implemented by the “gray list”

and “black list” as explained in the next sections.
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Model

We consider an n node synchronous distributed system connected via a network

G = (V, E), in which each node has a unique id. An edge between two nodes indicates

that they have a direct bidirectional FIFO communication channel between them. We

consider Byzantine faults in which a faulty node is an authenticated node that can

exhibit any arbitrary behavior either alone or in collusion with other faulty nodes,

and that its behavior may not conform to the protocol. We assume there are at most

f faulty nodes and denote F ⊆ V the set of faulty nodes. In addition we assume that

the maximal degree of a faulty node is τ .

A neighborhood discovery algorithm (described in Chapter 8) is performed before

the routing starts. At the end of the neighborhood discovery each node x knows its

local neighborhood up to σ hops away, where σ = 2f + 2. It also knows for each

neighbor y in its σ-hop neighborhood the information needed for the routing and

for verifying y’s authenticated messages. Keyed-Hash Message Authentication Code

(denoted by hmac) is used throughout the algorithm to authenticate the received

messages.

We assume that there is a bound on the length of each µtesla ([23]) interval and

denote this bound by µ. In Chapter 8 we prove that if a node x does not include in

its local neighborhood a node y that is at most σ hops away, or x does not know the

correct information (basic key of µtesla, µtesla schedule, etc.) of y, then there

must be a faulty node w on the shortest path between x and y.

The Byzantizer uses a routing algorithm as a building block. The routing algo-

rithm and the topology of the network should apply to the following requirements.

A node decides to which 1-hop neighbor (denoted by 1hn) to forward a message only
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based on its 1-hop neighbors and the given message. In addition, a node x should be

able to determine for each of the next nodes on the path that are in its local neigh-

borhood to which node they should forward the message. Examples for such routing

algorithms include geometric routing algorithms such as GPSR [12] and GOAFR [13]

and source routing algorithms in which the whole path is included in the message.

The path defined by the routing algorithm may fold onto itself so nodes can be in-

cluded in the path several times. We assume that any part of the path that includes

f + 1 distinct nodes has a limited length. We denote this length by θ. It is obvious

that f ≤ θ, since the length of the minimal path that includes f + 1 distinct nodes is

f . The number of nodes in each such part is of course at most θ + 1. In addition we

assume that the maximal length of a path between two nodes is known. We denote

this maximal path length by path-max-len.



Chapter 5

HMACs, Messages, Variables and

Timeouts

In this chapter we describe the building blocks that are used throughout the Byzan-

tizer algorithm. We describe how messages are authenticated, which messages are

used, which information is stored at each node and how timeouts are used to identify

and handle faults.

5.1 HMACs

The hmac s are generated in an onion like style as done in [1] for the previous or next

f+1 distinct nodes on the path. There is a symmetric key between the generator of the

hmac and each of its recipients. Let the path be xh, . . . , xi−1, xi, xi+1, . . . , xi+k and

let the current node be xi. Both xh, . . . , xi−1 and xi+1, . . . , xi+k consist of f+1 distinct

nodes. Assume that xi generates hmac s for xi+1, . . . , xi+k. The computation of the

hmac for node xj, i+1 ≤ j ≤ i+k, receives as input both the message and the hmacs

for nodes xj+1, . . . , xi+k, i.e. the hmac s are computed sequentially from the last node

(xi+k) to the first node (xi+1). Let Ku,v denote the symmetric key between u and v,

let Ku,v(msg) denote the generation of the hmac on msg by the key Ku,v and let

hmacu,v denote the hmac generated by u for v. Next we give an example of the onion

hmac xi generates for xi+1, . . . , xi+k. hmacxi,xi+k
is generated first. hmacxi,xi+k

=

Kxi,xi+k
(msg). hmacxi,xi+k−1

= Kxi,xi+k−1
(msg||hmacxi,xi+k

), where || denotes con-

catenation, and in general hmacxi,xi+l
= Kxi,xi+l

(msg||hmacxi,xi+k
|| . . . ||hmacxi,xi+l+1

).

Finally xi sends to xi+1 the following message < msg,hmacxi,xi+k
,hmacxi,xi+k−1

, . . . ,



14 HMACs, Messages, Variables and Timeouts

hmacxi,xi+1
>. When xi+1 receives the message it authenticates its hmac, removes

it from the message and sends < msg,hmacxi,xi+k
,hmacxi,xi+k−1

, . . . ,hmacxi,xi+2
> to

xi+2.

Each receiving node may generate an onion hmac for the next nodes and thus

each message may also include several onion hmacs of up to f + 1 distinct nodes.

The path may fold onto itself and thus it may happen that several onion hmac s are

generated by the same node. As a result, each receiving node may verify a variable

number of hmacs. Each onion hmac is completely separated from the other onion

hmac s, i.e. it is not based on the other onion hmacs. Assume that xh+1 is the

first node that has generated an hmac for xi+1. Next we show an example of a full

message for xi+1.

< msg,

hmac1
xh+1,xi+1

hmac2
xh+2,xi+2

,hmac2
xh+2,xi+1

,

. . .

hmac
i−(h+1)
xi−1,xi+k−1 ,hmac

i−(h+1)
xi−1,xi+k−2 , . . . ,hmac

i−(h+1)
xi−1,xi+1 ,

hmaci−h
xi,xi+k

,hmaci−h
xi,xi+k−1

, . . . ,hmaci−h
xi,xi+1

>

where hmacj
xu,xv

= Kxu,xv(msg||hmacj
xu,xv+m

|| . . . ||hmacj
xu,xv+1

), h + 1 ≤ u ≤ i, i +

1 ≤ v ≤ i + k, 0 ≤ m ≤ k − 2, 1 ≤ j ≤ i − h. The receiving node verifies the last

hmac of each one of the onion hmac s and afterwards it removes these hmac s from

the message. Observe that each onion hmac is generated for a different sequence

of nodes and thus each onion hmac contains different number of hmac s when it is

received.

The message may include parts that are updated along the path, for example the

hop count or the list of nodes. Therefore, each hmac is computed while taking it

into consideration so when the message is received by node x, x is able to verify the

hmac. An example is given in the data and ack sections below.

5.2 Messages

The algorithm is comprised of data, acknowledgement (ack) and fault announcement

(fa) messages. Their structure and usage is described next. The field types are

defined in Table 5.1.
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Field Types
number An integer number
id A node’s id
sequence A sequence of ids, each id may appear more than once in the sequence
set A set of unique numbers or unique ids
string Any sequence of characters

Table 5.1: The types of the messages’ fields

5.2.1 DATA message

data messages include the payload the source wants to send to the destination and

the routing information needed in order to do it. The format of the data message is

depicted in Table 5.2.

Invariants

The order of the nodes in the listOfNodes is defined by the routing algorithm and the

network topology. pastNodes include f + 1 distinct past nodes, currNode is a single

node and futureNodes include f or f + 1 distinct future nodes. The total number of

nodes in pastNodes may be bigger than f + 1 since each node may appear more than

once in the list, but by the definition of θ, it may be at most θ + 1. This observation

also applies to futureNodes. Apart from the above there is no limitations on the list

and in particular each part may contain nodes from the other parts, e.g. currNode

can be one of pastNodes or nodes of futureNodes may have already been included in

currNode or pastNodes.

Each node may appear several times in the path so S , D, seqNum and hopCount

are the unique data message identifiers. The hopCount, listOfNodes and hmacs are

changed as the data message is being relayed. In addition the payload may also

change since the routing algorithm payload may also change along the path.

Handling a data message

Upon receiving a data message by node x, x verifies the hmac s of pastNodes. As

explained later, each hmac may be based on a different sequence of nodes. In addition,

x chooses the nodes that follow it on the path as would have been chosen by the

routing algorithm. Node x verifies that futureNodes contain f or f +1 distinct nodes

and that the future nodes equal its chosen nodes. Each node x that accepts a data

message, must make sure that when the next node receives the data message there

are f + 1 distinct nodes in pastNodes, there is a current node and at least f distinct
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DATA Message Format

S D seqNum payload hopCount listOfNodes hmacs

Field Description

id S The source’s id

id D The destination’s id

number seqNum A unique sequence number generated by S
string payload The payload of the routing algorithm message which also

includes the information the source wants to send to the
destination

number hopCount The number of hops the data message has been relayed
sequence listOfNodes A sequence of nodes that is comprised of the past nodes,

the current node and the future nodes, where the past nodes
and the future nodes are sequences and the current node
is an id. The current node is the node that receives the
data message, the past nodes are the nodes that precede
the current node on the path and the future nodes are the
nodes that follow the current node on the path. The past,
current and future nodes are denoted pastNodes, currN-
ode and futureNodes, respectively. We use the explicit no-
tation data.listOfNodes.pastNodes and .currNode and .fu-
tureNodes, respectively, if it is not clear from the text to
which list of nodes we refer to. In addition we denote by
firstNode and lastNode the first and last node in listOfN-
odes, respectively.

set hmacs A set of onion hmac s for the next nodes

Table 5.2: data message format

nodes in futureNodes. Nodes are added and removed from the list as needed in order

to apply to this requirement. It may happen that futureNodes already includes f + 1

distinct nodes; in such a case x does not add new nodes to the list. Otherwise, x

should add the next f + 1st distinct node. Depending on the routing algorithm and

the network topology the path may fold onto itself. So before adding the next f +1st

distinct node to futureNodes, node x may add several nodes that are already included

in futureNodes. Before adding the nodes, x adds itself to the list as the one that is

responsible for adding the nodes.
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Let P be the path of the data message and let x be one of the nodes on P . For

each appearance of x in P , we denote by prev-nodes (next-nodes), the f + 1 distinct

nodes that come before (after) this appearance of x in P , respectively. Obviously, the

prev-nodes (next-nodes) include less than f +1 distinct nodes at the beginning (end)

of the path, respectively. The prev-nodes of a data message of x are the pastNodes of

this data message. The next-nodes of a data message of x include the futureNodes of

this data message and the nodes that were added by x to listOfNodes before sending

the updated data message to the next node.

After updating the list of nodes hopCount is increased by 1. Finally hmac s are

generated in an onion like style for the next-nodes. Each hmac is generated based

on the data message that will be received when this hmac is verified. hopCount

and listOfNodes are always updated along the path. payload may be updated and

it depends on the routing algorithm. Each node calculates its hmac s according to

the listOfNodes of the data message it sends and listOfNodes.lastNode of the sent

message is the last node these hmac s are based on. Since listOfNodes is updated

and past nodes are removed from it, each hmac is calculated while taking it into

consideration. This calculation guarantees that when a node verifies the hmac s of

the prev-nodes, all the hmac s of the prev-nodes are (at least) based on listOfN-

odes.firstNode, . . . , listOfNodes.currNode. Observe that nodes are added to the list

and thus when a next node verifies an hmac it must calculate what is the last node

in the list each hmac is based on. After generating the hmacs, the updated data

message is sent to the next node.

An example

We give an example of how the list of nodes of a data message is updated and how

the hmac s are calculated. We assume that f = 3 and let the path be

. . . ← x10 ← x9

. . . → x1 → x2 → x3 → x4
↖
→ x5

←
→ x6

←
→ x7

←
→ x8

Assume the data message includes the following list of nodes (x1)x5, (x2)x6, (x3)x7,

(x4)x8, (x5)x7, x6, x5, (x8)x9. We denote the second appearance of a node by adding
2, so x2

5 is the second appearance of x5 and in the same manner x2
7 and x2

6. The nodes

in parentheses are the nodes that have added the following nodes to the list, e.g. x1

has added x5 and x5 has added x7, x6 and x2
5. x5, x6, x7 and x8 are the f + 1 past

distinct nodes, x2
7 is the current node, i.e. the node that receives the message (it is

in bold) and x2
6, x

2
5 and x9 are the f future distinct nodes. It should be noted that
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x6 and x7 do not add any nodes to the listOfNodes, since the futureNodes already

includes f +1 distinct nodes when they receive the message (x6 and x7 do not appear

in parentheses and after (x5) appears (x8)).

As can be easily concluded from the list of nodes, x5 has generated hmac s for its

next-nodes: x6, x7, x8, x
2
7, x

2
6 and x2

5. Node x6 has generated hmac s for x7, x8, x
2
7, x

2
6

and x2
5. Node x7 has generated hmac s for x8, x

2
7, x

2
6 and x2

5 and x8 has gener-

ated hmac s for x2
7, x

2
6, x

2
5 and x9. Node x5 generates an hmac for x2

7 based on

(x1)x5, (x2)x6, (x3)x7, (x4)x8, (x5)x7, x6, x5. x6 and x7 based their hmacs on the same

listOfNodes since they have not added or removed any nodes from it. Node x8 gen-

erates an hmac for x2
7 based on (x1)x5, (x2)x6, (x3)x7, (x4)x8, (x5)x7, x6, x5, (x8)x9.

Node x2
7 verifies the hmac s of the prev-nodes, i.e. x5, x6, x7 and x8. In order to

do it, x2
7 calculates for each hmac what is the last node the hmac is based on. In

addition, x2
7 verifies that x2

6, x
2
5 and x9 are the same next nodes it would have chosen.

It should be noted that all the prev-nodes have calculated their hmac s for x2
7 while

considering what should be the hop count of the data message when it is received

by x2
7. Of course if the payload is changed as well, the hmac s are calculated while

taking it into consideration.

After verifying the data message, x2
7 adds nodes to data.listOfNodes such that

when the message is received by the next node, data.listOfNodes.futureNodes includes

at least f distinct nodes. Node x2
7 must make sure that there are f +1 distinct nodes

after itself in the data message it sends. Assume that the next f + 1st distinct node

is x10 and that it comes immediately after x9 on the path. So the list of nodes is

(x1)x5, (x2)x6, (x3)x7, (x4)x8, (x5)x7, x6, x5, (x8)x9, (x7)x10. Node x2
7 increases the hop

count by 1 and generates an onion hmac for its next-nodes, i.e. x2
6, x

2
5, x9 and x10.

x5, x6, x7 and x8 are the f + 1 past distinct nodes, x2
6 is the current node and x2

5, x9

and x10 are the f future distinct nodes. As can be seen, no nodes were deleted from

the list by x2
7, since x7 appears twice and x5 is needed for the f + 1 past distinct

nodes. This process is being done at each node. For example, when x2
5 accepts the

data message, before sending it to x9, it removes nodes from the list. x5, x6 and x7

are removed and the past nodes become x8, x
2
7, x

2
6 and x2

5.

5.2.2 ACK

acks are a confirmation that a specific data message was accepted by the generator

of the ack. Each node generates an ack for listOfNodes.pastNodes of the correspond-

ing data message it has accepted. The format of the ack is depicted in Table 5.3.
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ACK Format

gen S D dataSeqNum dataHopCount hopCount hmacs

Field Description

id gen The generator of the ack

id S The source of the corresponding data message
id D The destination of the corresponding data message
number dataSeqNum A unique sequence number of the corresponding data mes-

sage
number dataHopCount The number of hops the corresponding data message has

been relayed when it has been accepted by ack.gen
number hopCount The number of hops the ack has been relayed
set hmacs A set of hmac s generated by ack.gen

Table 5.3: ack format

Invariants

Each time a node generates an ack, it calculates an onion hmac for the pastNodes of

the data message it has accepted. The path of the ack is from listOfNodes.currNode

to listOfNodes.firstNode of the corresponding data message. The number of nodes

that should accept this ack are at most θ + 1, i.e. the maximal number of pastNodes

of a data message. The hop count is changed as the ack is being relayed and the

hmacs of the ack are calculated while taking it into consideration.

Handling an ack

A node x should accept acks from the next-nodes of the data message it has ac-

cepted. There are in total f +1 distinct nodes from which an ack should be accepted,

but the total number of acks may be bigger (but no more than θ + 1), since each

node may generate several acks. Once an ack is accepted, its hop count is increased

by 1 and the ack is sent to the previous node, unless the receiving node is the last

node that should accept this ack.



20 HMACs, Messages, Variables and Timeouts

An example

We return to the previous example, where the list of nodes was (x1)x5, (x2)x6, (x3)x7,

(x4)x8, (x5)x7, x6, x5, (x8)x9, (x7)x10 and the current node is x2
6. Node x2

6 generates

an ack for the pastNodes, i.e. x5, x6, x7, x8, x
2
7. It generates the hmac s based on the

hop count of the ack that will be when the ack is received, i.e. when x2
7 receives

the ack the hop count is 1, for x8 it is 2, etc. When x2
7 accepts the ack it increases

the hop count by 1 and sends it to the previous node on the path, i.e. x8. When

x5 accepts the ack it does not sent it backwards since x5 is the first node of x6’s

pastNodes.

5.2.3 FA

fas are an indication that a fault has occurred and that the generator of the fa and

possibly its local neighborhood should not participate in the routing anymore. The

format of the fa is depicted in Table 5.4. A node x generates an fa1st or an fa2nd in

order to notify its local neighborhood that it should stop participating in the routing.

By sending an fa1st, x also notifies each node y in its local neighborhood that y should

generate an fa2nd and by sending these fa2nds the local neighborhood of x will stop

participating in the routing as well.

FA Format

gen type µTESLAInterval µTESLAHmac

Field Description

id gen The generator of the fa

number type The type of the fa. It may be either first or second. If the
type is first this fa is denoted by fa1st and if the type is
second this fa is denoted by fa2nd. fa1st.gen and fa2nd.gen
are the generators of this fa1st and fa2nd, respectively

number µTESLAInterval The interval at which the key for this fa will be disclosed
number µTESLAHmac A µtesla hmac generated by fa.gen

Table 5.4: fa format
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Invariants

The fa must be received before its µtesla key is disclosed. It should be noted that

the µtesla keys are sent periodically ([23]).

Handling an fa

The fa is broadcasted to the local neighborhood of the fa.gen. The fa can only

be verified by the nodes that can verify the µtesla hmac, and thus it can only be

verified by the σ local neighborhood of the fa.gen.

Generating and verifying a µtesla hmac is described in [23]. First an fa is

generated and sent. Upon receiving the fa, the receiving node makes sure that the

structure is correct and that the µtesla key has not been disclosed yet, i.e. that the

fa is safe. If it is safe, the fa is broadcasted and stored. Later the µtesla key is

sent and upon receiving it the µtesla hmac is verified. Once verified, the µtesla

key is broadcasted and the fa is processed.

fas are flooded to the local neighborhood of the generator of the fa. A non-faulty

node broadcasts each fa it accepts. When an fa is accepted, it is stored until it is

not safe, and if the same fa is received for a second time it is ignored, so each fa is

broadcasted only once. There is an exception to this rule that will be explained later.

From now on we do not distinguish between the fa and the µtesla key, so when

it is said that an fa was sent or received, it means that both the fa and its µtesla

key were sent or received, and accepting an fa means that the fa has been verified

after the µtesla key was received and the µtesla hmac was verified. When we say

that the fa was accepted t time units after it was sent, we mean after the fa itself

was sent.

5.3 Variables

Each node x stores the following variables.

• id id - the unique identifier of x.

• set blackList - a set of nodes that is denoted by the bl of x or in short bl(x).

If y ∈ bl(x) then x will not accept any message that includes an hmac or a

µtesla hmac generated by y and it will not send a message that includes an

hmac for y.

• set grayList - a set of nodes that is denoted by the gl of x or in short gl(x).

This set includes the nodes that are about to be added to the bl and are handled
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sometimes as the nodes in the bl and sometimes as not. When a node sends a

data message and adds nodes to the message’s list, it does not consider a node

that is neither in its bl nor in its gl, BUT if a node receives a data message

that has already included nodes that are in its gl, this is legal, and it calculates

its next nodes while considering these nodes.

• number dataSeqNum - a unique sequence number for each data message gen-

erated by x, i.e when x generates a new data message, it increases dataSseqNum

by 1 and sets data.seqNum to be dataSeqNum.

• number isGoingToDeactivate - this is a flag that is set to true upon the

activation of a final timeout (See next section).

• The i-hop neighborhood of x consists of nodes which are at most i hops away

from x and is denoted by ln(x, i). For each node y ∈ ln(x, f + 1), x stores

the symmetric key of x and y, the 1hns of y and the µtesla information of y,

i.e. an authenticated key of µtesla and µtesla schedule of y. For each node

y ∈ ln(x, σ)\ln(x, f + 1), x stores only the µtesla information of y. Each

time an fa that was generated by y ∈ ln(x, σ) is accepted by x, y’s µtesla

information that is stored by x may be updated as explained in [23].

• Node x may appear in the path of a data message several times. For each

appearance in the path (instance of the data message) it stores the following:

number ackNext - the number of hops the next ack should be relayed before

being received, i.e. when the next ack is received, ack.hopCount should equal

ackNext.

sequence addedNodes - the nodes x has added to the data message (if any).

5.4 Timeouts

Timeouts are used throughout the routing to identify and handle faults. The structure

of a timeout is depicted in Table 5.5. There are several types of timeouts; each one

has a different role as explained next.

The final timeout is a timeout of type t-final and is set upon the generation of an

fa. Upon the activation of this timeout, isGoingToDeactivate is set to true. Upon

its expiration, the node stops sending and receiving messages. The final timeout is

chosen such that a non-faulty node does not deactivate itself before sending all the

messages it is expected to send.

The global timeout is a timeout of type t-global and is set by the source of
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Timeout Structure

type id

Field Description

number type The type of the timeout, can be one of the following: t-
final, t-global, t-bl and t-ack

id id This field is set only in case the type is t-bl. In such a case,
it equals the id of the node because of which this timeout
was set

Table 5.5: Timeout structure

a data message upon sending a data message. Upon its expiration, a new data

message is sent. The global timeout is proportional to the maximal round trip time

between the source and the destination so a non-faulty source sends a new data

message only if a fault has occurred.

The bl timeout is a timeout of type t-bl and is set upon adding a node y to the

gl. Upon its expiration y is moved from the gl to the bl. The bl timeout is part

of the coordination mechanism between non-faulty nodes. It takes into consideration

the maximal difference in the time that non-faulty nodes accept fas, such that a

non-faulty node will not generate an additional fa because of this difference.

The ack timeout is a timeout of type t-ack and is set upon sending a data

message. Upon its expiration an fa1st is generated. The ack timeout takes into

consideration the maximal time it would have taken to accept an ack or an fa from

the next-nodes. In addition this timeout ensure that if two consecutive non-faulty

nodes u and v are on a path and v comes immediately after u and both have set

an ack timeout, then u is able to authenticate a message sent by v before its ack

timeout expires.

The global timeout and the ack timeout are similar to the timeouts described in

[1]. Each timeout is set for a different period of time. Let t-final-time, t-global-

time, t-bl-time and t-ack-time denote the values of the final timeout, the global

timeout, the bl timeout and the ack timeout, respectively. The values themselves

will be defined later.
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The Byzantizer Algorithm

Next we give a detailed description of the Byzantizer algorithm. The algorithm is

depicted in Figures 6.1 and 6.2. The algorithm begins when the source sends a

message to the destination (lines A1, J1-J8). The source chooses the nodes that will

follow it on the path, i.e it chooses its next-nodes, as would have been chosen by the

routing algorithm such that its next-nodes contain f + 1 distinct nodes. Since the

path may fold onto itself, each node may be included in the next-nodes more than

once. The next-nodes must not be in the gl or the bl of the source. The source sets

data.listOfNodes to be the concatenation of the source itself and its next-nodes (In

Figure 6.1, line J3, the concatenation is denoted by ||). The hmac s are generated in

an onion like style for the next-nodes. The hmac s are computed while taking into

consideration that the data message is changed along the path, so when the next-

nodes receive the data message, they are able to authenticate the message. (See

Section 5.2.1). An ack timeout is set for accepting an ack from each one of the

next-nodes. ackNext is set to 1, since the next ack should be generated by the next

node on the path.

The ameba contains all nodes that received the data message and set their ack

timeouts, and have pending ack timeouts. Thus, initially the ameba contains only

the source.

It may happen that a data message may not reach its destination because of

faults. For this reason a global timeout is set and upon its expiration the source

sends a new data message (lines J6 and I1). It’s exact value (t-global-time) is

defined in Theorem 7.7.
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Upon generating a data message by the source S to the destination D
(A1) generateSendData(S, D, payload)

Upon receiving a data by u
(B1) if verifyData(data) == true
(B2) generateSendAck(data);
(B3) if reached D
(B4) generateSendData(D, S, payload’);
(B5) else
(B6) store(data);
(B7) if data.listOfNodes.futureNodes include f distinct nodes
(B8) addedNodes = chooseAdditionalFutureNodes(data);
(B9) else
(B10) addedNodes = null;
(B11) updateListOfNodes(addedNodes, data); data.hopCount++;
(B12) hmacs = generateDataHmacs(data); add hmacs to data;
(B13) ackNext = 1; setTimeouts(t-ack, data);
(B14) send data to nextNode(data);

Upon receiving an ack by u
(C1) data = getData(ack);
(C2) if data 6= null && validateHmacs(ack) == true
(C3) if isLast(ack.gen, data)
(C4) removeData(data);
(C5) else
(C6) ackNext = getAckNext(data);
(C7) removeTimeout(ackNext, data); ackNext++;
(C8) if u 6= firstPrevNode(ack.gen, data)
(C9) ack.hopCount++; send ack to prevNode(data);

Upon the expiration of timeout with timeout.type == t-ack
(D1) removeAllData(); generateSendFa(first);
(D2) if isGoingToDeactivate == false
(D3) setTimeout(t-final); isGoingToDeactivate = true;

Upon accepting an fa by u
(E1) if fa.gen /∈ blackList ∪ grayList && fa.gen ∈ ln(u, f + 1)
(E2) add fa.gen to grayList ; setTimeout(t-bl, fa.gen);
(E3) if fa.type == first
(E4) generateSendFa(second);
(E5) if isGoingToDeactivate == false
(E6) setTimeout(t-final); isGoingToDeactivate = true;
(E7) ∀ stored data, s.t. fa.gen ∈ activeNodesData(data)
(E8) removeData(data);

Upon the expiration of timeout with timeout.type == t-bl
(F1) move timeout.id from graylist to blacklist ;

Upon the expiration of timeout with timeout.type == t-final
(G1) stop sending and receiving messages;

Upon accepting data’ by S
(H1) data = getOriginalData(data’);
(H2) removeData(data); removeTimeout(t-global, data);

Upon the expiration of timeout with timeout.type == t-global
(I1) generateSendData(S, D, payload);

Figure 6.1: The Byzantizer algorithm
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generateSendData(S, D, payload)
(J1) dataSeqNum++; hopCount = 1;
(J2) nextNodes = chooseNextNodes(D); addedNodes = null;
(J3) data = <S, D, dataSeqNum, payload, hopCount, S ||nextNodes>;
(J4) hmacs = generateDataHmacs(data); add hmacs to data;
(J5) ackNext = 1; setTimeouts(t-ack, data);
(J6) setTimeout(t-global, data);
(J7) storeData(data);
(J8) send data to nextNode(data);

verifyData(data)
(K1) return ( validateHmacs(data) == true
(K2) && validateListOfNodes(data) == true
(K3) && validateSeqNumAndHopCount(data) == true);

generateSendAck(data)
(L1) hopCount = 1;
(L2) ack = <id, data.S, data.D, data.seqNum, data.hopCount, hopCount>;
(L3) hmacs = generateAckHmacs(data, ack); add hmacs to ack ;
(L4) send ack to prevNode(data);

getData(ack)
(M1) ∀ stored data s.t. data.S == ack.S && data.D == ack.D && data.seqNum == ack.dataSeqNum
(M2) ackNext = getAckNext(data);
(M3) if ackNext == ack.hopCount && data.hopCount + ackNext == ack.dataHopCount
(M4) return data;
(M5) return null;

Figure 6.2: The Byzantizer algorithm (cont). Italic font as in ackNext is used for variables.
Roman (TypeWriter) font as in verifyData (setTimeout) is used for functions that their
implementation is (is not) depicted in the figures, respectively.

Once a data message is received by a node x, it is verified (lines B1, K1-

K3). Observe that x was chosen by the nodes of the ameba to be added to the

ameba. Node x checks that the structure of the message is correct and the hmac s of

data.listOfNodes.pastNodes (or in short pastNodes). Node x verifies that there are

f +1 distinct nodes in pastNodes. If the source S is the first node in data.listOfNodes,

then there may be less than f +1 distinct nodes. In addition, x verifies that there are

f or f + 1 distinct nodes in data.listOfNodes.futureNodes (or in short futureNodes).

If the destination D is the last node of data.listOfNodes, then there may be less than

f distinct nodes. Let α be the number of distinct nodes in futureNodes (f , f + 1 or

less than f nodes, respectively). Node x chooses the nodes that follow it on the path

as would have been chosen by the routing algorithm such that they include α distinct

nodes. These nodes are denoted by chosen-nodes. The chosen-nodes must not be in

bl(x) and must not be in gl(x) unless futureNodes already include a node(s) u that

is in gl(x); in such a case x should choose its chosen-nodes while considering u. Node

x verifies that the chosen-nodes equal futureNodes. If they are equal it means that x

agrees with the nodes of the ameba regarding the future nodes. If x has already stored
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a data message with the same S, D and seqNum it ensures that the data.hopCount

is different from the hopCount of the already stored data messages.

Node x processes the data message after verifying it (lines B2-B14). Observe

that now x is part of the ameba. An ack which is authenticated by an onion hmac

is generated for data.listOfNodes.pastNodes (lines B2, L1-L4). The data.S, data.D,

data.seqNum and data.hopCount are copied to the ack so each node that accepts

the ack is able to know to which instance of the data message it relates. By sending

the ack, x notifies the nodes of the ameba that it has joined the ameba. If x is

the destination it sends a reply (a new data message) to the source, otherwise the

message is stored. Observe that there may be cycles in the path so x may store

several instances of the same data message and each instance is managed separately

of the other instances. The data message is updated before being sent to the next

node on the path (lines B7-B12). If data.listOfNodes.futureNodes include only f

distinct nodes and D is not the last node of listOfNodes, x adds nodes to listOfNodes

according to the routing algorithm. So when the next node receives the updated

data message, the number of distinct nodes in futureNodes will be at least f , i.e. x

adds nodes to listOfNodes such that there are f + 1 distinct nodes after x in the list.

The added nodes except the last added node, are of course among the nodes that are

already included in futureNodes. The last added node, i.e. the f + 1st distinct node,

is not one of futureNodes and it cannot be in gl(x) or bl(x). The nodes that x adds

to the listOfNodes are stored in addedNodes. In addition, pastNodes of the updated

message should include only f + 1 distinct nodes so nodes may be removed from the

beginning of listOfNodes in order to apply to this requirement. The addition and

removal of nodes ensure that the ameba contains f +1 distinct nodes even if the path

folds into itself. Finally, an onion hmac is generated for the next-nodes.

Assume x receives a data message m1 and sends an updated data message

m2. As stated before, prev-nodes of m1 of x are the nodes that precede x, i.e.

m1.listOfNodes.pastNodes. Next-nodes of m1 of x are the nodes that follow x, i.e.

the nodes that follow x in m2.listOfNodes. These nodes consist of the nodes of

m1.listOfNodes.futureNodes and the nodes of addedNodes x has added to m1. Ob-

viously prev-nodes and next-nodes are calculated per (instance of) data message x

receives.

Upon receiving an ack by node x, the ack is verified (lines C1-C2, M1-M5).

The corresponding data message is one of the instances of the data messages that

are stored and has the same ack.S, ack.D and ack.dataSeqNum. Each instance

has its own ackNext (lines C6, M2) and hopCount. The right instance is chosen by
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checking that ackNext equals the ack.hopCount, and since the path may repeat on

the same cycle several times we also check that the data.hopCount + ackNext =

ack.dataHopCount (line M3). After the correct instance of the data message is

found node x knows its next-nodes. The source of the ack should be the ackNext-th

node of the next-nodes. Node x verifies that the structure of the ack is correct and

the hmac of the ack.

Once the ack is verified by x (lines C3-C9) the corresponding instance of the

data message is analyzed. If ack.gen is the last node of next-nodes of this instance

of data message, no more acks should be accepted for it and this instance of data

message, its timeouts and variables are removed, i.e. x removes itself from the ameba.

Otherwise the ack timeout for that ack is removed and ackNext is increased by 1.

If x is not the first node of ack.gen’s prev-nodes then ack.hopCount is increased by

1 and the ack is sent to the previous node on the path.

Upon the expiration of the ack timeout at node x (lines D1-D3), all the data

messages are removed, i.e. the messages themselves, their timeouts and their variables

are removed, and an fa1st is generated. This fa1st is broadcasted and is authenti-

cated by using µtesla and thus it can only be authenticated by the σ neighborhood

of fa1st.gen. The key used for this fa1st is the key that its µtesla interval starts at

least σ time units after sending the fa1st. By sending an fa1st, x notifies ln(x, σ)

that a fault has occurred and that x should not participate in the routing anymore.

Moreover, each node y in ln(x, σ) should generate an fa2nd, i.e. y should not partic-

ipate in the routing anymore as well. Upon sending the corresponding µtesla key, a

final timeout is set if it is not already set. It’s exact value (t-final-time) is defined

in Lemma 7.13. It should be noted that a node may generate several fas and the

final timeout is only set upon the generation of the first fa.

Accepting an fa is described in Section 5.2.3. Remember that a non-faulty node

accepts each fa only once. The exception to this rule is the case where an fa1st is

received from the immediate next (respectively, previous) node on a path of some

data message(s) and fa1st.gen is one of the active nodes and one of the next-nodes

(respectively, prev-nodes) of this data message(s). In such a case, if this fa1st is

verified it is still accepted (despite being already stored). The active nodes of a data

message are calculated individually by each node x and they are the nodes in next-

nodes or prev-nodes of x, including x, that should accept the same ack x is waiting

for. Once accepted, the fa is broadcasted and processed (lines E1-E8). As stated

before, node x may update the µtesla information of fa.gen that it stores. If y the

fa.gen is not in gl(x) and not in bl(x) and it is in ln(x, f + 1) then it is added to
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gl(x) and a bl timeout is set. It’s exact value (t-bl-time) is defined in Lemma 7.16.

Upon the expiration of this timeout (line F1), the fa.gen is added to bl(x) and no

more messages that include its hmac will be accepted and no data message will

be accepted if the fa.gen ∈ data.listOfNodes. The gl and bl mechanism is used

to synchronize between non-faulty nodes and it ensures that non-faulty nodes will

not generate additional fas as a result of not receiving fas at the same time. If the

accepted fa is an fa1st, an fa2nd is generated. The key used for this fa2nd is the key

that its µtesla interval starts at least f + 1 time units after sending the fa2nd. By

sending an fa2nd, x notifies ln(x, f + 1) that a fault has occurred and that x should

not participate in the routing anymore. If fa1st.gen is one of the active nodes of a

current data message(s) then this data message(s) is removed.

Once the destination has accepted the data message it sends a new data message,

data’, to the source (line B4) as a reply. data’ includes data.seqNum so when the

source accepts the reply it can know to which data message it has sent it relates (line

H1) and thus it can be sure that its message has been accepted by the destination.

In such a case the original data message and the global timeout are removed at the

source (line H2).

6.1 Characteristics

The Byzantizer algorithm has the following characteristics. All routing decisions are

based on the f + 1 local neighborhood. data, acks and fas are authenticated and

thus if a faulty node alters the messages they will not be accepted. A faulty node can

only generate new messages, but it cannot generate messages as if they have originated

from another non-faulty node, since it cannot generate an hmac or a µtesla hmac

of another non-faulty node. After receiving acks from the next f + 1 distinct nodes,

a node can be sure that the data message has been passed on, since a non-faulty

node has accepted it and thus the faulty node cannot perform the selective forwarding

attack and the black hole attack. Observe that µtesla authentication is only used

to verify fas and thus no delays are caused to the routing when there are no faults.

Encryption can be used in addition to authentication and this is an algorithm

parameter. Each pair of nodes can generate a key for encryption in addition to the

key for authentication and particularly, the source may have a symmetric key with

the destination and the message may be encrypted with that key.



Chapter 7

Analysis

In this chapter we prove that if the source sends a data message to the destination

along a path P and P is more than σ+µ+1 hops away from any faulty node, then the

data message will be accepted by the destination. In addition we bound the number

of data and ack messages that will be sent until the data message is accepted by

the destination. Finally we bound the total number of fa s that may ever be sent.

7.1 Definitions

We begin the analysis by presenting the definitions that will be used in the proofs.

Definition 7.1.1. Suspected node: A node v is suspected if exists a non-faulty node

u such that v ∈ bl(u).

Observe that a non-faulty node may be suspected.

Definition 7.1.2. d(u, v): The number of hops in the shortest path between u and v.

Definition 7.1.3. dpath(u, v): The number of hops in the specified path between u

and v. It should be noted that v comes after u in the path.

Definition 7.1.4. dunq
path(u, v): The number of distinct nodes between u and v along

the specified path.

It is clear that ∀u, v and path, d(u, v) ≤ dunq
path(u, v) ≤ dpath(u, v).

Definition 7.1.5. d(X, Y ): The minimal number of hops between any node x ∈ X

and any node y ∈ Y , i.e for X ⊆ V and Y ⊆ V let d(X, Y ) = min
x∈X,y∈Y

d(x, y)
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Definition 7.1.6. A node v accepts message m: v accepts m if it has received and

verified m.

7.2 Proof

We begin the proof by stating the main lemma (the proof of this lemma is given later

in Lemma 7.21). Based on that lemma we bound the radius of influence a faulty node

has.

Lemma 7.1. If u has generated an fa1st then there exists w s.t. w is faulty and

d(u, w) ≤ f + 1.

The next lemma is similar to the previous lemma and it proves that when an fa2nd

is generated a faulty node must be near by.

Lemma 7.2. If node u has generated an fa2nd then there exists w s.t. w is faulty

and d(u, w) ≤ f + 1 + σ.

Proof. If u is faulty we are done; so consider the case that u is non-faulty. Observe

that a non-faulty node u generates an fa2nd only as a result of accepting an fa1st

(See Figure 6.1, lines E3-E4). By Lemma 7.1, if an fa1st was generated by a node v

then d(v, w) ≤ f + 1. Since the range of the fa1st is σ, we can conclude that if u has

accepted an fa1st then d(u, w) ≤ f + 1 + σ.

The theorem below bounds the radius of influence a faulty node has.

Theorem 7.3. If u is suspected then there exists w s.t. w is faulty and d(u, w) ≤
f + 1 + σ.

Proof. Observe that a node u becomes suspected by a non-faulty node v only if an

fa was accepted by v and fa.gen is u (See Figure 6.1, lines E1-E2 and F1). The

theorem holds by Lemmas 7.1 and 7.2 in which it was proven that if u has generated

an fa then d(u, w) ≤ f + 1 + σ.

So far we have proved the bound on the maximal distance from a faulty node

in which faults may occur. Next we bound the number of messages that should be

sent in the presence of faulty nodes. The next lemma proves that an fa1st must be

generated if a data message is not accepted by its destination.
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Lemma 7.4. If there is a path from the source to the destination and the source has

sent a data message to the destination and the message has not been accepted by the

destination, then an fa1st would have been generated.

Proof. The path is chosen exactly as would have been chosen by the routing algorithm

and it is guaranteed that if there is a path to the destination the routing algorithm

finds it, so the destination must accept the message if there are no faults.

Next we prove that if there were faults an fa1st must have been generated. Each

non-faulty node participates in the routing until it accepts an ack from its next-

nodes, so at least f +1 distinct nodes participate in the routing at any single moment

and thus there is at least one non-faulty node u among these nodes. It is guaranteed

that either an fa1st is accepted by u (remember that an fa2nd does not stop the

ack timeout) or u’s ack timeout expires and it generates an fa1st and the lemma is

proven.

In the following two lemmas we bound the time since an fa1st is accepted or

generated by a non-faulty node u, until a non-faulty node v that is a 1hn of a faulty

node (u may be v) deactivates itself.

Lemma 7.5. If a faulty node w generates an fa1st and at least one non-faulty node

accepts this fa1st, then at least one edge of a faulty node will never be used in any

subsequent path f +1+µ+t-final-time time units after the fa1st has been accepted.

Proof. Node w generates an fa1st and a non-faulty node x accepts it and thus x

generates an fa2nd. Let the path between w and x be w, xi, . . . , xk, x. It is clear that

d(w, x) ≤ f + 1 since there are at most f faulty nodes. If w, xi, . . . , xk are faulty we

are done, since x will stop sending and receiving messages and thus the edge between

x and xk will never be used in subsequent paths. If there is a non-faulty node(s)

among w, xi, . . . , xk, then let y be the first non-faulty node among these nodes. Node

y must accept this fa1st, since otherwise it would not have sent it to x. So y generates

an fa2nd and the same analysis done for x can be applied to y, and thus the edge

between y and the faulty node that precedes it on the path will never be used in

subsequent paths.

Next we prove that one of the edges of a faulty node will not be used f +1+µ+t-

final-time after the fa1st has been accepted. Assume the fa1st has been accepted

at time t0 by a non-faulty node x that is a 1hn of a faulty node. Node x sends an

fa2nd and its corresponding key by t1 = t0 + f + 1 + µ and it deactivates itself by
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t1+t-final-time= t0 + f + 1 + µ+t-final-time. So the edge between the faulty

node and x will not be used f + 1 + µ+t-final-time after accepting the fa1st.

Lemma 7.6. If a non-faulty node u generates an fa1st, then at least one of the edges

of a faulty node will never be used in any subsequent path σ + 2µ + 2f + 1+t-final-

time time units after the fa1st has been sent.

Proof. The proof is by analyzing the possible distances between u and the faulty

node w because of which the fa1st was generated. An fa1st is generated upon the

expiration of the ack timeout and by Lemma 7.1 it was proven that d(u, w) ≤ f +1.

If d(u, w) = 1, i.e. u is a 1hn of the faulty node, then since u stops receiving

and sending messages the edge between the u and w will not be included in any

subsequent path.

If 1 < d(u, w) ≤ f + 1, then let the shortest path between the u and w for

which d(u, w) ≤ f + 1 be u, . . . , x, w. If the nodes u, . . . , x are non-faulty then all

of them and particularly x accept this fa1st and generate an fa2nd, and thus x will

stop sending and receiving messages and the edge between x and w will not be used

in any subsequent path. If there is a faulty node on the path between u and x, then

let w′ be the faulty node and let the path be u, . . . , y, w′. The same analysis done for

x can be applied to y and thus the edge between y and w′ will not be used in any

subsequent path.

Next we prove that one of the edges of a faulty node will not be used σ + 2µ +

2f +1+t-final-time after the fa1st has been sent. Assume the fa1st is sent at time

t0. The µtesla key is sent by t1 = t0 + σ + µ. The non-faulty node that is a 1hn

of w (u, x or y in the analysis above) is at most f hops from u (when the non-faulty

node is x and d(u, w) = f + 1), and thus it accepts the fa1st by t2 = t1 + f . This

non-faulty node deactivates itself since it sends an fa1st or an fa2nd. The worst case

is when an fa2nd is generated by the furthest node, i.e. by x. Node x sends an

fa2nd and its corresponding key by t3 = t2 + f + 1 + µ and it deactivates itself by

t3+t-final-time= t0 +σ+µ+f +f +1+µ+t-final-time= t0 +σ+2µ+2f +1+t-

final-time. So the edge between the faulty node and the non-faulty node will not

be used σ + 2µ + 2f + 1+t-final-time after sending the fa1st.

Is should be noted that the range of an fa1st is σ = 2(f + 1) and not f + 1, in

order to isolate the faulty nodes more quickly. Since d(fa1st.gen, w) ≤ f + 1 it is

possible that at least the f + 1 local neighborhood of the faulty node w accept this

fa1st and generate an fa2nd and thus the faulty node will be isolated. The f +1 local
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neighborhood of w generate fas in order to try to prevent from w to be included in

any path even if there are more faulty nodes near w.

In the following two theorems we bound the number of messages that are sent

before a data message is accepted by the destination.

Theorem 7.7. If the source S and the destination D are non-faulty and S sends a

data message(s) to D and there is a path P which goes from S to D and back to S for

which d(P, F ) > f + 1 + σ, then D accepts the data message after S sends at most

τ · f + 1 data messages.

Proof. The proof follows from Theorem 7.3 and Lemmas 7.4, 7.5 and 7.6. It was

proven by Lemma 7.4 that once a data message was sent and it has not been accepted

by the destination an fa1st is generated. This conclusion also applies to the data

message the destination sends to the source as a reply to the data message it has

accepted from the source.

Upon the generation of an fa1st the non-faulty nodes remove the data message,

and since the global timeout at S expires, a new data message with increased se-

quence number is sent (See Figure 6.1, line I1). Next we prove that if t-global-time

is set to 2·path-max-len+(2+σ+µ)(θ+1)+µ+2f +1+t-final-time, then by the

time the new data message is sent, a non-faulty node that is a 1hn of a faulty node

has deactivated itself. 2·path-max-len is the maximal round trip time between S

and D. (2 + σ + µ)(θ + 1) + µ + 2f + 1+t-final-time is the maximal time since a

non-faulty node u accepts a data message until a non-faulty node v, which is a 1hn

of a faulty node (v may be u), generates an fa1st or an fa2nd and deactivates itself.

A non-faulty node u generates an fa1st upon the expiration of its ack timeout which

can happen at most 2(θ + 1) + (σ + µ)θ (See Lemma 7.14) after accepting the data

message. This is also the maximal time till which u may accept an fa1st and generate

an fa2nd. So By Lemmas 7.5 and 7.6 we can conclude that the time since u accepts a

data message until v deactivates itself is at most 2(θ+1)+(σ+µ)θ+σ+2µ+2f+1+t-

final-time = (2 + σ + µ)(θ + 1) + µ + 2f + 1+t-final-time.

It is clear that since an fa1st was generated, it must have been generated by

2·path-max-len+2(θ +1)+(σ +µ)θ since the data message has been sent, so by at

most t-global-time a non-faulty node has deactivated itself. Since the new data

message is sent after the global timeout has expired, by the time the new data

message reaches v (if at all), it has already deactivated itself and thus the path of the

new data message does not go through v, i.e. one of the edges of a faulty node is

not used any more. It is obvious that after at most τ · f data messages are sent, all
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the faulty nodes are isolated and do not participate in any path.

Next we prove that since there exists such a path P for which d(P, F ) > f +1+σ,

the τ · f + 1st data message is accepted by the destination. A node x becomes

suspected only if d(x, F ) ≤ f + 1+σ. Since d(P, F ) > f + 1+σ, all the nodes on the

path are non-faulty and not suspected so they act according to the protocol and do

not delete any data message or deactivate themselves. The nodes agree on the list of

nodes, since no node is suspected and since their views of the local neighborhoods are

consistent by the assumptions on the neighborhood discovery algorithm (Chapter 4).

The nodes are chosen exactly as in the routing algorithm and since it is guaranteed

that the routing algorithm reaches the destination, the τ · f + 1st data message is

accepted by the destination.

Since D is non-faulty, it sends a reply to S which must be accepted by S for the

same reasons that the τ · f +1st data message has been accepted by D, and thus the

global timeout at S is deleted and no more data messages are generated by it.

Some remarks about the previous theorem. It is obvious that the ith data mes-

sage, i < τ · f + 1, may be accepted by D and D’s reply may be accepted by S and

it depends on the location and behaviour of the faulty nodes. Assume that this ith

data message was sent along a path Q. It may happen that d(Q,F ) ≤ f + 1 + σ.

Observe that if the jth data message, j < τ · f + 1, has been accepted by D but the

reply of D has not been accepted by S by the expiration of the global timeout at S,

S will send another data message to D.

Using a competitive underlining ad hoc routing scheme with our Byzantizer ob-

tains the first competitive ad hoc routing scheme resilient against Byzantine failures.

The exact form of competitiveness is given in the following theorem.

Theorem 7.8. If the source S and the destination D are non-faulty and S sends a

data message(s) to D and there is a path P of length Ψ which goes from S to D and

back to S for which d(P, F ) > f + 1 + σ, then D accepts the data message after at

most O(Ψ2f(τ · f + 1)) data and ack messages are sent.

Proof. The proof is by Theorem 7.7 and by assuming that the underlining ad hoc

routing algorithm is GOAFR ([13]), which is competitive when there are no failures.

GOAFR traverses at most O(l2) edges where l is the number of edges of the optimal

path. Observe that at most τ · f + 1 messages are sent and each message traverses a

different path. Let li be the optimal path for message i, 1 ≤ i ≤ τ ·f +1. It is easy to

see that li ≤ li+1, since the i + 1st message was generated because the global timeout
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at S has expired which must be the result of the generation of an fa1st while message

i was relayed. By the time the i + 1st message has reached ln(fa1st.gen, σ), nodes

were deactivated and thus the optimal path li+1 can only be longer than li. Assume

the kth data message, 1 ≤ k ≤ τ · f + 1, is the last data message that was sent by

S, i.e. this message was accepted by D and D’s reply was accepted by S. And thus,

l1 ≤ l2 ≤ . . . ≤ lk so O(l21) ≤ O(l22) ≤ . . . ≤ O(l2k).

P must be the longest path of a data message, since d(P, F ) > f + 1 + σ and

thus a data message that is sent along P must reach D and D’s reply must reach S

and no additional data messages will be sent. Obviously it may happen that the last

data message is relayed and accepted along a path Q for which d(Q,F ) ≤ f + 1 + σ.

Consequently we can conclude that lk ≤ Ψ. Each edge costs O(f) messages, since an

ack is sent for the previous (up to) θ +1 nodes. So each data message costs at most

O(Ψ2f) messages, where by data message we mean the data message the source

sends to the destination and the reply message the destination sends to the source.

Since there are at most τ · f + 1 data messages, the total number of data and ack

messages is O(Ψ2f(τ · f + 1))

Once all the faulty nodes are isolated, no fas are generated and all the data mes-

sages are accepted by their destinations, as long as there is a path to the destination

in the remaining graph. If there is such a path of length Ψ, after sending at most

O(Ψ2f) data and ack messages, the data message is accepted by the destination.

Observe that there are at most τ · f fa flooding phases regardless of the number

of data and ack messages. If we assume that the graph is a Unit Disk Graph and

the Ω(1)-model as in [13], we can conclude that in ln(fa.gen, i) there are O(i2) nodes

and O(i2) edges. Each fa flooding consists of one fa1st and the fa2nds that are

generated because of it. fa1st is flooded to ln(fa1st.gen, σ) and each fa2nd is flooded

to ln(fa2nd.gen, f + 1). Since the number of fa2nds dominates the total number of

fas in each fa flooding, we can conclude that the total number of fas in each fa

flooding is O(f 2 · f 2) = O(f 4). It should be noted that most of the fas are sent

and received by nodes that are in ln(fa1st.gen, σ), i.e. by nodes that are about to

deactivate themselves anyway.

Now we return to the proof of the main lemma (Lemma 7.21). We begin by

proving Lemmas 7.9, . . . , 7.20, which are used in the proof of the main lemma. The

first lemma, i.e. Lemma 7.9, proves that if a non-faulty node v accepts a message of

another non-faulty node u, then this message is the original message generated by u.
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Lemma 7.9. If a data, an ack or an fa was generated by a non-faulty node u

and was accepted by a non-faulty node v, then v has accepted the original message

generated by u.

Proof. First is should be noted that a data message or an ack are changed along the

path, e.g. the hop count in increased, so by original message we mean the unchanging

parts of the message. We begin by proving the lemma for a data message. It should

be noted that if v has accepted the message then it has verified the (up to) f + 1

hmac s of distinct nodes, where each hmac is generated by the symmetric key of the

generator of the hmac and the receiving node. Let S be the source of the message.

If dunq
path(S, v) ≤ f + 1, then v has verified the hmac of the source of the message, and

thus this is the original data message. If dunq
path(S, u) > f +1, then there is at least one

non-faulty node x among data.listOfNode.pastNodes that has generated the hmac

and x has already verified the message and thus this is the original data message.

An ack is authenticated by an hmac that is generated by the symmetric key of

the source of the ack and the receiving node and thus this is the original ack. Finally,

an fa is authenticated by µtesla hmac which was generated by the source of the

fa. µtesla relies on one-way function and thus this is the original fa ([22, 23]).

It should be noted that a faulty node x may generate and send a message on behalf

of another faulty node y or even change the message of y and generate a new hmac

while forwarding it. In such a scenario, y whose key was used, is still considered the

source and if a non-faulty node v accepts the message, then as far as v is concerned

this is the original message generated by y.

In the following lemmas we assume that if a non-faulty node accepts a message of

another non-faulty node, then this message is the original message.

Next we prove that if a non-faulty node fails to verify the hmac of a data or of an

ack, then there is a faulty node among the nodes on the path between the generator

of the hmac and the receiving node. Observe that if a node u verifies an hmac of an

ack, then the generator of the hmac is one of the next-nodes of the corresponding

data message of the ack, and if u verifies an hmac of a data message, then the

generator of the hmac is one of the prev-nodes of that data message.

Lemma 7.10. If a non-faulty node u has received a data (respectively, an ack) and

u has failed to verify the hmac(s), then there is a faulty node w among the previous

(respectively, next) f + 1 distinct nodes along the path, i.e. d(w, u) ≤ f + 1.
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Proof. Node u has failed to verify the hmac(s) and thus there is at least one invalid

hmac. There are two options, either the generator of the hmac has generated invalid

hmac or a node on the path has altered the message. Since hmac s are generated

by the prev-nodes or by the next-nodes and these nodes are in ln(u, f + 1), option 1

implies that the faulty node w must be among the prev-nodes or the next-nodes and

d(u, w) ≤ f + 1. Regarding option 2, the faulty node must be among the nodes that

have relayed the hmac, i.e. the prev-nodes or the next-nodes. Each hmac is relayed

by nodes that are at most f hops away from the receiving node and thus d(u, w) ≤ f

and the lemma is proven.

It should be noted that since onion hmac s are used, once a faulty node x alters

the message, the node after it y cannot verify the message.

In the following two lemmas we bound the time an fa should be accepted at the

presence of only non-faulty nodes.

Lemma 7.11. Let u and v be non-faulty nodes that have a non-faulty path P of length

l ≤ σ between them. If v generates an fa1st then u accepts it after at most σ + µ + l

time units since it was sent.

Proof. Node v is non-faulty so it generates a valid fa1st that is flooded to ln(v, σ),

so u should accept it. Since all the nodes in P are non-faulty u receives the fa1st at

most l time units after it has been sent. Node v sends the corresponding µtesla key

at most σ + µ after sending the fa1st, and thus by the same logic, u should receive

it at most σ + µ + l time units after it has been sent. Node u accepts the fa1st

since v generates a valid fa and all the nodes are non-faulty, so they do not alter the

messages and u receives the valid messages generated by v.

By Lemma 7.11 we can conclude that if u is a non-faulty node and d(u, v) ≤ σ and

u does not accept an fa1st generated by v by σ + µ + d(u, v) since it was sent, then

there is a faulty node w on the shortest path between u and v and d(u, w) ≤ d(u, v).

This conclusion holds even if a faulty node has generated and sent the fa1st on behalf

of v, since in such a case, v is considered a faulty node. Observe that if v is non-faulty,

no other node can generate an fa on behalf of it. We define t-fa-first-limit(i) to

be σ +µ+ i, which is the time till which ln(fa1st.gen, i) should accept the fa1st after

it was sent.

Lemma 7.12. Let u and v be non-faulty nodes that have a non-faulty path P of

length l ≤ f +1 between them. If v generates an fa2nd then u accepts it after at most

f + 1 + µ + l time units since it was sent.
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Proof. The proof is similar to the proof of Lemma 7.11 but the nodes that should

accept the fa are the nodes of ln(v, f + 1) instead of ln(v, σ), and the µtesla key

is disclosed at most f + 1 + µ time units instead of σ + µ time units after sending the

fa.

By Lemma 7.12 we can conclude that if u is a non-faulty node and d(u, v) ≤ f +1

and u does not accept an fa2nd generated by v by f +1+µ+d(u, v) since it was sent,

then there is a faulty node w on the shortest path between u and v and d(u, w) ≤
d(u, v).

We define t-fa-second-limit(i) to be f + 1 + µ + i, which is the time till which

ln(fa2nd.gen, i) should accept the fa2nd after it was sent. In addition we define t-

fa-limit(i) to be t-fa-first-limit(i) in case of fa1st and t-fa-second-limit(i) in

case of fa2nd, and it is the time till which ln(fa.gen, i) should accept the fa.

Next we define the values of t-final-time and t-ack-time. The ack time-

outs are set for the next-nodes upon accepting a data message. The function

setTimeouts(t-ack, data) (Figure 6.1 line B13 and Figure 6.2 line J5) sets these

timeouts. The timeout for a next node x which is i-hops away along the path is

2i+ (σ +µ)(i− 1). In Lemma 7.14 we prove that this calculation of the ack timeout

ensures that if two consecutive non-faulty nodes u and v are on a path and v comes

immediately after u and both have set an ack timeout, then u is able to authenticate

a message sent by v before its ack timeout expires.

The final timeout is set upon generating an fa. A node x that has generated an

fa may be in the gl of the other nodes and may still be included in a path. Node x

may be added to the gl of the other nodes before it was added to the path or while

it was part of the path. The first case may happen because it takes time to flood fas

and thus a remote node may add x to the path while at nodes that are near x the

fa was already accepted. The second case may happen when several paths are used

simultaneously and on one path an fa1st is generated. Next we prove that if there

are no faults, a non-faulty node deactivates itself only when it is not and never will

be included in any path.

Lemma 7.13. Let t-final-time be 2(σ +µ+2)θ +f +5 and x be a non-faulty node

that generates an fa and all non-faulty nodes in ln(x, f + 1) accept this fa within

t-fa-limit(f +1) since it was sent. If a data message is sent in ln(x, f +1) only by

non-faulty nodes after the fa is accepted, then x is not included in data.listOfNodes

after deactivating itself.
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Proof. Node x sets the final timeout upon sending an fa, and when it expires, x

deactivates itself (See Figure 6.1, lines D1-D3, E4-E6 and G1). We are going to prove

that t-final-time is longer than the time x participates in the path, i.e. by the time

the final timeout expires, no non-faulty node is waiting for an ack or fa1st from x.

Remember that x is non-faulty so it generates all the messages correctly and on time.

Since all the non-faulty nodes in ln(x, f +1) accept this fa within t-fa-limit(f +1)

since it was sent, x is added to the gl and the bl of these nodes and thus it is not

added to data.listOfNodes by a non-faulty node after the fa is accepted. It should

be noted that even though v has generated an fa, it may continue to participate in

the routing and it does not matter which fa v has generated, either an fa1st or fa2nd.

Each non-faulty node participates in the path until it has accepted acks from all

the next-nodes, or until its ack timeout expires, or until an fa1st is accepted for an

active node on the path, (See Figure 6.1, lines C3-C4, D1 and E7-E8, respectively).

The maximal time x may be relevant for one path is the time since it is included in

data.listOfNodes, until all the nodes preceding x have stopped participating in the

path. Let the path P be u, . . . , v, x, . . . , y. Node x is the fa.gen and v is the node that

immediately precedes it. Node u has added x to the data message before the fa was

accepted. It is obvious that dP (u, v) ≤ θ. Node y is the last node from which v should

accept an ack and thus dP (v, y) ≤ θ + 1. So x should set a timeout that its length it

at least the time it takes a data message to be relayed from u to v and from v to y

plus the time it takes v to accepts y’s ack or an fa1st. This time is at most the sum

of the ack timeout u activates for its last next node and the ack timeout v activates

for its last next node. This sum equals 2[2(θ + 1) + (σ + µ)θ] = 2(σ + µ + 2)θ + 4.

Since u, the node that has added x to the path, may be at most f +1 hops from x,

it may take the fa to reach u at most f+1 time units after x has sent it. So x may have

generated the fa at most f +1 time units before u has added it to the data message,

and thus f + 1 should be added to the previous calculated time. Consequently we

can conclude that x can deactivate itself after at most 2(σ + µ + 2)θ + 4 + f + 1 =

2(σ + µ + 2)θ + f + 5 = t-final-time.

In the following lemmas we assume, unless stated otherwise, that nodes do not

deactivate themselves before sending all required messages.

Next we prove that the ack timeout is set such that a non-faulty node receives

an ack or an fa1st before its ack timeout expires. Remember that the ack timeout

for a next node x which is i-hops away along the path is 2i + (σ + µ)(i− 1).
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Lemma 7.14. Let u and v be non-faulty nodes such that v comes immediately after u

on a path P of some data message. If u sends this data message to v and v accepts

the message, then u receives an ack or an fa1st from v before its ack timeout expires,

where this ack was generated by one of u’s next-nodes and the fa1st was generated

by one of the active nodes of u.

Proof. Observe that each node on the path can generate an fa1st and an ack, and

relay an fa1st or an ack. Node v is non-faulty and thus it generates an ack upon

accepting a data message and an fa1st upon the expiration of its ack timeout. In

addition, upon accepting an ack or an fa1st, it sends them to u. Remember that

fa2nd does not cause the removal of a data message and its ack timeout and thus it

is not considered here.

acks can be verified once accepted. fas are verified by µtesla and thus they can

be verified after the µtesla key is received. As a result, it takes to verify an fa the

longest time and in particular an fa1st, since the µtesla keys are disclosed at most

σ + µ after the corresponding fa1st is sent. We are going to prove that the difference

between the values of the ack timeouts of u and v allows u to verify an fa1st before

its ack timeout expires.

We are going to analyze all the possible values of u’s ackNext. Observe that all

the ack timeouts for the next-nodes are set upon accepting the data message. By

the lemma’s assumption, v comes immediately after u on the path. If u’s ackNext is

1, then it has not accepted v’s ack yet and it has an active ack timeout of 2 time

units. Only an ack can be received from v because of this data message since an

fa1st can be generated only after the ack timeout has expired, and thus if the ack

timeout has expired at v, v must have already accepted a data message and sent an

ack to u. So by 2 time units an ack must be accepted, since v has accepted the

data message and must have sent a valid ack. It should be noted that v may have

sent an fa to u because of another path. By the lemma’s assumption, v does not

deactivate itself before sending all the messages to u and in particular, it sends an

ack to u upon accepting the data message. It should be noted that until u accepts

v’s ack, v is not among u’s active nodes, and thus if u accepts an fa1st that was

generated by v before accepting v’s ack, u does not delete the data message.

Next we prove that the difference between the values of the ack timeouts that u

and v set for the same next node is 1 + σ + µ and this difference allows accepting an

fa1st before the ack timeout at u expires. If u’s ackNext = 2 then it has an active

ack timeout of 2ackNext+(σ +µ)(ackNext−1) = 4+σ+µ. Node v has an active ack
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timeout of 2 time units, since his ackNext is 1, and thus the difference between the

values of their ack timeouts is 2+σ+µ. Node v starts its ack timeout upon accepting

the data message sent by u and thus v’s ack timeout starts 1 time unit after u starts

its ack timeout. As a result the actual difference between the values of their ack

timeouts is 1 + σ + µ. At the worst case v’s ack timeout expires and it generates an

fa1st. Since v’s ack timeout has expired after 2 time units and it takes the message

to be relayed 1 time unit and the key is disclosed after at most σ + µ since the fa1st

was sent, the fa1st can be verified by u after at most 1 + 2 + σ + µ + 1 = 4 + σ + µ,

which is u’s ack timeout, and thus the FA1st can be verified by u before its ack

timeout expires.

Next we consider the case where u’s ackNext > 2. Since all the ack timeouts for

the next-nodes are set upon accepting the data message, v has set an ack timeout

for each next node 1 time unit after u has. u’s ackNext is bigger by 1 than v’s ackNext,

so the ack timeout of u is bigger by 2 + σ + µ than v’s ack timeout and thus the

actual difference is 1+σ+µ. By the same analysis as done in the previous paragraph,

we can conclude that u can verify an fa1st before its ack timeout expires.

The next lemma proves that at the presence of only non-faulty nodes; if a non-

faulty node accepts an fa1st and as a result deletes a data message then all its

prev-nodes will delete the data message before their ack timeouts expire.

Lemma 7.15. Let u be a non-faulty node that has either generated or accepted an

fa1st and as a result deleted a data message(s). If the prev-nodes and the next-

nodes of u of this data message are non-faulty, then this deletion does not cause the

generation of another fa1st by a non-faulty node that is among the prev-nodes of u.

Proof. Upon generating or accepting an fa1st by a non faulty node u, all the relevant

data messages are deleted (See Figure 6.1, lines D1, E7-E8). These data messages

are the data messages that fa1st.gen is one of the active nodes of u, i.e one of the

nodes of next-nodes or prev-nodes of u, including u, that should accept the same ack

u is waiting for. If u is the fa1st.gen, it deletes all its data messages. Each node

calculates the active nodes of each (instance of) data message it has stored. The

active nodes are updated as acks are accepted.

First we prove that all the active nodes, as calculated by u, are in the range of this

fa1st, and more precisely, they are at most f hops away from fa1st.gen. Remember

that the range of an fa1st is σ ≥ f . Since each node sends its ack for its prev-nodes,

at most f + 1 distinct nodes should accept the same ack and thus there are at most
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f + 1 distinct active nodes (as calculated by u) and the distance between any two

active nodes is at most f . fa1st.gen is among the active nodes of u and thus all

the active nodes are at most f hops away from the fa1st.gen. Observe that all the

prev-nodes and next-nodes are non-faulty and the fa1st.gen is one of the active nodes

of u, and thus the fa1st is received by each active node from the immediate next node

or previous node on the path within t-fa-first-limit(f + 1) since it was sent.

Next we prove that all the active nodes accept this fa1st and delete the data

message(s) before their ack timeouts expire. Since u has deleted a data message(s)

as a result of generating or accepting an fa1st, it must have accepted the data

message(s) and it is only waiting for acks from the next-nodes, and thus the nodes

that precede u on the path are only waiting for acks as well. There are two cases to

consider, either u and its immediate previous node v are waiting for an ack of the

same node or u is waiting for an ack of some node z and v is waiting for an ack

of some node y. Obviously in the latter case, since u comes immediately after v on

the path it must have accepted the acks before sending them to v and thus z must

follow y on the path. In addition, since the network is synchronous, z must be the

immediate next node of y.

W.l.o.g. let the current path P be p, q, . . . , r, u1, v, u2, . . . , x, y, z and assume

p, . . . , v are waiting for an ack of y and u2, . . . , y are waiting for an ack of z, i.e. the

ack generated by y was accepted by u2, . . . , y and not by p, . . . , v. In addition, we

assume that z is among the next-nodes of p, . . . , y, since if it does not, some nodes will

never include it in their active nodes and thus upon accepting z’s fa1st, they never

delete their data message(s) and so there is no issue of synchronizing the deletion of

data message(s) between immediate neighbors. The same applies for the prev-nodes,

so we assume that p is among the prev-nodes of q, . . . , z.

There are two cases to consider, either u = u1, i.e. u and r are waiting for an ack

of y or u = u2, i.e. u is waiting for an ack of z and v is waiting for an ack of y. Assume

that u = u1. If fa1st.gen ∈ {p, . . . , x}, then p, . . . , x delete the data message upon

accepting the fa1st, since fa1st.gen is among the active nodes of p, . . . , x. Observe

that if y would have been the fa1st.gen, then since it is not among the active nodes

of p, . . . , v, they would not have deleted the data message upon accepting its fa1st.

Node u has generated or accepted the fa1st and the prev-nodes of u receive this fa1st

from u or from another node and accept it within t-fa-first-limit(f + 1) since it

was sent. If r has not accepted this fa1st by the time it receives it from u, then the

fa1st is safe, and since r is in the range of the fa1st and u has accepted it, v accepts it

as well. It is clear that the other option is that r has already accepted this fa1st from
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another node which is among r’s 1hns by the time r receives the fa1st from u. So we

can conclude that at the latest, r accepts the fa1st when it is received from u and by

Lemma 7.14, node r accepts it before its ack timeout expires. The same reasoning

applies to the other prev-nodes of u as well. All the prev-nodes are non-faulty, so at

the latest they accept this fa1st f + 1 time units after u has generated or accepted

it. By Lemma 7.14 and since they are non-faulty, the difference between the values

of the ack timeouts of any node g that is among the prev-nodes of u (except v) and

u is α(2+σ +µ)−α > σ +µ+ f +1, where 1 < α = dP (g, u) ≤ θ. So the prev-nodes

accept this fa1st before their ack timeouts expire.

Assume that u = u2. The case where fa1st.gen ∈ {p, . . . , x} was already proven

in the previous paragraph, so we assume that fa1st.gen is y (node z is not one of

the active nodes so if it is the fa1st.gen, no node will delete a data message as a

result of accepting its fa1st). Node y is among the active nodes of u, . . . , x and not

among the active nodes of p, . . . , v, and thus upon accepting the fa1st, u, . . . , x delete

the data message(s) and p, . . . , v do not (if y is non-faulty it deletes all its data

messages when it generates an fa1st). Node y is not among the active nodes of v,

so v has not accepted y’s ack sent by u. When v accepts y’s ack, node y becomes

one of its active nodes. Node u sends y’s fa1st after sending y’s ack. So when v

receives y’s fa1st from u, v accepts this fa1st for either one of the following reasons.

If v has not accepted this fa1st yet, then since u is non-faulty and since this fa1st

is accepted within t-fa-first-limit(f + 1) since it was sent, v accepts it and thus

v deletes the data message. If v has already accepted this fa1st, then since all the

prev-nodes and next-nodes of u are non-faulty, this fa1st sent by u is received within

t-fa-first-limit(f + 1) since it was sent. Observe that this fa1st is received before

v’s ack timeout expires by Lemma 7.14. Node u is the immediate next node and

y is among the active nodes and next-nodes, so v will accept this fa1st and delete

the data message. p, . . . , u1 are non-faulty so the analysis done for v also applies for

them with the relevant changes, in a similar way done in the previous paragraph.

All the active nodes and prev-nodes of u accept this fa1st before their ack time-

outs expire and while fa1st.gen is among their active nodes, so all of them delete

the relevant data messages and their corresponding ack timeouts. Since the ack

timeouts are removed, the prev-nodes do not wait for an ack(s) and thus do not

generate an fa1st because of these data messages.

Next we prove that at the presence of only non-faulty nodes the difference in the

timings of adding a node to the gl or bl does not cause the verification of a data

message to fail at a non-faulty node. We denote by new-node, a node that is not
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included in data.listOfNodes. Remember that a non-faulty node u does not add a

new-node x to data.listOfNodes if x ∈ gl(u) or x ∈ bl(u). In addition u does not

accept a data message if x ∈ data.listOfNodes and x ∈ bl(u) or if it thinks that x

should have been included in data.listOfNodes but it does not, i.e. x /∈ gl(u) and

x /∈ bl(u) but x /∈ data.listOfNodes. Lemma 7.16 proves that if u includes x in the

data message path by adding it to data.listOfNodes, then x is not in the bl of the

non-faulty nodes when they receive the message. Lemma 7.18 proves that if u does

not add x to the path of the data message by not adding it to data.listOfNodes

because x ∈ gl(u) or x ∈ bl(u), then x is either in the gl or in the bl of the non-

faulty nodes when they receive the message. We assume in Lemmas 7.16 and 7.18

that the local neighborhoods of the non-faulty nodes are consistent. So if the gls

and bls are ignored and only the local neighborhoods are taken into consideration,

then if u thinks (does not think) that a node x should be added to data.listOfNodes

and sends the message to v, then v thinks the same.

Lemma 7.16. Let u and v be non-faulty nodes and x be any node such that x has

generated an fa, u ∈ ln(x, f + 1) and v ∈ ln(x, f + 1) and all the non-faulty nodes

in ln(x, f + 1) accept this fa within t-fa-limit(f + 1) since it was sent. Assume u

sends a data message along a path P and adds a new-node x to data.listOfNodes. In

addition, assume that dunq
P (u, v) < dunq

P (u, x) ≤ f +1 and that v receives the message.

If all the nodes on P between u and v are non-faulty then x /∈ bl(v) when v receives

the message.

Proof. The proof follows from the timeout mechanism and the handling of the gl

and bl. First it should be noted that since x is among the next-nodes of u and

dunq
P (u, v) < dunq

P (u, x), x is among the next-nodes of v. In addition, u has added x to

data.listOfNodes and thus x /∈ gl(u) and x /∈ bl(u) at the time u sends the message.

If the fa has not been accepted by v by the time the data message has, we are done,

since x is not in gl(v) and not in bl(v) when the data message is received.

Next we consider the case where v has accepted the fa by the time it has received

the data message. Observe that since dunq
P (u, v) ≤ f we can conclude that dP (u, v) ≤

θ. We denote the time the fa has been accepted by v as tFA
v . We define t-bl-time to

be the same as t-final-time (Defined in Lemma 7.13) and thus t-bl-time� f +θ,

is the timeout v sets for the nodes to be removed from the gl and added to the bl.

Of course tFA
v +t-bl-time is the time x is added to the bl of v.

When v accepts the fa at tFA
v it sets a bl timeout. All the nodes in ln(x, f + 1)

accept the fa by tFA
v +f , by the lemma’s assumption and Lemmas 7.11 and 7.12, and
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particularly, u accepts this fa. It should be noted that for routing decisions only the

f + 1 neighborhood is used and thus we only consider the f + 1 local neighborhood

of x here. From the above we can conclude that the data message was sent by u at

the latest at tFA
v + f , v’s time.

It takes the message to be relayed from u to v at most θ, since dpath(u, v) ≤ θ and

all the nodes between u and v are non-faulty, and thus the data message reaches v

at the latest at tFA
v + f + θ < tFA

v + t-bl-time. So we can conclude that at the time

v receives the message x is not in bl(v).

It should be noted that since t-bl-time = t-final-time and a non-faulty node

sets a bl timeout upon accepting an fa, then it is guaranteed that if the fa.gen is

non-faulty, it sets the final timeout before the fa is accepted and thus it deactivates

itself before the bl timeouts of the non-faulty nodes that have accepted the fa

expire, i.e. it stops sending messages before being added to these nodes bls.

The next lemma is an auxiliary lemma and is used by Lemma 7.18.

Lemma 7.17. Let u be a non-faulty node that has sent a data message along a path

P. If v should have been added by u to data.listOfNodes and since v is in gl(u) or

bl(u) it has not been added, then all the next-nodes of u, maybe except the last node

of these nodes, are at most f + 1 hops from v.

Proof. The next-nodes of u consists of f + 1 distinct nodes. Let these nodes be

x1, x2, . . . , xf+1, where xf+1 is the last node of next-nodes. u has considered v and

thus we define d̂P (u, v) to be the distance between u and v on P if v would have

been included in P and similarly d̂unq
P (u, v). We prove the lemma by considering the

following cases, d̂P (u, v) = 1 (i.e. d̂unq
P (u, v) = 1) and 1 < d̂P (u, v) ≤ θ + 1 (i.e.

1 < d̂unq
P (u, v) ≤ f + 1). Observe that d(u, v) ≤ d̂unq

P (u, v) ≤ d̂P (u, v).

If d̂P (u, v) = d(u, v) = 1 then since d(xi, u) ≤ f, 1 ≤ i ≤ f we can conclude that

d(xi, v) ≤ d(xi, u) + d(u, v) ≤ f + 1.

Next we consider the case where 1 < d̂P (u, v) ≤ θ + 1. Let xj, 1 ≤ j ≤ f be the

node before v in P if v would have been included in P , i.e. if v was not in gl(u) or

bl(u), then xj+1 would have been v, and thus d(xj, v) = 1. Since d(xj, xk) ≤ f, 1 ≤
k ≤ f + 1 we can conclude that d(xk, v) ≤ d(xk, xj) + d(xj, v) ≤ f + 1.
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Lemma 7.18. Let u and v be non-faulty nodes and x be any node such that x has

generated an fa, u ∈ ln(x, f + 1) and v ∈ ln(x, f + 1) and all the non-faulty nodes

in ln(x, f + 1) accept this fa within t-fa-limit(f + 1) since it was sent. Assume u

accepts a data message after accepting this fa and x is not among data.listOfNodes

and u thinks that x should be added to data.listOfNodes according to its local neigh-

borhood. In addition, assume that u sends this data message along a path P and this

data message is received by v and dunq
P (u, v) ≤ f + 1. If all the nodes on P between

u and v are non-faulty then x ∈ gl(v) or x ∈ bl(v) when v receives the message.

Proof. The proof follows from the handling of fa s and the assumption that the first

message sent is received first (FIFO). Observe that x ∈ gl(u) or x ∈ bl(u) when

u sends the data message, since it has accepted the fa before sending the data

message. Node u thinks that x should be added to data.listOfNodes according to

its local neighborhood, but it does not add x to data.listOfNodes when it sends the

message since x ∈ gl(u) or x ∈ bl(u).

Next we prove that x ∈ gl(v) or x ∈ bl(v) when v receives the message by induc-

tion on the number of hops between u and v in P . Observe that since dunq
P (u, v) ≤

f + 1, we can conclude that dP (u, v) ≤ θ + 1. The base case is dP (u, v) = 1. When

u accepts the fa it broadcasts it and thus v must receive it. Remember that the fa

is received within t-fa-limit(f + 1) since it was sent, by the lemma’s assumption,

so if v has not accepted this fa by the time it receives it from u, then the fa is safe

and since v is in the range of the fa and u has accepted it, v accepts it as well. It is

clear that the other option is that v has already accepted this fa from another node

y which is among v’s 1hns by the time v receives the fa from u. So we can conclude

that at the latest, v accepts the fa when v receives it from u. It should be noted that

since by fa we mean both the fa itself and its corresponding µtesla key, it may

happen that the fa has been received from u and its corresponding µtesla key from

y or vice versa. Since u broadcasts the fa before sending the data message, when v

receives the data message it has already accepted the fa and thus x ∈ gl(v) or x ∈
bl(v) when the data message is received by v.

Assume that the induction hypothesis is correct for dP (u, v) = i where 1 ≤ i ≤ θ

and we prove it for i + 1. Let the path P be u, y, . . . , z, v. Observe that y, . . . , z are

non-faulty by the lemma’s assumption. In addition, they are in the range of this fa

by Lemma 7.17, so we can conclude that they have accepted the fa within t-fa-

limit(f + 1) since it was sent. By the induction hypothesis, x ∈ gl(z) or x ∈ bl(z)

when z receives the data message, so z broadcasts the fa before sending the data

message to v. This case is similar to the base case with z playing the role of u in the
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base case and thus x must be in gl(v) or bl(v) when it receives the data message

from z.

Lemma 7.19 uses Lemmas 7.16 and 7.18 to prove that in the presence of only

non-faulty nodes, the difference in the timings of adding a node to the gl or bl

does not cause the verification of a data message to fail at a non-faulty node. We

assume in the following lemma that the local neighborhoods of the non-faulty nodes

are consistent.

Lemma 7.19. Let v, x and y be non-faulty nodes such that y has generated an fa,

v ∈ ln(y, f + 1), x ∈ ln(y, f + 1) and all the non-faulty nodes in ln(y, f + 1) accept

this fa within t-fa-limit(f + 1) since it was sent. Assume that x sends a data

message to v along a path P such that dunq
P (x, v) ≤ f + 1 and all the f + 1 distinct

nodes preceding v on P are non-faulty. If v receives the message then this fa does not

cause the verification of the data message at v to fail.

Proof. First it should be noted that all the f + 1 distinct nodes preceding v on

P are non-faulty and thus all the prev-nodes of v are non-faulty. The prev-nodes

are non-faulty so they generate valid messages and thus the only reason because

of which v fails to validate the data message is that its chosen-nodes differ from

data.listOfNodes.futureNodes. So we prove that the fa generated by y will not cause

the verification of data.listOfNodes.futureNodes to fail. The local neighborhoods of

the prev-nodes and v are consistent by the lemma’s assumption. If according to the

local neighborhoods y should not follow v on P then both x and v do not consider

y and we are done, so we prove that the lemma holds when y should come after v

according to the local neighborhoods (regardless of the gls and bls of the nodes).

We prove the lemma by analyzing the data message v receives. There are two

options: either y ∈ data.listOfNodes.futureNodes, i.e. when v receives the message y

is among the future nodes of data.listOfNodes, or y /∈ data.listOfNodes.futureNodes,

i.e. when v receives the message y is not among the future nodes of data.listOfNodes.

Both v and x are in the range of the fa and, by the lemma’s assumption, x and v

accept y’s fa by t-fa-limit(f + 1) time units since y has sent it.

If y ∈ data.listOfNodes.futureNodes, then it is either because x has added y

to data.listOfNodes or because another node u that precedes v has added y to

data.listOfNodes. Node u is among the prev-nodes of v and thus it is non-faulty.

Since u has added y to data.listOfNodes it must be in ln(y, f + 1) and thus it

has accepted y’s fa within t-fa-limit(f + 1) time units since y has sent it. By
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Lemma 7.16, where x or u play the role of u and y plays the role of x in the lemma,

we can conclude that y /∈ bl(v) when v receives the data message and thus this

fa does not cause the verification of the data message at v to fail (Obviously, if u

precedes x, then x accepts the data message by Lemma 7.16 as well).

If y /∈ data.listOfNodes.futureNodes, then either x thinks that y should be in

data.listOfNodes according to its local neighborhood but since y ∈ gl(x) or y ∈
bl(x) it does not add y to data.listOfNodes or another node u that precedes v has

not added y to data.listOfNodes because y ∈ gl(u) or y ∈ bl(u). As before, u must

be non-faulty and in ln(y, f +1) and thus it has accepted y’s fa by t-fa-limit(f +1)

time units since y has sent it. By Lemma 7.18, where x or u play the role of u and y

plays the role of x in the lemma, we can conclude that y ∈ gl(v) or y ∈ bl(v) and thus

this fa does not cause the verification of the data message at v to fail (Obviously, if

u precedes x, then x accepts the data message by Lemma 7.18 as well).

Next we prove that if a non-faulty node receives a data message but fails to verify

it and all its prev-nodes are non-faulty, then there must be a faulty node near by.

In the next lemma we do not assume that the local neighborhoods of the non-faulty

nodes are consistent.

Lemma 7.20. Let v be a non-faulty node that has received but not accepted a data

message that was sent along some path P. If all the (f + 1 distinct) nodes preceding

v on P are non-faulty then node u, the node that immediately precedes v on P, must

generate an fa1st and there is a faulty node w s.t. d(u, w) ≤ f + 1.

Proof. Node v has received a data message. Let data.listOfNodes.pastNodes be

xi, xi+1, . . . , xi+l−1, xi+l, f ≤ l ≤ θ. pastNodes are the prev-nodes of v and they

consist of f + 1 distinct nodes. xi+l is the node that immediately precedes v so xi+l

is u. Let data.listOfNodes.futureNodes be zi, zi+1, . . . , zi+m. futureNodes may be

comprised of f , f +1 or even less than f distinct nodes. If futureNodes are comprised

of f distinct nodes then f − 1 ≤ m ≤ θ − 1, if futureNodes are comprised of f + 1

distinct nodes then f ≤ m ≤ θ and if futureNodes are comprised of less than f

distinct nodes then f ≤ m < θ − 1. Observe that the proof for all cases is the same.

The prev-nodes are non-faulty and they have verified the message and agreed that

v should follow u (= xi+l) on the path, since if they have not agreed the verification

of the data message would have failed before reaching v. Thus, they have generated

a valid data message for v.

The verification at v has failed and thus its chosen-nodes zv
i , z

v
i+1, . . . , z

v
i+m dif-

fer from the futureNodes zi, zi+1, . . . , zi+m. Let y ∈ {zi, zi+1, . . . , zi+m} and yv ∈



50 Analysis

{zv
i , z

v
i+1, . . . , z

v
i+m} be the first nodes for which y 6= yv. Let zr be the immediate

node that precedes y (zr may be v). Since y comes after v on the path it is not in-

cluded in the next-nodes of some of v’s prev-nodes and thus only some nodes among

xi, xi+1, . . . , xi+l have agreed that y should be after zr. Let xk, xk+1, . . . , xi+l be these

nodes. It is clear that xk has added y to data.listOfNodes.

So the nodes are ordered in the following way:
y

xk, xk+1, . . . , xi+l, v, zi, . . . , zr
↗
↘

yv

From the above we can conclude that: dP (zr, y) = dP (zr, y
v) = 1, dunq

P (xk, y) = f+

1, since it is the last node of the next-nodes of xk. dunq
P (xk, zr) = f since dunq

P (xk, zr) <

f + 1 (otherwise xk would not have added y) and dunq
P (xk, zr) ≥ f (zr is a 1hn of

y) and thus dunq
P (xk, y

v) ≤ dunq
P (xk, zr) + dP (zr, y

v) = f + 1. In the same manner

dunq
P (xi+l, zr) ≤ f , dunq

P (xi+l, y) ≤ f + 1, dunq
P (xi+l, y

v) ≤ f + 1, dunq
P (v, zr) ≤ f ,

dunq
P (v, y) ≤ f + 1 and dunq

P (v, yv) ≤ f + 1.

Since the prev-nodes of v and v are non-faulty and choose the nodes according to

the routing protocol they should have chosen the same nodes and thus there are the

following three options.

1. The local neighborhoods of xk, . . . , xi+l and v are consistent and xk has added

y to data.listOfNodes and for xk+1, . . . , xi+l node y was not in their bls when

they have received the message but y was in bl(v) when v has received the

message so it has chosen yv instead.

2. The local neighborhoods of xk, . . . , xi+l and v are consistent and yv should have

been added to data.listOfNodes by xk but since yv ∈ gl(xk) or yv ∈ bl(xk), xk

has added y instead of it and for xk+1, . . . , xi+l node yv was in their gls or bls

when they have received the message but yv was not in gl(v) or bl(v) when v

has received the message, so v has included yv in its chosen-nodes.

3. The local neighborhoods of xk, . . . , xi+l and v are not consistent and xk, . . . , xi+l

think that y should be after x and v think that yv should be after x.

We begin with the first option. First we analyze the nodes that consist of the

path P, i.e. xk, xk+1, . . . , xi+l, v, zi, . . . , zr, y. dunq
P (xk, y) = f + 1 so there is a path

Q of length f + 1 between xk and y. The path between xk and v is part of Q and
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it is non-faulty. y ∈ bl(v) so v has accepted an fa for which y is the fa.gen. By

Lemma 7.19, where xk, v and y are playing the role of x, v and y in the lemma, we can

conclude that if xk would have accepted this fa within t-fa-limit(f +1) since it was

sent, then this fa would not have caused the verification at v to fail. The verification

at v has failed so there must be a faulty node w on the path between xk and y that

has prevented from xk to accept this fa within t-fa-limit(f + 1) since it was sent.

xk, . . . , v are non-faulty so w ∈ {zi, . . . , zr, y}, since otherwise, there is a path of

length f + 1 between xk and y which is comprised entirely of non-faulty nodes, so xk

would have accepted the fa within t-fa-limit(f + 1) since it was sent. zi, . . . , zr, y

are among the next-nodes of xi+l, so we can conclude that d(xi+l, w) ≤ f + 1.

The proof of the second option is similar to the previous option. Node xk has

not added yv to the data message since it was in its gl or bl, so it has accepted

an fa for which yv is the fa.gen. By Lemma 7.19, where xk, v and yv are playing

the role of x, v and y in the lemma, we can conclude that if v would have accepted

this fa within t-fa-limit(f + 1) since it was sent, then this fa would not have

caused the verification at v to fail. The verification at v has failed so there must be

a faulty node w on the path between v and yv that has prevented from v to accept

this fa within t-fa-limit(f + 1) since it was sent. Similarly to the previous option,

w ∈ {zi, . . . , zr, y
v} and we can conclude that d(xi+l, w) ≤ f + 1.

The last option implies that the local neighborhoods of xi+l and v are not con-

sistent. Remember that ∀p, q and path, d(p, q) ≤ dunq
path(p, q) so d(v, y) ≤ f + 1,

d(v, yv) ≤ f + 1, d(xi+l, y) ≤ f + 1 and d(xi+l, y
v) ≤ f + 1. It is clear that ei-

ther v or xi+l does not include a node (i.e. y or yv, respectively) that it should in its

local neighborhood or does not know the correct information of that node. If it is xi+l,

then by the assumption on the neighborhood discovery algorithm (See Chapter 4),

we can conclude that d(xi+l, w) ≤ d(xi+l, y) = f + 1. If it is v, then again by the

same assumption, the faulty node is on the path between v and y and we prove that

w is at most f + 1 hops from xi+l. There are two options, either y is the faulty node

or another node w for which d(v, w) ≤ f is faulty. If it is y then we are done since

d(xi+l, y) ≤ f + 1, otherwise d(xi+l, w) = d(xi+l, v) + d(v, w) ≤ f + 1.

So we have proved that d(xi+l, w) ≤ f + 1 and remember that xi+l = u. Since

the verification at v has failed it drops the message and the ack timeout at u expires

and thus it generates an fa1st.
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Finally we prove the main lemma.

Lemma 7.21. If u has generated an fa1st then there exists w s.t. w is faulty and

d(u, w) ≤ f + 1.

Proof. If u is faulty we are done; so consider the case that u is non-faulty. Observe

that a non-faulty node u generates an fa1st only upon the expiration of its ack time-

out (See Figure 6.1, line D1). It should be noted that u has accepted a data message

and its ack timeout has expired and thus it has generated an fa1st. Let the path P of

this data message be . . . , z, . . . , u, v, . . . . Node v is the node that comes immediately

after u on the path and z is the node that has added v to data.listOfNodes. It is

obvious that d(z, v) ≤ f + 1, i.e. z ∈ ln(v, f + 1). If v is faulty we are done; so con-

sider the case that it is non-faulty. We should consider the following cases depending

whether v has accepted the data message or not.

We consider the case where v has accepted the data message sent by u to v. Node

u has not accepted an ack or an fa1st since its ack timeout has expired. Node v is

non-faulty and thus it verifies, updates and generates valid messages for u. If v has

deactivated itself before sending an ack or fa1st to u then either, by Lemma 7.13, z is

faulty, since it has added v to the path though v ∈ gl(z) or v ∈ bl(z), or there must

be a faulty node that has prevented from z to accept v’s fa within t-fa-limit(f +1)

since it was sent. So the faulty node must be on P between v and z and we can

conclude that d(w, u) ≤ f .

We have covered the case that v deactivates itself before sending all the expected

messages to u, so we assume now that v has sent all the expected messages to u. The

ack timeout at v has not expired, since if it had, v would have generated a valid fa1st.

By Lemma 7.14 and since u and v are non-faulty, the fa1st generated by v would have

been accepted by u before the expiration of u’s ack timeout and thus u would have

deleted the data message and would not have generated an fa1st. So v must have

accepted an ack or an fa1st before its ack timeout has expired and this ack or fa1st

must have caused v to remove its ack timeout. In addition, this ack or fa1st was

sent to u and by Lemma 7.14, u receives them before its ack timeout expires. Node

u has received the message from v but not accepted it, since otherwise, u would have

removed its ack timeout and thus it would not have generated an fa1st. So u has

generated an fa1st because of not accepting this message before the expiration of

its ack timeout. Next we prove that since u has not accepted this ack or this fa1st

there must be a faulty node near by.

In case of an ack, the hmac s are generated in an onion like style by ack.gen so



7.2 Proof 53

the hmac u has received has been invalid. By Lemma 7.10 we can conclude that the

faulty node must be among the next-nodes of u and thus d(u, w) ≤ f + 1. In case of

an fa1st, this fa1st has caused v to delete the data message(s) and its ack timeouts.

If u had accepted this fa1st then it would have removed its data message and its ack

timeouts and thus fa1st.gen must be one of the active nodes of u. The ack timeout

at u has still expired and thus, by Lemma 7.15 and since fa1st.gen is one of the active

nodes of u, there is a faulty node w among the prev-nodes or next-nodes of u and

d(w, u) ≤ f + 1.

Next we consider the case where v has not accepted the data message sent

by u to v. In order to verify a data message, v must verify the hmac s gener-

ated by data.listOfNodes.pastNodes, i.e. v’s prev-nodes, and it must agree with

data.listOfNodes.futureNodes. Again there are two cases depending whether there is

a faulty node among v’s prev-nodes. If there is a faulty node w among v’s prev-nodes

that has caused the verification at v to fail we are done, since d(u, w) ≤ f + 1. If all

the prev-nodes are non-faulty and still v has not accepted the data message, then, by

Lemma 7.20, the only explanation is that v and some of its prev-nodes did not agree

on data.listOfNodes.futureNodes and we can conclude that d(u, w) ≤ f + 1.



Chapter 8

Neighborhood Discovery

In this chapter we present an algorithm for neighborhood discovery. We prove that

by the end of the neighborhood discovery each node x knows its σ-hop neighbor-

hood unless there are faulty nodes. For each neighbor y in its σ-hop neighborhood

x will know all the information needed for the routing and for verifying y’s authen-

ticated messages. The neighborhood information is gathered by the hello message

mechanism.

The algorithm is comprised of rounds and it is based on synchronizer alpha [3]

with some modifications to synchronous systems. At round i, each node x generates

keys with its i-hop neighbors and gathers the information of its i-hop neighbors. At

the beginning of each round i, a timeout is set and upon its expiration, round i ends

and round i + 1 begins. Of course a faulty node can prevent messages from being

received or accepted and the timeout mechanism is used to overcome such faults.

8.1 Messages and Timeouts

Two types of messages are used in the algorithm, hello and finish messages.

8.1.1 HELLO message

hello messages are used to inform the local neighborhood of the generator of the

hello message what is the size of the neighborhood known to it. The format of the

hello message is depicted in Table 8.1.

Observe that hello messages do not include hmac s and are not authenticated.
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HELLO message Format

gen round

Field Description

id gen The generator of the hello message
number round The current round number of the hello.gen, i.e. hello.gen

knows its round -1 local neighborhood

Table 8.1: hello message format

We denote by hello(i), an hello message with round i.

8.1.2 FINISH message

finish messages are only sent at round 1.5 of the algorithm and are used to inform

the 1hns of the generator of the finish message who are its 1hns. The format of the

finish message is depicted in Table 8.2.

FINISH message Format

gen 1hns µTESLAInterval µTESLAHmac

Field Description

id gen The generator of the finish message
set 1hns The 1hns known to the finish.gen
number µTESLAInterval The interval at which the key for this finish message will

be disclosed
number µTESLAHmac A µtesla hmac generated by finish.gen

Table 8.2: finish message format

The finish message can only be verified by the nodes that can verify the µtesla

hmac, and thus it can only be verified by the 1hns of the finish.gen that have
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completed the handshake with finish.gen. We denote by finish(1hns), a finish

message with these 1hns.

8.1.3 Timeouts

Two additional timeouts are defined, the hello timeout and the finish timeout.

Their types are t-hello and t-finish and their values are t-hello-time and t-

finish-time, respectively. These timeouts ensure, as explained next, that if node x

is at round i, it only receives messages of round i or i + 1.

8.2 The Neighborhood Discovery Algorithm

The algorithm is depicted in Figure 8.1. The trigger for starting the algorithm is

internal or when the first hello(1) message is received (lines B1, C1-C2). Each node

x is required to know its σ hop neighborhood, so if y ∈ ln(x, σ), there may be a

difference of at most σ time units between the time x and y start the neighborhood

discovery (of course if there are faults it may be more). Timeouts are used throughout

the algorithm and this difference is taken into consideration, i.e. if the timeout for

round i should have been t, it would be t + σ. This calculation of the timeouts

guarantee that the ith rounds of nodes that are at most i-hops away have an overlap

of t time units. As a result, a message that should have been received at round i,

may be received at round i−1 and thus it is stored till the beginning of round i (lines

D1, E1, H1, M1). At the beginning of round i, each node sends the stored messages

to itself as if it has just received them (lines G2-G3, K2).

The timeout of round i, 1 ≤ i ≤ σ, i 6= 1.5 takes into consideration the maximal

time it takes to perform the handshakes with the neighbors at distance i and the

timeout of round 1.5 takes into consideration the time it takes to verify a finish

message (lines B1, C2, G1, K1). Once the timeout for round i has expired, any

messages that are relevant for that round are ignored even if an handshake was started

but not completed. As a result, it may happen that x thinks that the handshake with

y was completed and y thinks that handshake with x was not completed.

An hello or a finish message is sent at the beginning of each round (lines B1,

C2, G1, K1). finish messages are authenticated by µtesla. The key used for

these messages is the key that its µtesla interval starts at least 1 time unit after

sending the message. A finish message (line I1) is accepted in the same manner an
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Init:
(A1) neighbors = null; i = 1;
Round 1
(B1) broadcast hello(1); setTimeout(t-hello,1);

Upon receiving hello(1) from node y
(C1) if have not sent hello message
(C2) broadcast hello(1); setTimeout(t-hello, 1);
(C3) if handshake with y succeeds
(C4) neighbors[1] = neighbors[1] ∪ y;
(C5) addToLn(y, null); store(y’s info);

Upon receiving finish(1hns) from node y
(D1) store(finish(1hns));

Upon receiving µtesla key for finish(1hns) from node y
(E1) store(µtesla key);

Upon expiration of timeout with timeout.type == t-hello
(F1) start round 1.5;
Round 1.5
(G1) broadcast finish(neighbors[1]); setTimeout(t-finish);
(G2) send all stored finish(1hns) to itself;
(G3) send all stored µtesla keys for finish(1hns) to itself;

Upon receiving hello(2) from node y
(H1) store(hello(2));

Upon accepting finish(1hns) from node y
(I1) neighbors[2] = neighbors[2] ∪ calcNeighbors(2, y, 1hns);
(I2) addToLn(y, 1hns);

Upon expiration of timeout with timeout.type == t-finish
(J1) i++; begin round i ;
Round i
(K1) broadcast hello(i); setTimeout(t-hello, i);
(K2) send all stored hello(i) to itself;

Upon receiving hello(i) from node y
(L1) if y ∈ neighbors[i ]
(L2) if handshake with y succeeds
(L3) neighbors[i+1] = neighbors[i+1] ∪ calcNeighbors(i+1, y, y.1hns);
(L4) addToLn(y, y.1hns); store(y’s info);

Upon receiving hello(i+1 ) from node y
(M1) store(hello(i+1 ));

Upon expiration of timeout and timeout.type == t-hello
(N1) if i < σ
(N2) i++; begin round i ;

Figure 8.1: Neighborhood discovery algorithm

fa is accepted as described in Section 5.2.3. These messages can be verified only if

they were generated by a node that has completed the handshake with the receiving

node. Observe that any message that is received is also broadcasted, except an

unauthenticated µtesla key message.
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Upon receiving an hello message by node x at round i that was generated by

a new node y, a symmetric key is generated and an handshake is performed (lines

C3, L2) if y is known to be i-hop away (line L1). If this is the first round, then

no neighbors are known at all and thus x assumes that y is a 1hn. By the end of

the handshake, a symmetric key is generated between x and y and the 1hns of y,

the µtesla basic key and schedule of y, and any information needed by the routing

algorithm, such as the location of y, are known to x and the information of x is

known to y (lines C5, L4). Observe that the 1hns of the 1hns are only known upon

accepting a finish message (line I2). Once the 1hns of y are know at round i, it is

possible to calculate the i + 1 hop neighbors among these neighbors based on y, y’s

1hns and the known i-hop neighborhood (lines I1, L3).

Next we discuss how the symmetric key is generated and how the handshake is

performed. A symmetric key may be generated by the use of multi-space pairwise

key distribution techniques [7, 14] (See Chaper 2), though these techniques do not

guarantee the generation of a symmetric key. If these techniques are used, hello

messages should include the spaces’ ids of each node. The key can also be generated

by the use of a digital signature scheme. Authenticated public keys can be acquired

by using only local topology knowledge, as described in Chapter 2. In such a case, a

handshake should be performed in order to generate the symmetric key. Observe that

using public keys is more expensive in terms of memory, battery and computational

power than the multi-space pairwise key distribution techniques.

After the generation of the symmetric key Kxy between x and y, a cryptographic

handshake is performed between x and y. The messages used in the handshake are

sent as data messages with a fixed path of length at most σ, where only the source

generates hmac s and neither ack s nor fa s are generated. It should be noted that

the source has a symmetric key with each node on the path. The payload of the data

message y sends to x contains all the information x should know about y.

8.3 Correctness

In this section we prove that if by the end of the neighborhood discovery algorithm

u does not know its correct σ-hop neighborhood, i.e. there is a node v for which

d(u, v) ≤ σ but v is not in the σ-hop neighborhood of u, or the correct information

(µtesla key, µtesla schedule, etc.) of v are not known to u, then there is a faulty

node w on the shortest path between u and v.
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Lemma 8.1. Let u and v be non-faulty nodes and d(u, v) = i ≤ σ. If there is a

non-faulty path P of length i between u and v, then by the end of round i node u

knows the correct information of v.

Proof. The proof is by induction on the round number i. Base case: i = 1. u or

v should have sent an hello(1) message, since they internally sent it or because of

receiving such a message. u and v have not started round 1 at the same time but

the timeouts take it into consideration, so non-faulty nodes that are at distance i

are able to finish the handshakes by the end of round i. Since they are non-faulty,

the handshake must have been completed by the end of round 1 and a finish(1hns)

should have been sent and accepted by the end of round 1.5, so by the end of round

1.5 u knows the correct information of v.

We assume that all the nodes in P are non-faulty and that u and v have not

started round 1 at the same time so it may happen that a finish message and its

µtesla key are received at round 1. In such a case they are stored and used at

the beginning of round 1.5. The same applies for hello(2) messages that may be

received at round 1.5. Though, an hello(2) message sent by non-faulty node cannot

be received at round 1 because of the timeouts mechanism.

Assume that the induction hypothesis is correct for round i, 1 ≤ i ≤ σ − 1 and

we will prove it for round i + 1. Let the path P be u, x, . . . , y, v, where dP (u, y) =

dP (x, v) = i. By the induction hypothesis, node u has completed the handshake with

y and v has completed the handshake with x by the end of round i. Node y sends

its 1hns during the handshake of round i or by a finish message and includes v in

its 1hns and x includes u and thus by the end of round i, u ∈ neighbors[i + 1] of

v and v ∈ neighbors[i + 1] of u. Since there are no faulty nodes on the path P , u

and v complete their handshake by the end of round i + 1 and u knows the correct

information of v. Observe that an hello message of round i + 1 may be received at

round i and in such a case it is stored and handled at round i + 1.

The neighborhood discovery algorithm is ran for σ rounds and thus, by Lemma 8.1,

we can conclude that if by the end of the neighborhood discovery algorithm a non-

faulty node u does not know the correct information of a node v in its σ-hop neigh-

borhood, then there is a faulty node w on the shortest path between u and v.
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Conclusions and Future Work

We have presented the Byzantizer algorithm that transforms ad hoc routing algo-

rithms and makes them resilient to Byzantine faults while maintaining their ad hoc

and locality properties. We have shown how the faulty nodes are isolated by deacti-

vating the nodes around them and thus it is guaranteed that once isolated no more

faults will occur. Our construction provides the first ad hoc routing scheme with

competitive performance resilient to Byzantine failures.

We did not mention enhancement for fully asynchronous models, power manage-

ment and efficiently handling dynamic systems in which nodes are constantly moving,

joining and leaving the system. Power management may be a problem in ad hoc net-

works and is a major concern in sensor networks. The nodes may have a limited

battery power and thus they may stop functioning due to battery depletion and not

because of a faulty node that has caused them to generate an fa and deactivate

themselves. If a non-faulty node does not send a message it should have because

its battery was depleted, then another non-faulty node will generate an fa1st though

no faulty node is near by. A simple way to overcome this problem is the following.

Each non-faulty node u can generate an fa2nd when its battery power drops below a

predefined threshold. By doing this, u informs its ln(u, f + 1) that they should not

consider u in the routing anymore and thus it ensures that no fa will be generated

because its battery was depleted.

We also did not discuss attacks against the physical and MAC layers, the Sybil

attack and the replay attack. Both the physical and MAC layers are vulnerable to DoS

attacks. Our proposed scheme can be used to defend against these attacks as well.

For example, if a node generates data messages at a rate that exceeds a predefined

threshold, a non-faulty node can generate an fa1st. In addition, jamming may be
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countered by the use of spread spectrum [24]. The information needed by spread

spectrum may be acquired during the handshake performed in the neighborhood

discovery. The Sybil attack may be countered by the same techniques as in [17]

or by assuming that each node has a digital signature which was provided by the

manufacturer of the nodes and thus each node can prove that its id is authentic.

Once a non-faulty node is convinced that its 1hn is performing the Sybil attack it

can use our proposed scheme and generate an fa1st in order to isolate the faulty node.

The replay attack may be countered by using sequence numbers.

Our approach of isolating the faulty nodes requires the deactivation of non-faulty

nodes. One direction of research is how to re-incorporate nodes into the network that

have been previously declared faulty and removed. Observe that re-incorporating a

node into the network does not necessarily justify itself since faulty nodes may be re-

incorporated as well and cause additional faults that will result in more fa flooding

phases. The tradeoff between the degradation of the routing due to the isolation of

the faulty nodes and the cost of re-incorporating nodes into the network should be

investigated.

An open question is to improve the cost complexity of local routing schemes

resilient to Byzantine faults. Another interesting question is to study lower bounds

in this model.
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