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 תודות
 

. שפתח בפני את הדלת לעולם המחקר האקדמי, דני דולב' פרופ, ראשית ברצוני להודות למנחה התיזה שלי

  . יכולתו של דני להתבונן ולנתח בעיות באופן יצירתי וייחודי אתגרה אותי והפכה אותי לחוקר טוב יותר

  

תמיכתו של טל לאורך כל תקופת לימודי ועצותיו . שותף וחברמנחה , טל אנקר' אני מודה לדר, שנית

  . המקצועיות היוו מרכיב חיוני במחקר זה

  

הערותיהם  על ,יהודה-פיט וויקוף ומולי בן' דר: עמיתים וחברים יקרים מספרלברצוני להודות , כמו כן

בעבודה זו הרבה  והתעניינותעל  אופיר הולדר' לדרמיוחדת תודה  .והצעותיהם המקוריות במהלך עבודה זו

  .מועילותהובעצותיו 

  

               , אני מודה לדני ביקסון, בפרט. חברי קבוצת האלגוריתמים המבוזריםאני מודה לכל , בנוסף

  .אריאל דליות על עזרתם ותמיכתם' דוד ודר-שימרית צור

  

  . שנות לימודי ובכללחוה וברקו וינסברג על אהבתם ותמיכתם במשך כל , אני מודה להורי

  

                   ם וסבלנותם על אהבת,  יובל ותמר: וילדי המקסימיםברצוני להודות לאשתי קרן, יותר מכל

   .במשך לימודי הדוקטורט
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  תקציר
  

הטכנולוגיה הקיימת היום . בשנים האחרונות כוח העיבוד הקיים במחשבים האישיים גדל בקצב מסחרר

הקיים ב כוח החישו. מאפשרת להגדיל את מספר הטרנזיסטורים המצוי על פרוסת הסיליקון בצורה משמעותית

חוק ("היקפיים מוכפל כל שמונה עשרה חודשים המצויים על כרטיסים ביחידות העיבוד המרכזיות ובמעבדים 

העובדה שגם  את ותמנצלומערכות מחשוב מעט מאוד יישומים ,  זהקצבלמרות , אולם.  זה ואף מהר מ")מור

  . מרביתו איננו מנוצלעותי שיש כוח חישוב משמ, המצויים בכל מחשב אישי ושרת, לכרטיסים ההיקפיים

  

אינן מאפשרות הרצת קוד על גבי רכיבים היקפיים למרות שאלה ניתנים , מערכות ההפעלה המובילות כיום

מסוגלים לבצע ) הנקראים לעיתים מאיצים גראפיים(כרטיסים גראפיים ,  לדוגמא.לתכנות בצורה פשוטה למדי

בצורה כרטיסים אלו ניתנים לתכנות .  המעבד המרכזיפעולות על גבי מטריצות במהירות הגבוהה מזו של

 על ידי(ואפליקציות גראפיות מתקדמות י מפתחי משחקים "מנוצלים עהם בעיקר אולם כיום למדי פשוטה 

 כרטיסים נוספים המכילים מעבדים מהירים כוללים בין היתר . )DirectXספריות סטנדרטיות כדוגמת 

  .צפנהבקרי דיסקים וכרטיסי ה,  )TCPטוקולי תקשורת כדוגמת מריצים פרוכבר חלקם (כרטיסי רשת 

  

 על המעבד הראשי ועל מעבדים המצויים ברכיבים יההמאפשר הרצת אפליקצחדשני מחקר זה מציע מודל 

מעבד מרכזי או מעבד על כרטיס , הרעיון הבסיסי מאחורי מחקר זה הוא שכל מעבד המצוי במחשב .ההיקפיים

יכולה לנצל ייחודיות של כרטיס אפליקציה , במודל זה. להרצת קוד של אפליקציההוא פוטנציאל , היקפי

  .היקפי או מעבד מסוים על מנת לשפר את ביצועיה

  

במודל הקלאסי מערכת .  עד כהמנוגד למודל הקלאסי על פיו פותחו ומומשו מערכות ההפעלהמודל זה 

: היקפית אחרת כגוןחומרה המעבדים וכל :  חומרת המחשב אתורשת לנהלשות היחידה המיהיההפעלה הנה 

מערכת ההפעלה איננה מאפשרת גישה ישירה לחומרה משיקולי . 'כרטיס מסך וכו, דיסק, מקלדת,עכבר

 לשינוי מוגבלותהחומרה ההיקפית הייתה פשוטה למדי עם אפשרויות , בעבר הלא רחוק. אבטחה ואמינות

יש צורך מהותי בעדכון המודל והתפיסה , מצב היוםאין זה ה היות ו,אולם. והתאמה לאפליקציה מסוימת

  . השמרנית על מנת לתמוך ברכיבים ההיקפיים שלעיתים אף חזקים יותר מהמעבדים הראשיים
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 מערכת הפעלה אסימטרית המאפשרת הרצת קוד על גבי רכיבים היקפיים מיתכנתים באפיון מחקר זה עוסק 

והן ברמת כלי ) במחשב וברכיבים ההיקפיים(ערכת ההפעלה התמיכה הנדרשת היא הן ברמת מ. באופן דינאמי

 חייב לאפשר למפתח לנצל את המשאבים העומדים לרשותו בצורה התכנותמודל . התכנותהפיתוח ומודל 

  . תואינטואיטיבי תאופטימאלי

  

  : יתרונות רביםה בחובנתהרצת קוד על גבי רכיבים היקפיים  טומ

המנשק למערכת הזיכרון , שכוח החישוב גדל בצורה משמעותיתלמרות   - רוחב פס למערכת הזיכרון .1

מבצעות פעולות  ,וירוס- ואנטי"אש-חומת"אפליקציות רבות כדוגמת . במחשב נותר צוואר הבקבוק

 .רבות מול מערכת הזיכרון עבור מידע כלשהו ולעיתים תכופות לא נעשה כלל שימוש במידע זה

 סינון חבילות ומידע עוד לפני שהגיעו ליחידת נהרפעולות המתבצעות ברכיבים ההיקפיים תאפש

  .הזיכרון הראשית

זמונים המתקרבים למערכות זמן י תנה פעולות המבוצעות על גבי חומרה היקפית תאפשר–זמן אמת  .2

 .זמן אמתהפעלה התומכות באמת היות ומערכות ההפעלה המורצות שם הן בדרך כלל מערכות 

חלק . אמץ גדול מופנה היום בתעשייה להקטנת צריכת ההספק של מערכות מיחשוב מ–צריכת הספק  .3

כרטיסים היקפיים חסכוניים בצורה . מהמעבדים המיוצרים כיום תומכים במצבי חיסכון באנרגיה

 ווט בעוד שמעבד 68צורך , GHZ 2.8, 4מעבד אינטל , לדוגמא(משמעותית מהמעבדים המרכזיים 

יהם תקטין את ולכן הורדת פעולות אל)  ווט0.5צורך , כיבים היקפיים בר הנפוץ,XScaleאינטל 

 .צריכת ההספק הכוללת

, לדוגמא. ואולי אף תמנע התקפות שונות הפעלת קוד על גבי רכיבים היקפיים תקשה – אבטחה .4

על גבי כרטיס הרשת יכול לבלום התקפות שונות עוד לפני שהגיעו ליחידת " אש-חומת"מימוש 

בכרטיס יכול לפקח על תהליכים שונים ") צרוב("קוד שאיננו ניתן לשינוי , בנוסף. יתהעיבוד המרכז

 .ומבני נתונים שונים של מערכת ההפעלה ולהתריע על התקפה פוטנציאלית

נפח התקשרות אותו ,  למרות מהירותם הגדולה של המעבדים המודרניים– הגדלת נפח תקשורת .5

מראה שעבור ] 25[שבוצע לאחרונה בחברת אינטל מחקר . המעבדים יכולים לעבד הוא מוגבל

 נדרש מספר לא מבוטל של כלומר. 1bps - לטיפול ב1Hzנדרש , 1KB-חבילות תקשורת הגדולות מ

  הורדת פעולות לכרטיסי הרשת ). ויותר10Gbps (ם לטיפול בנפחי התקשורת הצפוייםמעבדי

מערכות המורידות חלק . ערכתתאפשר הורדת העומס מהמעבדים המרכזיים ותשפר את תפוקת המ

מאפשר הורדת מרחיב את המודל ו לכרטיס כבר קיימות אולם מחקר זה TCPמפרוטוקול 

   . כרטיס היקפילכלהמוגדרת על ידי מפתחי האפליקציות פונקציונאליות כללית 
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פותחה מערכת ייחודית המאפשרת למפתח האפליקציה למפות את הקומפוננטות , במחקר המתואר להלן

, במודל המוצע. התכנוןאל אוסף רכיבים היקפיים מיתכנתים עוד בשלב ) המרכיבות את האפליקציה(שונות ה

מודל זה מאפשר . אפליקציות מורכבות מקומפוננטות שונות בעלות ממשק סטנדרטי בעל זיהוי ייחודי במערכת

אנו חוזים מודל בו .  נותשיתוף של קומפוננט על ידי מספר אפליקציות ושימוש חוזר שלהם באפליקציות שו

 אינטרנט עבור רכיב היקפי מסויםב בצורה חופשית ם קומפוננטות חדשות או להורידלפתח יוכלומפתחים 

  ).ים עבור התקן מסוו על ידםי היצרן ואף חתו"הקומפוננט יינתן בצורה בינארית עלעיתים (

. עושה שימוש בקומפוננטות אלה את האבסטראקציות הנחוצות על מנת לפתח אפליקציה המגדירמחקר זה 

בשלב . וכיצד אפליקציה מתקשרת איתה, כיצד אחת מגדירה תלות בשנייה, המחקר מגדיר מהי קומפוננטה

.  לרכיבים המיתכנתיםותהשונקומפוננטות ה" הורדת"מערכת ההפעלה מבצעת תהליך של , הרצת האפליקציה

 פעולה זו עושה שימוש .יב היעד בצורה פרטנית לרכהקומפוננטהמערכת נדרשת לבצע התאמה של , בשלב זה

  .ימוש בפרוטוקול כללי וגנריבכלי ההידור והקישור של הכרטיסים ההיקפיים תוך ש

  

: עבורו פותחה מערכת הפעלה ייחודית הנקראת מומש ונבדק עבור כרטיס רשת המודל, במסגרת מחקר זה

NICOS.מחולל : כגון סיסה מומשו מספר אפליקציות  מערכת זו שימשה כפלטפורמה לבדיקת התשתית ועל ב

פרוטוקול לסידור הודעות ברשת מקומית ושרת סרטים העושות שימוש בתשתית על , "אש-חומת“, חבילות

במהלך פיתוח מערכת . באופן משמעותי את ביצועיהןשהאיצה  פעולה -מנת להוריד רכיבים לכרטיס הרשת 

האלגוריתם . במערכות מחשב ללא פסיקותריתמי תזמון ההפעלה אף פותחה שיטה ייחודית לשיפור אלגו

 ולמעשה מאפשר  כזושפותח מאפשר שיפור התפוקה והקטנת זמן התגובה של תהליכים המתוזמנים במערכת

  .שיפור של כל אלגוריתם תזמון ללא פסיקות קיים

  

 הקהילה.  הקרובמערכות מחשב אישיות מרובות מעבדים יהפכו להיות דבר מן השגרה בעתידאנו צופים כי 

האקדמאית ותעשיית התוכנה העולמית ייאלצו לספק כלי פיתוח שונים על מנת לאפשר פיתוח אפליקציות 

מיקומם הפיסי של .  המקומיתהמחשוב המעבדים הנמצאים המערכת בכלמתקדמות ויעילות העושות שימוש 

 מחקר זה הנו אבן דרך .ומיתהמעבדים יהפוך במהרה ללא רלוונטי מנקודת ראותה של מערכת ההפעלה המק

 בכל אמצעי  ואינטואיטיבייעיל, שימוש פשוטשתאפשר במסע לעבר מערכת הפעלה אסימטרית אמיתית 

  .המחשוב העומדים לרשותנו כיום
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Abstract

The constant race for faster and more powerful CPUs is drawing to a close. No longer is it pos-

sible to significantly increase the speed of the CPU without paying a crushing penalty in power

consumption and production costs. Instead of increasing single thread performance, the industry

is turning to multiple CPU threads or cores (such as SMT and CMP) and heterogeneous CPU

architectures (such as the Cell Broadband Engine). While this is a step in the right direction, in

every modern PC there is a wealth of untapped compute resources. The NIC has a CPU; the disk

controller is programmable; some high-end graphics adapters are already more powerful than host

CPUs. Our operating systems must let applications tap into these computational resources and

make the best use of them.

This dissertation considers the model where applications execute cooperatively in the host pro-

cessor as well as in device peripherals. In this model, applications can delegate tasks to devices

with various architectures and constraints. Using programmable devices has traditionally been

very difficult, requiring experienced embedded software designers to implement conceptually sim-

ple tasks. Interfacing a new device feature with the host operating system would be performed

from scratch and customized for the particular design. The availability of cross-compilation tools

and remote debugging environments are making the programming tasks simpler, but integration

with the host operating system is still difficult.

This work introduces the concept of an “offloading layout” as a new phase in the process of

an application development. After designing the application’s logic, the programmer will design

the offloading layout using a generic set of abstractions. The layout describes the interaction

between the application and the offloaded code at various phases, such as deployment, execution

and termination.

Today, there is no generic programming model and corresponding runtime support that enables

a developer to design theoffloadingaspects of an application. This research involves the design

and implementation of a framework to address these challenges.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Today’s modern operating systems (OSs) are complex programs that perform multiple tasks, doing

much more than just multiplexing the computer’s hardware among applications. An OS provides

many of the programming APIs and run-time libraries needed by applications developers. Even

the simplest task, such as connecting to a peer host over a network, is performed by user level

libraries and complementary kernel runtime support.

State-of-the-art peripheral devices allow one to program the peripheral device and adapt its

functionality. For example, modern graphic adapters can perform matrix operations much faster

than host CPUs. Today peripheral devices are largely ignored and their increasingly powerful

computational capabilities are not being exploited. If peripheral devices could be adapted dynami-

cally to an application’s needs, and if their extra computing power could be harnessed to serve the

application, bigger, better and more powerful computer systems could be created.

This research considers a model in which applications execute cooperatively and concurrently

in host processors and in device peripherals. In this model, applications canoffloadspecific tasks

to devices to improve the overall performance. Using programmable devices has traditionally been

very difficult, requiring experienced embedded software designers to implement conceptually sim-

ple tasks. In such cases, interfacing any new device feature with the host operating system would

have to be performed from scratch and customized for the particular design. The availability of

cross-compilation tools and remote debugging environments are making the programming tasks
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simpler, but integration with the host operating system is still difficult. The need for new abstrac-

tions and tools for programming such heterogeneous systems is apparent.

This research proposes an innovative programming model and runtime support that enables

utilization of such devices by providing a generic code offloading framework (called: HYDRA).

The framework enables an application developer to design the offloading aspects of the application

by specifying an “offloading layout”, which is enforced by the runtime during application deploy-

ment. The framework also provides the necessary development tools and programming constructs

for developing such applications.

1.1 Offloading Vs. Onloading

Offloading has been traditionally synonymous with TCP Offload Engine (TOE) devices [18]. Al-

though offloading practices were and still are raising eyebrows, it is agreed that TOE devices

perform well for specific types of workloads and applications [45]. The offloading concept can

be generalized to any programmable peripheral device and extended to include more than network

protocols. For example, file system related functionality such as indexing or searching could be

offloaded to a programmable disk controller. Leveraging the proximity between the computational

task and the data on which it operates may boost the system’s performance and reduce the load

on the host processor and memory subsystem. Offloading to several devices at once adds a new

dimension to our ability to handle information close to its source with limited involvement of the

central CPUs. In particular, expensive memory bus crossings are eliminated.

An offloading adversary will typically claim that although peripheral devices are powerful,

today’s PCs have several underutilized processors that could be used instead. In response, the

following compelling arguments are presneted in favor of offloading:

1. Memory bottlenecks— Modern processors have large L2 caches in order to try and minimize

cache misses caused by application execution and context swapping. Operations running

on peripherals utilize local memory and filter out the information that needs to be brought

to and from main memory, hence reduce memory pressure and cache misses on the main

processors.

2
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2. Timeliness guarantees— Operations running on peripheral devices can benefit from real-

time programming paradigms. A peripheral device can provide operation timeliness guaran-

tees that cannot be matched by a general purpose kernel [65].

3. Reduced power consumption— There is a major effort to reduce the power consumption

of modern processors. Some processors support an idle mode with reduced power con-

sumption. By offloading operations to low powered peripherals, we enhance the overall

system power consumption (For example, a Pentium 4 2.8 GHz processor consumes68 W

whereas an Intel XScale 600 MHz processor, commonly found in peripheral devices, con-

sumes0.5 W, two orders of magnitude less).

4. Security— partitioning critical code between the host and the peripherals will make it less

susceptible to automated attacks. For example, a small watchdog that periodically verifies

that the main OS hasn’t been tempered with could be run on an offload-capable device.

Because it is running in a different environment it can be designed such that automated

attacks will be less likely to target it successfully.

5. Increased throughput— Network bandwidth has reached the point where host CPUs can

spend all of their cycles just processing network traffic [26]. Specifically, Figure1.1(a)

and Figure1.1(b)show the GHz/Gbps Ratio in the transmit and receive cases respectively.1

Although TCP offloading (see Chapter3) can improve the achieved throughput, it is only

one of the potential uses for offloading. This thesis suggests further opportunities in this

area.

A recent alternative to offloading has been commonly referred to as “onloading”. Rather than

moving functionality to the device, “onloading” proposes using host processors for improving I/O

devices’ performance. For example the Piglet [46] operating system dedicates one or more host

CPUs to provide a “Virtual Device Interface”. Such an interface is directly accessible by user-space

applications via shared memory. Although onloading part of the device’s functionality to a host

processor can yield better performance, eventually the data will need to be transferred between the

1These figures appear in [26] and are used with the authors’ permission.
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(a) GHz/Gbps Transmit Ratio

(b) GHz/Gbps Receive Ratio

Figure 1.1: GHz/Gbps Ratio Validation

host CPU and the device. Such transactions will still incur the known (and sometime unnecessary)

overhead at the I/O interconnect.

Another onloading direction has been recently proposed by Intel [53]. The paper proposed to

use one of the hosts processors for TCP processing while using several techniques for reducing

the protocol computation, data manipulation, and interrupt handling overheads. A step forward

in this direction is to fully integrate the network controller with the host CPU [8]. This work

presents a simple integrated NIC (SINIC) device that is equivalent to a conventional NIC and is

integrated with the host CPU. The SINIC device utilizes zero-copy techniques and was showed to

significantly improve the host’s throughput.

Even in the presence of “onloading” techniques, history has shown us that applications expand

to fill the computational resources available to them. Modern hardware devices, especially high-
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end devices, often have their own CPUs and memory. Such devices resemble general purpose

computer systems, albeit systems that are customized for a specific set of tasks. Operating systems

have always been and will continue to be the conduit between the applications and the hardware;

we argue that modern operating systems have been remiss in neglecting to provide applications

with seamless access to the wealth of computational resources available on peripheral devices.

1.2 The Future Of Offloading

In the near future a handful of computing resources will be available in any home PC. Treating

these computing resources as first class citizens and offloading computation and functionalities to

them wherever and whenever possible will enable development of high performance applications

that will benefit from the unique capabilities of each resource. This section briefly presents some

of the potential fields that will benefit from the offloading capabilities.

1.2.1 Virtualization

Rapidly improving virtualization technologies allow one to run multiple OSs simultaneously on

one physical machine, as “virtual machines”. Running multiple operating systems on the same

physical machine places considerable demand on the “host software”, due to the need to multiplex

the physical resources among virtual machines. Offloading computation to peripheral resources

offers several opportunities to alleviate this burden.

Current virtualization technologies prevent virtual machines from directly accessing I/O de-

vices due to functional, security and isolation concerns. From a functional point of view, nearly all

current devices are fundamentally designed to be accessed by a single entity (e.g., devices have a

single register window). From a security and isolation point of view, current server chipsets allow

devices to DMA anywhere in physical memory, since the assumption is that they are being pro-

grammed by a trusted entity. If anuntrustedvirtual machine could directly program a device, it

could program it to DMA anywhere in memory, including on top of the hypervisor or other virtual

machines, thereby bypassing the hypervisor’s isolation guarantees.

Due to the above limitations, all I/O device accesses by virtual machines are either multiplexed
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or emulated by the hypervisor or a service OS running on the host CPUs, which then perform

the real I/O to the physical device. Such an architecture incurs heavy performance costs when

compared with direct device access by virtual machines.

The introduction of IOMMUs [6] and self-virtualizing devices for virtualization should alle-

viate the security and isolation concerns mentioned above; the functional limitations of current

devices could be overcome by utilizing programmable devices. Offload-capable devices could

perform more efficiently some of the tasks that are executed today by the host CPUs, such as mul-

tiplexing incoming network packets directly to the destination virtual machine. In the event that

device emulation is needed because the virtual machine does not have a driver for the physical

device, an offload-capable device could emulate a virtual device directly on the physical device.

1.2.2 Gaming

Hardcore PC gamers live and die upon squeezing every drop of performance out of their hardware.

The graphics and networking technology presented in Section3.4enhances the gaming experience.

For example, the Killer NIC [1] completely takes over all networking tasks traditionally handled

by the OS and processed by the CPU, effectively bypassing the OS networking stack. Since the

NIC still needs to pass the packets to the GPU through the host processor, a generic offloading

framework may further improve the achieved performance by enabling direct interaction of the

host software and the GPU, with minimal host CPU involvement, thereby increasing availability

of main CPU cycles for manipulating the more advanced scenes.

1.2.3 Advanced Storage Services

Programmability support that will soon be offered by advanced disk controllers and external stor-

age controllers will open new possibilities for implementing advanced storage services directly in-

side the disk or controller. One example is the Diamond system [35] that employs “early discard”,

which involves rejecting irrelevant data as early in the pipeline as possible. Diamond applications

can install filters at the active disk for reducing data transfer.

In general, programmable disks or controllers will provide an opportunity to run I/O intensive

computations efficiently by running them closer to the data. Potential applications include content
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indexing and searching, virus scanning, storage backup, mirroring, snapshots and continuous data

protection.

1.2.4 Accelerating Distributed Applications

An important aspect of this research is to develop basic distributed protocols that take advantage

of the newly developed framework, reducing currently accepted inherent uncertainty of distributed

systems, and increasing robustness and security of the resulting systems. To illuminate some

aspects of the significance of the new approach the next few sections discuss some traditional

distributed computing approaches that can benefit from the offloading capability offered by the

proposed framework.

Network Oriented Components

Distributed applications operate by interchanging messages among nodes. The message exchange

networking protocols are potential candidates for offloading. For example, the reliable broadcast

service that ensures that all hosts in a group of nodes deliver the same set of messages to the

application layer can be offloaded to the networking device. This service can be used as a building

block to construct value-added multicast services, such as agreement and total ordering, or it can

be utilized to support applications that involve groups of cooperating hosts.

The network components can be also used for various functions like: early filtering of data,

identifying patterns in the message flow that indicate possible attacks [82], consistency verification

of the transmitted messages, and possibly signing or authenticating the message source or target.

Cluster Synchronization

Real-time guarantees can be implemented on programmable peripheral devices [73] and used as

a building block for a variety of distributed applications as exemplified by the work by Verissimo

et al. [68]. Having such a timely component significantly simplifies the design of real-time algo-

rithms. This component is an ideal candidate for offloading, as it exports a simple interface that is

ideal for a programmable clock, network card, or encryption engine. Once we are provisioned with
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real-time guarantees with smaller uncertainty, we can further increase the ability of the application

to cope with transient or permanent failures.

Virtual Synchrony

The virtual synchrony model [10] offers strong communication guarantees required by applications

such as replicated database systems [38,34]. The overhead involved can be drastically reduced, and

performance correspondingly increased, by offloading the critical components to the networking

card. Node failures may be detected faster and more reliably. Virtual synchrony is critical in

ensuring the consistency of the views of the system at the various participants. This consistency is

a key component in increasing the robustness of the system and in limiting the ability of an outside

entity to jeopardize the system’s objectives.

Byzantine Consensus Protocols

When building secure replicated systems, the replicas have to coordinate updates using Byzantine

Consensus [39]. These protocols are complicated and message intensive. Offloading them to a

network device would simplify application development and improve their performance.

Self-Stabilizing Protocols

These protocols are designed to return a system to a normal functioning, irrespective of the severity

and nature of transient failures, as long as there is a sufficiently long time interval during which

a large enough portion of the system behaves correctly. Offloading some of the functionality can

significantly reduce the convergence time. For example, due to the higher reliability of the NIC,

the self-stabilizing protocol may significantly decrease the time required to trust the coherence of

the received messages by verifying them with the NIC.

Until recently dealing with worst case failure and self-stabilization were considered infeasi-

ble. The known protocols required exponential convergence time [23,24]. Recent results [19,20]

indicate that convergence can become linear, though the protocols are still involved and use com-

plicated Byzantine agreement modules. Taking the advantage of programmable devices may assist

in developing efficient distributed self-stabilizing protocols that withstand the permanent presence

8
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of on-going faults. Moreover, when cluster synchronization (as suggested above) is available, the

protocols can be drastically simplified.

Cryptographic Modules

Many modern secure computing modules require on-line and consistent exchange of messages

among parties. They also require renewal of signature keys and coordination of sharing of secrets.

Having secure modules residing on independent devices can further simplify and boost multi-

party-computations and other secure computations. Offloading parts of the security services of a

general purpose OS to such devices can significantly improve their performance, reliability and

may also reduce the probability of attack due to their isolation properties. Moreover, such a card

can be in charge of some critical functions such as the certification authority (CA).

Secure Fingerpointing

One interesting application enabled by offloading is run-time checking of global behavior of dis-

tributed applications. Thus, rather than having an offloaded component on a peripheral device

checking the local behavior of an application on the main CPU, such a component on a networked

device can communicate with other such components at other nodes to check global behavior. For

example, consider a peer-to-peer video streaming service. Nodes in such a service may exhibit ra-

tional behavior by not forwarding video fragments upon receipt. Downstream nodes may complain

about this behavior, possibly resulting in removal of the upstream node. Unfortunately, it may be

the rational behavior of the downstream node that lies and falsely accuses the upstream node in

order to get closer to the source of the video. Other peers have no way of verifying whether it is

the upstream node or the downstream node that is behaving badly. Offloaded components on the

network devices of the two nodes could easily tell what is going on, however.

1.2.5 Isolation of Device Drivers

Reliability is now the greatest challenge for computer systems research. Considerable resources

are invested by major operating system vendors for systematically auditing Windows and Linux

device-driver code for flaws. A recent study performed in Stanford University found that more

9
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than50% of the Linux OS bugs, appear at device drivers [15]. In Windows XP, drivers account for

85% of recently reported failures.

One of the hypothesis explaining this phenomena is that device drivers are typically written by

device vendors which do not necessarily have the same level of understanding of OS internals as

the OS developers. Device driver bugs are often fatal; since the number of device drivers in modern

operating systems is enormous, there is an apparent need to improve device driver reliability.

One possible approach is to isolate device drivers in their own environment. For example, the

Nooks project [63] isolates device drivers by using various techniques such as kernel wrapping,

virtual memory protection and different privilege levels. However, such isolation incurs signifi-

cant overhead, especially when the CPU is already saturated (for example, in the Nooks kHTTPd

benchmark, the overhead was nearly60%).

By utilizing programmable devices and a generic offloading framework like the one presented

in this dissertation, one could provide yet another level of isolation, by offloading some or all of

the driver code to run on the device’s CPUs.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows: Chapter2 discusses the motivation for this

work as well as the challenges. Chapter3 discusses the state-of-the-art in co-processing technolo-

gies and specifically describes the related work concerning offloading. Chapter4 describes the

framework’s programming model and Chapter5 discusses the realization of this model including

a detailed description of its design. Chapter6 presents a Network Interface Card Operating Sys-

tem (NICOS) developed as a platform for evaluating the proposed offloading framework. During

the development of the operating system, an innovative scheduling algorithm has been designed,

implemented and evaluated. This algorithm is also discussed in this chapter. Chapter7 presents

a mathematical approach for presenting complex offloading layout graphs. Chapter8 presents an

evaluation of the proposed framework, and includes qualitative and quantitative results. Chapter9

presents our conclusions and points to future work.
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Chapter 2

Motivation

This section begins with the motivation for developing an offloading framework. We present the

requirements from an offloading framework and some of the challenges inherent in offloading and

in creating an offloading framework in particular. We then present a simple multimedia application,

called TiVoPC, which serves as a motivating example. We provide further details regarding it in

Section8.1.

2.1 Framework’s Motivation

Offloading code to a programmable device today is a manual, tedious process, rife with opportu-

nities to reinvent a square wheel. Offloading stand-alone code is difficult; offloading a software

component that is part of a larger system with complex interdependencies much more so.

Offloading code to a programmable device requires the following (manual) steps:

• Write it, but do it with the specific constraints of the target environment in mind: does it

have an MMU? What sort of run-time support does the device have? Does it support dy-

namic memory allocation? Is there a toolchain that targets that device for the programmer’s

preferred language and environment?

• Compile and link it, using a device-specific toolchain. Some of the device-specific aspects

mentioned previously might be handled by the toolchain. Linking is usually done with the

11



2.1. FRAMEWORK’S MOTIVATION CHAPTER 2. MOTIVATION

device’s run-time support libraries, which constrains the programmer to only using an API

for the particular device.

• Deploy it on the device. Each device has its own process of transferring the code from an

annotated area in host memory to the device, such as through a firmware update.

Additionally, writing offloaded code presents the following challenges:

• There is a steep learning curve. The programmer needs to be acquainted with all the rel-

evant hardware specifications and the relevant SDKs. Additionally, programming a device

typically also requires kernel level developing skills including writing device drivers.

• It requires embedded development skills. Usually, it will take an experienced embedded

engineer to develop an efficient, stable and robust system.

• It requires dealing with performance issues. While offloading code to a device has numerous

advantages, it also has certain disadvantages, e.g., communicating with code running on the

host CPU becomes more expensive since the offloaded code is executed in a different hard-

ware domain. This makes getting inter-component information transfer working correctly

and efficiently tricky.

• The bulk of the work needs to be redone for every new device.

An offloading framework should facilitate and automate as many of the previous steps as pos-

sible. It should also ease the aforementioned challenges of writing offloaded code. The holy grail

is for the programmer to be completely unaware of the fact that parts of the system she is writing

will be running on a programmable device. To achieve these goals, an offloading framework must

meet the following requirements:

1. It should not require the programmer to learn a new language or a new environment.

2. It should abstract the specific details of given devices as much as possible, so that the frame-

work will handle the adaptation of the offloaded code to a specific offload target, rather than

the programmer. This includes the specific hardware details as well as the specific run-time

support provided for the device. Similar classes of devices (e.g., NIC, or GPUs) provide

12
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roughly the same functionality or capabilities, albeit in different ways and using different

interfaces. The offload framework should abstract these device specific details behind a

common abstraction layer.

3. It should ease deployment, by deciding when and where to deploy a given component, as well

as facilitating communication of the deployed component with the rest of the components,

whether they are running on the main CPU, on the same device or on a different device.

2.2 TiVoPC: A Motivating Example

In order to provide insight into the usefulness of offloading to multiple devices using the frame-

work, we now present a sample application, which we call TiVoPC. We show that with the right

set of abstractions and development tools, offloading becomes feasible and desirable.

The TiVoPC is a software implementation of the commercial TV appliance Tivo [64]. A clas-

sical Tivo appliance is a box that allows for digitally recording all of one’s favorite TV shows, and

enables playback of them at a later time. Our implementation of the Tivo appliance provides a

selected subset of the Tivo features. Specifically, we provide online-recording while watching a

media stream and support its playback at a later time. A typical user-space software implementa-

tion of such an appliance would require the following components listed in Table2.1.

Component Description
GUI Provides the viewing area and user controls (play, pause, rewind and resume).

Streamer Processes the media stream (either from network or storage).
Decoder Decodes the MPEG media stream.
Display Displays the movie on screen.

File Reads/Writes previously stored data from storage.

Table 2.1: TiVoPC Components Outline

When analyzing a TiVoPC operation, one can see that a major part of the application logic is

invested in transferring packets from one I/O device to another. Specifically, the Streamer com-

ponent transfers each received packet to the File component, in order to support a later playback,

and to the Decoder component. The decoding component hands a decoded frame to the Display

Component, which transfers the raw video frames to the graphics subsystem.

13
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Figure 2.1: TiVoPC Data Flow

In order to demonstrate the use of our framework we have implemented a version of the TiVoPC

application that uses multiple peripheral devices. In Figure2.1, the resulting data flow of the

offload-aware TiVoPC application is presented. Once a packet is received at the NIC, it is directly

transferred to both the GPU and the disk controller.1 A decoder component running on the the GPU

can directly decode the MPEG stream and transfer each frame to the GPU’s internal framebuffer,

making it appear in the GUI window without involving the host CPU at all. In case a user wishes

to replay the stored media, a Streamer component running on the disk-controller will transfer pre-

viously stored packets to the Decoder. Section8.1provides the full details of the implementation.

2.3 Research Objectives

Today, there is no generic programming model and corresponding runtime support that enables a

developer to design the offloading aspects of an application. The development of this approach

requires to revisit many traditional aspects of distributed operating systems, shared memory algo-

rithms, advanced compilation techniques and distributed and parallel algorithms.

The inherent conflict between the heterogeneousness nature of programmable peripheral de-

vices and our requirement to provide a generic framework and simple programming interface,

introduces several challenges:

• Components and Device mapping –Components have predefined properties and runtime

1Note that if the bus architecture allows it (i.e., PCIe), this packet could be transferred in a single bus transaction.
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assumptions. Develop a way to identify the possible matching between the devices’ capabil-

ities and the component’s requirements.

• Device and Component Reuse –Devices are resource constrained. Devise a scheme for

efficiently reusing both the component and the resources at target devices.

• Operating System extensions –There is a need to design specific OS algorithms for optimiz-

ing the application’s offloaded code performance. For example, new scheduling algorithms

with real time guarantees, dynamic code loaders, memory management and buffers reuse.

• Dynamic Offloading – Components can be given as binaries or open source. Devise a

scheme for dynamic compilation and/or offloading of such components to different devices

with different architectures.

• Dynamic Conflict Resolution –Different applications have different offloading require-

ments. Since devices are shared by multiple applications, an online algorithm for scheduling

and for optimal placement needs to be developed.

• Communication Model and Buffer Management –The framework needs to address the var-

ious communication flows, between the application and its components and among com-

ponents, potentially residing at different devices. A major challenge is to minimize the

communication overhead, for example using a zero copy semantics.

• Security – Improve the system’s security using hardware devices without increasing the

system’s vulnerability.

• Failures and Failover –Increase the system’s robustness by making use of the devices and

by enabling self-healing properties.

One aspect of our research includes the design and implementation of a framework to address

these challenges. Section4 introduces the concept of an “offloading layout” as a new phase in the

process of an application development. After designing the application’s logic, the programmer

will design the offloading layout using a generic set of abstractions. The layout describes the
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interaction between the application and the offloaded code at various phases, such as deployment,

execution and termination.
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Chapter 3

Related Work

Offloaded applications have been designed for particular needs in the past using specific devices.

Some of this work has led to the availability near-commodity products. This section describes the

state-of-the-art in offloading research, ordered by its relevance to this work.

3.1 Storage Offload

Object Storage Devices (OSD) came from a research project called Active Disks from CMU [55,

56] and are approaching standardization by the ANSI T10 group [72]. OSD is a protocol that

defines higher-level methods for the creation, writing, reading and deleting of data objects on a

disk. Implementing OSD requires a high degree of processing capability at the disk controllers or

the devices themselves and can offer the potential for extension.

One example of a storage-specific extension is the Diamond system [35]. Unlike traditional

architectures for exhaustive search in databases, where all of the data must be shipped from the

disk to the host computer, the Diamond architecture employs “early discard.” Early discard is the

idea of rejecting irrelevant data as early in the pipeline as possible. By exploiting active storage

devices, one can eliminate a large fraction of the data before it is sent over the interconnect to the

host. Diamond applications can install filters at the active disk for eliminating data.
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3.2 Network Offload

One of the more fruitful areas for exploiting programmable devices is in the area of networking. As

wire speeds increase and demand extensive host processing power, moving some of the work to the

network card becomes an attractive alternative. Although previous research have also considered

using programmable components to accelerate network processing in specific situations [43,29].

This research goal is to enable more general access to programmable components for arbitrary

networking or other computing or I/O tasks.

3.2.1 Spine

Spine [25] is a safe execution environment, derived from the SPIN operating system [7] that is

appropriate for programmable network interface cards. Spine enables the installation of user han-

dlers, written in Modula-3, on the NIC. Applications and extensions communicate via a message-

passing model based on Active Messages [69]. Although Spine enables the extension of host

applications to use NIC resources it has several major limitations. First, since all extensions are

executed when an event occurs, building stand-alone applications for the NIC is difficult. Even

for event-driven applications, the developer is enforced to dissect the application logic to create a

set of handlers. Second, Spine’s runtime does not support the deployment process of handlers or

provide a way to design the offloading aspects of the host application.

3.2.2 Arsenic and EMP

Arsenic [50] is a Gigabit Ethernet NIC that exports an extended interface to the host operating

system. Unlike conventional adaptors, it implements some of the protection and multiplexing

functions traditionally performed by the operating system. This enables applications to directly

access the NIC, thus bypassing the OS. The Ethernet Message Passing (EMP) [58] system is a

zero-copy and OS-bypass messaging layer for Gigabit Ethernet. EMP protocol processing is done

at the NIC and a host application (usually through an MPI library) can directly manipulate the NIC.

Arsenic and EMP provide very low message latency and high throughput but are very task-specific

and lack the support for generic offloading or host application integration.
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3.2.3 TCP Offload Engines (TOE)

TOE [18] is a technique used to move some of the TCP/IP network stack processing out of the

main host and into a network card. Commercial NICs that support TOE extensions exist but lack

any open standard specification. Typically, these devices include several on-board programmable

processors that are only programmable by the device manufacturer. While TOE technology has

been available for years and continues to gain popularity, it has been less than successful from a

deployment standpoint. TOE only targets the TCP protocol, thus, user extensions are out of its

scope. Practical concerns such as the inability to modify TOE behavior for evolving TCP protocol

changes or to implement complex firewalls also limit the utility of such devices.

Microsoft’s support for TOE devices is supported through the “Chimney Offload Architecture”

for Windows [17]. Chimney provides a standard interface for TOE devices and enables the offload

of the TCP/IPdata pathto the target device. Other protocols such as DHCP, RIP, IGMP, and ARP

are implemented within the traditional TCP/IP networking stack.

Linux kernel does not officially plan to support TCP offload engines. The networking maintain-

ers believe that TOE support, inside the Linux kernel, may cause enormous maintenance problems.

For example, testing is problematic since the hardware firmware sources are proprietary.

Other approaches for reducing network processing overheads that are based on TOE devices

are possible as well. iWARP [52] is an approach that takes advantage of Remote Direct Memory

Access (RDMA) [51] and processor offload to increase throughput and reduce host overhead.

iWARP network cards include TOEs and other functionality needed to implement the higher-layer

protocols.

3.3 Computation Offload

Specific devices to assist a host processor with some of its computational burdens have existed for

many years and seem to be experiencing a recent resurgence.

Field-Programmable Gate Arrays (FPGAs) can be used as CPU accelerators that can be plugged

directly into a standard processor socket or as add-in PCI cards for supercomputer systems. For
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instance, the DRC coprocessor [48] is an FPGA device that plugs directly into a processor socket

in an Opteron system. Placing the DRC within the CPU fabric accelerates the communication with

the host CPUs. Other examples are the iPath Infiniband adapter that plugs directly into an AMD

HT socket and IBM’s system-z cryptography [36] coprocessors. These cards assist various crypto-

graphic functions (e.g., DES, Triple DES, hashing etc.). Offloading parts of the security services of

a general purpose OS to such devices can significantly improve their performance and reliability,

and may also reduce the probability of hacker attacks due to their isolation properties. Moreover,

such a card can serve as a certified and independent authority.

Each FPGA vendor provides varying level of support for the development of host applications

and device programs ranging from a single high-level language and auto-generating compilers

down to explicit device gate design. What is lacking in FPGA development is any generic interface

or commonality that would enable applications to run on platforms other than where they were

developed. Also the communication models for FPGAs are typically primitive compared to the

networking and storage examples described above.

3.4 Graphics Offload

The recent boost in GPU technologies have made them more powerful than ever. Compared to

the CPU, GPU performance has been increasing at a much faster rate than CPU performance. The

work presented in [30], uses an NVIDIA 7800GT GPU for sorting database records. The GPU’s

computing power and the high-bandwidth GPU memory interface enable their system to achieve

better performance than the CPU-based algorithms.

Other recently developed GPUs include ClearSpeed’s accelerator [16] which provides∼ 50

GFLOPS sustained performance and accelerates most of the standard math libraries; and the Ageia

physics processing unit [49] that can be used for optimizing game physics.

3.5 Onloading

The Simultaneous Multi-Threading (SMT) [66], also known as hyper-threading, and the Chip

Multiprocessing (CMP) architectures have already been adopted as the architecture for processors
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of the future. Unlike Symmetrical Multi Processing (SMP), where host CPUs are completely

homogeneous, the SMT and CMP architectures are taking small steps toward heterogeneity.

The proliferation of host level processing cores have motivated researchers to explore other

alternatives for offloading. As discussed in Section1.1a recent alternative to offloading has been

commonly referred to as “onloading”. The idea presented in details in the Piglet [46] operating

system has been realized in the work of Greg et al. [54]. The Embedded Transport Acceleration

(ETA) approach dedicate one or more processors for executing the TCP/IP network stack code.

ETA achieves the same performance as a regular Linux machine but with a reduced CPU utiliza-

tion. The paper shows that the dedicated processor becomes a bottleneck in the system due to

expensive memory operations. The paper implies that by following a full offloading approach such

limitations may be eliminated which agrees with this research motivation.

3.6 Related Frameworks

3.6.1 FlowOS

FlowOS [12] proposes an architecture that removes the host’s memory subsystem and CPU from

the critical data path. The main role of the OS is to manage the data-flow between different pe-

ripheral devices and to schedule the flows between different applications. Although FlowOS does

not provide an offloading framework nor a programming model for creating offload-aware ap-

plications, the proposed flow abstraction can further extend this research. By defining a “flow”

overlay that spans several offloaded applications, one can guarantee the required QoS for a specific

application.

3.6.2 FarGo and FarGo-DA

Although not dealing with offloading, FarGo [33,32] and FarGo-DA [74] propose a programming

model that enables a developer to program relocation and disconnection semantics in a separate

phase during the application development cycle. The basic assumption for their work is that the

application is fully comprised of a set of components that are tagged by a specific interface (called:

Complet). The components are hosted in a virtual machine and can migrate to a remote VM
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using marshaling and unmarshaling mechanisms (much like in the RPC [44, 9], RMI [61, 62],

CORBA [60], DCOM [11] or WebService [80] models). Our framework extends this model by

defining an “offloading-layout” that is used to define the offloading aspects of the application.

3.7 Summary

In this chapter we surveyed the existing body of work in the area of offloading, specifically storage

offload, network offload and GPU offload. The idea itself is not particularly new. Systems that split

the workload between a general-purpose processor and specialized coprocessors, have been around

for years. Many of these systems started with the goal of improving the performance of a specific

application. Yet, providing the basic primitives in order to program the offloading semantics at

the application level is an issue that was not at the focus of any other research that we know

of. Moreover, the development of a special programming model and examination of the specific

system support which is required for realizing such a model is a unique goal of our research.
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Chapter 4

Programming Model

The programming model provided by HYDRA enables an application developer to design offload-

aware applications (henceforth, OA-applications). Such applications can utilize any available

computing resource that offers programmability support. The model proposes an object-oriented

methodology for developing such applications. Developers use a set of special components called

Offcodes. An Offcode is a component that contains a state, defines a unique interface and is exe-

cuted by a dedicated thread.

Communication between Offcodes is facilitated by communication channels with various com-

munication properties as will be presented in Section4.2. The programming model is divided into

two coupled facets:

1. Application logic programming— This is the mechanism of designing the basic logic of

the application. Offcodes are provided as a set of reusable components from the vendor or

custom made by the developer.

2. Offload layout programming— This task defines the mapping between components and

peripheral devices, both in software and hardware. It also sets offloading priorities and

channel characteristics between Offcodes and the host.

Programming the application logic should resemble programming a regular application while

programming the layout should affect the application logic as little as possible. The developer is
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encouraged to reuse Offcodes that are provided as a set of components from the vendor or custom

made by the developer. The process of placing Offcodes at the peripheral devices involves defining

the mapping between components and peripheral devices, both in software and hardware as will

be discussed in Section4.4.

4.1 Offcodes

We envision openly accessed libraries of Offcodes that are provided as source code, or as object

files that can be linked together with the target device’s firmware. An Offcode is described by an

Offcode Description File (ODF) that uses XML to describe the supported interfaces, dependen-

cies on other Offcodes, and the target device’s hardware and software requirements. A detailed

description of the ODF file and the deployment process is given in Section4.3.

An Offcode can implement multiple interfaces, each of which contains a set of methods that

perform some behavior. Each interface is uniquely identified by a Globally Unique Identifier

(GUID) and is also described by the ODF file using the standard Web Service Definition Lan-

guage [70] (WSDL). An offload-aware application communicates with an Offcode using an ab-

straction called aChannel. An Offcode object file implements only one Offcode and it has a GUID

that is unique across all Offcodes. All Offcodes implement a common interface (IOffcode) that is

used by the runtime to instantiate the Offcode and to obtain a specific Offcode’s interface.

4.1.1 Offcode Creation

Offcodes are created by an OA application by calling the runtimeCreateOffcodeAPI. The method

uses the Offcode’s ODF file in order to construct an Offcode dependency graph, called the offloading-

layout graph, that is used for offloading the OA-applications’ Offcodes. Section4.3 details the

mechanism used for the mapping of Offcodes to their respective devices. Once the Offcode is

constructed at the target device, it is initialized and executed by the HYDRA runtime. Offcode

initialization is performed in two phases. First, theInitialize method is called and the Offcode

acquires itslocal resources. Since peer Offcodes may have not been offloaded yet, the Offcode can

access local resources only. Once all the related Offcodes have been offloaded, theStartOffcode
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method is called. At this point inter-offcode communication is facilitated.

Figure4.1 presents an Offcode deployment process which is executed by the runtime. The

OA-Application running on the host creates a single Offcodeα that requires a second Offcode

β. Since the Offcode is automatically created, the runtime constructs an offloading-layout graph

(Section4.3) and performs the actual offloading process. The figure illustrates the scenario where

α is offloaded beforeβ, but it can also be the opposite. This is why the Offcodes are only allowed

to communicate with each other after theStartOffcodemethod is invoked.

Device A Device B

Logical Time

α

(n)

Gang

(2)

Host

(3)

Legend

α

β

βα

OOB−Channel

Offcode

Link
(1) CreateOffcode

OA−Application

(4) Initialize() (5) Initialize()

(6) StartOffcode() (7) StartOffcode()

Figure 4.1: Offcode Deployment

4.1.2 Offcode URL

An Offcode is uniquely identified by an Offcode URL. The URL consists of four parts: the host,

the device’s physical address, the hardware identifier and an Offcode’s binding name that is unique

per device. The physical address and the hardware identifier uniquely identify the target device.

Figure4.2 presents an Offcode’s URL format and a sample URL for some PCI device. A PCI

device is physically addressable by a bus number (8 bits), a device number (5 bits) and a function

number (3 bits). The hardware identifier is further identified by a 32 bit signature that includes the

vendor identifier and the device identifier.
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[host]:/[physical-address]/[hardware identifier]/[binding-name]

Example:
------
The Hydra runtime offcode on the Netgear GA-620T (TigonII chipset)
device is identified by the string:

localhost:/pci/00/11/1385/620A/Hydra.Runtime

Figure 4.2: Offcode URL Format

Note that the full Offcode’s identifier is automatically created by the runtime once the Offcode’s

target device is determined (see Section4.4). A developer typically uses the Offcode’s binding

name in order to communicate with a peer Offcode.

4.1.3 Offcode Attributes

Once an Offcode has been explicitly created, a set of attributes can be applied to it. The program-

ming API enables a developer to handle Offcode attributes using thesetAttributeandgetAttribute

methods. These methods take two arguments: an attribute identifier and a value.

HYDRA currently supports the following attributes:

OBSOLETE_TIME – The attribute enables a developer to determine the amount of time an

Offcode should “live”. The time is measured relative to the Offcode’s offloading time. The attribute

is usually set for short-lived (or temporary) Offcodes.

WATCHDOG_TIME – The attribute defines the invocation frequency thatmustbe maintained

for a given Offcode. The runtime automatically disposes Offcodes that have not been responded for

more than the given watchdog time period. The attribute facilitates an application level keep-alive

mechanism.

OFFLOAD_PRIORITY – The attribute sets the offload priority for the created Offcode. HYDRA

currently support three priorities: PRI_LOW, PRI_NORMAL and PRI_HIGH. During application

deployment, the offloading process will be executed according to the given priorities.
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4.1.4 Offcode Invocation

HYDRA provides two ways to invoke an Offcode: transparently and manually. Achieving syn-

tactic transparency for Offcode invocation requires the use of some “proxy” element that has a

similar interface as the target Offcode. When a user creates an Offcode, a proxy object is created

and loaded into user-space. The proxy’s job is to perform marshaling (serialization) and unmar-

shaling (deserialization) of the methods arguments and the returned values, prior/after the method

invocation [57].

All interface methods return aCall object that contains the relevant method information in-

cluding the serialized input parameters. Once aCall object is obtained, it can be sent to a target

device (or several devices) by using a connected channel. The manual invocation scheme consists

of manually creating theCall object, and using a custom encoder to marshal arguments and invoke

the channels’ methods.

4.1.5 The Call Object

A Call object is a data structure that encapsulates the relevant information needed to invoke a target

Offcode’s method. ACall object contains an input buffer with a fixed length header describing the

target method identifier, the input buffer encoding and the buffer’s length. According to a given

encoding scheme, the buffer is processed by the target method (or proxy). For Methods that return

a value, theCall object also contains an output buffer. Section5.3provides further details regarding

theCall object.

4.1.6 Call’s Encoding

HYDRA provides a generic encoding scheme that enables a developer to choose a unique encoding

per method. A developer can use a custom encoder or a standard one. Many formats and open

source encoders are available. SOAP [79, 42] and XML-RPC [81] are simple formats which are

widely used. Although some will argue that specialized protocols will be more efficient, in many

cases they turn out to be equally or more complicated and costly. Previous work [22,27,31] showed

that the overhead imposed by the XML-RPC protocol is negligible (only 16KB in [31]) and the
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resulting performance is high. Section5.4 provides further details regarding HYDRA ’s supported

encodings.

4.1.7 Pseudo Offcodes vs. User Offcodes

We distinguish between pseudo Offcodes and user Offcodes. Pseudo Offcodes are runtime com-

ponents that happen to be implemented as Offcodes, but not written by the user for a particular

application. Reasons to do this are because these components export well-defined interfaces, or

because of a desire to reduce the processing time for dynamic loading of user Offcodes. By re-

quiring that user Offcodes interact with the device’s OS via pseudo Offcodes, we can minimize

the required processing of undefined references of an Offcode binary while installing it at the tar-

get device. One example for a pseudo Offcode is the “Hydra.Runtime” that provides the runtime

functionality through a well defined interface. The runtime’sGetOffCodemethod enables a user

Offcode to get an interface to any Offcode currently registered at the runtime by providing it the

Offcode’s GUID. Another example is the “Hydra.Heap” Offcode, which provides an interface to

the OS memory routines.

4.2 Channels

Offcodes communicate with each other and with the host application by communication channels.

Channels are bidirectional pathways that can be connected between two endpoints, or connection-

less when only attached to one endpoint. A channel can be considered as a transport mechanism

used for communicating with Offcodes (analogous to the OS sockets abstractions used for net-

working).

4.2.1 Out-Of-Band Channel

The runtime assigns a default connectionless channel, called theOut-Of-Band Channel (OOB-

channel)for every OA-application and Offcode. The OOB-channel is identified by a single end-

point used to communicate with the Offcode without the need to construct a connected channel,

such as for initialization and control traffic that is not performance critical. The OOB-channel

is the default communication mechanism between peer Offcodes and between Offcodes and OA-
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applications. The OOB-channel is usually used to notify the Offcode regarding management events

and availability of other channels. For example, assume that an OA-application communicates with

Offcodeα using the default OOB-channel. Once the OA-Application creates a specialized chan-

nel (see Section4.2.2) and attachesα to it, the runtime at the target device implicitly creates a

corresponding endpoint and notifiesα usingα’s OOB-channel. Onceα is notified, it can start

listening for requests on the new channel. Figure4.3 presents the code needed for obtaining the

OOB-channel for a sample Offcode.

Runtime *rt = GetRuntime();
IChannel *oob = rt->v->GetOOBChannel(rt,"Hydra.net.utils.Socket"

&IID_CHANNEL);

Figure 4.3: Obtaining the OOB-channel

4.2.2 Specialized Channel

The OOB-channel can be used for simple data transfer between the application and Offcodes and

among Offcodes. For high performance communication, a specialized channel that is tailored to

the needs of the application and the Offcode would be created. Enabling a specialized channel

is performed in two steps. First, the channel creator determines the channel characteristics and

creates its own endpoint of the channel. Second, the creator attaches an Offcode to the channel.

This action implicitly constructs the second endpoint at the target device, and notifies the Offcode

about the newly available channel. Once the channel is connected, the channel’s API can be used

for communication. The channel API contains typical operations to read, write and poll. The

channel API also supports registration of a dispatch handler that is invoked each time the channel

has a new request.

Creating a channel involves configuring the channel type, synchronization requirements and

buffer management policy. A channel can be of typeUnicast, that can only interconnect two Off-

codes, orMulticast, that can interconnect more than two Offcodes. A channel can be either sequen-

tial (synchronized) allowing one invocation at a time or parallel (un-synchronized). A channel can

be either unreliable or reliable, where the latter type is careful not to drop messages even though
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buffer descriptors are not available. Note that a multicast channel can utilize hardware features, if

available, to send a single request to multiple recipients simultaneously.

Figure4.4presents the typical sequence of operations required to initialize a channel and con-

nect it to a specific device. In this code, a reliable unicast channel is constructed with a zero-copy

policy for read/write and sequential synchronization guarantees. A callback handler is then in-

stalled at the OA-application side of the channel. The corresponding handler is invoked by the

runtime whenever data is available on the channel, as opposed to requiring the application to poll.

Connecting an Offcode to a previously created channel is easily performed by calling the channel’s

ConnectOffCodemethod which takes the target Offcode reference as a parameter.

/* get our runtime and create the Offcode */
Runtime *rt = GetRuntime();
IOffcode *ocode=rt->v->CreateOffcode(rt,"/offcodes/checksum.odf",

&IID_Checksum);

/* get the channel executive */
ChannelExecutive *exec;
ErrorCode res=rt->v->GetOffCode(rt,"Hydra.ChannelExecutive",

&IID_ChannelExecutive,
&exec);

/* set up the channel */
ChannelConfig config;
config.type = UNICAST_CHANNEL | RELIABLE_CHANNEL;
config.sync = SYNC_SEQUENTIAL;
config.buffering = DIRECT_READ | DIRECT_WRITE;
config.targetDevice = ocode->v->GetDeviceAddr(ocode);

/* create the channel to our target */
Channel *channel;
channel = exec->v->CreateChannel(exec, &config);

/* install a callback handler */
channel->v->InstallCallHandler(channel, MyHandler);

Figure 4.4: Creating a Channel
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4.3 Offcode Manifesto

An Offcode manifesto is the means by which an Offcode defines its dependencies on peer Offcodes

and its requirements from the target device and software environment.

The manifesto is realized in an Offcode Description File (ODF). An ODF contains three parts:

the first part describes the structure of the Offcode’s package, containing the binding name of the

Offcode at the target device, and the Offcode’s supported interfaces. The Offcode’s interfaces are

typically described by a standard WSDL [70] file. Figure 4.5 presents a typical import section

defined in an Offcode’s ODF.

<ocode>
<!- ocode package info ->
<package>

<bindname>Hydra.net.utils.Socket</bindname>
<GUID>7070714</GUID>

<interface>
<!- WSDL interface specification ->
<include>/offcodes/socket.wsdl</include>

</interface>
</package>

Figure 4.5: ODF - Part I

The binding name identifies the Offcode at the target device and it is used in the various HYDRA

APIs to identify the Offcode.

<!- ocode dependencies ->
<sw-env>

<import>
<file>/offcodes/checksum.odf</file>
<bindname>Hydra.net.utils.Checksum</bindname>
<reference type="Pull" pri="0"></reference>
<GUID>6060843</GUID>

</import>
</sw-env>

Figure 4.6: ODF - Part II
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• Link : The Link constraint is denoted asα
Link⇔ β. This is the default constraint fromα to β,

which actually poses no constraints:α andβ may or may not be mutually offloaded (to the
same or different target device). It does, however, indicate that at least one of the Offcodes
needs the other to function.

• Pull: The Pull constraint is denoted asα
Pull⇔ β. This reference is used to ensure that both

Offcodes will be offloaded to thesametarget device.

• Gang: The gang constraint is denoted asα
Gang⇔ β. This constraint is used to ensure that

both Offcodes will be offloaded totheir respectivetarget devices. That is, ifα is offloaded,
β will be too, albeit on perhaps a different device.

• Asymmetric Gang: This constraint is denoted asα
∼Gang→ β and provides the asymmetric

version of Gang. Offloadingβ doesn’t implies offloadingα.

Figure 4.7: Offcodes’s Constraints

The second part of an ODF describes the Offcode’s dependencies on peer Offcodes. This

section enables a developer to “design” the offloading process that will occur at deployment time.

HYDRA provides several constraints presented in Figure4.7 that can be used between any two

Offcodes denoted byα andβ. The set of Offcodes and related constraints form anOffloading

Layout Graph. The runtime (recursively) processes an Offcode’s ODF file to produce such a graph

which is later used by the runtime for deciding on the actual placement of Offcodes.

Note that there is noAsymmetric Pullconstraints as the motivation for usingPull is a tight in-

teraction between two Offcodes. Enabling asymmetry may result in the placement of two Offcodes

in two different execution domains. Figure4.6 presents the mechanism by which a constraints is

set on an Offcode reference. In this example, aPull constraint is set for the peer Offcode denoted

by: “Hydra.net.utils.Checksum”.

The last part of the ODF is concerned with device mappings. In order to enable dynamic

mapping between Offcodes and peripheral devices, on different hosts configurations, a developer

is required to supply a list of potential targetdevice classesthat can be used for offloading.

Figure4.8a sample Offcode for which the developer indicated the classes of potential devices

on which it can operate. It is the runtime’s responsibility to locate an instance of such an Off-

code which is suitable for running at one of the local devices that is in one of the listed classes.
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<!- device classes ->
<targets>

<device-class id=0x0001>
<type>NIC</type>
<mac>ethernet</mac>
<bus>pci</bus> <!- (optional) ->
<rate>1000</rate> <!- (Mbps) ->
<vendor>3COM</vendor> <!- (optional) ->

</device-class>

<device-class id=0x0002>
<type>NIC</type>
<mac>myrinet</mac>
<rate>10000</rate> <!- (Mbps) ->

</device-class>
</targets>

</offcode>

Figure 4.8: ODF - Part III

Alternatively, the developer can specify the exact target for each Offcode using an Offcode’s URL.

4.4 Deployment Process

This section provides a description of the deployment process that is performed by the HYDRA

runtime. Figure4.9presents the control flow of the deployment process.

Once an Offcode is created by calling theCreateOffCodeAPI, the appropriate Offcode ODF

files are recursively processed by the runtime to construct the application’s offloading layout graph.

Following that, the runtime determines the mapping between the Offcode device requirements and

the physical devices that are installed at the specific host. For this purpose, HYDRA uses the run-

time resource management module to obtain a list of local HYDRA capable devices (e.g. devices

that execute the HYDRA runtime). Finally, an Offcode instance (object file) must be selected for

each given Offcode. Typically, the runtime uses a local library that is used for storing the actual in-

stances of the Offcodes. The library has a simple hierarchical structure as presented in Figure4.10.

The library tree is first sorted by the device class and further by class specific properties. For ex-

ample, network interface cards (NICs) are further categorized according to their Media Access
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mapping

mapping

Logical Devices Layout Graph

Physical Devices

Offcode Generation

Offloading

Execution

Figure 4.9: Deployment Control Flow

Control protocols (MAC), thus themacidentifier (also depicted in the Offcode’s ODF file) is also

used for traversing the tree.

- lib
|
- offcodes

|
- NIC

|
|- ethernet

| |- GUID1
| | - 3com
| |- socket.oc
| |- socket.odf
| |- marvell
| |- mrvl_socket.oc
| |- GUID2
|- myrinet
| |- GUID2
| | - myricom

- GPU
...

- DISK
...

Figure 4.10: Offcodes Library Structure
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As an example, assume that an instance for the “Hydra.net.utils.Socket” Offcode is to be lo-

cated. First, the Offcode’s GUID, the device class and themac identifiers are extracted from the

Offcode’s ODF (see Figures:4.5-4.8). In this case the tuples:{NIC,ethernet,GUID = 7070714}

and{NIC,myrinet,GUID = 7070714} are read. Next, the resource management module is con-

sulted to identify the currently installed devices (NICs) and to exclude irrelevant devices. E.g. if

the local host has only ethernet connectivity then the myrinet device is excluded at this stage. As-

suming this is the case, we are left with the first tuple extended with a list of locally installed NICs.

Next, the tree is traversed according to this information and an Offcode instance is located. If such

a mapping can not be allocated (due to resource limitations or incompatibility) the runtime tries to

find an Offcode that is capable of executing at the host CPU.

The next step involves adapting the specific Offcodes instances to the target devices either

by executing a corresponding compiler (for open source Offcodes) or by invoking the dynamic

linkage process. The last phase is the actual offloading of the Offcode which is further described

in Section5.6and discussed in details in [28].

Notice that the offloading layout is usually statically defined or set during deployment. The

reasoning behind this is to minimize the overhead concerned with the offloading operations. The

overhead imposed by enabling migration of Offcodes between devices is superfluous if this feature

is rarely used.
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Chapter 5

Architecture

In this chapter we present the design of the runtime system. The system implements the model

and provides facilities for programming, testing, deploying, and managing OA-applications and

Offcodes. Both the host OS and the target device firmware must support the interfaces defined by

the programming API and implement the runtime functionality. A critical decision is to modularize

the framework into independent parts, so that modifying one will not affect the rest.

The bottom half of the runtime system comprised of library requirements for a particular target

device. Such libraries may be provided by the device manufacturer, system integrator, or by re-

searchers and the open source community. The upper half of the runtime system exists on the host

as operating system extensions. Our host implementation for Linux is modular, in that it main-

tains strict separation between device-specific code and generic code. It is implemented as a set of

kernel modules that are loadable on demand and do not require kernel source code modifications.

5.1 HYDRA Components

The HYDRA runtime is comprised of several components as shown in Figure5.1. It is accessed

through an offloading access layer that consists of a user-level library linked to each OA-Application,

and a kernel-level set of generic services.

The kernel layer consists of several functional blocks. TheSystem Call ManagementandOf-

floading APIblocks implement the various APIs defined in the programming model. TheChannel
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Figure 5.1: System Architecture

Managementunit manages the channels by interacting with theChannel Executive. This mod-

ule handles channel creation by using a particularChannel Provider. These providers are target-

specific and provided as part of the driver for each programmable device. A channel provider

creates various specialized channel types to the device and provides a cost metric regarding the

“price” for communicating with the device through a specific channel, in terms of latency and

throughput. The executive uses this capability information to decide on the best provider for a

specific Offcode. TheResource Managementunit keeps track of all active Offcodes and related

resources. Resources are managed hierarchically to allow for robust clean-up of child resources

in the case of a failing parent object. TheMemory Managementmodule exports memory services

such as user memory pinning that is used by zero-copy channels. TheLayout Managementunit

performs layout related functionalities such as analyzing the offloading layout graph. This unit re-

ceives the offloading layout graph as input and produces the mapping between Offcodes and target

devices. The module can be easily extended to support future offloading constraints.
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5.2 Offcode Internals

Offcodes are the building blocks of OA-applications. Each Offcode has state (data members),

behavior (operations on data) and a thread of control that is initialized by the HYDRA runtime.

Offcodes define and implement interfaces which are globally identified. An Offcode interface is

designed as a function table (much like a C++ abstract class) that is accessed through a virtual

table pointer. A virtual table enables better separation (encapsulation) between the interface and

the implementation, it can be used by several instances of the same Offcode thus decreasing the

required memory and achieves a binary level standard.

/* A pointer to an offcode interface */
typedef struct IOffcode *PIOFFCODE;

/**
* the offcode’s basic virtual table
* real offcodes extend this interface.
*/

struct IOffcodeVtbl {
ErrorCode (*QueryInterface)(PIOFFCODE pThis,

REFIID iid,
void** ppObject);

UINT32 (*AddRef) (PIOFFCODE pThis);
UINT32 (*Release) (PIOFFCODE pThis);
ErrorCode (*Initialize) (PIOFFCODE pThis);
ErrorCode (*StartOffcode) (PIOFFCODE pThis);
ErrorCode (*StopOffcode) (PIOFFCODE pThis);
ErrorCode (*GetOOBChannel) (PIOFFCODE pThis);

...
};

Figure 5.2: An Offcode Virtual Table

Figure5.2and Figure5.3present the related Offcode data structure. The Offcode’s virtual table

(Figure5.2) contains a set of function pointers that provide the basic Offcode’s functionality. For

example, every Offcode must implement theInitialize andStartOffcodemethods that are called at

deployment time. The Offcode interface, denoted byIOffcode, is merely a data structure containing

the Offcode’s virtual table. Offcodes should extend the basicIOffcode interface with specific

Offcode’s functionalities.
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/**
* An offcode interface contains a pointer to an offcode vtable
* which hold the offcode’s functionalities.
*/

typedef struct IOffcode {
const struct IOffcodeVtbl *v;

} IOffcode;

/** declares an offcode interface */
#define DECLARE_OFFCODE_INTERFACE(iname) \

typedef struct iname { \
const struct iname##Vtbl *v; \

} iname;

Figure 5.3: An Offcode Interface

For example, Figure5.4 and Figure5.5 present the declaration and implementation of the

HeapOffcode that resides in theHydra.Runtimepackage. Upon initialization, the HYDRA runtime

creates anIHeapdata structure and sets its virtual table pointer to reference theIHeapVtblstructure

(denoted as “heapMethods” in Figure5.5). The Offcode is then registered at the runtime which

creates a mapping between the Offcode’s URL and theIHeapdata structure.

typedef struct IHeap *PIHEAP;
typedef struct IHeapVtbl {

/* default offcode interface (IOffcode) */
DECLARE_DEFAULT_OFFCODE(PIHEAP);
/* Heap specific interface */
void* (*Alloc)(PIHEAP pThis, UINT32 size, UINT32 flags );
void (*Free)(PIHEAP pThis,const void* pMemory);

} IHeapVtbl;

/* now define the offcode’s interface */
DECLARE_OFFCODE_INTERFACE(IHeap);

Figure 5.4: A Heap Virtual Table
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/* heap specific methods implementation at our nic (nicos) */
void* HeapAlloc(PIHEAP pThis, UINT32 size, UINT32 flags )
{

return (void*)nicos_malloc(size);
}

void HeapFree(PIHEAP pThis,const void* pMemory)
{

nicos_free((void*)pMemory);
}

IHeapVtbl heapMethods = {..., HeapAlloc,HeapFree};

Figure 5.5: A Heap Offcode

5.3 Call Internals

A Call object is a data structure that encapsulates the relevant information needed to invoke an

Offcode’s method (see Figure5.6). The structure is shared between the host and target devices.

typedef struct call_t
{

u16 type;
u16 status;
u16 code;
u16 target_id;

/* the memory input descriptor */
struct mem_desc_t in;

/* the memory output descriptor */
struct mem_desc_t out;

/* an opaque data for internal use */
u64 cookie;

} __attribute__ ((packed)) call_t;

Figure 5.6: A Call Object

A Call’s type is eitherIN_CALL or INOUT_CALL. The former corresponds to methods that

do not return data, thus only contain an input buffer, while the latter corresponds to methods that
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do return data, thus contain an inputand output buffers.Call buffers are described by memory

descriptors that contain the buffers’ addresses (64 bit) and length (Figure5.7).

typedef struct mem_desc_t {
u64 address; /* buffer address */
u32 len; /* buffer size in bytes */

} __attribute__ ((packed)) mem_descr_t ;

Figure 5.7: A Memory Descriptor

Upon creation, a call’sstatusis set toCALL_STATUS_PENDING. The device can follow a sim-

ple or extended invocation scheme. In the simple invocation scheme, the device notifies the caller

once the invocation has been completed. The extended invocation scheme consists of two acknowl-

edgements phases. The first, occurs once the input buffer has been consumed by the device. The

second acknowledgment occurs once the invocation is completed. The extended invocation scheme

enables a developer to quickly release the input memory buffer when it is no longer needed by the

device. Since zero-copy channels use DMA, the buffer can not be released voluntarily. Once the

device DMAs the input buffer, it sets the call’s status toCALL_STATUS_ACKED. When the call

is completed (e.g., the data is ready at the output memory buffer), the call’s status is changed to

CALL_STATUS_FINISHEDand the host is informed. The call’scodefield indicates the invocation

call error code and thetarget_iddenotes the target of the invocation (which is typically the target

device’s runtime).

/* call status */
#define CALL_STATUS_PENDING (1«13) /* 0x2000 */
#define CALL_STATUS_ACKED (1«14) /* 0x4000 */
#define CALL_STATUS_FINISHED (1«15) /* 0x8000 */

Figure 5.8: Call Status

A user typically creates a call object and sends it to the target device via a connected channel

(see Section5.5). The kernel holds an extended representation of thecall_t object in the form of

a kcall_t. This structure is used by the runtime for updating the user’s calls status and for pinning

or unpinning user buffers before or after DMA operations. For brevity, we omit the details of this

data structure and corresponding operations.
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5.4 Call Encoding

HYDRA provides a generic encoding scheme that enables a developer to choose a unique encoding

per invocation. Typically, the call’s input buffer contains a fixed length header with the encoding

information. A developer can use a custom encoder or a standard one (see Figure5.9).

/* encoding types */
#define ENC_CUSTOM (1«0)
#define ENC_SOAP (1«1)
#define ENC_XML_RPC (1«2)
#define ENC_MAX_TYPE (1«5)

Figure 5.9: Call Encoding

5.4.1 Custom Encoding

This section present a simple custom encoding scheme that is used in the HYDRA framework for

efficient data transfer. Figure5.10presents the custom encoding header which holds the encoding

information.

typedef struct CustomEncodingHeader {
union {

struct {
/* the target offcode URL */
char targetOffcodeBindName[OFFCODE_URL_LEN];
/* method id to invoke (from the offcode interface)*/
UINT8 method_id;
/* method version */
UINT8 method_ver;
/* number of parameters */
UINT8 param_count;
/* params endianess (BIG_ENDIAN, LITTLE_ENDIAN)*/
UINT8 endianess;

} header;
char data[32];

} input;
} CustomEncodingHeader;

Figure 5.10: Custom Encoding Header

The header describes the invocation’s target Offcode, the method identifier and version, and
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the number of parameters. Parameters are data structures (Figure5.11) that contain information

regarding their type and values (Figure5.12).

typedef struct Param
{

ParamType type;
UINT8 data[0];

} __attribute__((__packed__)) Param;

Figure 5.11: Parameter Data Structure

The functionality required in order to createCall objects adhering to a custom encoding scheme

is provided in the form of aCustomEncoderpseudo Offcode.

typedef enum ParamType {
PARAM_RAW = 0,
PARAM_CSTRING = 0x01000001,
PARAM_UINT8 = 0x08000008,
PARAM_UINT16 = 0x18000018,
PARAM_UINT32 = 0x28000028,
PARAM_UINT64 = 0x38000038,
PARAM_SINT8 = 0x48000048,
PARAM_SINT16 = 0x58000058,
PARAM_SINT32 = 0x68000068,
PARAM_SINT64 = 0x78000078,
PARAM_BOOL = 0x02000002

} ParamType;

Figure 5.12: Parameter Types

Figure5.13presents a sample usage of the interface for creating such a call. The call’s tar-

get Offcode is “Hydra.utils.Tracer” and the method identifier is “0x07” which corresponds to the

method “SayHello”. This method takes a fixed length character array (msg) and an integer (count)

which determines how many time the array should be traced out (at the target device). Once a

reference to the custom encoder has been obtained (line 1), the call’s parameters are initialized

(lines 2-6). Then, the call object is created (lines 7-9) and the header is initialized (line 10). Once

all of the parameters have been added to the call (lines 11-12), the call is ready to be passed on to

the target device via a connected channel.
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// get the runtime call encoder
1. IEncoder* pEncoder = GetCustomEncoder();

// create the call parameters, we will have 2 of them
2. Param* params[2];
3. const char* str = "Hello from user";
4. int c = 4;
5. params[0] = pEncoder->v->CreateMethodParam(pEncoder,PARAM_CSTRING,

(void*)str,strlen(str)+1);
6. params[1] = pEncoder->v->CreateMethodParam(pEncoder,PARAM_UINT32,

(void*)&c,sizeof(UINT32));
7. c = pEncoder->v->GetParamsSize(pEncoder,params,2,TRUE);

// create the call object
8. CallAttr attr = {TYPE_IN,ENC_CUSTOM, ENC_NONE, RUNTIME,

OFFCODE, c, 0 };
9. ICall* pMyCall = CreateCall(&attr);

// now setup the header
10. pEncoder->v->InitCallEncoding(pEncoder,pMyCall,0x07,0x00,

"Hydra.utils.Tracer");
// add the parameters to the call

11. pEncoder->v->AddMethodParam(pEncoder,pMyCall,params[0]);
12. pEncoder->v->AddMethodParam(pEncoder,pMyCall,params[1]);

Figure 5.13: Creating a Custom Encoded Call

5.4.2 SOAP Encoding

As SOAP is de facto the standard for web services invocation, we have chosen to provide a proto-

type implementation, for our programmable NIC, that will enable to encode a method invocation

using SOAP. Our implementation is based on the the gSOAP web services toolkit [67]. This toolkit

offers an easy to use XML to C/C++ language binding by using an extended C/C++ compiler. The

gSOAP compiler generates efficient XML serializers for C and C++ data types that are used by the

HYDRA runtime.

The basic gSoap functionality over TCP has been modified to use HYDRA APIs. For example,

instead of invoking the regular TCP “connect” API, gSoap is set to invoke “CreateChannel”. Upon

receiving a buffer on such channel, the NIC’s runtime invokes a handler which in turn retrieves

the buffer and calls gSoap to parse it and execute the corresponding function. Once this is accom-

plished, and the function returns a value, gSoap serializes the return value into the call’s output

buffer. Once the call is finished, the client side code uses gSoap to deserialize the buffer and return

44



CHAPTER 5. ARCHITECTURE 5.4. CALL ENCODING

a value as if the function has been executed locally.

Figure5.14presents a sample user program that uses the gSoap framework in order to invoke a

method implemented at some programmable NIC. Again, the invocation’s target Offcode is “Hy-

dra.utils.Tracer” and the method is “SayHello”. The figure clearly shows that the gSoap framework

simplifies the invocation process and removes the burden of manually constructing a call object.

// include generated proxy and SOAP support
#include "soapH.h"
#include "tracer.h"
int main() {

char* msg = "Hello from user";
int num = 5; int status = -1;
struct soap soap; // allocate gSOAP runtime environment
soap_init(&soap); // must initialize
soap_call_nic__SayHello(&soap, "Hydra.utils.Tracer", "",

msg, num, &status);
}

Figure 5.14: Creating a SOAP Encoded Call

The method signaturesoap_call_nic__SayHellois automatically generated by the gSoap com-

piler invoked on the method declaration file presented in Figure5.15. Developers should merely

need to implement the method using the target device’s runtime APIs.

//gsoap nic service name: tracer
//gsoap nic service style: rpc
//gsoap nic service encoding: encoded
//gsoap nic service namespace: urn:xmethods-delayed-quotes
//gsoap nic service location: http://services.xmethods.net/soap
//gsoap nic service method-action: sayHello ""

int nic__SayHello(char *msg, int count, int* status);

Figure 5.15: Method Declaration (H file)

Figure5.16and Figure5.17present the XML format of a typical request and response associ-

ated with this specific method.
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<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope>...

<SOAP-ENV:Body SOAP-ENV:encodingStyle=...>
<nic:SayHello>

<msg></msg>
<count>0</count>

</nic:SayHello>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 5.16: SOAP Request

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope>...

<SOAP-ENV:Body SOAP-ENV:encodingStyle=...>
<nic:SayHelloResponse>

<status>0</status>
</nic:SayHelloResponse>

</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5.17: SOAP Response

5.5 Channel Internals

A channel is a transport abstraction used by Offcodes to communicate with each other and with

OA-applications. Underlying every channel is a simple protocol capable of transferring data from

one device to another. Typically, the device driver of the target hardware implements such a mech-

anism and exports this capability to theChannel Executivemodule. For example, a DMA master

device exports a “zero-copy” channel capability thus enables the construction of zero-copy chan-

nels to the device.

Figure5.18shows a sample zero-copy channel architecture implemented for a programmable

NIC. The right side of the figure presents the logical view as seen from the OA-application while

the left side presents the internal architecture. The figure presents an OA-application that com-

municates with Offcodeα through a proxy connected to a private channel identified by a channel

descriptor. The HYDRA runtime maps each channel descriptor to an internal channel object that is

created by the target device channel provider. This specific provider constructs two kernel buffer
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Figure 5.18: Example Zero-Copy Channel

rings to communicate with the target Offcode. TheInRing holds memory descriptors that point

to host memory locations that contain theCall objects. Although aCall object usually contains a

return descriptor for delivering the invocation return value, theOutRingis necessary since it con-

tains pre-posted application descriptors that are used by the runtime at the device for spontaneous

messages triggered by the Offcode. The channel endpoint at the device holds a shadowed copy

of the ring descriptors; and, channel management is maintained using a dedicated shared memory

region per channel. TheCall object is copied using the NIC’s DMA bus master capabilities to an

internal buffer owned by the target Offcode. TheCall is de-serialized and the Offcode is invoked.

The Offcode uses the embedded return descriptor to DMA the return value back to the application

and optionally notifies the application using an event (usually interrupt) described by the shared

memory region.

The described invocation process uses a channel provider that invokes a device specific method

called: invoke. For example, theinvokemethod for our programmable NIC is presented in Fig-

ure5.19. A typical invocation starts by mapping the call’s virtual address to a bus address (lines:

10-12), registering the call in a user specific data structure (line 14) and finally, manipulating the

device’s registers which triggers an event at the device (line 17).
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int invoke(struct ace_private *ap,
kcall_t* kcall, user_context* uc)

{
1. struct cmd issueCmd;
2. int err=0;
3. u64 dma_addr = 0;
4. u32 pars[4];
5. cmd_params_t* pParams = (cmd_params_t*)pars;
6.
7. issueCmd.evt = TG_METHOD_INVOKE;
8. issueCmd.code = 0;
9. issueCmd.idx = 0;

10. dma_addr = pci_map_page(ap->pdev, virt_to_page(kcall),
offset_in_page(kcall),
sizeof(*kcall),PCI_DMA_TODEVICE);

11. pParams->len=3;
12. set_hostaddr(((tg_hostaddr_t*)pParams->params),dma_addr);
13. pParams->params[2]=kcall->call.target_id;
14. err = ht_insert(kcall, kcall, uc->calls);
15. if (unlikely(err < 0))
16. goto reg_err;
17. if (ace_issue_cmd_sleepy(ap->regs, &issueCmd, pParams)<0)
18. goto issue_err;
19. return 0;
}

Figure 5.19: Sample Invoke Method

5.6 Offcode Dynamic Loading

Supporting dynamic Offcode loading is an important building block in the HYDRA framework.

We have considered different approaches for implementing dynamic loading. The simple solution

would be to hand over the Offcode to the target device and require that each device implement a

simple Offcode loader. However this naive solution is quite expensive in terms of device resources.

Another approach would be to fully perform the linking process at the host, and only transfer the

Offcode when it is ready to be deployed (at a specific memory region). The device’s loader will

merely need to initialize the Offcode and execute it.

HYDRA runtime is built to support both approaches. HYDRA support for dynamic offloading is

provided by a set of device-specific loaders that implement a generic interface for Offcode loading.
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The interface is intended to be implemented by the device driver of each target peripheral. Each

loader can decide whether to transfer the Offcode as is, or to perform some processing at the host

first, depending on features of the target.

As a proof of concept, we have created such a loader for our programmable network card [28].

The dynamic offloading logic is implemented both in the device and in the host. A device-specific

host-based loader is implemented at the NIC’s driver; it uses the OOB-channel of the device’s

runtime to communicate with the target device loader, which is actually a pseudo Offcode at the

target device (identified by the Offcode URL: “Hydra.Runtime.Loader”). Figure5.20presents the

message transfers that occur in loading a single Offcode.
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Figure 5.20: Offcode Dynamic Loading Flow

Once the host-based loader calculates the Offcode’s size, it invokes theAllocateOffCodeMem-

ory exported by the device’s loader. This method allocates the memory region that will be used

to store the Offcode binary and returns the device’s memory address to the caller. The host-based

loader dynamically generates a linker file adjusted by the returned address and links the Offcode

object. It then transfers the linked Offcode to the target device where it is placed and executed.

All the above interactions make use of the OOB channels that are created for the host and target

HYDRA runtimes.

49



CHAPTER 6. N ICOSCASE STUDY

Chapter 6

NICOS Case Study

This chapter presents a Network Interface Card Operating System called:NICOS. The motivation

behind NICOS is to facilitate the evaluation of the HYDRA framework. As a prototype device’s

OS, the generic HYDRA framework has been fully integrated within NICOS. All H YDRA ’s sample

applications have been built on top of NICOS (see Chapter8).

6.1 NICOS Environment

NICOStarget device is a programmable NIC based on the Tigon2 chipset. The Tigon programmable

ethernet controller is used in a family of 3Com’s Gigabit NICs. Figure6.1presents the NIC’s ar-

chitecture. The NIC supports a PCI host interface and a full-duplex Gigabit ethernet interface.

The Tigon has two 88 MHz MIPS R4000-based processors which share access to external SRAM.

Each processor has a one-line (64-byte) instruction cache and a private on-chip scratch pad mem-

ory, which serves as a low-latency software-managed cache. Hardware DMA and MAC controllers

enable the firmware to transfer data to and from the system’s main memory and the network, re-

spectively.

The Tigon controller uses anevent-loopapproach instead of an interrupt driven logic. The

motivation is to increase the NIC’s runtime performance by reducing the overhead imposed by

interrupting the host’s CPU each time a packet arrives or a DMA request is ready. Furthermore, on

a single processor the need for synchronization and its associated overhead is eliminated.
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Figure 6.1: Tigon Controller Block Diagram

6.2 NICOS Services

This section presents NICOS services starting with the memory management service, NICOS task

management and NICOS networking and filtering APIs. Following that a detailed description of

the NICOS scheduling framework is provided.

6.2.1 Memory Management

NICOS has to allocate memory each time a task, a queue or a packet is created. NICOS default

memory allocation algorithm is based on the “boundary tag method” described in [78], which is

suitable for most applications. Implementing a “generic” memory allocation mechanism is prob-

lematic. Since different realtime systems may have very different memory management require-

ments, a single memory allocation algorithm probably will not be appropriate. To get around this

problem the memory allocation APIs provided in NICOS can be easily replaced by using the filter-

ing APIs (see Section6.2.4). A user’s task can easily replace the default methods by installing a

special kind of a filter. The registered method (i.e., the “filter” action) will be called instead of the

default allocation routine. NICOS memory allocation APIs can also enable a developer to choose

the target of the allocated memory. Memory consuming applications can allocate memory at the
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host. The memory is transparently accessed using DMA. This scheme is also suitable for devel-

oping OS bypass protocols, which removes the kernel from the critical path and hence reduces the

end-to-end latency.

6.2.2 Task Management

NICOS provides several task management APIs that enable a developer to create/destroy tasks and

to control their lifecycle state. The API enables a developer to create a periodic or non-periodic

task, to yield, sleep, suspend, resume and kill a task. Although periodic tasks can be implemented

by a developer on top of a sleep API, an explicit facility for periodic tasks has been added so

the OS is fully aware of them. Such a design allows the OS to minimize the ready-to-running1

latency. Providing the timeliness guarantees required by NICOS has been a major challenge due to

the non-preemptive architecture of these NICs.

6.2.3 Networking

The current networking API is very simple. NICOS provides only a single method that sends

raw data. The data is provided by the developer and includes all of the necessary protocol head-

ers. NICOS supports synchronous and asynchronous send calls. The asynchronous ones are non-

blocking. When using the synchronous mode, the execution is blocked until frame transmission is

completed. Upon completion, the provided callback is called. Receiving a packet is currently done

only via filter registration.

6.2.4 Filtering

When deciding which functionality is needed to be offloaded to the NIC, one should look for

common building blocks in today’s networking applications. The ability to inspect packets and

to classify them according to specific header fields is such a building block. For instance, the

classification capability is useful for firewall applications, applying QoS for certain traffic classes,

statistics gathering, etc. NICOS services include a packet filtering and classification capabilities.

1The time from the moment a task becomes ready-to-run until it starts execution.
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In NICOS, a filter is a first class object. As such, it can be introspected, modified and created at

runtime.

A sample code for installing a filter is presented in Figure6.2. The “registerICMPFilter”

method, registers a filter that drops all ICMP packets. Installing a filter is performed in two steps.

In the first step, a pattern filter structure must be initialized (lines 1-7). This structure contain pat-

terns that should be matched against each packet. In the second step, a filter is created (lines 8-9)

and installed (lines 10-11) at either the receive path (“Rx filters”), the transmit path (“Tx filters”)

or both. Note that two kinds of filters exist: Astatic filterand adynamic filter. The former matches

a packet against a fixed pattern while the latter uses a custom callback function that is invoked for

each received or transmitted packet.

void registerPingDropFilters(void) {
/* we would like to match ICMP packets */

1. valueMask[0] = ICMP_PROTOCOL;
2. bitMask[0] = 0x1; // match 1 byte

/* start matching at ICMP_PROTOCOL_BYTE */
3. pattern_filter.startIndex =ICMP_PROTOCOL_BYTE;
4. pattern_filter.length = 1;
5. pattern_filter.bitMask = bitMask;
6. pattern_filter.numValues = 1;
7. pattern_filter.valueMask = &valueMask;

/* create the filter, add to Rx/Tx flows */
8. pingDropFilter.filter_type = STATIC_PATTERN_FILTER;
9. pingDropFilter.pattern_filter = &pattern_filter;
10. nicosFilter_Add(&nicosTxFilters,&pingDropFilter,DROP,NULL,

GENERAL_PURPOSE_FILTERS_GROUP,&pingFilterTxId);
11. nicosFilter_Add(&nicosRxFilters,&pingDropFilter,DROP,NULL,

GENERAL_PURPOSE_FILTERS_GROUP,&pingFilterRxId);
}

Figure 6.2: Installing “Ping Drop” Filters

6.2.5 Scheduling

As discussed in Section6.1 most high-end NICs do not support preemption. Schedulers for such

non-preemptive environments usually use an event-driven model. For example, the programmable

NIC used for evaluating NICOS, provides a special hardware register whose bits indicate specific
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events. This event register is polled by a “dispatcher loop” that invokes the appropriate handler.

Once the event handler runs to completion, the dispatcher loop resumes.

Using a common real time scheduling algorithm for such devices yields a great inefficiency in

the resulting schedule. NICOS scheduling scheme, henceforth called:<Sched>++, is capable of

extending any given non-preemptive scheduling algorithm with the ability to create finer-grained

schedules. The scheme has been used for implementing an enhanced version of theEarliest Dead-

line First (EDF)scheduler.

6.3 <Sched>++ Algorithm

6.3.1 Common Schedulers

Several scheduling algorithms have been implemented for NICOS. TheCyclic-Executivesched-

uler [14] is the simplest one. The cyclic executive approach has several advantages: it is simple

to understand, easy to implement and very efficient. Unfortunately, the deterministic nature of the

algorithm requires careful design and massive testing in order to produce deterministic timelines.

A more flexible scheduling algorithm is the non-preemptive version of the EDF algorithm [41].

In EDF, the task with the earliest deadline is chosen for execution. In the non-preemptive version,

the task runs to completion.

Both EDF and cyclic executive are not optimal for a non-preemptive environment. For a set

of scheduable tasks, the resulting task schedule meets the tasks’ realtime requirements, however

with a rather low CPU utilization. The following sections present the<Sched>++ algorithm. The

algorithm utilizes thecompiler’s capabilities in order to create an optimized tasks schedule.

6.3.2 Related Definitions

A task is a sequence of operations to be scheduled by a scheduler. A task systemT = {T1, · · · , Tn},

where each taskTi is released periodically, is called aperiodic task system. Each taskTi is defined

by a tuple(ei, di, pi, si), whereei is the task’s Worst Case Execution Time (WCET), si is the first

time at which the task is ready to run (also known as the start time),di is the deadline to com-

plete the tasks once it is ready to run, andpi is the interval between two successive releases of
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the task. Thus, a taskTi is first released atsi and periodically it is released everypi. After each

periodic release, at some timet, the task should be allocatedei time units before deadlinet + di.

A non-periodictask is a task that is released occasionally, and at each invocation that task may

require a different execution time. Ahybrid task systemis a system that contains both periodic and

non-periodic tasks. To differentiate between the periodic and non-periodic tasks, a periodic task

will be denoted as̃T .

<Sched>++ assumes ahybrid task system, where for each periodic task,di = pi. To represent

the runtime instance of a task, the notion of aticketof a task is introduced. A ticket of a periodic

task,T̃i is defined as the tuple(ei, pi, P ri), whereei andpi are the execution and the period of the

task, andPri is the task’s priority. The ticket of a non-periodic task,Tj, is (ej, P rj). This assumes

that any type of task scheduler used by the OS can be extended using this ticket.

6.3.3 Algorithm Overview

<Sched>++ uses several compile-time techniques, which provide valuable information that can

be used at runtime. The developer uses<Sched>++ specific compiler directives in order to define

the system’s tasks and tickets. The compiler uses these tickets as simple data structures in which it

can store the calculatedWCETs.

The compiler uses the generated control flow graph in order to calculate theWCET of the

periodic and non-periodic tasks (and warns if the code should be annotated due to recursions,

unbounded loops etc.). Typical periodic tasks are comprised of a single calculatedWCET, while

non-periodic tasks may be comprised of a set ofWCETs. In this context, aWCET is defined as the

worst case execution time between two successive yields.

The ability of a compiler to modify the developer’s code, at predefined places, is also utilized.

By modifying the code, the ticket primitive is maintained automatically. The enhanced compiler

updates the ticket with the task’s nextWCET prior to eachyield invocation. This technique also

eliminates the need to introduce a complicated runtime structure that contains all theWCETs of a

given non-periodic task. Asingle ticket is recycled to represent the next task segmentWCET at

runtime.
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6.3.4 <EDF>++ Algorithm

In order to implement the enhanced version of the EDF algorithm, the ticket of a periodic taskT̃ is

extended to be(e, p, Nr, Nd, Pr), where the additional fieldsNr andNd are the next release time

and deadline of the task, respectively. Figure6.3 presents the main logic behind the<EDF>++

algorithm, which is invoked by theYield() function call. Part I of the algorithm starts with the

classical EDF algorithm. The algorithm selects the next periodic taskTnext that has the earliest

deadline among all periodic tasks that are ready to run.

Yield() called from task Tk:

I: Tnext = {T̃i|T̃i.Nd = min(T̃j .Nd|T̃j .Nr ≥ t)};

/* If no periodic task is ready, then
choose from the non-periodic tasks */

II: if ( Tnext = NULL)
SlackT ime = duration until next

periodic task is ready;
/* Pick the next non-periodic task
that will run at most ’SlackTime’
time units */
Tnext = PickNonPeriodicTask(SlackT ime);

/* if no task is ready, the Idle task
will run for the time duration until
the next periodic task is ready */

III: if ( Tnext = NULL)
Tnext = Idle_Task(Timeout)

SwitchTo( Tnext);

Figure 6.3:<EDF>++ Scheduler

Part II of the algorithm is invoked when no periodic task is ready to run. The algorithm uses

the tickets of the non-periodic tasks in order to select the next task to run. The chosen task should

be able to run without jeopardizing the deadline of the next (earliest) periodic task. The scheduler

considers the subset of non-periodical tasks that are ready to run, such that their next execution

time is smaller than the slack time (the time until the next periodic task is ready). Among such

tasks, the algorithm can use various criteria to pick the next task to be scheduled. For instance, one

can use the algorithm in [59], which chooses a set of tasks that minimizes the remaining slack time.

Any such algorithm would use the next execution time (WCET) of the tasks listed in their tickets.
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When there is no suitable task for execution, theIDLE task is invoked until the next periodic task

is ready to run (part III).

Notice that the scheduling algorithm attempts to schedule non-periodic tasks whenever there

is an available time slot in the schedule. Available time slots may exist between periodic slots or

whenever a task completes its execution ahead of time, which can only be determined at runtime.

6.3.5 <EDF>++ Evaluation

An experimental system with both EDF and<EDF>++ schedulers has been implemented. The

task set includes twenty tasks where half of them are periodic. The system has been executed

with various periods and constraints. On average, for plain EDF, theIDLE task has been executed

28.6% of the time, yielding a CPU utilization of71.4%. For the<EDF>++ algorithm, theIDLE

task ran14.7% of the time corresponding to85.2% CPU utilization, an increase of20% in the

system’s throughput.
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Figure 6.4: Invocation Times

Figure 6.4 shows a sequence of invocation times for two sample tasks measured from the

system’s start time. The x-axis shows the number of invocations, where the y-axis presents the time

when the specific invocation occurred. The response times, in-between invocations, for the non-

periodic tasks are presented in Figure6.5. For example, the average response time for task A, using

<EDF>++, is 10.83ms with standard deviation of8.51ms versus22.86ms and18.87ms using

EDF (a53% decrease in the average waiting time). For task B the values are:11.23ms and5.78ms

against26.03ms and2.54ms (57% decrease in the average waiting time). The graphs clearly show
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Figure 6.5: Response Times
that the response times for the non-periodic tasks using the<EDF>++ scheduler are improved.

Regarding the response times for periodic tasks, the average response time is approximately the

same (1.37ms vs. 1.33ms with standard deviation of2.49ms vs 2.39ms). Thus, the improved

response for the non-periodic tasks didn’t affect the response time for the periodic tasks.

58



CHAPTER 7. MULTI-USER ENVIRONMENTS

Chapter 7

Multi-User Environments

The strength of the proposed programming model lies in the the ability to reuse the Offcode com-

ponents. On the one hand, reusability may simplify and speedup the development cycle, but on

the other hand, in multi-user environments, reusing the same Offcode in several applications may

substantially complicate the offloading layout design. Intuitively, the problem of defining an opti-

mal offloading layout graph for a group of offload-aware applications may introduce an infeasible

combinatorial problem. This section provides an Integer Linear Programming methodology (ILP)

for optimizing such complex layouts. The purpose of such a formulation is to enable expression

of every offloading layout graph as a set of linear equations. Any ILP solver can then be used to

solve the equations given a target optimization function.

We provide the mathematical presentation of an offloading layout graph and later present, as

an example, two possible criteria that could be used as target optimization functions. A detailed

example of formulating a sample offloading graph is presented in [47]. As the simple graphs are

trivially easy to solve, the strength of such a formulation is only apparent at complicated scenarios.

Such scenarios make the offloading layout design process significantly more difficult. In such

cases, a greedy solution does not provide an optimal solution, hence the need for such a formulation

is apparent.
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7.1 Formulation

As the offloading layout design essentially produces a graph, it is desirable to mathematically

express the dependencies among the graph vertices (i.e., Offcodes). This section provides the ILP

formulation that is required for optimizing the offloading layout graph.

7.1.1 Definitions

We begin by defining the basic elements of the layout graph. The layout graphG = (V, E)

includes the set of Offcodes as vertices, and the channel constraints among them are the edges. At

deployment time the runtime associates with each noden (Offcode) a compatibility target vector

~Cn representing the potential target devices that can host the Offcode. Note that the host CPUs are

included in the list of devices. LetN = |V | be the total number of Offcodes, and letK = | ~Cn| be

the number of HYDRA compatible devices.

NOTATION 7.1.1 Let ~Cn be a constant binary bit vector.Ck
n = 1 if Offcode ncanbe offloaded to

device k.∀n ∈ N, k ∈ K, Ck
n ∈ {0, 1}.

To simplify the presentation we assume that the first entry in each vector~Cn corresponds to the

host CPUs.

NOTATION 7.1.2 Let ~Xn be the ILP output vector.Xk
n = 1 if Offcode nshouldbe offloaded to

device k.∀n ∈ N, k ∈ K, Xk
n ∈ {0, 1}.

The following equation guarantees a unique placement of each Offcode (a single Offcode can

be offloaded to a single device).

N∑
n=1

K∑
k=1

Xk
n · Ck

n = 1 . (7.1)

Additionally, an Offcoden is not offloaded (remains in the host CPU) ifX0
n = 1.

7.1.2 Constraints Formulation

For each one of the channel constraints (see Section4.3), an integer linear equation is defined.
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NOTATION 7.1.3 LetEn
m = (m,n) be an edge from Offcodem to n.

The following equations formulate the various channel constraints.

Pull Constraint:
∀En

m ∈ Symmetric Pull,∀k : Xk
n = Xk

m . (7.2)

Gang Constraint:

∀En
m ∈ Symmetric Gang:

K∑
k=1

Xk
n =

K∑
k=1

Xk
m . (7.3)

Asymmetric Gang Constraint:

∀En
m ∈ Asymmetric Gang:

K∑
k=1

Xk
n ≤

K∑
k=1

Xk
m . (7.4)

These equations are sufficient to represent the joint offloading layout graph as a set of linear

equations.

7.2 Optimization Objectives

We have identified several optimization functions, two of which presented below. The list is by no

mean complete, additional objectives functions can be easily added to address various applications

needs.

1. Maximized Offloading – The trivial objective is to offload as many Offcodes as possible.

The motivation for such a goal is to minimize the CPU usage and memory contention at the

host:
max

(
N∑

n=1

K∑
k=1

Xk
n

)
.

2. Maximize Bus Usage – This objective aim is to fully utilize the bus interconnect bandwidth

among devices. A “Price” value is assigned to each Offcode. This value represents the esti-

matedaveragebus bandwidth that is required by the specific Offcode. The bigger the value,

the more bandwidth is required by the Offcode. In addition, we define a capability matrix

per host. This matrix describes themaximalbus bandwidth between every two peripheral de-
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vices. This matrix is used for limiting the number of offloaded Offcodes as the ILP solution

must be limited by the physical busses limitations.
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Chapter 8

Framework Evaluation

The previous chapters described the HYDRA system, including its programming model and its

internal design. In this section we demonstrate the use of HYDRA through several sample applica-

tions.

8.1 TiVoPC

This section present a case-study for developing the TiVoPC application using our proposed frame-

work. We focus on showing how HYDRA simplifies the design and development of offload-aware

applications.

8.1.1 TiVoPC Architecture

The system architecture of the TiVoPC application is presented in Figure8.1. The figure presents

a client-server architecture comprised of aVideo Serverand aVideo Client.

TheVideo Server, presented on the left hand side of Figure8.1, corresponds to the cable-TV

broadcaster. Typically, Network Attached Storage (NAS) devices are used to store the massive

amount of broadcast media (MPEG movies, radio channels etc.). In order to emulate such a broad-

caster, we have implemented a software-based server that is executed on a standard PC. The server

reads the media from a NAS device which is mounted as an NFS device, and streams the media to

the client as a stream of UDP packets.

63



8.1. TIVOPC CHAPTER 8. FRAMEWORK EVALUATION
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Figure 8.1: TiVoPC Software Architecture

The architecture of theVideo Clientis shown on the right hand side of Figure8.1. The PC

hosts the following programmable peripherals:

• NIC — This device is connected to the multimedia streaming server and intercept the trans-

mitted UDP packets.

• “Smart Disk” — Although programmable disk controllers are common, in order to speed

up prototyping, we have decided to emulate one by using a programmable NIC. Our “Smart

NIC” exports a standard filesystem block device that interacts with an NFS server for storing

the data (i.e., the streamed video is effectively stored on a remote disk). Essentially, we have

created an NFS Offcode that implements various parts of the NFS-protocol.

• GPU — The graphics processing unit is responsible for rendering and displaying the movie

on the screen.

8.1.2 TiVoPC Logic

As the programming model suggests (Section4), the first phase in the development process should

be designing the TiVoPC logic. This phase is usually performed without considering the physical
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placement of the various components. Figure8.1presents the following TiVoPC components.

• GUI — TiVoPC GUI contains a viewing area, for displaying the received video stream, and

several controls used for rewinding, pausing and playing back the movie.

• Streamer— This component handles incoming packets. Specifically it should extract the

network packet’s payload that contains the three types of MPEG frames: the I-frame, P-

frame and B-frame. The component should also process packets that are received from the

storage device. The component implements acallbackmethod which is invoked each time

a packet is received. Upon invocation, theStreamerextracts the payload and passes it to the

Decodercomponent.

• Decoder— This component is responsible for decoding the MPEG frame for later displaying

it on screen. This component holds a reference to aDisplaycomponent.

• Display— This component represents the display. For example, in a host level implemen-

tation this object could potentially wrap an OpenGL’s FrameBuffer object or simply use a

memory map of the GPU’s physical memory (for the direct manipulation of the display).

• File — This component provides the basic file level APIs, such as open, read, write and

close.

• Broadcast— This component is used at theVideo Serverfor broadcasting the movie frames

back to the client. This component provides unreliable message delivery as it uses UDP as

its transmission protocol.

Some of the components could have been omitted. For example, the Streamer could directly

access the local file system using the standard APIs, without the need for an additionalFile object.

Alternatively, the Decoder could directly manipulate the display without the need for another level

of indirection that is realized as theDisplay component. Although this observation is correct,

introducing such objects improves the flexibility of the design. For instance, if aDisplayOffcode

for the local GPU is found, either locally or in the vendor’s Offcode library, it will be used at the

GPU, thus increasing the overall application performance.

65



8.1. TIVOPC CHAPTER 8. FRAMEWORK EVALUATION

Once the components have been identified, we decide which of them should be implemented as

Offcodes. Additionally, the Offcode communication channels should be also specified. Following

are three characteristics that typically indicate a component should be implemented as an Offcode:

1. The component can use specialized capabilities that exist only at a peripheral device.

2. Offloading the component reduces the amount of traffic on host busses.

3. The component is tightly coupled to another Offcode.

In our example, all the components except for the GUI fall into one of these three categories

and thus will be implemented as Offcodes.

8.1.3 TiVoPC Offloading Layout

The offloading layout of the TiVoPC application matches an Offcode to a peripheral device. The

ODF discussed in Section4.3 contains this information in addition to the Offcode’s constraints

regarding its peer Offcodes. For brevity we omit the ODF details and instead provide the consid-

erations for designing the offloading layout as depicted in Figure8.2.

GUI

NIC GPUSmart Disk

Streamer Streamer File Decoder Display

Video Client

PULL PULLGANG

GANG

LINK

LINK

Figure 8.2: TiVoPC Offloading Layout

TheStreamerOffcode resides at the NIC and at the “Smart Disk” devices. Reusing the same

component at both devices is achieved by storing the received frames, without modification, at the

storage device (so the source of the media packet becomes oblivious to this component). Since
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Figure 8.3: Jitter Distribution

we do not want packets to traverse the bus twice, aGangconstraint is imposed between the two

components.

Intuitively, theDisplayOffcode should be placed at the GPU device, while theDecoderOff-

code could be placed either at the NIC or at the GPU. In both cases, one bus transfer is required for

transferring the media packet from the NIC to the GPU. The preference of placing theDecoderat

the GPU comes from two reasons. First, the GPU may have specialized MPEG support on board.

Second, a singleDecodercould be used instead of duplicating the component at the NIC and at the

“Smart Disk”. In essence, requiring aGangconstraint between the two Offcodes will minimize

the number of bus crossing operations. Therefore, theStreamerOffcode holds aGangconstraint

to theDecoder, which holds aPull constraint to theDisplay.

TheFile Offcode should reside at the “Smart Disk” and should bePulledwith theStreameras

both Offcodes tightly interact while the movie is stored/loaded from/to the storage device.

A simple Link constraint is sufficient between bothStreamersand theGUI since the only

information that traverse between them is control. As this is the default channel constraint, it can

be omitted from the layout specification.
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Once the application logic and the offloading layout have been coded, the communication

channels between the various components are set. In the TiVoPC application, we have used a zero-

copy read/write channel for all communication channels except for the two channels between the

GUI and theStreamerOffcodes. Communication between theGUI and theStreamersutilize the

default, low priority,OOB-Channel.

8.1.4 Benchmarks Description

Our experimental test-bed consists of two Intel Pentium IV computers, interconnected by a Dell

PowerConnect 6024 Gigabit switch, having the characteristics listed in Table8.1.

CPU speed 2.4GHz
RAM 512MB
L2 Cache 256KB
Cache line 64B
OS Linux FC5, 2.6.15-1
NIC 3Com 3C985B-SX 1Gbps
GPU nVidia 7800 GT
Inter-packet Interval 5 msec
Packet Size 1KB

Table 8.1: TiVoPC Application Test-bed

It should be noted that for demonstration purposes only, we did not send packets at video frames

boundaries. What we did is to send the video stream in arbitrary chunks of 1KB, while maintaining

the required bit rate. Specifically, for a video stream of 200KB/Sec we send 1KB chunks every

5ms. We executed the following benchmarks on an idle system.

Video Server Packet Jitter

Three versions of theVideo Serverhave been implemented as indexed by the numbers 1–3 at the

left hand side of Figure8.1.

The first implementation (indexed by number 1) uses two UDP socket endpoints. Every 5

msec, a movie frame is read to a statically allocated buffer of size 1KB, then a connected UDP

socket targeted at the client host is used for sending the packet to the TiVoPC client.

The second implementation (indexed by number 2) utilizes the “sendfile” system call. This call
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Figure 8.4: Inter-arrival times comparison

operates in two steps. In the first step, the file content is copied into a kernel buffer by the device’s

DMA engine. In our case, the server uses a NAS for storing the movies, hence the NIC is the

one that acts as the DMA master. In the second step, a socket buffer is initialized with the required

information about the location and length of the data just received. Scatter-gather hardware support

is required at the networking device in order to be able to handle such a socket buffer. In cases

where the hardware fails to support this feature, the CPU copies the data to the socket buffer.

The third implementation is an offload-aware server (indexed by number 3). This server is

implemented as a simple Offcode residing at the networking device. It uses theFile Offcode for

reading the data in from the NAS device, and theBroadcastOffcode for transmitting the data back

to the client.

Figure8.3shows, for each server implementation, a histogram and the corresponding cumula-

tive distribution function (CDF) of packet jitter as measured at the client machine. A low level of

jitter is more important than reliable delivery in video applications, as an unsteady packet rate is

easily detectable by a human viewer.

Figure8.3clearly shows that the offloaded version of the streaming server produces a signifi-
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cantly lower jitter. This observation is further supported by its corresponding CDF. The user level

version that uses “sendfile” produces better results than the “Simple Server” due to fewer context

switches and data copying operations.

Figure8.4 further presents a scatter plot of the inter-arrival times of the movie frames. The

offloaded server is compared with the simple server. Table8.2 provides the jitter statistics of

received packets which corresponds to the execution of the three servers.

Scenario Median Average Std Dev
Simple Server 6.99 7.00 0.5521
Sendfile Server 6.00 5.99 0.4720
Offloaded Server 5.00 5.00 0.0369

Table 8.2: Client Side Jitter Statistics

Scenario Median Average Std Dev
Idle 2.90% 2.86% 0.09%
Simple Server 7.50% 7.50% 0.12%
Sendfile Server 5.90% 6.20% 0.08%
Offloaded Server 2.90% 2.86% 0.09%

Table 8.3: Server Side CPU Utilization

Video Server CPU Utilization

This benchmark is intended to validate our assumption that offloading certain parts of an applica-

tion will reduce pressure on the host memory subsystem. The L2 cache miss rate that is experi-

enced by the kernel is measured on the server during each one of the following tests. Samples were

taken every 5 seconds during a 10 minute run. All measurements were normalized to the miss rate

experienced by an otherwise idle system. Figure8.5shows the results.

Although the TiVoPC application is mostly I/O bound, executing it at the host incurs a7%

increase in the L2 cache miss rate.

The second implementation uses the “sendfile” API which avoids unnecessary buffer copies

between kernel and user buffers. As indicated by Figure8.5, the effect on the L2 cache is negli-

gible. The reason becomes clear as the “sendfile” source code is examined. Since most of today’s

network devices support scatter-gather operations, the kernel essentially follows a zero-copy data
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path between the two sockets. This approach reduces the number of context switches and totally

eliminates data duplication inside the kernel.
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Figure 8.5: L2 Slowdown (Server Side)

Table8.3 presents the CPU utilization at the server side. Each row corresponds to one of the

three scenarios presented in Figure8.5. Notice that the CPU utilization of the offloaded version of

our server aligns with theIdle scenario results, as the host processor is unaware of the underlying

activity.

Video Client Memory and CPU Utilization

The client side implementation, shown on the right of Figure8.1, is more interesting from the of-

fload point of view, as it involves five offloaded components and interesting constraints, compared

to the two components in the server. But the overall performance results are more modest, thus we

only give a brief overview to save space.

Scenario Median Average Std Dev
Idle Client 2.90% 2.86% 0.09%
User-space Client 7.30% 6.90% 0.32%
Offloaded Client 2.90% 2.86% 0.09%

Table 8.4: Client Side CPU Utilization

Table8.4 shows that the offloading is complete in the sense that there are no components left

on the host processor. An idle machine and a machine that is running the fully offloaded client both

consume the same background level of CPU cycles. The non-offloaded user-space client consumes

more CPU, although the load is very small compared to the total capability of the host processor.
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In terms of L2 cache misses, the idle machine and offloaded client have the same count, while

the non-offloaded client generates 12% more misses. Much of this is due to the MPEG decoding

process.

8.2 Total Ordering

Total Order (TO) algorithms have been extensively studied in the literature [21]. A TO algorithm

is a fundamental building block in the construction of distributed fault-tolerant applications. They

are typically used to provide a communication primitive that allows processes to agree on the set

of messages they deliver and also on their delivery order. Total ordering is particularly useful for

implementing fault-tolerant services, database replication and locking services [4]. A TO algo-

rithm that assumes an unreliable failure detector is equivalent to the consensus problem [13]. It

has been shown that consensus cannot be solved in this type of systems in fewer than two commu-

nication steps [37]. Many TO algorithms for asynchronous systems use consensus as a building

block, but the implementation can be expensive both in terms of communication steps and num-

ber of messages exchanged between hosts. This overhead is further exacerbated if in addition to

the TO algorithm, the host also executes a resource-demanding application such as a typical High

Performance Computing (HPC) application.

Offloading a TO algorithm, either in full or for particular components, can greatly improve

the performance of distributed applications for several reasons. First, a TO algorithm packaged

as an Offcode can be easily reused by a variety of applications. Second, the reduced load on

the host machine will improve the performance of such applications; and third, an offloaded TO

may take advantage of specific hardware capabilities in order to improve its overall performance.

For example, as shown in the traffic generator example (Section8.3), the small dispersion of the

inter-arrival times of ethernet packets may be used to implement better accurate failure detectors

and to maintain finer-grained timeouts for message retransmissions. Another possibility is to use

hardware-based encryption engines, which are found on several computer peripheral devices, in

order to support Byzantine models.
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8.2.1 Offload-Aware TO Architecture

A simple offload-aware total order application has been designed and implemented for our NIC

(the application uses the NICOS framework discussed in Chapter6). To simplify the proof of

concept implementation, we assume that there are no physical link disconnections, switch failures,

or process or node crashes. We do not assume a reliable message transmission—messages can be

lost due to buffer overflow at the NIC, host or switch. The sample application is comprised of

several components that appear on the left side of Figure8.6.

GUI Service
TO

α
β

GUI Service
TO

α
β

Offload−Aware Total−Order Offloading Layout

Host

NIC

IOrderer

ReliableBroadcast

LamportOrderer

IBroadcaster

Link

invocation
Method−

Zero−Copy R/W Channel

Std. ref

Pull

OA−App

Figure 8.6: Total-Order Offload Architecture

1. GUI: The Graphical User Interface controls the TO application. It enables the user to define

the rate at which messages are transmitted and their size. The GUI presents the message

order once it is determined.

2. TO Service: The TO Service is an application library used by the GUI, that in turn uses the

Offcode to provide two basic total-order APIs:TO_BroadcastandTO_Receive. The first

API broadcasts a message and the second receives the next message for which the TO has

been established.

3. LamportOrderer: This Offcode (denoted by the letterα) presents theIOrderer interface that

implements a TO algorithm. Specifically, we have implemented the Lamport’s Timestamp
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ordering algorithm [40]. This Offcode interacts with theTO Servicein a well defined inter-

face, discussed below.

4. ReliableBroadcast: This Offcode (denoted byβ), provides the reliable broadcast service that

is needed by theLamportOrdererOffcode. In our implementation, multicast is used in order

to efficiently send messages to peer hosts. Albeit our simplifying assumptions, message

omissions may still occur due to buffer overflow. To address this issue, this component

implements a simple negative acknowledgment scheme. Once a missing message is detected

(indicated by a “hole” in the message sequence numbers), the receiving node periodically

sends a retransmit request to the sending source of the missing message. Once the message’s

source receives the retransmit request, it multicasts the message.

The left side of Figure8.6 also indicates the HYDRA communication channels that are used.

A reliable unicast channel with a zero-copy policy for read and write is used in order to eliminate

the OS networking stack overhead. Basically, theTO Servicemanages the application’s mem-

ory descriptors and effectively determines the control-flow policies of the application (descriptors

for received messages are also posted by this component). In order to send a message, theTO

Servicecreates aCall object and invokes the channel. The NIC-resident HYDRA runtime DMAs

the message and notifies theLamportOrdererOffcode that a new message should be transmitted.

The “orderer” Offcode timestamps the message and multicasts it using theBroadcasterinterface,

which is implemented by theReliableBroadcastOffcode.

Received packets are first handled by theReliableBroadcastOffcode. The Offcode is operated

in two phases: At the first phase, the Offcode transfers the received packet to a pre-posted descrip-

tor at the host using DMA. Note that the message cannot be delivered to the application yet, since

the message order has not been determined. Because the NIC has a small amount of memory, it is

better to release the NIC’s memory as soon as possible. The message identifier and timestamp are

the only data that is saved on the NIC by theLamportOrdererOffcode. The second phase begins

once the message order has been determined by the TO algorithm. TheLamportOrdererOffcode

creates aCall with the messages’ order and invokes the channel connected to theTO Service. Once
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Nodes Hardware-based TO Offload-Aware TO
Throughput [Mbps] Latency [ms] Throughput [Mbps] Latency [ms]

3 310.5 4.2 301.8 8.7
5 362.5 4.1 324.6 9.5

Table 8.5: TO Performance (all-to-all)

the order is known at theTO Servicecomponent, the ordered messages can safely be delivered to

the application.

The right side of Figure8.6 presents the offloading layout that is designed by the developer.

TheGUI holds a standard reference to theTO Servicecomponent. This component holds aLink

reference to the “orderer” componentsα, since it has no special offloading constraints. On the

other hand, the “orderer” Offcode must be offloadedwith the broadcast Offcode (i.e,β) hence a

Pull constraint is used. Note that in order to compare the results of this offload-aware TO algorithm

with a non-offloaded version, a developer merely needs to interchange the two constraints and re-

execute the application. The effect of doing so is that the “orderer” will be executed at the host

while the broadcaster remains at the NIC.

8.2.2 Total Ordering Evaluation

The benchmark consists of five Intel Pentium 4 2.4 GHz systems, with 512MB of RAM and 32-

bit, 33 MHz PCI bus. Each machine was equipped with programmable Netgear 620 NICs, which

have 512 kB of memory. Each host executed Linux OS version 2.6.11 with the HYDRA module

enabled. The hosts were interconnected by a Gigabit ethernet switch (Dell PowerConnect 6024).

The right side of Table8.5 presents the maximum throughput and latency measurements for the

offload-aware TO when all nodes act as both senders and receivers. Each node generate traffic at

a rate bounded by the flow control mechanism imposed by theTO Servicecomponent. The pre-

sented latency is defined as the time elapsed between theTO_BroadcastandTO_Receivemethod

invocations that refer to the same message.

The benchmark results have been compared with those from a recent work by Dolev et al. [5],

which are given on the left side of the table with title “Hardware-based TO”. That work implements

a wire-speed total order algorithm using hardware-based component comprised of two switches
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connected back-to-back. Each host is equipped with two NICs: one NIC is used for transmitting

(connected to the first switch) and one for receiving (connected to the second switch). The back-

to-back switch connection serializes the packets, thus effectively acts as a hardware sequencer.

In addition to the switch configuration, a lightweight user-space TO algorithm is invoked at each

node.

Thethroughputobtained from the offload-aware TO application is close to that of the hardware-

based solution. Note that the throughput increases with the number of nodes due to PCI bus

properties as explained in previous work [5,71].

Although with HYDRA we have used asoftwarealgorithm to order the messages we found that

bypassing the OS networking stack overhead enabled us to significantly increase the throughput

over typical user-based total ordering. This fact strengthens the motivation for offloading and

specifically for using HYDRA.

As for the measured latency, the results are approximately twice those in the hardware-based

configuration. Although the ordering algorithm is offloaded to the NIC, a distributed solution

requires an extra round of communication that is not required in centralized solutions (like the

hardware-based solution). In addition, Lamport’s timestamp algorithm is known to be very expen-

sive in terms of communication overhead and latency; messages must be received from every node

in order to be able to determine the messages’ order. Other ordering algorithms can reduce this

overhead.

8.3 Traffic Generator

Generating steady network traffic at high rates is difficult given the variety of sources of delays and

unpredictability in a modern computer system, including interrupts from devices, cache and TLB

misses, and power management changes. This section presents an offload-aware traffic generator

that produces a packet stream with fixed inter-packet delays. The offloaded traffic generator is

evaluated and compared with an equivalent user-level application.

The traffic generator is comprised of two components: a GUI that is used by the user to con-

figure the traffic attributes, and aStreamGeneratorcomponent that generates the stream of packets
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given user settings on protocol type, length, ports, inter-packet delay, burst size, etc. TheStream-

Generatorcomponent is designed as an offcode. The GUI is the offcode’s controller and creates a

specialized, zero-copy, channel for communication. The APIs for interaction between the GUI and

theStreamGeneratoroffcode ore omitted here for brevity, as are details of the offcode description

file.

The traffic generator is implemented twice: once using HYDRA and once without the use of an

offloaded component. The benchmark consists of two hosts, Intel Pentium 4 2.4 GHz with 512 MB

and a Tigon2 programmable network card, interconnected by a 100 Mb/s switch. The link capacity

is fully utilized by generating packets at fixed inter-packet delays and for different frame sizes.

8.3.1 User-Space Traffic Generator

The benchmark results for the user-space application are given in Table8.6. Although the achieved

throughput is quite good, the dispersion of the inter-arrival times is enormous, so large as to make

the average almost meaningless. Figure8.7shows the cumulative distribution function (CDF) for

three packet sizes to better display the distribution of arrival times and illustrate the wide dispersion

in these measurements.

Size Tput Avg. Arrival± Std CPU± Std
Bytes Mb/s µs %

64 6.0 140± 8 000 100± 3
80 13.4 141± 9 000 99± 7
96 21.8 159± 11 000 99± 8

192 56.8 164± 6 000 98± 11
384 96.7 175± 4 000 81± 11
768 97.8 205± 4 000 37± 28

1514 98.6 244± 5 000 33± 5

Table 8.6: User Space Traffic Results

It is also evident from the table that delivering the generated data to the application is diffi-

cult due to the very high CPU load, especially with small packet sizes. The processor capacity

problem, driven by the costs associated with interrupts, directly impacts the throughput seen by

the applications. As an example, the calculated inter-arrival times for 1500 byte ethernet frames

is approximately 120µs for 100 Mb/s, 12µs for 1 Gb/s and 1.2µs for 10 Gb/s ethernet. The
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Figure 8.7: User-Space Traffic Distribution

observed interrupt overhead for an empty interrupt handler is between 5–10µs, consuming all but

only 17% of the total available CPU cycles.

Size Tput Avg. Arrival± Std CPU
Bytes Mb/s µs %

64 23.9 34± 6 2
64? 51.5 16± 8 2

768 98.4 65± 13 2
1514 98.8 126± 50 2

Table 8.7: Offload-Aware Traffic Results

8.3.2 Offload-Aware Traffic Generator

The results from the offload-aware traffic generator are summarized in Table8.7 and shown as a

CDF in Figure8.8. For both tests, in order to accurately measure the throughput and the inter-

arrival times, a second NIC with a simple traffic analyzer offcode has been used. The data shows

that the inter-arrival times are uniform with small standard deviation. The sharp vertical edges in

the CDF indicate that the majority of the packets arrived within the same expected inter-arrival
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Figure 8.8: Offload-Aware Traffic Distribution

time. Notice that for 64-byte packets, the achieved throughput is only a quarter of the link’s

bandwidth. In order to achieve the full link capacity, a generator must produce a 64-byte packet

approximately every 5µs. Since the runtime is not optimized for this or any specific application,

the generator can only send packets at a rate limited by the device’s OS constraints, which in this

case is limited by the number of MAC descriptors at the NIC and the processing overhead involved

in managing them. In order to further improve the throughput for such small packets, an optimized

version of the device’s OS has been implemented. This modified version can reuse a single MAC

descriptor for sending the same packet multiple times. The table shows that for the optimized

version (indicated by the64? table entry) the throughput has been significantly improved. This sort

of optimization may be undertaken as needed by particular applications that use HYDRA.

8.4 Offloaded Firewall

An application of particular promise for offloading is a network firewall. Performing packet filter-

ing closer to the network ingress can significantly improve overall capability by freeing the host

processor to perform other network activities such as forwarding. A firewall application on a NIC
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also has the additional advantage that it adds an interesting level of complexity to intruders who

would attempt to attack the filtering system.

We have designed and implemented a firewall application (henceforth called: SCIRON) that is

implemented as a set of offcodes that perform basic rules. Rules can be dynamically created or

removed by the firewall controller which is executed at the host.

8.4.1 Overview and Motivation

Offloading firewall logic to a NIC offers several benefits. First, an offloaded firewall is an OS

independent implementation. Second, it is harder to tamper with hardware as opposed to a software

implementation. Firewall applications are computationally expensive for several reasons:

• The host’s CPU is repeatedly interrupted by the NIC on incoming packets. The processing

power required to handle the interrupts is wasted if the packet is doomed to be discarded.

• An adversary can try to perform a denial of service (DoS) attack by sending packets from

many computers, in an attempt to overload the system.

• The networking stack has significant overhead.

• The PCI [2] bus is a major bottleneck especially in today’s incline towards faster networking

fabrics.

8.4.2 SCIRON Architecture

This section presents the main components of SCIRON runtime. The runtime is comprised of two

main components: The SCIRON enforcement module and SCIRON’s management console.

The enforcement module is the engine of SCIRON’s firewall that actively enforces the security

policy upon incoming and outgoing packets. SCIRON’s firewall is an ordered 5-tuple firewall.

When a packet arrives, a sequential pass over the rules is performed. The action (accept or reject)

associated with the first rule that matches the packet header is performed. If there is no match, the

default policy action (reject all) is performed.
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Scenario Kernel based Firewall NIC based Firewall
CPU Load Throughput [Mbps] CPU Load Throughput [Mbps]

100% Discard 78.96% 0 0.04% 0
50% Discard 93.02% 19 10.43% 43

Table 8.8: Firewall Performance

SCIRON’s management console provides remote administration and logging capabilities. Ad-

ministrators can remotely install security policies at enforcement modules of machines in their

domain. This is done by communicating with SCIRON’s embedded enforcement module using a

proprietary protocol calledSRPP(SCIRON Remote Policy Protocol).

An administrator can also determine the policy for monitoring and logging events to the man-

agement console. This is done by marking specific rules aslog-rules. Packets caught by these rules

will generate a log packet containing the packet’s information. The logged packet is then sent to

the management console. Allowing real-time monitoring and tracking of the network activities,

enables the administrator to immediately act upon potential attacks.

SCIRON management console is comprised of the following modules: (1) Management con-

sole GUI - a tool used for defining and managing the security policy; (2) Log viewer - A server

application which receives log packets sent by the various enforcement modules and displays them

graphically to the administrator; (3) Policy builder - a tool for verifying the correctness of the se-

curity policy defined by the administrator, by searching for shadowed and redundancy rules. The

verifier implements the algorithm presented in [3]

8.4.3 SCIRON Evaluation

In order to simulate common kernel-based firewalls for performance evaluation, we have also im-

plemented the firewall at the kernel. All comparisons shown below compare the same firewall code,

with the same filtering policy, between the kernel-based firewall and the offload-aware firewall.

Performance can be measured using two parameters. The first is the load on the CPU and the

second is the throughput. In this section we discuss several typical scenarios. In the first scenario,

shown in the top row of Table8.8, the firewall simply discards all packets. During this scenario the

CPU is only running system processes. As we expect, in this scenario the CPU utilization when
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using the firewall implemented on the NIC is approximately zero (0.04%), whilst for the same

firewall on the host it is quite high (78.96%).

The second scenario presented is shown in the bottom row of Table8.8where half of the traffic

is discarded randomly. It is evident again that the NIC based firewall has much better performance

both in CPU utilization and throughput. The benchmark machine was the same in both cases, an

Intel Pentium 4 CPU at 2.4 GHz with 512 MB of memory and 100 Mb/s ethernet.

The results clearly show that offloading firewall logic to a NIC has many advantages. In sce-

narios with a heavy incoming packet load (especially if packets need to be discarded) a firewall

offloaded to a NIC significantly improves both CPU utilization as well as packet throughput. On

the less likely scenarios of heavy outgoing packet traffic, offloading firewall logic to a NIC is

slower than conventional firewalls. It is important to note that our implementation is based on an

obsolete NIC. We expect that the performance gain will be more pronounced when utilizing an

advanced NIC. Although current NICs hardware is continuously improving, the host CPU speed

will likely continue to be faster than NIC hardware. In order to further improve the sending flow

performance, a mixed paradigm can be used. In this model, the processing of outgoing packet is

performed at the host while the incoming packets are processed in the NIC.
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Chapter 9

Conclusions and Future work

Hardware and software are neck and neck, pushing each other forward. This research claims that it

is the OS’s turn to act. Hardware manufacturers have provided an excessive amount of computing

resources, which are just sitting there idling most of the time. It is time for the OS community

to design tools and programming abstracts that will enable a developer to efficiently utilize every

programmable component in the system.

In this chapter we summarize the contribution of this work, outline the conclusions and describe

ongoing and future work.

9.1 Contribution

This research presented the HYDRA framework [75,73,76,77] which proposes a unique new di-

mension of flexibility for the architects of high performance applications: the ability to program

offloading layout policies separately from the application’s logic. HYDRA defines a programming

model that carefully balances between programmer scalability and system scalability. As pro-

grammable devices will continue to grow in popularity, it is only a matter of time until an OS on

a workstation or a PC will be considered as a switching element among heterogenous processing

cores.

The contributions of the research described in this dissertation are twofold: 1. A programming

model that enables the developer to encode applications capable of utilizing programmable devices
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by specifying an offloading layout; and 2. an effective runtime infrastructure that realize the model

and supports it efficiently.

9.2 Ongoing Work

This research is an ongoing effort. The natural evolution of this framework is in supporting kernel

level components, such as device drivers. As the problem of device drivers reliability is acute, it

should be our first target. Harnessing the existing power of peripheral devices to offload and isolate

device drivers may drastically improve the overall system’s reliability and dependability. Pushing

drivers down into the peripheral itself could also simplify current kernels. Each peripheral would

be required to emulate a standard “virtualized” device interface, thus the kernel would only support

one device interface per peripheral type. One for storage devices, one for network devices, one for

graphics cards, etc. In “this world”, kernel developers would focus on optimizingapplication

support,not on devicesupport. Device vendors would then be free to optimize and improve their

embedded implementations. New operating system versions would be easier to deploy because

they could be tested on a standard device instead of all reasonably current devices. In addition to

that, from a security perspective, implementing device drivers in the peripheral will make them

harder to attack and penetrate.
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