TP NXIT2 NONING NOUHOR VDT NV
D°NIDNH DMOP° 032°7 %23 Y

7°91077°9% TMLPIT ININ NP WD 2N

phyal

372037 7177

DOOW12 NNV TV 0NN VIO WA

2007 22109

2977 °17 "5399 YW 1N57702 NwYI T Ty

il

mTn

SRTPRT PRI W DT DR °192 ONOW L2917 237 '9170 00 1N anInk M %02 WK

N 210 PN CNIR 7997 CNIR TIANK ST SNTPYY 191N NPV ANIYY 1200 217 D N

PMIXYY ST NDPN 90 TNIRD D0 W NN 1AM amw amn LRIk YU "MTR aTn IR LNIw

.07 PN P10 27092 1170 DPYIXPRa

DIPMWA Y ,ATI-12 09MmY PN 0D T Pt 20Nam oty 1oonh mMTIaY SNXNa 30 md
T ATIAYA 7207 IMPOWNT DY T R MTY NTATA AN T ATIAY TN NTIPRT ammye)
2OV MKy

IO C1T9 a7 IR LDID2 DN DOAMIMORT NX1Ip Man 9% a7n IR ,A0m

.ON2°M aNATY SV NPHT HRIR T TR W

.99021 57%% MW 95 Twna N2 AN ananaR By A1203° P02 ML AT IR

ONNP2DY QPR DY MM P2 Dnopnn T 1P ChwRY MTInR ChxNa %on Ny

0MOPIT TR Twm

il

%N

QY7 NP ANOUT oA 2XPA TR ONWORT D°2WNNA OMPn MW MO NININRG 27wl
0P W MO .NMYRYR TN NP0 NOND DY MXAT 2P NV0TIN0T 1901 DX 2717 NIWORA
I oWTIn Ay AN 95 H95%A 0P 1 D0V HY DMIRNAT DOTAVNIY NN VT MT2
DAY 72W DR M2XIA WA MDA DMWY TIRD VYR LT 2XP Mnh 00K .m0 ary (e

%17 1R NN CMYAYA WON [0 WO LN CWOR 2Wnn 932 2MEAT ,070P°0 00070100

D°IN°3 TPRW MTRD 0°°9P°1 0°2°37 23 DY TP N¥IT MIWORM J1R ,01°0 M2 a2YT moavn
YX2H 0°907m (070K DOXORN D°NOYY DORIPIT) D7ORIA 220070 ,RANTY 071D T0W 77182 NN
TTIX2 MISNY 22101 DR D0V TN TAVAT W WA AMIANT MR MR 023 OY MWD
T HY) MATRPNA NPORIA NPXPOYORY DOPWwH nnon MY DRI PYA O 01D OYIR CTRh 0w
0T PR 09D DI D0T2Yn D09onn 00001 2°0°ud L(DirectX npxTY N1YITIVO N1IOD

J7I9%7 900721 2°po°7 P2 L(TCP naatTs nwpn "2Ip10170 2°%n 122 opoi) Nwn 020

0°2°372 DA Q2T7AVA DY SWRIT TN DY P00 DX WORAN CIWTN DT YO A7 pnn
D°072 DY 72V IR TR TV ,AWNNA MINT TN DIW RT AT PN NN 0°027 11V .07
D07 YW NPTINY H¥I7 910 PRPOYOR LT DTN LPXPOYOR SW TP NXINY OROXIDID RIT ,0OP

PV DR 9WD NIn DY 07107 72V W DRI

NIYN SORYPI DTN 1D TV ARYDAN MDAVA WA MMD 1D DY SOKRYPI DTN AR T DTN
A2 NAAR NODRT 7N 921 22TAVAT AWANT DA DR 2D NWna 370000 MWD T30 39Y0nn
WIPWN TIMINY WY AWOR DIWORD TIPR Y977 NOIYn LN9Y Jon 000D LPOYT L,NT9pn,120Y
NPWD MY NPIIWOR O 7Y AW a0 DODRIT TR L,PINY RO 252 .NIPRRY Im0aN
70°ONM PTWAN NITY MR TR W ,01A A% T PRI N1 ,07R L0000 PER0ORY TR

OPWRIT D272V NV DRI AR D NYOW 0PN 0°2°072 AN’ NI oY NPINnwn

v

Q°N10N°7 D97 0°2°07 °23 DY TP DX NIWORNT NPIWA0KR 79YDT NOIYA 11K POW AT Ipnn

93 N2 Im (25p°7171 0°2°721 2Wnn2) TPYDI NOTYN N2 30 KT NWATAT 72°A00 ONRIT 19N

771X MWD DPTAWT DCARWH DR DRI ANonh WORD 21 MIONT DT .MIaNT D7 minon

OLRIVIR NIORDVOIR

:0°27 MINN° 72102 DAY O°°5P°7 0°2°07 "2 oy e

TN2°T7 NIIYN? PRIAT ,NMYAYA 71182 973 WONT MW MNY - P12 N27WnY 09 anN

MWD MYEan ,01M-"0IRY "WR-NAA" NAXTI M2 NPEPOIOR LPI12PAT RN NI awnna
ST YR W 990 w1 X? MDD 2ON°YYY W0 YO MY 1112°17 N2Iva m man
DT WAATY 2197 TW YT MNP0 TIIWORN 2HP°T 0°2°072 MYXANNT MWD

LPWRAT N0

AT MIDTYNY 222NN DPANATN TITWORN NPT TN 223 DY MYRIanT MWD — NnR 1T

JINR PAT2 M2RINT A9VDT NIV 990 7172 37 OW NMIXTNAT 2Y900 NIV NN NaR

POT 2NN MDY YW PODIT NDMIX NIVRIY TPWYN 21T 719 2173 YRRA — 20T NI
77I%2 21N000 0P DO0OWTD LPANIRA 100N CAXM2 20N OVI DRV DOTAVHN
729RW TW3A UM 68 TNX ,2.8 GHZ ,4 SurKR 7291 ,KNNT?) 010700 2072V D mvawn
DX PPUPN OTOR MWD NTNT 1P (LN 0.5 MR ,0%9pn 0°2°072 1917 ,XScale HuK

.N991971 PO N X

LRANTY MW MBOPNT VIRN AR IR AWRD 0¥9P7 29237 23 DY TP NYYON — OnvaN
DML WY °19% TV MW NDPNT 21727 2120 DwAa 00110 23 DY "wR-nam! v
DO 0°2°770 HY mpoh 9120 00122 (MR MPWD 1N NPRY TP L7012 .NTONT TN

JOOROXIVID 79PN OV YOINARY APV N3V DY QU1 201N 12

MR MWPNT 1191 ,0™I0T0AN 0°72vnn 2w 21737 amMan MRY — DWRN 191 N9
MY A8 [25] UK NN2AN2 ANONRD VRIAW pnn 223n K1 72V0 209120 0°72vnn
2w H1v1an KD 9901 w1 M5 L 1bps -2 710°u% 1Hz waT1 , 1KB-» n9111 nwpn m»an
nwan CovwN? MW Nt (AN 10Gbps) 2719%T NMWRNT no1a Mowh ov7avn
PN NITMAT M2IYR .N2IYNT NPIDN DR NDWNY 21TOAN D°7AVANN 0T DT WORN
NTNT WORMAY DTN DR 200 T Pnn 7R DR 020 o TCP pwen

2DP°71 D071 9% NPXPIYOR!T NON YT DY NATAAN 10990 NYHRIVEPND

1

4

MUINDMIPT DR MDAY PEPOYORT MNON? NWORAT NI N2wn anmo L1272 R Ipnna
LRI 9702 .1e00 25w 7Y 0°N10N° 079P 0°2°07 (OIR IR (PXPORORT DR NM12957n0) MW
TWHRA T 270 .N2TYNA ST NT DY S0ITIV0 pwRn MY MW MLINDMIPA MAIND NPEPI7OR
12 970 DI UK NN NPXPOHOR OPW NN WYY NPXPOIOR 50N 070 ¥ LINDMP YW N
D°107 DR 2937 T2V LITVIRA NWOIT A2 2TNIY IR MWTT MLINOMP [NDY 195 2°1non

(27107 PN M2V 17 BY 210 XY TIX0T Y NPIRIA 7713 1N DINDRIPA ONvYY)

SR MLINDMIPA WYY AW PYPOOR NDY NI DY MIXINIT NPXPRIVOIART DR PTAR AT P
25W2 AR NAWPNA PEPOYOR TY00) ,70IWA MmN AT DAR Y00 ,A0IN0MIP OO0 0T pnan
.0°NI12NA0 0°2°277 MNWT MVANDAIPT "NTNA" 2w a0 NYRAN 79Y90 NOWn LRI NN
WIW AW T W .M0I0ID MR TV 22377 0IN0mIp YW Ankng Y¥A? DwATI Novna AT 25wa

01379990 PIPI0I92 WIRW TIN 2209 2P0 007 DW WP M 2902

DRIPIT DTN A9YDT NOWA NN 1MV NWN DOV MY PIAN WA HTINT AT pnn Naona
9911 (A0 NIPXPOYOR TD0N WM 70°02 YY1 NPNWNT NPTAY AnTD0Y0d AW 1 naavn NICOS
SY NPNWN2 WINW MWW 2°010 NI DAIPR NWI2 MYTIT T2 Pn L "wR-Nmne mean
N2y MmN 72702 3PP DR CNIYAWH 19INA IXORAY 37VD - DWIT 020107 0°2°07 A0 NIn
QNPAPRT .MIPP0D RO 2WNR M2WA2 PN ANMYR MDWH DTN AWW anmMD AR aovonn
WORM WYNDY D NOTYNA DOANNNT 2°2°90N0 YW AN 7T NIOP P10 MW IWORD TMOY

0P MPP0D X792 Nt an ™MaoR 93 Hw 1w

TP 2P TNY2 7AW 12 27 DY 1957 2072V MM NPWOR AWnn NIDWH %D 29X N
NPYPOYOR MO WKL NIn HY DN MmN 99D PHOY WHR NN 710N N1WYNM NRATPRT
DW S0 DA PPN AWMAT NV QORXAIT DOT7YNT 922 W MW MY minTpnn
TI7 1AR 7 AT PN PR 797 NIV W ANIRT NTIRI SV RYH 77N 7190 0°72vnn
SWINR D32 VRPN OV 0IWD WY IWORNY NONPAR NPIVAYOR 9VDT NOIYR 12vY vona

.01 MWL DT W

An Operating System Specification for
Dynamic Code Offloading to
Programmable Devices

Thesis for the degree of
DOCTOR of PHILOSOPHY
by

Yaron Weinsberg

SUBMITTED TO THE SENATE OF
THE HEBREW UNIVERSITY OF JERUSALEM

October 2007

This work was carried out under the supervision of:

Prof. Danny Dolev

Acknowledgements

First of all, I would like to deeply thank my thesis advisor, Prof. Danny Dolev that introduced me
to the fascinating world of research. Danny'’s ability to analyze and solve problems differently than

most people do, challenged me and made me a better researcher.

Next, | thank Dr. Tal Anker my co-adviser and friend. Tal's indispensable advices and constant

support throughout my studies has been a crucial element in this research.

Next, | wish to thank several colleagues and friends: Dr. Pete Wyckoff and Muli Ben-Yehuda, for
their detailed and constructive ideas and comments throughout this work. | also feel thankful to

Dr. Ophir Holder who was always a good friend and ‘informal mentor’ during my PhD.

| would also like to thank all the members of the Distributed Algorithms, Networking and Secure
Systems Group (DANSS). Specifically | would like to thank Danny Bickson, Shimrit Tzur-David
and Dr. Ariel Daliot for their help and support.

Special thanks to my parents Hava and Berco Weinsberg, for their love and encouragement.

Last but not least, | am very grateful to my wife Keren and two wonderful kids: Yuval and Tamaer,

for their love and patience during my PhD studies.

Abstract

The constant race for faster and more powerful CPUs is drawing to a close. No longer is it pos-
sible to significantly increase the speed of the CPU without paying a crushing penalty in power
consumption and production costs. Instead of increasing single thread performance, the industry
is turning to multiple CPU threads or cores (such as SMT and CMP) and heterogeneous CPU
architectures (such as the Cell Broadband Engine). While this is a step in the right direction, in
every modern PC there is a wealth of untapped compute resources. The NIC has a CPU; the disk
controller is programmable; some high-end graphics adapters are already more powerful than host
CPUs. Our operating systems must let applications tap into these computational resources and

make the best use of them.

This dissertation considers the model where applications execute cooperatively in the host pro-
cessor as well as in device peripherals. In this model, applications can delegate tasks to devices
with various architectures and constraints. Using programmable devices has traditionally been
very difficult, requiring experienced embedded software designers to implement conceptually sim-
ple tasks. Interfacing a new device feature with the host operating system would be performed
from scratch and customized for the particular design. The availability of cross-compilation tools
and remote debugging environments are making the programming tasks simpler, but integration

with the host operating system is still difficult.

This work introduces the concept of aoffloading layout as a new phase in the process of
an application development. After designing the application’s logic, the programmer will design
the offloading layout using a generic set of abstractions. The layout describes the interaction
between the application and the offloaded code at various phases, such as deployment, execution

and termination.

Today, there is no generic programming model and corresponding runtime support that enables
a developer to design thadfloadingaspects of an application. This research involves the design

and implementation of a framework to address these challenges.

Contents

Contents

1

Introduction

1.1 OffloadingVs.Onloading.

1.2 TheFuture Of Offloading,
1.2.1 Virtualization.
122 Gaming. o
1.2.3 Advanced Storage ServiCes e
1.2.4 Accelerating Distributed Applications.
1.2.5 Isolationof Device Drivers

1.3 Dissertation Outline

Motivation
2.1 Framework’s Motivation.
2.2 TiMoPC: AMotivating Example.

2.3 ResearchObjectives. e

Related Work

3.1 Storage Offload e

3.2 NetworkOffload
3.21 SPINE. e e
3.22 ArsenicandEMP
3.2.3 TCP Offload Engines (TOE)

v

10

11
11
13
14

18

CONTENTS CONTENTS

3.3 ComputationOffload. 19
3.4 GraphicsOffload. 20
35 Onloading. e 20
3.6 Related Frameworks. 21
3.6.1 FlowOsS. 21
3.6.2 FarGoandFarGo-DA. 21
3.7 SUMMAIY e e e e e e e 22
4 Programming Model 23
4.1 Offcodes 24
4.1.1 Offcode Creation i it 24
412 Offcode URL. 25
4.1.3 Offcode Attributes. 26
4.1.4 OffcodelInvocation 27
415 TheCallObject 27
416 CallsEncoding 27
4.1.7 Pseudo Offcodes vs. User Offcodes 28
4.2 Channels e 28
421 Out-Of-BandChannel. 28
4.2.2 SpecializedChannel, 29
4.3 OffcodeManifesto. 31
4.4 Deployment ProCess. v i i e e e 33
5 Architecture 36
5.1 HYDRA COMPONENts. e e 36
5.2 OffcodelInternals. 38
53 Callinternals. 40
54 CallEncoding. 42
54.1 CustomEncoding. 42
542 SOAPENncoding. 44
55 Channelinternals 46

CONTENTS CONTENTS
5.6 Offcode DynamicLoading. 48

6 Nicos Case Study 50
6.1 NCOSEnvironment e 50
6.2 NICOSSEIVICES. 51
6.2.1 Memory Management 51

6.2.2 TaskManagement 52

6.2.3 Networking. 52

6.2.4 Filtering. 52

6.2.5 Scheduling. 53

6.3 <Sched-++ Algorithm 54
6.3.1 Common Schedulers. L. 54

6.3.2 Related Definitions 54

6.3.3 Algorithm Overview. e 55

6.3.4 <EDF>++Algorithm 56

6.3.5 <EDF>++Evaluation. 57

7 Multi-User Environments 59
7.1 Formulation. 60
7.1.1 Definitions 60

7.1.2 Constraints Formulation o 60

7.2 Optimization Objectives. 61

8 Framework Evaluation 63
8.1 TIVOPC 63
8.1.1 TiVoPC Architecture. 63

8.1.2 TIVMOPCLOQIC e 64

8.1.3 TiMoPC OffloadingLayout 66

8.1.4 Benchmarks Description. 68

8.2 TotalOrdering e e e e 72
8.2.1 Offload-Aware TO Architecture 73

Vil

CONTENTS CONTENTS
8.2.2 Total Ordering Evaluation 75

8.3 Traffic Generator. e, 76
8.3.1 User-Space TrafficGenerator 77

8.3.2 Offload-Aware Traffic Generator. 78

8.4 Offloaded Firewall 79
8.4.1 Overview and Motivation. 80

8.4.2 S IRONArchitecture. 80

8.4.3 SIRONEvaluation. 81

9 Conclusions and Future work 83
9.1 Contribution. 83
9.2 OngoingWork e e e 84
Bibliography 85

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

Today’s modern operating systems (OSs) are complex programs that perform multiple tasks, doing
much more than just multiplexing the computer’s hardware among applications. An OS provides
many of the programming APIs and run-time libraries needed by applications developers. Even
the simplest task, such as connecting to a peer host over a network, is performed by user level

libraries and complementary kernel runtime support.

State-of-the-art peripheral devices allow one to program the peripheral device and adapt its
functionality. For example, modern graphic adapters can perform matrix operations much faster
than host CPUs. Today peripheral devices are largely ignored and their increasingly powerful
computational capabilities are not being exploited. If peripheral devices could be adapted dynami-
cally to an application’s needs, and if their extra computing power could be harnessed to serve the

application, bigger, better and more powerful computer systems could be created.

This research considers a model in which applications execute cooperatively and concurrently
in host processors and in device peripherals. In this model, applicatiordftzad specific tasks
to devices to improve the overall performance. Using programmable devices has traditionally been
very difficult, requiring experienced embedded software designers to implement conceptually sim-
ple tasks. In such cases, interfacing any new device feature with the host operating system would
have to be performed from scratch and customized for the particular design. The availability of

cross-compilation tools and remote debugging environments are making the programming tasks

1

1.1. OFFLOADING VS. ONLOADING CHAPTER 1. INTRODUCTION

simpler, but integration with the host operating system is still difficult. The need for new abstrac-
tions and tools for programming such heterogeneous systems is apparent.

This research proposes an innovative programming model and runtime support that enables
utilization of such devices by providing a generic code offloading framework (calledrH).
The framework enables an application developer to design the offloading aspects of the application
by specifying an 6ffloading layout, which is enforced by the runtime during application deploy-
ment. The framework also provides the necessary development tools and programming constructs

for developing such applications.

1.1 Offloading Vs. Onloading

Offloading has been traditionally synonymous with TCP Offload Engine (TOE) deViégAl-
though offloading practices were and still are raising eyebrows, it is agreed that TOE devices
perform well for specific types of workloads and applicatio#S][The offloading concept can
be generalized to any programmable peripheral device and extended to include more than network
protocols. For example, file system related functionality such as indexing or searching could be
offloaded to a programmable disk controller. Leveraging the proximity between the computational
task and the data on which it operates may boost the system’s performance and reduce the load
on the host processor and memory subsystem. Offloading to several devices at once adds a new
dimension to our ability to handle information close to its source with limited involvement of the
central CPUs. In particular, expensive memory bus crossings are eliminated.

An offloading adversary will typically claim that although peripheral devices are powerful,
today’s PCs have several underutilized processors that could be used instead. In response, the

following compelling arguments are presneted in favor of offloading:

1. Memory bottlenecks- Modern processors have large L2 caches in order to try and minimize
cache misses caused by application execution and context swapping. Operations running
on peripherals utilize local memory and filter out the information that needs to be brought
to and from main memory, hence reduce memory pressure and cache misses on the main

processaors.

CHAPTER 1. INTRODUCTION 1.1. OFFLOADING VS. ONLOADING

2. Timeliness guarantees- Operations running on peripheral devices can benefit from real-
time programming paradigms. A peripheral device can provide operation timeliness guaran-

tees that cannot be matched by a general purpose ké&jel |

3. Reduced power consumptier There is a major effort to reduce the power consumption
of modern processors. Some processors support an idle mode with reduced power con-
sumption. By offloading operations to low powered peripherals, we enhance the overall
system power consumption (For example, a Pentium 4 2.8 GHz processor corisufies
whereas an Intel XScale 600 MHz processor, commonly found in peripheral devices, con-

sumed).5 W, two orders of magnitude less).

4. Security— partitioning critical code between the host and the peripherals will make it less
susceptible to automated attacks. For example, a small watchdog that periodically verifies
that the main OS hasn’'t been tempered with could be run on an offload-capable device.
Because it is running in a different environment it can be designed such that automated

attacks will be less likely to target it successfully.

5. Increased throughput— Network bandwidth has reached the point where host CPUs can
spend all of their cycles just processing network traffié]| Specifically, Figurel.1(a)
and Figurel.1(b)show the GHz/Gbps Ratio in the transmit and receive cases respettively.
Although TCP offloading (see Chapt8y can improve the achieved throughput, it is only
one of the potential uses for offloading. This thesis suggests further opportunities in this

area.

A recent alternative to offloading has been commonly referred to as “onloading”. Rather than
moving functionality to the device, “onloading” proposes using host processors for improving 1/0
devices’ performance. For example the Pigh] [operating system dedicates one or more host
CPUs to provide a “Virtual Device Interface”. Such an interface is directly accessible by user-space
applications via shared memory. Although onloading part of the device’s functionality to a host

processor can yield better performance, eventually the data will need to be transferred between the

These figures appear iaq] and are used with the authors’ permission.

3

1.1. OFFLOADING VS. ONLOADING CHAPTER 1. INTRODUCTION

}u 800MHz O 2.4GHz ||

Ratio
—_ g%] w E=N (8] [s)] ~

N Py |

64B 1KB 2KB 16KB 64KB

Transfer Size

(@) GHz/Gbps Transmit Ratio

[800MHz @ 2.4GHz |

Ratio

i |

64B 1KB 2KB 16KB 64KB

Transfer Size

(b) GHz/Gbps Receive Ratio
Figure 1.1: GHz/Gbps Ratio Validation

host CPU and the device. Such transactions will still incur the known (and sometime unnecessary)

overhead at the I/O interconnect.

Another onloading direction has been recently proposed by 158l The paper proposed to
use one of the hosts processors for TCP processing while using several techniques for reducing
the protocol computation, data manipulation, and interrupt handling overheads. A step forward
in this direction is to fully integrate the network controller with the host CBU [This work
presents a simple integrated NIC (SINIC) device that is equivalent to a conventional NIC and is
integrated with the host CPU. The SINIC device utilizes zero-copy techniques and was showed to

significantly improve the host’s throughput.

Even in the presence of “onloading” techniques, history has shown us that applications expand

to fill the computational resources available to them. Modern hardware devices, especially high-

4

CHAPTER 1. INTRODUCTION 1.2. THE FUTURE OF OFFLOADING

end devices, often have their own CPUs and memory. Such devices resemble general purpose
computer systems, albeit systems that are customized for a specific set of tasks. Operating systems
have always been and will continue to be the conduit between the applications and the hardware;
we argue that modern operating systems have been remiss in neglecting to provide applications

with seamless access to the wealth of computational resources available on peripheral devices.

1.2 The Future Of Offloading

In the near future a handful of computing resources will be available in any home PC. Treating

these computing resources as first class citizens and offloading computation and functionalities to
them wherever and whenever possible will enable development of high performance applications
that will benefit from the unique capabilities of each resource. This section briefly presents some

of the potential fields that will benefit from the offloading capabilities.

1.2.1 Virtualization

Rapidly improving virtualization technologies allow one to run multiple OSs simultaneously on
one physical machine, as “virtual machines”. Running multiple operating systems on the same
physical machine places considerable demand on the “host software”, due to the need to multiplex
the physical resources among virtual machines. Offloading computation to peripheral resources
offers several opportunities to alleviate this burden.

Current virtualization technologies prevent virtual machines from directly accessing 1/O de-
vices due to functional, security and isolation concerns. From a functional point of view, nearly all
current devices are fundamentally designed to be accessed by a single entity (e.g., devices have a
single register window). From a security and isolation point of view, current server chipsets allow
devices to DMA anywhere in physical memory, since the assumption is that they are being pro-
grammed by a trusted entity. If amtrustedvirtual machine could directly program a device, it
could program it to DMA anywhere in memory, including on top of the hypervisor or other virtual

machines, thereby bypassing the hypervisor’s isolation guarantees.

Due to the above limitations, all I/O device accesses by virtual machines are either multiplexed

5

1.2. THE FUTURE OF OFFLOADING CHAPTER 1. INTRODUCTION

or emulated by the hypervisor or a service OS running on the host CPUs, which then perform
the real I/O to the physical device. Such an architecture incurs heavy performance costs when
compared with direct device access by virtual machines.

The introduction of IOMMUs §] and self-virtualizing devices for virtualization should alle-
viate the security and isolation concerns mentioned above; the functional limitations of current
devices could be overcome by utilizing programmable devices. Offload-capable devices could
perform more efficiently some of the tasks that are executed today by the host CPUs, such as mul-
tiplexing incoming network packets directly to the destination virtual machine. In the event that
device emulation is needed because the virtual machine does not have a driver for the physical

device, an offload-capable device could emulate a virtual device directly on the physical device.

1.2.2 Gaming

Hardcore PC gamers live and die upon squeezing every drop of performance out of their hardware.
The graphics and networking technology presented in Se8titenhances the gaming experience.

For example, the Killer NICT] completely takes over all networking tasks traditionally handled

by the OS and processed by the CPU, effectively bypassing the OS networking stack. Since the
NIC still needs to pass the packets to the GPU through the host processor, a generic offloading
framework may further improve the achieved performance by enabling direct interaction of the
host software and the GPU, with minimal host CPU involvement, thereby increasing availability

of main CPU cycles for manipulating the more advanced scenes.

1.2.3 Advanced Storage Services

Programmability support that will soon be offered by advanced disk controllers and external stor-
age controllers will open new possibilities for implementing advanced storage services directly in-
side the disk or controller. One example is the Diamond sys8&tiat employs “early discard”,
which involves rejecting irrelevant data as early in the pipeline as possible. Diamond applications
can install filters at the active disk for reducing data transfer.

In general, programmable disks or controllers will provide an opportunity to run 1/O intensive

computations efficiently by running them closer to the data. Potential applications include content

6

CHAPTER 1. INTRODUCTION 1.2. THE FUTURE OF OFFLOADING

indexing and searching, virus scanning, storage backup, mirroring, snapshots and continuous data

protection.

1.2.4 Accelerating Distributed Applications

An important aspect of this research is to develop basic distributed protocols that take advantage
of the newly developed framework, reducing currently accepted inherent uncertainty of distributed
systems, and increasing robustness and security of the resulting systems. To illuminate some
aspects of the significance of the new approach the next few sections discuss some traditional
distributed computing approaches that can benefit from the offloading capability offered by the

proposed framework.

Network Oriented Components

Distributed applications operate by interchanging messages among nodes. The message exchange
networking protocols are potential candidates for offloading. For example, the reliable broadcast
service that ensures that all hosts in a group of nodes deliver the same set of messages to the
application layer can be offloaded to the networking device. This service can be used as a building
block to construct value-added multicast services, such as agreement and total ordering, or it can

be utilized to support applications that involve groups of cooperating hosts.

The network components can be also used for various functions like: early filtering of data,
identifying patterns in the message flow that indicate possible att&2kspnsistency verification

of the transmitted messages, and possibly signing or authenticating the message source or target.

Cluster Synchronization

Real-time guarantees can be implemented on programmable peripheral dégjcasd used as

a building block for a variety of distributed applications as exemplified by the work by Verissimo
et al. [68]. Having such a timely component significantly simplifies the design of real-time algo-
rithms. This component is an ideal candidate for offloading, as it exports a simple interface that is

ideal for a programmable clock, network card, or encryption engine. Once we are provisioned with

7

1.2. THE FUTURE OF OFFLOADING CHAPTER 1. INTRODUCTION

real-time guarantees with smaller uncertainty, we can further increase the ability of the application

to cope with transient or permanent failures.

Virtual Synchrony

The virtual synchrony model[)] offers strong communication guarantees required by applications
such as replicated database systeBBs3¢]. The overhead involved can be drastically reduced, and
performance correspondingly increased, by offloading the critical components to the networking
card. Node failures may be detected faster and more reliably. Virtual synchrony is critical in
ensuring the consistency of the views of the system at the various participants. This consistency is
a key component in increasing the robustness of the system and in limiting the ability of an outside

entity to jeopardize the system’s objectives.

Byzantine Consensus Protocols

When building secure replicated systems, the replicas have to coordinate updates using Byzantine
Consensus39]. These protocols are complicated and message intensive. Offloading them to a

network device would simplify application development and improve their performance.

Self-Stabilizing Protocols

These protocols are designed to return a system to a normal functioning, irrespective of the severity
and nature of transient failures, as long as there is a sufficiently long time interval during which
a large enough portion of the system behaves correctly. Offloading some of the functionality can
significantly reduce the convergence time. For example, due to the higher reliability of the NIC,
the self-stabilizing protocol may significantly decrease the time required to trust the coherence of
the received messages by verifying them with the NIC.

Until recently dealing with worst case failure and self-stabilization were considered infeasi-
ble. The known protocols required exponential convergence @3&4]. Recent resultsl9, 20]
indicate that convergence can become linear, though the protocols are still involved and use com-
plicated Byzantine agreement modules. Taking the advantage of programmable devices may assist

in developing efficient distributed self-stabilizing protocols that withstand the permanent presence

8

CHAPTER 1. INTRODUCTION 1.2. THE FUTURE OF OFFLOADING

of on-going faults. Moreover, when cluster synchronization (as suggested above) is available, the

protocols can be drastically simplified.

Cryptographic Modules

Many modern secure computing modules require on-line and consistent exchange of messages
among parties. They also require renewal of signature keys and coordination of sharing of secrets.
Having secure modules residing on independent devices can further simplify and boost multi-
party-computations and other secure computations. Offloading parts of the security services of a
general purpose OS to such devices can significantly improve their performance, reliability and
may also reduce the probability of attack due to their isolation properties. Moreover, such a card

can be in charge of some critical functions such as the certification authority (CA).

Secure Fingerpointing

One interesting application enabled by offloading is run-time checking of global behavior of dis-
tributed applications. Thus, rather than having an offloaded component on a peripheral device
checking the local behavior of an application on the main CPU, such a component on a networked
device can communicate with other such components at other nodes to check global behavior. For
example, consider a peer-to-peer video streaming service. Nodes in such a service may exhibit ra-
tional behavior by not forwarding video fragments upon receipt. Downstream nodes may complain
about this behavior, possibly resulting in removal of the upstream node. Unfortunately, it may be
the rational behavior of the downstream node that lies and falsely accuses the upstream node in
order to get closer to the source of the video. Other peers have no way of verifying whether it is
the upstream node or the downstream node that is behaving badly. Offloaded components on the

network devices of the two nodes could easily tell what is going on, however.

1.2.5 Isolation of Device Drivers

Reliability is now the greatest challenge for computer systems research. Considerable resources
are invested by major operating system vendors for systematically auditing Windows and Linux

device-driver code for flaws. A recent study performed in Stanford University found that more

9

1.3. DISSERTATION OUTLINE CHAPTER 1. INTRODUCTION

than50% of the Linux OS bugs, appear at device drivelr§][In Windows XP, drivers account for
85% of recently reported failures.

One of the hypothesis explaining this phenomena is that device drivers are typically written by
device vendors which do not necessarily have the same level of understanding of OS internals as
the OS developers. Device driver bugs are often fatal; since the number of device drivers in modern
operating systems is enormous, there is an apparent need to improve device driver reliability.

One possible approach is to isolate device drivers in their own environment. For example, the
Nooks project 3] isolates device drivers by using various techniques such as kernel wrapping,
virtual memory protection and different privilege levels. However, such isolation incurs signifi-
cant overhead, especially when the CPU is already saturated (for example, in the Nooks kHTTPd
benchmark, the overhead was neaiy;).

By utilizing programmable devices and a generic offloading framework like the one presented
in this dissertation, one could provide yet another level of isolation, by offloading some or all of

the driver code to run on the device's CPUSs.

1.3 Dissertation Outline

The rest of the dissertation is organized as follows: Chapuwiscusses the motivation for this

work as well as the challenges. Cha@fealiscusses the state-of-the-art in co-processing technolo-
gies and specifically describes the related work concerning offloading. Chlgescribes the
framework’s programming model and Chapfediscusses the realization of this model including

a detailed description of its design. Chapdgrresents a Network Interface Card Operating Sys-
tem (Nicos) developed as a platform for evaluating the proposed offloading framework. During
the development of the operating system, an innovative scheduling algorithm has been designed,
implemented and evaluated. This algorithm is also discussed in this chapter. Chppsents

a mathematical approach for presenting complex offloading layout graphs. C&gpésents an
evaluation of the proposed framework, and includes qualitative and quantitative results. Ghapter

presents our conclusions and points to future work.

10

CHAPTER 2. MOTIVATION

Chapter 2

Motivation

This section begins with the motivation for developing an offloading framework. We present the
requirements from an offloading framework and some of the challenges inherent in offloading and
in creating an offloading framework in particular. We then present a simple multimedia application,
called TiVoPC, which serves as a motivating example. We provide further details regarding it in

Section8.1

2.1 Framework’s Motivation

Offloading code to a programmable device today is a manual, tedious process, rife with opportu-
nities to reinvent a square wheel. Offloading stand-alone code is difficult; offloading a software
component that is part of a larger system with complex interdependencies much more so.

Offloading code to a programmable device requires the following (manual) steps:

e Write it, but do it with the specific constraints of the target environment in mind: does it
have an MMU? What sort of run-time support does the device have? Does it support dy-
namic memory allocation? Is there a toolchain that targets that device for the programmer’s

preferred language and environment?

e Compile and link it, using a device-specific toolchain. Some of the device-specific aspects

mentioned previously might be handled by the toolchain. Linking is usually done with the

11

2.1. FRAMEWORK’S MOTIVATION CHAPTER 2. MOTIVATION

device’s run-time support libraries, which constrains the programmer to only using an API
for the particular device.

¢ Deploy it on the device. Each device has its own process of transferring the code from an

annotated area in host memory to the device, such as through a firmware update.
Additionally, writing offloaded code presents the following challenges:

e There is a steep learning curve. The programmer needs to be acquainted with all the rel-
evant hardware specifications and the relevant SDKs. Additionally, programming a device

typically also requires kernel level developing skills including writing device drivers.

e It requires embedded development skills. Usually, it will take an experienced embedded

engineer to develop an efficient, stable and robust system.

e Itrequires dealing with performance issues. While offloading code to a device has numerous
advantages, it also has certain disadvantages, e.g., communicating with code running on the
host CPU becomes more expensive since the offloaded code is executed in a different hard-
ware domain. This makes getting inter-component information transfer working correctly

and efficiently tricky.

e The bulk of the work needs to be redone for every new device.

An offloading framework should facilitate and automate as many of the previous steps as pos-
sible. It should also ease the aforementioned challenges of writing offloaded code. The holy grail
is for the programmer to be completely unaware of the fact that parts of the system she is writing
will be running on a programmable device. To achieve these goals, an offloading framework must

meet the following requirements:

1. It should not require the programmer to learn a new language or a new environment.

2. It should abstract the specific details of given devices as much as possible, so that the frame-
work will handle the adaptation of the offloaded code to a specific offload target, rather than
the programmer. This includes the specific hardware details as well as the specific run-time

support provided for the device. Similar classes of devices (e.g., NIC, or GPUSs) provide

12

CHAPTER 2. MOTIVATION 2.2. TIVOPC: A MOTIVATING EXAMPLE

roughly the same functionality or capabilities, albeit in different ways and using different
interfaces. The offload framework should abstract these device specific details behind a

common abstraction layer.

3. Itshould ease deployment, by deciding when and where to deploy a given component, as well
as facilitating communication of the deployed component with the rest of the components,

whether they are running on the main CPU, on the same device or on a different device.

2.2 TiVoPC: A Motivating Example

In order to provide insight into the usefulness of offloading to multiple devices using the frame-
work, we now present a sample application, which we call TiVoPC. We show that with the right
set of abstractions and development tools, offloading becomes feasible and desirable.

The TiVOPC is a software implementation of the commercial TV appliance B¥p A clas-
sical Tivo appliance is a box that allows for digitally recording all of one’s favorite TV shows, and
enables playback of them at a later time. Our implementation of the Tivo appliance provides a
selected subset of the Tivo features. Specifically, we provide online-recording while watching a
media stream and support its playback at a later time. A typical user-space software implementa-

tion of such an appliance would require the following components listed in Pable

Component | Description
GUI Provides the viewing area and user controls (play, pause, rewind and resume).
Streamer | Processes the media stream (either from network or storage).
Decoder | Decodes the MPEG media stream.
Display | Displays the movie on screen.
File Reads/Writes previously stored data from storage.

Table 2.1: TiVoPC Components Outline

When analyzing a TiVoOPC operation, one can see that a major part of the application logic is
invested in transferring packets from one I/O device to another. Specifically, the Streamer com-
ponent transfers each received packet to the File component, in order to support a later playback,
and to the Decoder component. The decoding component hands a decoded frame to the Display

Component, which transfers the raw video frames to the graphics subsystem.

13

2.3. RESEARCH OBJECTIVES

CHAPTER 2. MOTIVATION

NIC

Home PC

- :lElg
" |l

GPU
(2) T T(3)
()

—3»! Disk Controller

Figure 2.1: TiVoPC Data Flow

In order to demonstrate the use of our framework we have implemented a version of the TiVoPC

application that uses multiple peripheral devices. In Figude the resulting data flow of the

offload-aware TiVOPC application is presented. Once a packet is received at the NIC, it is directly

transferred to both the GPU and the disk contrdil&rdecoder component running on the the GPU

can directly decode the MPEG stream and transfer each frame to the GPU'’s internal framebuffer,

making it appear in the GUI window without involving the host CPU at all. In case a user wishes

to replay the stored media, a Streamer component running on the disk-controller will transfer pre-

viously stored packets to the Decoder. Sec8ahprovides the full details of the implementation.

2.3 Research Objectives

Today, there is no generic programming model and corresponding runtime support that enables a

developer to design the offloading aspects of an application. The development of this approach

requires to revisit many traditional aspects of distributed operating systems, shared memory algo-

rithms, advanced compilation techniques and distributed and parallel algorithms.

The inherent conflict between the heterogeneousness nature of programmable peripheral de-

vices and our requirement to provide a generic framework and simple programming interface,

introduces several challenges:

e Components and Device mappingGomponents have predefined properties and runtime

INote that if the bus architecture allows it (i.e., PCle), this packet could be transferred in a single bus transaction.

14

CHAPTER 2. MOTIVATION 2.3. RESEARCH OBJECTIVES

assumptions. Develop a way to identify the possible matching between the devices’ capabil-

ities and the component’s requirements.

e Device and Component ReuseDBevices are resource constrained. Devise a scheme for

efficiently reusing both the component and the resources at target devices.

e Operating System extensiondiere is a need to design specific OS algorithms for optimiz-
ing the application’s offloaded code performance. For example, new scheduling algorithms

with real time guarantees, dynamic code loaders, memory management and buffers reuse.

¢ Dynamic Offloading —Components can be given as binaries or open source. Devise a
scheme for dynamic compilation and/or offloading of such components to different devices

with different architectures.

e Dynamic Conflict Resolution -Different applications have different offloading require-
ments. Since devices are shared by multiple applications, an online algorithm for scheduling

and for optimal placement needs to be developed.

e Communication Model and Buffer Management ke framework needs to address the var-
ious communication flows, between the application and its components and among com-
ponents, potentially residing at different devices. A major challenge is to minimize the

communication overhead, for example using a zero copy semantics.

e Security — Improve the system’s security using hardware devices without increasing the

system’s vulnerability.

¢ Failures and Failover —Increase the system’s robustness by making use of the devices and

by enabling self-healing properties.

One aspect of our research includes the design and implementation of a framework to address
these challenges. Sectidnntroduces the concept of an “offloading layout” as a new phase in the
process of an application development. After designing the application’s logic, the programmer

will design the offloading layout using a generic set of abstractions. The layout describes the

15

2.3. RESEARCH OBJECTIVES CHAPTER 2. MOTIVATION

interaction between the application and the offloaded code at various phases, such as deployment,

execution and termination.

16

CHAPTER 3. RELATED WORK

Chapter 3

Related Work

Offloaded applications have been designed for particular needs in the past using specific devices.
Some of this work has led to the availability near-commodity products. This section describes the

state-of-the-art in offloading research, ordered by its relevance to this work.

3.1 Storage Offload

Object Storage Devices (OSD) came from a research project called Active Disks from &3U [

56] and are approaching standardization by the ANSI T10 graizh [OSD is a protocol that
defines higher-level methods for the creation, writing, reading and deleting of data objects on a
disk. Implementing OSD requires a high degree of processing capability at the disk controllers or

the devices themselves and can offer the potential for extension.

One example of a storage-specific extension is the Diamond sy8&mUnlike traditional
architectures for exhaustive search in databases, where all of the data must be shipped from the
disk to the host computer, the Diamond architecture employs “early discard.” Early discard is the
idea of rejecting irrelevant data as early in the pipeline as possible. By exploiting active storage
devices, one can eliminate a large fraction of the data before it is sent over the interconnect to the

host. Diamond applications can install filters at the active disk for eliminating data.

17

3.2. NETWORK OFFLOAD CHAPTER 3. RELATED WORK

3.2 Network Offload

One of the more fruitful areas for exploiting programmable devices is in the area of networking. As
wire speeds increase and demand extensive host processing power, moving some of the work to the
network card becomes an attractive alternative. Although previous research have also considered
using programmable components to accelerate network processing in specific situtgjask [

This research goal is to enable more general access to programmable components for arbitrary

networking or other computing or 1/O tasks.

3.2.1 Spine

Spine R5] is a safe execution environment, derived from the SPIN operating syStetnat is
appropriate for programmable network interface cards. Spine enables the installation of user han-
dlers, written in Modula-3, on the NIC. Applications and extensions communicate via a message-
passing model based on Active Messaggd.[Although Spine enables the extension of host
applications to use NIC resources it has several major limitations. First, since all extensions are
executed when an event occurs, building stand-alone applications for the NIC is difficult. Even
for event-driven applications, the developer is enforced to dissect the application logic to create a
set of handlers. Second, Spine’s runtime does not support the deployment process of handlers or

provide a way to design the offloading aspects of the host application.

3.2.2 Arsenic and EMP

Arsenic pQ] is a Gigabit Ethernet NIC that exports an extended interface to the host operating
system. Unlike conventional adaptors, it implements some of the protection and multiplexing
functions traditionally performed by the operating system. This enables applications to directly
access the NIC, thus bypassing the OS. The Ethernet Message Passing 8BM#yks{em is a
zero-copy and OS-bypass messaging layer for Gigabit Ethernet. EMP protocol processing is done
at the NIC and a host application (usually through an MPI library) can directly manipulate the NIC.
Arsenic and EMP provide very low message latency and high throughput but are very task-specific

and lack the support for generic offloading or host application integration.

18

CHAPTER 3. RELATED WORK 3.3. COMPUTATION OFFLOAD

3.2.3 TCP Offload Engines (TOE)

TOE [1§] is a technique used to move some of the TCP/IP network stack processing out of the
main host and into a network card. Commercial NICs that support TOE extensions exist but lack
any open standard specification. Typically, these devices include several on-board programmable
processors that are only programmable by the device manufacturer. While TOE technology has
been available for years and continues to gain popularity, it has been less than successful from a
deployment standpoint. TOE only targets the TCP protocol, thus, user extensions are out of its
scope. Practical concerns such as the inability to modify TOE behavior for evolving TCP protocol

changes or to implement complex firewalls also limit the utility of such devices.

Microsoft's support for TOE devices is supported through the “Chimney Offload Architecture”
for Windows [L7]. Chimney provides a standard interface for TOE devices and enables the offload
of the TCP/IPdata pathto the target device. Other protocols such as DHCP, RIP, IGMP, and ARP

are implemented within the traditional TCP/IP networking stack.

Linux kernel does not officially plan to support TCP offload engines. The networking maintain-
ers believe that TOE support, inside the Linux kernel, may cause enormous maintenance problems.
For example, testing is problematic since the hardware firmware sources are proprietary.

Other approaches for reducing network processing overheads that are based on TOE devices
are possible as well. IWARSE] is an approach that takes advantage of Remote Direct Memory
Access (RDMA) p1] and processor offload to increase throughput and reduce host overhead.
IWARP network cards include TOEs and other functionality needed to implement the higher-layer

protocols.

3.3 Computation Offload

Specific devices to assist a host processor with some of its computational burdens have existed for

many years and seem to be experiencing a recent resurgence.

Field-Programmable Gate Arrays (FPGAS) can be used as CPU accelerators that can be plugged

directly into a standard processor socket or as add-in PCI cards for supercomputer systems. For

19

3.4. GRAPHICS OFFLOAD CHAPTER 3. RELATED WORK

instance, the DRC coprocessdf] is an FPGA device that plugs directly into a processor socket

in an Opteron system. Placing the DRC within the CPU fabric accelerates the communication with
the host CPUs. Other examples are the iPath Infiniband adapter that plugs directly into an AMD
HT socket and IBM’s system-z cryptograpl86] coprocessors. These cards assist various crypto-
graphic functions (e.g., DES, Triple DES, hashing etc.). Offloading parts of the security services of
a general purpose OS to such devices can significantly improve their performance and reliability,
and may also reduce the probability of hacker attacks due to their isolation properties. Moreover,
such a card can serve as a certified and independent authority.

Each FPGA vendor provides varying level of support for the development of host applications
and device programs ranging from a single high-level language and auto-generating compilers
down to explicit device gate design. What is lacking in FPGA development is any generic interface
or commonality that would enable applications to run on platforms other than where they were
developed. Also the communication models for FPGAs are typically primitive compared to the

networking and storage examples described above.

3.4 Graphics Offload

The recent boost in GPU technologies have made them more powerful than ever. Compared to
the CPU, GPU performance has been increasing at a much faster rate than CPU performance. The
work presented inJ0], uses an NVIDIA 7800GT GPU for sorting database records. The GPU’s
computing power and the high-bandwidth GPU memory interface enable their system to achieve
better performance than the CPU-based algorithms.

Other recently developed GPUs include ClearSpeed’s accelef@owhich provides~ 50
GFLOPS sustained performance and accelerates most of the standard math libraries; and the Ageia

physics processing unid9] that can be used for optimizing game physics.

3.5 Onloading

The Simultaneous Multi-Threading (SMTH€], also known as hyper-threading, and the Chip

Multiprocessing (CMP) architectures have already been adopted as the architecture for processors

20

CHAPTER 3. RELATED WORK 3.6. RELATED FRAMEWORKS

of the future. Unlike Symmetrical Multi Processing (SMP), where host CPUs are completely
homogeneous, the SMT and CMP architectures are taking small steps toward heterogeneity.

The proliferation of host level processing cores have motivated researchers to explore other
alternatives for offloading. As discussed in Sectloha recent alternative to offloading has been
commonly referred to as “onloading”. The idea presented in details in the Pigledperating
system has been realized in the work of Greg et=].[The Embedded Transport Acceleration
(ETA) approach dedicate one or more processors for executing the TCP/IP network stack code.
ETA achieves the same performance as a regular Linux machine but with a reduced CPU utiliza-
tion. The paper shows that the dedicated processor becomes a bottleneck in the system due to
expensive memory operations. The paper implies that by following a full offloading approach such

limitations may be eliminated which agrees with this research motivation.

3.6 Related Frameworks

3.6.1 FlowOS

FlowOS [L2] proposes an architecture that removes the host's memory subsystem and CPU from
the critical data path. The main role of the OS is to manage the data-flow between different pe-
ripheral devices and to schedule the flows between different applications. Although FlowOS does
not provide an offloading framework nor a programming model for creating offload-aware ap-
plications, the proposed flow abstraction can further extend this research. By defining a “flow”
overlay that spans several offloaded applications, one can guarantee the required QoS for a specific

application.

3.6.2 FarGo and FarGo-DA

Although not dealing with offloading, FarG83, 32] and FarGo-DA F4] propose a programming

model that enables a developer to program relocation and disconnection semantics in a separate
phase during the application development cycle. The basic assumption for their work is that the
application is fully comprised of a set of components that are tagged by a specific interface (called:

Complej. The components are hosted in a virtual machine and can migrate to a remote VM

21

3.7. SUMMARY CHAPTER 3. RELATED WORK

using marshaling and unmarshaling mechanisms (much like in the RRG][RMI [61, 62],
CORBA [60], DCOM [11] or WebService 80] models). Our framework extends this model by

defining an “offloading-layout” that is used to define the offloading aspects of the application.

3.7 Summary

In this chapter we surveyed the existing body of work in the area of offloading, specifically storage
offload, network offload and GPU offload. The idea itself is not particularly new. Systems that split

the workload between a general-purpose processor and specialized coprocessors, have been around
for years. Many of these systems started with the goal of improving the performance of a specific
application. Yet, providing the basic primitives in order to program the offloading semantics at

the application level is an issue that was not at the focus of any other research that we know
of. Moreover, the development of a special programming model and examination of the specific

system support which is required for realizing such a model is a unique goal of our research.

22

CHAPTER 4. PROGRAMMING MODEL

Chapter 4

Programming Model

The programming model provided byiHRA enables an application developer to design offload-
aware applications (henceforth, OA-applications). Such applications can utilize any available
computing resource that offers programmability support. The model proposes an object-oriented
methodology for developing such applications. Developers use a set of special components called
Offcodes. An Offcode is a component that contains a state, defines a unique interface and is exe-
cuted by a dedicated thread.

Communication between Offcodes is facilitated by communication channels with various com-
munication properties as will be presented in Seciiéh The programming model is divided into

two coupled facets:

1. Application logic programming— This is the mechanism of designing the basic logic of
the application. Offcodes are provided as a set of reusable components from the vendor or

custom made by the developer.

2. Offload layout programming— This task defines the mapping between components and
peripheral devices, both in software and hardware. It also sets offloading priorities and

channel characteristics between Offcodes and the host.

Programming the application logic should resemble programming a regular application while

programming the layout should affect the application logic as little as possible. The developer is

23

4.1. OFFCODES CHAPTER 4. PROGRAMMING MODEL

encouraged to reuse Offcodes that are provided as a set of components from the vendor or custom
made by the developer. The process of placing Offcodes at the peripheral devices involves defining
the mapping between components and peripheral devices, both in software and hardware as will

be discussed in Sectigh4.

4.1 Offcodes

We envision openly accessed libraries of Offcodes that are provided as source code, or as object
files that can be linked together with the target device’s firmware. An Offcode is described by an
Offcode Description File (ODF) that uses XML to describe the supported interfaces, dependen-
cies on other Offcodes, and the target device’s hardware and software requirements. A detailed

description of the ODF file and the deployment process is given in Settion

An Offcode can implement multiple interfaces, each of which contains a set of methods that
perform some behavior. Each interface is uniquely identified by a Globally Unique Identifier
(GUID) and is also described by the ODF file using the standard Web Service Definition Lan-
guage Y0 (WSDL). An offload-aware application communicates with an Offcode using an ab-
straction called &hannel An Offcode object file implements only one Offcode and it has a GUID
that is unique across all Offcodes. All Offcodes implement a common interff@tieddg that is

used by the runtime to instantiate the Offcode and to obtain a specific Offcode’s interface.

4.1.1 Offcode Creation

Offcodes are created by an OA application by calling the runreate Offcodé\Pl. The method

uses the Offcode’s ODF file in order to construct an Offcode dependency graph, called the offloading-
layout graph, that is used for offloading the OA-applications’ Offcodes. Sedt®details the
mechanism used for the mapping of Offcodes to their respective devices. Once the Offcode is
constructed at the target device, it is initialized and executed by #tRKH runtime. Offcode
initialization is performed in two phases. First, thatialize method is called and the Offcode
acquires itdocal resources. Since peer Offcodes may have not been offloaded yet, the Offcode can

access local resources only. Once all the related Offcodes have been offloadgi@rtBé&code

24

CHAPTER 4. PROGRAMMING MODEL 4.1. OFFCODES

method is called. At this point inter-offcode communication is facilitated.

Figure 4.1 presents an Offcode deployment process which is executed by the runtime. The
OA-Application running on the host creates a single Offcad#hat requires a second Offcode
(. Since the Offcode is automatically created, the runtime constructs an offloading-layout graph
(Section4.3) and performs the actual offloading process. The figure illustrates the scenario where
« is offloaded befores, but it can also be the opposite. This is why the Offcodes are only allowed

to communicate with each other after tAmrtOffcodanethod is invoked.

Host
4 N T T
: ‘ OOB-Channel :
[(1] CreateOffcode } Link : o— :
OA-Application : Offcode 3
: Logical Time :
2 - e) |
®) % |
_ N) L
ffffffffffffffffffffffffffff Legend
or 0%
(4) Initialize() e 000 (5) Initialize()
(6) StartOffcode() (7) StartOffcode()
Device A Device B

Figure 4.1: Offcode Deployment

4.1.2 Offcode URL

An Offcode is uniquely identified by an Offcode URL. The URL consists of four parts: the host,
the device’s physical address, the hardware identifier and an Offcode’s binding name that is unique
per device. The physical address and the hardware identifier uniquely identify the target device.
Figure4.2 presents an Offcode’s URL format and a sample URL for some PCI device. A PCI
device is physically addressable by a bus number (8 bits), a device number (5 bits) and a function
number (3 bits). The hardware identifier is further identified by a 32 bit signature that includes the

vendor identifier and the device identifier.

25

4.1. OFFCODES CHAPTER 4. PROGRAMMING MODEL

[host]:/[physical-address]/[hardware identifier]/[binding-name]

Example:

The Hydra runtime offcode on the Netgear GA-620T (Tigonll chipset)

device is identified by the string:
localhost:/pci/00/11/1385/620A/Hydra.Runtime

Figure 4.2: Offcode URL Format

Note that the full Offcode’s identifier is automatically created by the runtime once the Offcode’s
target device is determined (see Sectibf). A developer typically uses the Offcode’s binding

name in order to communicate with a peer Offcode.

4.1.3 Offcode Attributes

Once an Offcode has been explicitly created, a set of attributes can be applied to it. The program-
ming API enables a developer to handle Offcode attributes usinggettddtributeandgetAttribute

methods. These methods take two arguments: an attribute identifier and a value.
HYDRA currently supports the following attributes:

OBSOLETE_TIME — The attribute enables a developer to determine the amount of time an
Offcode should “live”. The time is measured relative to the Offcode’s offloading time. The attribute

is usually set for short-lived (or temporary) Offcodes.

WATCHDOG_TIME — The attribute defines the invocation frequency thastbe maintained
for a given Offcode. The runtime automatically disposes Offcodes that have not been responded for
more than the given watchdog time period. The attribute facilitates an application level keep-alive

mechanism.

OFFLOAD_PRIORITY — The attribute sets the offload priority for the created Offcodep RiA
currently support three priorities: PRI_LOW, PRI_NORMAL and PRI_HIGH. During application

deployment, the offloading process will be executed according to the given priorities.

26

CHAPTER 4. PROGRAMMING MODEL 4.1. OFFCODES

4.1.4 Offcode Invocation

HYDRA provides two ways to invoke an Offcode: transparently and manually. Achieving syn-
tactic transparency for Offcode invocation requires the use of some “proxy” element that has a
similar interface as the target Offcode. When a user creates an Offcode, a proxy object is created
and loaded into user-space. The proxy’s job is to perform marshaling (serialization) and unmar-
shaling (deserialization) of the methods arguments and the returned values, prior/after the method
invocation p7].

All interface methods return &all object that contains the relevant method information in-
cluding the serialized input parameters. Ondeadl object is obtained, it can be sent to a target
device (or several devices) by using a connected channel. The manual invocation scheme consists
of manually creating th€all object, and using a custom encoder to marshal arguments and invoke

the channels’ methods.

4.1.5 The Call Object

A Call object is a data structure that encapsulates the relevant information needed to invoke a target
Offcode’s method. ACall object contains an input buffer with a fixed length header describing the
target method identifier, the input buffer encoding and the buffer's length. According to a given
encoding scheme, the buffer is processed by the target method (or proxy). For Methods that return
avalue, theCall object also contains an output buffer. SectoBprovides further details regarding

the Call object.

4.1.6 Call's Encoding

HYDRA provides a generic encoding scheme that enables a developer to choose a unique encoding
per method. A developer can use a custom encoder or a standard one. Many formats and open
source encoders are available. SOAB, 2] and XML-RPC B1] are simple formats which are
widely used. Although some will argue that specialized protocols will be more efficient, in many
cases they turn out to be equally or more complicated and costly. Previous22#K 1] showed

that the overhead imposed by the XML-RPC protocol is negligible (only 16KB3i) and the

27

4.2. CHANNELS CHAPTER 4. PROGRAMMING MODEL

resulting performance is high. Sectiér¥ provides further details regardingvidRA’s supported

encodings.

4.1.7 Pseudo Offcodes vs. User Offcodes

We distinguish between pseudo Offcodes and user Offcodes. Pseudo Offcodes are runtime com-
ponents that happen to be implemented as Offcodes, but not written by the user for a particular
application. Reasons to do this are because these components export well-defined interfaces, or
because of a desire to reduce the processing time for dynamic loading of user Offcodes. By re-
quiring that user Offcodes interact with the device’s OS via pseudo Offcodes, we can minimize
the required processing of undefined references of an Offcode binary while installing it at the tar-
get device. One example for a pseudo Offcode is the “Hydra.Runtime” that provides the runtime
functionality through a well defined interface. The runtim@&stOffCodemethod enables a user
Offcode to get an interface to any Offcode currently registered at the runtime by providing it the
Offcode’s GUID. Another example is the “Hydra.Heap” Offcode, which provides an interface to

the OS memory routines.

4.2 Channels

Offcodes communicate with each other and with the host application by communication channels.
Channels are bidirectional pathways that can be connected between two endpoints, or connection-
less when only attached to one endpoint. A channel can be considered as a transport mechanism
used for communicating with Offcodes (analogous to the OS sockets abstractions used for net-

working).

4.2.1 Out-Of-Band Channel

The runtime assigns a default connectionless channel, calle@uh©f-Band Channel (OOB-
channel)for every OA-application and Offcode. The OOB-channel is identified by a single end-
point used to communicate with the Offcode without the need to construct a connected channel,
such as for initialization and control traffic that is not performance critical. The OOB-channel

is the default communication mechanism between peer Offcodes and between Offcodes and OA-

28

CHAPTER 4. PROGRAMMING MODEL 4.2. CHANNELS

applications. The OOB-channel is usually used to notify the Offcode regarding management events
and availability of other channels. For example, assume that an OA-application communicates with
Offcode« using the default OOB-channel. Once the OA-Application creates a specialized chan-
nel (see Sectiod.2.2 and attaches: to it, the runtime at the target device implicitly creates a
corresponding endpoint and notifiesusing o’s OOB-channel. Once is notified, it can start
listening for requests on the new channel. Figli@presents the code needed for obtaining the

OOB-channel for a sample Offcode.

Runtime *rt = GetRuntime();
IChannel *oob = rt->v->GetOOBChannel(rt,"Hydra.net.utils.Socket"
&IID_CHANNEL);

Figure 4.3: Obtaining the OOB-channel

4.2.2 Specialized Channel

The OOB-channel can be used for simple data transfer between the application and Offcodes and
among Offcodes. For high performance communication, a specialized channel that is tailored to
the needs of the application and the Offcode would be created. Enabling a specialized channel
is performed in two steps. First, the channel creator determines the channel characteristics and
creates its own endpoint of the channel. Second, the creator attaches an Offcode to the channel.
This action implicitly constructs the second endpoint at the target device, and notifies the Offcode
about the newly available channel. Once the channel is connected, the channel’'s API can be used
for communication. The channel API contains typical operations to read, write and poll. The
channel API also supports registration of a dispatch handler that is invoked each time the channel
has a new request.

Creating a channel involves configuring the channel type, synchronization requirements and
buffer management policy. A channel can be of tyjrecast that can only interconnect two Off-
codes, oMulticast, that can interconnect more than two Offcodes. A channel can be either sequen-
tial (synchronized) allowing one invocation at a time or parallel (un-synchronized). A channel can

be either unreliable or reliable, where the latter type is careful not to drop messages even though

29

4.2. CHANNELS CHAPTER 4. PROGRAMMING MODEL

buffer descriptors are not available. Note that a multicast channel can utilize hardware features, if

available, to send a single request to multiple recipients simultaneously.

Figure4.4 presents the typical sequence of operations required to initialize a channel and con-
nect it to a specific device. In this code, a reliable unicast channel is constructed with a zero-copy
policy for read/write and sequential synchronization guarantees. A callback handler is then in-
stalled at the OA-application side of the channel. The corresponding handler is invoked by the
runtime whenever data is available on the channel, as opposed to requiring the application to poll.
Connecting an Offcode to a previously created channel is easily performed by calling the channel’s

ConnectOffCodenethod which takes the target Offcode reference as a parameter.

/* get our runtime and create the Offcode */

Runtime *rt = GetRuntime();

IOffcode *ocode=rt->v->CreateOffcode(rt,"/offcodes/checksum.odf",
&IID_Checksum);

/* get the channel executive */

ChannelExecutive *exec;

ErrorCode res=rt->v->GetOffCode(rt,"Hydra.ChannelExecutive",
&IID_ChannelExecutive,
&exec);

/* set up the channel */

ChannelConfig config;

config.type = UNICAST_CHANNEL | RELIABLE_CHANNEL;
config.sync = SYNC_SEQUENTIAL;

config.buffering = DIRECT_READ | DIRECT_WRITE;
config.targetDevice = ocode->v->GetDeviceAddr(ocode);

[* create the channel to our target */
Channel *channel,
channel = exec->v->CreateChannel(exec, &config);

/* install a callback handler */
channel->v->InstallCallHandler(channel, MyHandler);

Figure 4.4: Creating a Channel

30

CHAPTER 4. PROGRAMMING MODEL 4.3. OFFCODE MANIFESTO

4.3 Offcode Manifesto

An Offcode manifesto is the means by which an Offcode defines its dependencies on peer Offcodes
and its requirements from the target device and software environment.

The manifesto is realized in an Offcode Description File (ODF). An ODF contains three parts:
the first part describes the structure of the Offcode’s package, containing the binding name of the
Offcode at the target device, and the Offcode’s supported interfaces. The Offcode’s interfaces are
typically described by a standard WSDL(] file. Figure 4.5 presents a typical import section
defined in an Offcode’s ODF.

<ocode>

<!- ocode package info ->

<package>
<bindname>Hydra.net.utils.Socket</bindname>
<GUID>7070714</GUID>

<interface>
<I- WSDL interface specification ->
<include>/offcodes/socket.wsdl</include>
</interface>
</package>

Figure 4.5: ODF - Part |

The binding name identifies the Offcode at the target device and it is used in the varibera H

APIs to identify the Offcode.

<I- ocode dependencies ->
<sw-env>
<import>
<file>/offcodes/checksum.odf</file>
<bindname>Hydra.net.utils.Checksum</bindname>
<reference type="Pull" pri="0"></reference>
<GUID>6060843</GUID>
</import>
</sw-env>

Figure 4.6: ODF - Part Il

31

4.3. OFFCODE MANIFESTO CHAPTER 4. PROGRAMMING MODEL

e Link: The Link constraint is denoted as™%" (. This is the default constraint fromto 3,

which actually poses no constraintsand/ may or may not be mutually offloaded (to the
same or different target device). It does, however, indicate that at least one of the Offcodes
needs the other to function.

e Pull: The Pull constraint is denoted as’’ (. This reference is used to ensure that both

Offcodes will be offloaded to theametarget device.

e Gang The gang constraint is denoted @s & (. This constraint is used to ensure that
both Offcodes will be offloaded tiheir respectivetarget devices. That is, if is offloaded,
G will be too, albeit on perhaps a different device.

~94" 3 and provides the asymmetri

[¢)

e Asymmetric Gang This constraint is denoted as
version of Gang. Offloading doesn’'t implies offloading..

Figure 4.7: Offcodes’s Constraints

The second part of an ODF describes the Offcode’s dependencies on peer Offcodes. This
section enables a developer to “design” the offloading process that will occur at deployment time.
HYDRA provides several constraints presented in Figuiethat can be used between any two
Offcodes denoted by and 5. The set of Offcodes and related constraints formCdihoading
Layout Graph The runtime (recursively) processes an Offcode’s ODF file to produce such a graph
which is later used by the runtime for deciding on the actual placement of Offcodes.

Note that there is ndsymmetric Pultonstraints as the motivation for usifgill is a tight in-
teraction between two Offcodes. Enabling asymmetry may result in the placement of two Offcodes
in two different execution domains. Figudet presents the mechanism by which a constraints is
set on an Offcode reference. In this exampl@udl constraint is set for the peer Offcode denoted
by: “Hydra.net.utils.Checksum”.

The last part of the ODF is concerned with device mappings. In order to enable dynamic
mapping between Offcodes and peripheral devices, on different hosts configurations, a developer
is required to supply a list of potential targitvice classethat can be used for offloading.

Figure4.8a sample Offcode for which the developer indicated the classes of potential devices
on which it can operate. It is the runtime’s responsibility to locate an instance of such an Off-

code which is suitable for running at one of the local devices that is in one of the listed classes.

32

CHAPTER 4. PROGRAMMING MODEL 4.4. DEPLOYMENT PROCESS

<I- device classes ->
<targets>
<device-class id=0x0001>
<type>NIC</type>
<mac>ethernet</mac>
<bus>pci</bus> <!- (optional) ->
<rate>1000</rate> <!- (Mbps) ->
<vendor>3COM</vendor> <!- (optional) ->
</device-class>

<device-class id=0x0002>
<type>NIC</type>
<mac>myrinet</mac>
<rate>10000</rate> <!- (Mbps) ->
</device-class>
</targets>
</offcode>

Figure 4.8: ODF - Part Il

Alternatively, the developer can specify the exact target for each Offcode using an Offcode’s URL.

4.4 Deployment Process

This section provides a description of the deployment process that is performed by s\ H

runtime. Figured.9 presents the control flow of the deployment process.

Once an Offcode is created by calling tBeeateOffCodéAPI, the appropriate Offcode ODF
files are recursively processed by the runtime to construct the application’s offloading layout graph.
Following that, the runtime determines the mapping between the Offcode device requirements and
the physical devices that are installed at the specific host. For this purpeseaHises the run-
time resource management module to obtain a list of locabkh capable devices (e.g. devices
that execute the ¥DRA runtime). Finally, an Offcode instance (object file) must be selected for
each given Offcode. Typically, the runtime uses a local library that is used for storing the actual in-
stances of the Offcodes. The library has a simple hierarchical structure as presented id Eigure
The library tree is first sorted by the device class and further by class specific properties. For ex-

ample, network interface cards (NICs) are further categorized according to their Media Access

33

4.4. DEPLOYMENT PROCESS CHAPTER 4. PROGRAMMING MODEL

[Logical Devices] [Layout Graph]

mapping *

[Physical Devices
| mapping

v

[Offcode Generation]

v

[Offloading]
\

[Execution]

Figure 4.9: Deployment Control Flow

Control protocols (MAC), thus theacidentifier (also depicted in the Offcode’s ODF file) is also

used for traversing the tree.

- lib
I
- offcodes
I
- NIC
|
|- ethernet
| |- GUID1
| | - 3com
| |- socket.oc
| |- socket.odf
| |- marvell
| |- mrvl_socket.oc
| |- GUID2
|- myrinet
| |- GUID2
| | - myricom
- GPU
- DISK

Figure 4.10: Offcodes Library Structure

34

CHAPTER 4. PROGRAMMING MODEL 4.4. DEPLOYMENT PROCESS

As an example, assume that an instance for the “Hydra.net.utils.Socket” Offcode is to be lo-
cated. First, the Offcode’s GUID, the device class andntlaeidentifiers are extracted from the
Offcode’s ODF (see Figured.54.8). In this case the tupleg§NIC,ethernet;;UID = 7070714}
and{NIC,myrinet, GUID = 7070714} are read. Next, the resource management module is con-
sulted to identify the currently installed devices (NICs) and to exclude irrelevant devices. E.g. if
the local host has only ethernet connectivity then the myrinet device is excluded at this stage. As-
suming this is the case, we are left with the first tuple extended with a list of locally installed NICs.
Next, the tree is traversed according to this information and an Offcode instance is located. If such
a mapping can not be allocated (due to resource limitations or incompatibility) the runtime tries to
find an Offcode that is capable of executing at the host CPU.

The next step involves adapting the specific Offcodes instances to the target devices either
by executing a corresponding compiler (for open source Offcodes) or by invoking the dynamic
linkage process. The last phase is the actual offloading of the Offcode which is further described
in Section5.6and discussed in details i&g.

Notice that the offloading layout is usually statically defined or set during deployment. The
reasoning behind this is to minimize the overhead concerned with the offloading operations. The
overhead imposed by enabling migration of Offcodes between devices is superfluous if this feature

is rarely used.

35

CHAPTER 5. ARCHITECTURE

Chapter 5

Architecture

In this chapter we present the design of the runtime system. The system implements the model
and provides facilities for programming, testing, deploying, and managing OA-applications and
Offcodes. Both the host OS and the target device firmware must support the interfaces defined by
the programming APl and implement the runtime functionality. A critical decision is to modularize
the framework into independent parts, so that modifying one will not affect the rest.

The bottom half of the runtime system comprised of library requirements for a particular target
device. Such libraries may be provided by the device manufacturer, system integrator, or by re-
searchers and the open source community. The upper half of the runtime system exists on the host
as operating system extensions. Our host implementation for Linux is modular, in that it main-
tains strict separation between device-specific code and generic code. It is implemented as a set of

kernel modules that are loadable on demand and do not require kernel source code modifications.

5.1 HYDRA Components

The HYDRA runtime is comprised of several components as shown in Figudrelt is accessed
through an offloading access layer that consists of a user-level library linked to each OA-Application,
and a kernel-level set of generic services.

The kernel layer consists of several functional blocks. $kstem Call Managemeahd Of-

floading APIblocks implement the various APIs defined in the programming modelCHagnel

36

CHAPTER 5. ARCHITECTURE 5.1. HYDRA COMPONENTS

User
OA-App
| user layer API |
Kernel .
Sys Call | Offloading | Channel Memory Layout | Resource
Mgmt API Mgmt Mgmt Mgmt Mgmt
Runtime API
Channel Executive
Channel Providers ’ Local ’ Remote‘

(pa) (TCP/IP| (isCSI) [RDMA|

,,,

Offcode

Device Offcode (Device OS W
i :\@ Offloading Runtime

Extensions
Figure 5.1: System Architecture

Managementunit manages the channels by interacting with @tennel Executive This mod-

ule handles channel creation by using a partic@lhannel Provider These providers are target-
specific and provided as part of the driver for each programmable device. A channel provider
creates various specialized channel types to the device and provides a cost metric regarding the
“price” for communicating with the device through a specific channel, in terms of latency and
throughput. The executive uses this capability information to decide on the best provider for a
specific Offcode. Th&kesource Managemeunhit keeps track of all active Offcodes and related
resources. Resources are managed hierarchically to allow for robust clean-up of child resources
in the case of a failing parent object. TNeEmory Managememhodule exports memory services

such as user memory pinning that is used by zero-copy channelsLajoeit Managemeninit
performs layout related functionalities such as analyzing the offloading layout graph. This unit re-
ceives the offloading layout graph as input and produces the mapping between Offcodes and target

devices. The module can be easily extended to support future offloading constraints.

37

5.2. OFFCODE INTERNALS CHAPTER 5. ARCHITECTURE

5.2 Offcode Internals

Offcodes are the building blocks of OA-applications. Each Offcode has state (data members),
behavior (operations on data) and a thread of control that is initialized by Y& K runtime.
Offcodes define and implement interfaces which are globally identified. An Offcode interface is
designed as a function table (much like a C++ abstract class) that is accessed through a virtual
table pointer. A virtual table enables better separation (encapsulation) between the interface and
the implementation, it can be used by several instances of the same Offcode thus decreasing the

required memory and achieves a binary level standard.

/* A pointer to an offcode interface */
typedef struct 10ffcode *PIOFFCODE;

/**
* the offcode’s basic virtual table
* real offcodes extend this interface.
*/
struct 10ffcodeVitbl {
ErrorCode (*Queryinterface)(PIOFFCODE pThis,

REFIID iid,

void** ppObject);
UINT32 (*AddRef) (PIOFFCODE pThis);
UINT32 (*Release) (PIOFFCODE pThis);

ErrorCode (*Initialize) (PIOFFCODE pThis);
ErrorCode (*StartOffcode) (PIOFFCODE pThis);
ErrorCode (*StopOffcode) (PIOFFCODE pThis);
ErrorCode (*GetOOBChannel) (PIOFFCODE pThis);

Figure 5.2: An Offcode Virtual Table

Figure5.2and Figureb.3present the related Offcode data structure. The Offcode’s virtual table
(Figure5.2) contains a set of function pointers that provide the basic Offcode’s functionality. For
example, every Offcode must implement théialize andStartOffcodemethods that are called at
deployment time. The Offcode interface, denoted®fjycode is merely a data structure containing
the Offcode’s virtual table. Offcodes should extend the b#Sitcodeinterface with specific

Offcode’s functionalities.

38

CHAPTER 5. ARCHITECTURE 5.2. OFFCODE INTERNALS

/**
* An offcode interface contains a pointer to an offcode vtable
* which hold the offcode’s functionalities.
*/
typedef struct |Offcode {
const struct |0OffcodeVibl *v;
} 10ffcode;

[** declares an offcode interface */
#define DECLARE_OFFCODE_INTERFACE(iname) \
typedef struct iname { \
const struct iname##Vtbl *v; \
} iname;

Figure 5.3: An Offcode Interface

For example, Figur&.4 and Figure5.5 present the declaration and implementation of the

HeapOffcode that resides in thdydra.Runtimgackage. Upon initialization, thebRA runtime

creates alHeapdata structure and sets its virtual table pointer to referendétibegpViblistructure

(denoted as “heapMethods” in Figuseb). The Offcode is then registered at the runtime which

creates a mapping between the Offcode’s URL andieapdata structure.

typedef struct IHeap *PIHEAP;

typedef struct IHeapVibl {
/* default offcode interface (IOffcode) */
DECLARE_DEFAULT_OFFCODE(PIHEAP);
[* Heap specific interface */
void* (*Alloc)(PIHEAP pThis, UINT32 size, UINT32 flags);
void (*Free)(PIHEAP pThis,const void* pMemory);

} IHeapVibl;

/* now define the offcode’s interface */
DECLARE_OFFCODE_INTERFACE(IHeap);

Figure 5.4: A Heap Virtual Table

39

5.3. CALL INTERNALS CHAPTER 5. ARCHITECTURE

/* heap specific methods implementation at our nic (nicos) */
void* HeapAlloc(PIHEAP pThis, UINT32 size, UINT32 flags)

{
return (void*)nicos_malloc(size);
}
void HeapFree(PIHEAP pThis,const void* pMemory)
{
nicos_free((void*)pMemory);
}

IHeapVtbl heapMethods = {..., HeapAlloc,HeapFree};

Figure 5.5: A Heap Offcode

5.3 Call Internals

A Call object is a data structure that encapsulates the relevant information needed to invoke an

Offcode’s method (see Figuke6). The structure is shared between the host and target devices.

typedef struct call_t
{
ulé type;
ul6 status;
ulé code;
ulé target id;

/* the memory input descriptor */
struct mem_desc_t in;

/* the memory output descriptor */
struct mem_desc_t out;

/* an opaque data for internal use */
u64 cookie;
} _ attribute_ ((packed)) call _t;

Figure 5.6: A Call Object

A Call's type is eithedN_CALL or INOUT_CALL The former corresponds to methods that

do not return data, thus only contain an input buffer, while the latter corresponds to methods that

40

CHAPTER 5. ARCHITECTURE 5.3. CALL INTERNALS

do return data, thus contain an in@nd output buffers. Call buffers are described by memory

descriptors that contain the buffers’ addresses (64 bit) and length (Fgdire

typedef struct mem_desc_t {

u64 address; [* buffer address */

u32 len; /* buffer size in bytes */
} __ attribute__ ((packed)) mem_descr_t ;

Figure 5.7: A Memory Descriptor

Upon creation, a call'statusis set toCALL_STATUS_ PENDING he device can follow a sim-
ple or extended invocation scheme. In the simple invocation scheme, the device notifies the caller
once the invocation has been completed. The extended invocation scheme consists of two acknowl-
edgements phases. The first, occurs once the input buffer has been consumed by the device. The
second acknowledgment occurs once the invocation is completed. The extended invocation scheme
enables a developer to quickly release the input memory buffer when it is no longer needed by the
device. Since zero-copy channels use DMA, the buffer can not be released voluntarily. Once the
device DMAs the input buffer, it sets the call's statusdALL _STATUS_ ACKEDWVhen the call
is completed (e.g., the data is ready at the output memory buffer), the call's status is changed to
CALL_STATUS_FINISHEBNd the host is informed. The caltedefield indicates the invocation
call error code and thearget_iddenotes the target of the invocation (which is typically the target

device’s runtime).

/* call status */

#define CALL_STATUS_PENDING (1«13) /* 0x2000 */
#define CALL_STATUS_ACKED (1«14) /* 0x4000 */
#define CALL_STATUS_FINISHED (1«15) /* 0x8000 */

Figure 5.8: Call Status

A user typically creates a call object and sends it to the target device via a connected channel
(see Sectiol.5). The kernel holds an extended representation ot#ilet object in the form of
akcall_t This structure is used by the runtime for updating the user’s calls status and for pinning
or unpinning user buffers before or after DMA operations. For brevity, we omit the details of this

data structure and corresponding operations.

41

5.4. CALL ENCODING CHAPTER 5. ARCHITECTURE

5.4 Call Encoding

HYDRA provides a generic encoding scheme that enables a developer to choose a unique encoding

per invocation. Typically, the call’s input buffer contains a fixed length header with the encoding

information. A developer can use a custom encoder or a standard one (seesiyure

/* encoding types */

#define ENC_CUSTOM (1«0)
#define ENC_SOAP (1«1)
#define ENC_XML_RPC (1«2)
#define ENC_MAX_TYPE (1«5)

Figure 5.9: Call Encoding

5.4.1 Custom Encoding

This section present a simple custom encoding scheme that is used inbw\ Hramework for

efficient data transfer. Figufe 10presents the custom encoding header which holds the encoding

information.

typedef struct CustomEncodingHeader {
union {
struct {
/* the target offcode URL */
char targetOffcodeBindName[OFFCODE_URL_LEN];
/* method id to invoke (from the offcode interface)*/
UINT8 method_id;
/* method version */
UINT8 method_ver;
[* number of parameters */
UINT8 param_count;
[* params endianess (BIG_ENDIAN, LITTLE ENDIAN)*/
UINT8 endianess;
} header;
char data[32];
} input;
} CustomEncodingHeader;

Figure 5.10: Custom Encoding Header

The header describes the invocation’s target Offcode, the method identifier and version, and

42

CHAPTER 5. ARCHITECTURE 5.4. CALL ENCODING

the number of parameters. Parameters are data structures (5i@jliréhat contain information

regarding their type and values (Figird 2.

typedef struct Param
{
ParamType type;
UINT8 data[0];
} _ attribute_ ((__packed_)) Param;

Figure 5.11: Parameter Data Structure

The functionality required in order to credall objects adhering to a custom encoding scheme

is provided in the form of &ustomEncodepseudo Offcode.

typedef enum ParamType {
PARAM_RAW = 0,
PARAM_CSTRING = 0x01000001,

PARAM_UINTS8 = 0x08000008,
PARAM_UINT16 = 0x18000018,
PARAM_UINT32 = 0x28000028,
PARAM_UINT64 = 0x38000038,
PARAM_SINTS8 = 0x48000048,
PARAM_SINT16 = 0x58000058,
PARAM_SINT32 = 0x68000068,
PARAM_SINT64 = 0x78000078,

PARAM_BOOL = 0x02000002
} ParamType;

Figure 5.12: Parameter Types

Figure5.13 presents a sample usage of the interface for creating such a call. The call’s tar-
get Offcode is “Hydra.utils. Tracer” and the method identifier is “Ox07” which corresponds to the
method “SayHello”. This method takes a fixed length character amayg @nd an integerqoun)
which determines how many time the array should be traced out (at the target device). Once a
reference to the custom encoder has been obtained (line 1), the call's parameters are initialized
(lines 2-6). Then, the call object is created (lines 7-9) and the header is initialized (line 10). Once
all of the parameters have been added to the call (lines 11-12), the call is ready to be passed on to

the target device via a connected channel.

43

5.4. CALL ENCODING CHAPTER 5. ARCHITECTURE

/I get the runtime call encoder
1. IEncoder* pEncoder = GetCustomEncoder();
/I create the call parameters, we will have 2 of them

2. Param* params|[2];

3. const char* str = "Hello from user";

4, int ¢ = 4

5. params[0] = pEncoder->v->CreateMethodParam(pEncoder,PARAM_CSTRING,
(void*)str,strlen(str)+1);

6. params[l] = pEncoder->v->CreateMethodParam(pEncoder,PARAM_UINT32,

(void*)&c,sizeof(UINT32));

7. ¢ = pEncoder->v->GetParamsSize(pEncoder,params,2, TRUE);

/I create the call object
8. CallAttr attr = {TYPE_IN,ENC_CUSTOM, ENC_NONE, RUNTIME,

OFFCODE, c, 0 };

9. ICall* pMyCall = CreateCall(&attr);

/I now setup the header
10. pEncoder->v->InitCallEncoding(pEncoder,pMyCall,0x07,0x00,

"Hydra.utils. Tracer");

/l add the parameters to the call
11. pEncoder->v->AddMethodParam(pEncoder,pMyCall,params[0]);
12. pEncoder->v->AddMethodParam(pEncoder,pMyCall,params[1]);

Figure 5.13: Creating a Custom Encoded Call

5.4.2 SOAP Encoding

As SOAP is de facto the standard for web services invocation, we have chosen to provide a proto-
type implementation, for our programmable NIC, that will enable to encode a method invocation
using SOAP. Our implementation is based on the the gSOAP web services t6dKitlis toolkit

offers an easy to use XML to C/C++ language binding by using an extended C/C++ compiler. The
gSOAP compiler generates efficient XML serializers for C and C++ data types that are used by the
HYDRA runtime.

The basic gSoap functionality over TCP has been modified to veRK APIs. For example,
instead of invoking the regular TCP “connect” API, gSoap is set to invoke “CreateChannel”. Upon
receiving a buffer on such channel, the NIC’s runtime invokes a handler which in turn retrieves
the buffer and calls gSoap to parse it and execute the corresponding function. Once this is accom-
plished, and the function returns a value, gSoap serializes the return value into the call’s output

buffer. Once the call is finished, the client side code uses gSoap to deserialize the buffer and return

44

CHAPTER 5. ARCHITECTURE 5.4. CALL ENCODING

a value as if the function has been executed locally.

Figure5.14presents a sample user program that uses the gSoap framework in order to invoke a
method implemented at some programmable NIC. Again, the invocation’s target Offcode is “Hy-
dra.utils.Tracer” and the method is “SayHello”. The figure clearly shows that the gSoap framework

simplifies the invocation process and removes the burden of manually constructing a call object.

/I include generated proxy and SOAP support
#include "soapH.h"
#include "tracer.h"
int main() {
char* msg = "Hello from user";
int num = 5; int status = -1;
struct soap soap; /I allocate gSOAP runtime environment
soap_init(&soap); /[must initialize
soap_call_nic__SayHello(&soap, "Hydra.utils.Tracer", ™,
msg, num, &status);

Figure 5.14: Creating a SOAP Encoded Call

The method signatureoap_call_nic__SayHellie automatically generated by the gSoap com-
piler invoked on the method declaration file presented in Figut& Developers should merely

need to implement the method using the target device’s runtime APIs.

/lgsoap nic service name: tracer

/lgsoap nic service style: rpc

/lgsoap nic service encoding: encoded

/l[gsoap nic service namespace. urn:xmethods-delayed-quotes
/lgsoap nic service location: http://services.xmethods.net/soap
/lgsoap nic service method-action: sayHello "™

int nic__SayHello(char *msg, int count, int* status);

Figure 5.15: Method Declaration (H file)

Figure5.16and Figures.17 present the XML format of a typical request and response associ-

ated with this specific method.

45

5.5. CHANNEL INTERNALS CHAPTER 5. ARCHITECTURE

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope>...
<SOAP-ENV:Body SOAP-ENV:encodingStyle=...>
<nic:SayHello>
<msg></msg>
<count>0</count>
</nic:SayHello>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5.16: SOAP Request

<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope>...
<SOAP-ENV:Body SOAP-ENV:encodingStyle=...>
<nic:SayHelloResponse>
<status>0</status>
</nic:SayHelloResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Figure 5.17: SOAP Response

5.5 Channel Internals

A channel is a transport abstraction used by Offcodes to communicate with each other and with
OA-applications. Underlying every channel is a simple protocol capable of transferring data from
one device to another. Typically, the device driver of the target hardware implements such a mech-
anism and exports this capability to t@dannel Executivenodule. For example, a DMA master
device exports a “zero-copy” channel capability thus enables the construction of zero-copy chan-
nels to the device.

Figure5.18shows a sample zero-copy channel architecture implemented for a programmable
NIC. The right side of the figure presents the logical view as seen from the OA-application while
the left side presents the internal architecture. The figure presents an OA-application that com-
municates with Offcoder through a proxy connected to a private channel identified by a channel
descriptor. The MDRA runtime maps each channel descriptor to an internal channel object that is

created by the target device channel provider. This specific provider constructs two kernel buffer

46

CHAPTER 5. ARCHITECTURE 5.5. CHANNEL INTERNALS

Architectural View Logical View

User

libhydra

channel descriptor <,

Kernel \:, channel mapping
Al
InRing OutRing k

IChannel -7

I 1
NIC T - [\

AN .shadowed
¢ >—{ Hydra Runtime

\ ;. rings

Channel Offcode

Figure 5.18: Example Zero-Copy Channel

rings to communicate with the target Offcode. TIh&ing holds memory descriptors that point

to host memory locations that contain tBall objects. Although &all object usually contains a

return descriptor for delivering the invocation return value,Gh#Ringis necessary since it con-

tains pre-posted application descriptors that are used by the runtime at the device for spontaneous
messages triggered by the Offcode. The channel endpoint at the device holds a shadowed copy
of the ring descriptors; and, channel management is maintained using a dedicated shared memory
region per channel. Th@all object is copied using the NIC’s DMA bus master capabilities to an
internal buffer owned by the target Offcode. T@all is de-serialized and the Offcode is invoked.

The Offcode uses the embedded return descriptor to DMA the return value back to the application
and optionally notifies the application using an event (usually interrupt) described by the shared

memory region.

The described invocation process uses a channel provider that invokes a device specific method
called: invoke For example, thenvokemethod for our programmable NIC is presented in Fig-
ure5.19 A typical invocation starts by mapping the call’s virtual address to a bus address (lines:
10-12), registering the call in a user specific data structure (line 14) and finally, manipulating the

device’s registers which triggers an event at the device (line 17).

a7

5.6. OFFCODE DYNAMIC LOADING CHAPTER 5. ARCHITECTURE

int invoke(struct ace_private *ap,
kcall_t* kcall, user_context* uc)

{

1. struct cmd issueCmd,;

2. int err=0;

3. u64 dma_addr = 0;

4. u32 pars[4];

5. cmd_params_t* pParams = (cmd_params_t*)pars;
6.

7. issueCmd.evt = TG_METHOD INVOKE;

8. issueCmd.code = 0O;

9. issueCmd.idx = 0;

10. dma_addr = pci_map_page(ap->pdev, virt_to_page(kcall),

offset_in_page(kcall),
sizeof(*kcall),PCI_DMA_TODEVICE);
11. pParams->len=3;
12. set_hostaddr(((tg_hostaddr_t*)pParams->params),dma_addr);
13. pParams->params[2]=kcall->call.target_id;
14. err = ht_insert(kcall, kcall, uc->calls);
15. if (unlikely(err < 0))
16. goto reg_err;
17. if (ace_issue_cmd_sleepy(ap->regs, &issueCmd, pParams)<0)
18. goto issue_err,;
19. return O;

Figure 5.19: Sample Invoke Method

5.6 Offcode Dynamic Loading

Supporting dynamic Offcode loading is an important building block in thv®Ria framework.
We have considered different approaches for implementing dynamic loading. The simple solution
would be to hand over the Offcode to the target device and require that each device implement a
simple Offcode loader. However this naive solution is quite expensive in terms of device resources.
Another approach would be to fully perform the linking process at the host, and only transfer the
Offcode when it is ready to be deployed (at a specific memory region). The device’s loader will
merely need to initialize the Offcode and execute it.

HYDRA runtime is built to support both approachesctHA support for dynamic offloading is

provided by a set of device-specific loaders that implement a generic interface for Offcode loading.

48

CHAPTER 5. ARCHITECTURE 5.6. OFFCODE DYNAMIC LOADING

The interface is intended to be implemented by the device driver of each target peripheral. Each
loader can decide whether to transfer the Offcode as is, or to perform some processing at the host
first, depending on features of the target.

As a proof of concept, we have created such a loader for our programmable network8tard [
The dynamic offloading logic is implemented both in the device and in the host. A device-specific
host-based loader is implemented at the NIC’s driver; it uses the OOB-channel of the device’s
runtime to communicate with the target device loader, which is actually a pseudo Offcode at the
target device (identified by the Offcode URL: “Hydra.Runtime.Loader”). Figue®presents the

message transfers that occur in loading a single Offcode.

Host NIC

A\

A

IIocOffcodeM emory

gae Addr€§

I

n
StaIIOffCOde(Vo,d* bIOb)

M

Figure 5.20: Offcode Dynamic Loading Flow

Calculate Offcode Size
(.text,.data,.rodata...)

A\

Generate Linker File
Link the Offcode
8p02J0 9INXBXT 7 |[eISU|

Once the host-based loader calculates the Offcode’s size, it invokédldoateOffCodeMem-
ory exported by the device’s loader. This method allocates the memory region that will be used
to store the Offcode binary and returns the device’s memory address to the caller. The host-based
loader dynamically generates a linker file adjusted by the returned address and links the Offcode
object. It then transfers the linked Offcode to the target device where it is placed and executed.
All the above interactions make use of the OOB channels that are created for the host and target

HYDRA runtimes.

49

CHAPTER 6. NICOSCASE STUDY

Chapter 6

Nicos Case Study

This chapter presents a Network Interface Card Operating System catte®sNThe motivation
behind Ncos is to facilitate the evaluation of thebRA framework. As a prototype device’s
OS, the generic MDRA framework has been fully integrated withindds. All HYDRA's sample

applications have been built on top ofdbs (see Chaptes).

6.1 Nicos Environment

Nicostarget device is a programmable NIC based on the Tigon2 chipset. The Tigon programmable
ethernet controller is used in a family of 3Com’s Gigabit NICs. Fighepresents the NIC's ar-
chitecture. The NIC supports a PCI host interface and a full-duplex Gigabit ethernet interface.
The Tigon has two 88 MHz MIPS R4000-based processors which share access to external SRAM.
Each processor has a one-line (64-byte) instruction cache and a private on-chip scratch pad mem-
ory, which serves as a low-latency software-managed cache. Hardware DMA and MAC controllers
enable the firmware to transfer data to and from the system’s main memory and the network, re-
spectively.

The Tigon controller uses aevent-loopapproach instead of an interrupt driven logic. The
motivation is to increase the NIC’s runtime performance by reducing the overhead imposed by
interrupting the host's CPU each time a packet arrives or a DMA request is ready. Furthermore, on

a single processor the need for synchronization and its associated overhead is eliminated.

50

CHAPTER 6. NICOSCASE STUDY 6.2. NICOSSERVICES

Scratch Scratch
Pad | CPUA CPUB ™| Pad
f f Memory External
Memory Bus - [P
(Y Bus RAM
v v Arbiter
Read Write
DMA DMA

=

PCI
Interface

MAC

+ + The Tigon Chipset

v Y

PCl Full-Duplex
Gigabit Ethernet

Figure 6.1: Tigon Controller Block Diagram

6.2 NICOS Services

This section presentsiBboS services starting with the memory management servicephitask
management andINOs networking and filtering APIs. Following that a detailed description of

the Ncos scheduling framework is provided.

6.2.1 Memory Management

Nicos has to allocate memory each time a task, a queue or a packet is creatsnls défault
memory allocation algorithm is based on the “boundary tag method” describ@8]jmfhich is
suitable for most applications. Implementing a “generic” memory allocation mechanism is prob-
lematic. Since different realtime systems may have very different memory management require-
ments, a single memory allocation algorithm probably will not be appropriate. To get around this
problem the memory allocation APIs provided imd®s can be easily replaced by using the filter-

ing APIs (see Sectiof.2.4). A user’s task can easily replace the default methods by installing a
special kind of a filter. The registered method (i.e., the “filter” action) will be called instead of the
default allocation routine. oS memory allocation APIs can also enable a developer to choose

thetarget of the allocated memory. Memory consuming applications can allocate memory at the

51

6.2. NICOSSERVICES CHAPTER 6. NICOS CASE STUDY

host. The memory is transparently accessed using DMA. This scheme is also suitable for devel-
oping OS bypass protocols, which removes the kernel from the critical path and hence reduces the

end-to-end latency.

6.2.2 Task Management

Nicos provides several task management APIs that enable a developer to create/destroy tasks and
to control their lifecycle state. The API enables a developer to create a periodic or non-periodic
task, to yield, sleep, suspend, resume and kill a task. Although periodic tasks can be implemented
by a developer on top of a sleep API, an explicit facility for periodic tasks has been added so
the OS is fully aware of them. Such a design allows the OS to minimize the ready-to-rtinning
latency. Providing the timeliness guarantees required k;ypN has been a major challenge due to

the non-preemptive architecture of these NICs.

6.2.3 Networking

The current networking API is very simple. 1®&bs provides only a single method that sends

raw data. The data is provided by the developer and includes all of the necessary protocol head-
ers. Ncos supports synchronous and asynchronous send calls. The asynchronous ones are non-
blocking. When using the synchronous mode, the execution is blocked until frame transmission is
completed. Upon completion, the provided callback is called. Receiving a packet is currently done

only via filter registration.

6.2.4 Filtering

When deciding which functionality is needed to be offloaded to the NIC, one should look for
common building blocks in today’s networking applications. The ability to inspect packets and
to classify them according to specific header fields is such a building block. For instance, the
classification capability is useful for firewall applications, applying QoS for certain traffic classes,

statistics gathering, etc. INOs services include a packet filtering and classification capabilities.

1The time from the moment a task becomes ready-to-run until it starts execution.

52

CHAPTER 6. NICOSCASE STUDY 6.2. NICOSSERVICES

In Nicos, a filter is a first class object. As such, it can be introspected, modified and created at
runtime.

A sample code for installing a filter is presented in FigGt2 The “registerICMPFilter”
method, registers a filter that drops all ICMP packets. Installing a filter is performed in two steps.
In the first step, a pattern filter structure must be initialized (lines 1-7). This structure contain pat-
terns that should be matched against each packet. In the second step, a filter is created (lines 8-9)
and installed (lines 10-11) at either the receive path (“Rx filters”), the transmit path (“Tx filters”)
or both. Note that two kinds of filters exist: gatic filterand adynamic filter The former matches
a packet against a fixed pattern while the latter uses a custom callback function that is invoked for

each received or transmitted packet.

void registerPingDropFilters(void) {
/* we would like to match ICMP packets */
1. valueMask[0] = ICMP_PROTOCOL;

2. bitMask[0] = Ox1; // match 1 byte

/* start matching at ICMP_PROTOCOL_BYTE */
3. pattern_filter.startindex =ICMP_PROTOCOL_BYTE;
4. pattern_filter.length =
5. pattern_filter.bitMask = bitMask;
6. pattern_filter.numValues = 1,
7. pattern_filter.valueMask = &valueMask;

/* create the filter, add to Rx/Tx flows */
8. pingDropFilter.filter_type = STATIC_PATTERN_FILTER;
9. pingDropFilter.pattern_filter = &pattern_filter;
10. nicosFilter_Add(&nicosTxFilters,&pingDropFilter, DROP,NULL,
GENERAL_PURPOSE_FILTERS_GROUP &pingFilterTxId);
11. nicosFilter_Add(&nicosRxFilters,&pingDropFilter, DROP,NULL,
GENERAL_PURPOSE_FILTERS_GROUP,&pingFilterRxId);

}

Figure 6.2: Installing “Ping Drop” Filters

6.2.5 Scheduling

As discussed in Sectiofi1 most high-end NICs do not support preemption. Schedulers for such
non-preemptive environments usually use an event-driven model. For example, the programmable

NIC used for evaluating N 0S, provides a special hardware register whose bits indicate specific

53

6.3. <SCHED>++ ALGORITHM CHAPTER 6. NICOSCASE STUDY

events. This event register is polled by a “dispatcher loop” that invokes the appropriate handler.
Once the event handler runs to completion, the dispatcher loop resumes.

Using a common real time scheduling algorithm for such devices yields a great inefficiency in
the resulting schedule. INOs scheduling scheme, henceforth calledSched-++, is capable of
extending any given non-preemptive scheduling algorithm with the ability to create finer-grained
schedules. The scheme has been used for implementing an enhanced versi@&adfedbeDead-

line First (EDF) scheduler.

6.3 <Sched>++ Algorithm

6.3.1 Common Schedulers

Several scheduling algorithms have been implemented fooll The Cyclic-Executivesched-
uler [14] is the simplest one. The cyclic executive approach has several advantages: it is simple
to understand, easy to implement and very efficient. Unfortunately, the deterministic nature of the
algorithm requires careful design and massive testing in order to produce deterministic timelines.

A more flexible scheduling algorithm is the non-preemptive version of the EDF algordthim [
In EDF, the task with the earliest deadline is chosen for execution. In the non-preemptive version,
the task runs to completion.

Both EDF and cyclic executive are not optimal for a non-preemptive environment. For a set
of scheduable tasks, the resulting task schedule meets the tasks’ realtime requirements, however
with a rather low CPU utilization. The following sections presentd&hed-++ algorithm. The

algorithm utilizes thecompiler’s capabilities in order to create an optimized tasks schedule.

6.3.2 Related Definitions

Atask is a sequence of operations to be scheduled by a scheduler. AtaskBystéii, - -- , 7},
where each task; is released periodically, is calledpariodic task systentach task; is defined
by a tuple(e;, d;, p;, s;), wheree; is the task’s Worst Case Execution TImedeT), s; is the first
time at which the task is ready to run (also known as the start tiia$, the deadline to com-

plete the tasks once it is ready to run, gnds the interval between two successive releases of

54

CHAPTER 6. NICOSCASE STUDY 6.3. <SCHED>++ ALGORITHM

the task. Thus, a task; is first released at; and periodically it is released evepy. After each
periodic release, at some timgthe task should be allocatedtime units before deadline+ d;.

A non-periodictask is a task that is released occasionally, and at each invocation that task may
require a different execution time. Wybrid task systens a system that contains both periodic and
non-periodic tasks. To differentiate between the periodic and non-periodic tasks, a periodic task

will be denoted a4’

<Sched-++ assumes hybrid task systenwhere for each periodic task; = p;. To represent
the runtime instance of a task, the notion dfcketof a task is introduced. A ticket of a periodic
task, T’ is defined as the tuple:;, p;, Pr;), wheree; andp; are the execution and the period of the
task, andPr; is the task’s priority. The ticket of a non-periodic tagk, is (e;, Pr;). This assumes

that any type of task scheduler used by the OS can be extended using this ticket.

6.3.3 Algorithm Overview

<Sched-++ uses several compile-time techniques, which provide valuable information that can
be used at runtime. The developer us&xhed-++ specific compiler directives in order to define
the system’s tasks and tickets. The compiler uses these tickets as simple data structures in which it

can store the calculateticETs.

The compiler uses the generated control flow graph in order to calculatec¢lEe of the
periodic and non-periodic tasks (and warns if the code should be annotated due to recursions,
unbounded loops etc.). Typical periodic tasks are comprised of a single calcwlater while
non-periodic tasks may be comprised of a setvafETs. In this context, &/ CET is defined as the

worst case execution time between two successive yields.

The ability of a compiler to modify the developer’s code, at predefined places, is also utilized.
By modifying the code, the ticket primitive is maintained automatically. The enhanced compiler
updates the ticket with the task’s nextCET prior to eachyield invocation. This technique also
eliminates the need to introduce a complicated runtime structure that contains\alt s of a
given non-periodic task. Aingleticket is recycled to represent the next task segmenET at

runtime.

55

6.3. <SCHED>++ ALGORITHM

6.3.4 <EDF>++ Algorithm

In order to implement the enhanced version of the EDF algorithm, the ticket of a periodiE imsk
extended to bée, p, Nr, Nd, Pr), where the additional field¥r and N d are the next release time
and deadline of the task, respectively. Figar8 presents the main logic behind tkeEDF>++

algorithm, which is invoked by th&ield() function call. Part | of the algorithm starts with the

classical EDF algorithm. The algorithm selects the next periodic Task that has the earliest

deadline among all periodic tasks that are ready to run.

Yield() called from task T}:

Theet = {Ti|Ti.Nd = min(T;.Nd|T;.Nr > t)};

/* If no periodic task is ready, then
choose from the non-periodic tasks */
if (Thext = NULL)
SlackTime = duration until next
periodic task is ready;
/* Pick the next non-periodic task
that will run at most 'SlackTime’
time units */
Thext = PickNonPeriodicTask(SlackTime);

/* if no task is ready, the Idle task
will run for the time duration until
the next periodic task is ready */
if (Thegt = NULL)
Thext = Idle_Task(Timeout)

SwitchTo(Thext);

Part 1l of the algorithm is invoked when no periodic task is ready to run. The algorithm uses
the tickets of the non-periodic tasks in order to select the next task to run. The chosen task should
be able to run without jeopardizing the deadline of the next (earliest) periodic task. The scheduler
considers the subset of non-periodical tasks that are ready to run, such that their next execution
time is smaller than the slack time (the time until the next periodic task is ready). Among such
tasks, the algorithm can use various criteria to pick the next task to be scheduled. For instance, one
can use the algorithm irbP], which chooses a set of tasks that minimizes the remaining slack time.

Any such algorithm would use the next execution timec€T) of the tasks listed in their tickets.

Figure 6.3:<EDF>++ Scheduler

56

CHAPTER 6. NICOSCASE STUDY

CHAPTER 6. NICOSCASE STUDY 6.3. <SCHED>++ ALGORITHM

When there is no suitable task for execution, ithee task is invoked until the next periodic task
is ready to run (part III).

Notice that the scheduling algorithm attempts to schedule non-periodic tasks whenever there
is an available time slot in the schedule. Available time slots may exist between periodic slots or

whenever a task completes its execution ahead of time, which can only be determined at runtime.

6.3.5 <EDF>++ Evaluation

An experimental system with both EDF artEDF>++ schedulers has been implemented. The
task set includes twenty tasks where half of them are periodic. The system has been executed
with various periods and constraints. On average, for plain EDRpile task has been executed
28.6% of the time, yielding a CPU utilization of1.4%. For the<EDF>++ algorithm, theDLE

task ran14.7% of the time corresponding t85.2% CPU utilization, an increase @0% in the

system’s throughput.

180 — 171.6
[EDF++ scheduler
EDF scheduler

| O EDF++ scheduler
EDF scheduler 143.6 1443

160 —

1117

83.4

475 sL7

Execution Number

(a) Task A

Time [msec]

140
120
100 —
80 —
60 —
40
20

o -

1139

52.5

Execution Number

(b) Task B

83.9

Figure 6.4: Invocation Times

Figure 6.4 shows a sequence of invocation times for two sample tasks measured from the
system’s start time. The x-axis shows the number of invocations, where the y-axis presents the time
when the specific invocation occurred. The response times, in-between invocations, for the non-
periodic tasks are presented in Figbre. For example, the average response time for task A, using
<EDF>++, is 10.83ms with standard deviation af.51ms versus22.86ms and 18.87ms using
EDF (a53% decrease in the average waiting time). For task B the valued ag3ms and5.78ms

agains6.03ms and2.54ms (57% decrease in the average waiting time). The graphs clearly show

57

6.3. <SCHED>++ ALGORITHM CHAPTER 6. NICOSCASE STUDY

70 40

——— TaskA-EDF+ —— TaskB-EDF+
60 ~/~——— TaskA-EDF 35 ~/~——— TaskB-EDF
50
40

30

Response Time [msec]

20

Response Time [msec]

10

0 T T T T o 1 0 T T T T T 1
1 2 3 4 5 6 7 1 2 3 4 5 6 7

Execution Number Execution Number

(a) Task A (b) Task B

Figure 6.5: Response Times
that the response times for the non-periodic tasks using<tlBF>++ scheduler are improved.

Regarding the response times for periodic tasks, the average response time is approximately the
same (.37ms vs. 1.33ms with standard deviation dt.49ms vs 2.39ms). Thus, the improved

response for the non-periodic tasks didn't affect the response time for the periodic tasks.

58

CHAPTER 7. MULTI-USER ENVIRONMENTS

Chapter 7

Multi-User Environments

The strength of the proposed programming model lies in the the ability to reuse the Offcode com-
ponents. On the one hand, reusability may simplify and speedup the development cycle, but on
the other hand, in multi-user environments, reusing the same Offcode in several applications may
substantially complicate the offloading layout design. Intuitively, the problem of defining an opti-
mal offloading layout graph for a group of offload-aware applications may introduce an infeasible
combinatorial problem. This section provides an Integer Linear Programming methodology (ILP)
for optimizing such complex layouts. The purpose of such a formulation is to enable expression
of every offloading layout graph as a set of linear equations. Any ILP solver can then be used to

solve the equations given a target optimization function.

We provide the mathematical presentation of an offloading layout graph and later present, as
an example, two possible criteria that could be used as target optimization functions. A detailed
example of formulating a sample offloading graph is presented#h RAs the simple graphs are
trivially easy to solve, the strength of such a formulation is only apparent at complicated scenarios.
Such scenarios make the offloading layout design process significantly more difficult. In such
cases, a greedy solution does not provide an optimal solution, hence the need for such a formulation

is apparent.

59

7.1. FORMULATION CHAPTER 7. MULTI-USER ENVIRONMENTS

7.1 Formulation

As the offloading layout design essentially produces a graph, it is desirable to mathematically
express the dependencies among the graph vertices (i.e., Offcodes). This section provides the ILP

formulation that is required for optimizing the offloading layout graph.

7.1.1 Definitions

We begin by defining the basic elements of the layout graph. The layout gfaph (V, F)

includes the set of Offcodes as vertices, and the channel constraints among them are the edges. At
deployment time the runtime associates with each noffeffcode) a compatibility target vector

c, representing the potential target devices that can host the Offcode. Note that the host CPUs are
included in the list of devices. LeY = |V/| be the total number of Offcodes, and fét= |C,,| be

the number of NDRA compatible devices.

NoTATION 7.1.1 Let C,, be a constant binary bit vecto€* = 1 if Offcode ncanbe offloaded to

device kvn € N,k € K, C* € {0,1}.

To simplify the presentation we assume that the first entry in each végtoorresponds to the

host CPUs.

NOTATION 7.1.2 Let X,, be the ILP output vectorX* = 1 if Offcode nshouldbe offloaded to
device kvn € N,k € K, X € {0,1}.

The following equation guarantees a unique placement of each Offcode (a single Offcode can

be offloaded to a single device).

N K
M Xpch=1. (7.1)

n=1 k=1

Additionally, an Offcoder is not offloaded (remains in the host CPUYT = 1.

7.1.2 Constraints Formulation

For each one of the channel constraints (see Sedt®)nan integer linear equation is defined.

60

CHAPTER 7. MULTI-USER ENVIRONMENTS 7.2. OPTIMIZATION OBJECTIVES

NOTATION 7.1.3 Let £/ = (m, n) be an edge from Offcode to n.

The following equations formulate the various channel constraints.

Pull Constraint:

VE" € Symmetric Pullvk : X* = X* (7.2)
Gang Constraint:
K K
VE}, € Symmetric Gang) ~ X} => X} . (7.3)
k=1 k=1

Asymmetric Gang Constraint:

K K
VE}, € Asymmetric Gang» _ X} <> X} . (7.4)
k=1 k=1

These equations are sufficient to represent the joint offloading layout graph as a set of linear

equations.

7.2 Optimization Objectives

We have identified several optimization functions, two of which presented below. The list is by no
mean complete, additional objectives functions can be easily added to address various applications

needs.

1. Maximized Offloading — The trivial objective is to offload as many Offcodes as possible.
The motivation for such a goal is to minimize the CPU usage and memory contention at the

host: N K
st max (ZZXS) .

n=1 k=1

2. Maximize Bus Usage — This objective aim is to fully utilize the bus interconnect bandwidth
among devices. A “Price” value is assigned to each Offcode. This value represents the esti-
matedaveragebus bandwidth that is required by the specific Offcode. The bigger the value,
the more bandwidth is required by the Offcode. In addition, we define a capability matrix

per host. This matrix describes thmaximalbus bandwidth between every two peripheral de-

61

7.2. OPTIMIZATION OBJECTIVES CHAPTER 7. MULTI-USER ENVIRONMENTS

vices. This matrix is used for limiting the number of offloaded Offcodes as the ILP solution

must be limited by the physical busses limitations.

62

CHAPTER 8. FRAMEWORK EVALUATION

Chapter 8

Framework Evaluation

The previous chapters described thedfa system, including its programming model and its
internal design. In this section we demonstrate the usevafftA through several sample applica-

tions.

8.1 TiVoPC

This section present a case-study for developing the TiVOPC application using our proposed frame-
work. We focus on showing how¥bRA simplifies the design and development of offload-aware

applications.

8.1.1 TiVoPC Architecture

The system architecture of the TiVOPC application is presented in F&ir& he figure presents
a client-server architecture comprised ofideo Serveand aVideo Client

The Video Serverpresented on the left hand side of Fig@r&, corresponds to the cable-TV
broadcaster. Typically, Network Attached Storage (NAS) devices are used to store the massive
amount of broadcast media (MPEG movies, radio channels etc.). In order to emulate such a broad-
caster, we have implemented a software-based server that is executed on a standard PC. The server
reads the media from a NAS device which is mounted as an NFS device, and streams the media to

the client as a stream of UDP packets.

63

8.1. TIVOPC CHAPTER 8. FRAMEWORK EVALUATION

.‘ Simple Server ,' @
(1) User Level User Level

(3) NIC NIC Smart Disk GPU
Offloaded Server

O—0 O || O=0 ||O=0

File Broadcast Streamer Streamer File Decoder Display
Video Server A Video Client A
' '
]
NAS Device
NFS Server

Figure 8.1: TiVOPC Software Architecture

The architecture of th¥ideo Clientis shown on the right hand side of Figusel. The PC

hosts the following programmable peripherals:

e NIC — This device is connected to the multimedia streaming server and intercept the trans-

mitted UDP packets.

e “Smart Disk” — Although programmable disk controllers are common, in order to speed
up prototyping, we have decided to emulate one by using a programmable NIC. Our “Smart
NIC” exports a standard filesystem block device that interacts with an NFS server for storing
the data (i.e., the streamed video is effectively stored on a remote disk). Essentially, we have

created an NFS Offcode that implements various parts of the NFS-protocol.

e GPU — The graphics processing unit is responsible for rendering and displaying the movie

on the screen.

8.1.2 TiVoPC Logic

As the programming model suggests (Sectjrihe first phase in the development process should

be designing the TiVOPC logic. This phase is usually performed without considering the physical

64

CHAPTER 8. FRAMEWORK EVALUATION 8.1. TIVOPC

placement of the various components. FigBrepresents the following TiVoPC components.

e GUI — TiVoPC GUI contains a viewing area, for displaying the received video stream, and

several controls used for rewinding, pausing and playing back the movie.

e Streamer— This component handles incoming packets. Specifically it should extract the
network packet’s payload that contains the three types of MPEG frames: the I-frame, P-
frame and B-frame. The component should also process packets that are received from the
storage device. The component implementsakbackmethod which is invoked each time
a packet is received. Upon invocation, Beeamerextracts the payload and passes it to the

Decodercomponent.

e Decoder— This component is responsible for decoding the MPEG frame for later displaying

it on screen. This component holds a reference@isplay component.

e Display— This component represents the display. For example, in a host level implemen-
tation this object could potentially wrap an OpenGL's FrameBuffer object or simply use a

memory map of the GPU’s physical memory (for the direct manipulation of the display).

e File — This component provides the basic file level APIs, such as open, read, write and

close.

e Broadcast— This component is used at tMedeo Servefor broadcasting the movie frames
back to the client. This component provides unreliable message delivery as it uses UDP as

its transmission protocol.

Some of the components could have been omitted. For example, the Streamer could directly
access the local file system using the standard APIs, without the need for an adéit®oaject.
Alternatively, the Decoder could directly manipulate the display without the need for another level
of indirection that is realized as tHeisplay component. Although this observation is correct,
introducing such objects improves the flexibility of the design. For instanceDi$play Offcode
for the local GPU is found, either locally or in the vendor’s Offcode library, it will be used at the

GPU, thus increasing the overall application performance.

65

8.1. TIVOPC CHAPTER 8. FRAMEWORK EVALUATION

Once the components have been identified, we decide which of them should be implemented as
Offcodes. Additionally, the Offcode communication channels should be also specified. Following

are three characteristics that typically indicate a component should be implemented as an Offcode:

1. The component can use specialized capabilities that exist only at a peripheral device.
2. Offloading the component reduces the amount of traffic on host busses.

3. The component is tightly coupled to another Offcode.

In our example, all the components except for the GUI fall into one of these three categories

and thus will be implemented as Offcodes.

8.1.3 TiVoPC Offloading Layout

The offloading layout of the TiVoPC application matches an Offcode to a peripheral device. The
ODF discussed in Sectioh 3 contains this information in addition to the Offcode’s constraints
regarding its peer Offcodes. For brevity we omit the ODF details and instead provide the consid-

erations for designing the offloading layout as depicted in Figze

NIC GPU
PULL
Streamer Streamer File Decoder Display
Video Client

Figure 8.2: TiVoPC Offloading Layout

The StreamerOffcode resides at the NIC and at the “Smart Disk” devices. Reusing the same
component at both devices is achieved by storing the received frames, without modification, at the

storage device (so the source of the media packet becomes oblivious to this component). Since

66

CHAPTER 8. FRAMEWORK EVALUATION 8.1. TIVOPC

Simple Server Sendfile Server Offloaded Server
600 600 14000
500 500 12000
400 400 10000
8000
300 300
6000
200 200 4000
100 100 2000
0 0 0
4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9
Inter-arrival [ms] Inter-arrival [ms] Inter—arrival [ms]
1 1 1 r
0.8 0.8 0.8
0.6 0.6 0.6
0.4 : 0.4 0.4
0.2 0.2 0.2
0 0 0 J
4 5 6 7 8 9 4 5 6 7 8 9 4 5 6 7 8 9
Inter—arrival [ms] Inter—arrival [ms] Inter—arrival [ms]

Figure 8.3: Jitter Distribution

we do not want packets to traverse the bus twicGaagconstraint is imposed between the two

components.

Intuitively, the Display Offcode should be placed at the GPU device, whileDeeoderOff-
code could be placed either at the NIC or at the GPU. In both cases, one bus transfer is required for
transferring the media packet from the NIC to the GPU. The preference of placibgtuoelerat
the GPU comes from two reasons. First, the GPU may have specialized MPEG support on board.
Second, a singlBecodercould be used instead of duplicating the component at the NIC and at the
“Smart Disk”. In essence, requiring@angconstraint between the two Offcodes will minimize
the number of bus crossing operations. ThereforeStneamerOffcode holds &Gangconstraint

to theDecoder which holds &ull constraint to théisplay.

TheFile Offcode should reside at the “Smart Disk” and shouldPoded with the Streameras

both Offcodes tightly interact while the movie is stored/loaded from/to the storage device.

A simple Link constraint is sufficient between bo8treamersand theGUI since the only
information that traverse between them is control. As this is the default channel constraint, it can

be omitted from the layout specification.

67

8.1. TIVOPC CHAPTER 8. FRAMEWORK EVALUATION

Once the application logic and the offloading layout have been coded, the communication
channels between the various components are set. In the TiVOPC application, we have used a zero-
copy read/write channel for all communication channels except for the two channels between the
GUI and theStreamerOffcodes. Communication between tG&J1 and theStreamersitilize the

default, low priority, OOB-Channel

8.1.4 Benchmarks Description

Our experimental test-bed consists of two Intel Pentium IV computers, interconnected by a Dell

PowerConnect 6024 Gigabit switch, having the characteristics listed in dble

CPU speed 2.4GHz

RAM 512MB

L2 Cache 256KB

Cache line 64B

(O Linux FC5, 2.6.15-1

NIC 3Com 3C985B-SX 1Ghps
GPU nVidia 7800 GT
Inter-packet Interval 5 msec

Packet Size 1KB

Table 8.1: TiVoPC Application Test-bed

It should be noted that for demonstration purposes only, we did not send packets at video frames
boundaries. What we did is to send the video stream in arbitrary chunks of 1KB, while maintaining
the required bit rate. Specifically, for a video stream of 200KB/Sec we send 1KB chunks every

5ms. We executed the following benchmarks on an idle system.

Video Server Packet Jitter

Three versions of th¥ideo Servehave been implemented as indexed by the numbers 1-3 at the
left hand side of Figur&.1

The first implementation (indexed by number 1) uses two UDP socket endpoints. Every 5
msec, a movie frame is read to a statically allocated buffer of size 1KB, then a connected UDP
socket targeted at the client host is used for sending the packet to the TiVoOPC client.

The second implementation (indexed by number 2) utilizes the “sendfile” system call. This call

68

CHAPTER 8. FRAMEWORK EVALUATION 8.1. TIVOPC

Offloaded Server

Jitter [ms]
(o]

5 b d@\):., O O 0 ‘ L 3:;;))1»
0 1000 2000 3000 4000 5000 6000 7000
Simple Server
o G0
0
E
I3
."r_:')
© \ o P © P ol | \ 6o~ ,0 “ = ©\
0 1000 2000 3000 4000 5000 6000 7000

Figure 8.4: Inter-arrival times comparison

operates in two steps. In the first step, the file content is copied into a kernel buffer by the device’s
DMA engine. In our case, the server uses a NAS for storing the movies, hence the NIC is the
one that acts as the DMA master. In the second step, a socket buffer is initialized with the required
information about the location and length of the data just received. Scatter-gather hardware support
is required at the networking device in order to be able to handle such a socket buffer. In cases

where the hardware fails to support this feature, the CPU copies the data to the socket buffer.

The third implementation is an offload-aware server (indexed by number 3). This server is
implemented as a simple Offcode residing at the networking device. It uséda¢h@ffcode for
reading the data in from the NAS device, and BreadcastOffcode for transmitting the data back

to the client.

Figure8.3shows, for each server implementation, a histogram and the corresponding cumula-
tive distribution function (CDF) of packet jitter as measured at the client machine. A low level of
jitter is more important than reliable delivery in video applications, as an unsteady packet rate is

easily detectable by a human viewer.

Figure8.3 clearly shows that the offloaded version of the streaming server produces a signifi-

69

8.1. TIVOPC CHAPTER 8. FRAMEWORK EVALUATION

cantly lower jitter. This observation is further supported by its corresponding CDF. The user level
version that uses “sendfile” produces better results than the “Simple Server” due to fewer context
switches and data copying operations.

Figure 8.4 further presents a scatter plot of the inter-arrival times of the movie frames. The
offloaded server is compared with the simple server. Talieprovides the jitter statistics of

received packets which corresponds to the execution of the three servers.

Scenario Median | Average | Std Dev
Simple Server 6.99 7.00 0.5521
Sendfile Server 6.00 5.99 0.4720
Offloaded Server 5.00 5.00 0.0369

Table 8.2: Client Side Jitter Statistics

Scenario Median | Average | Std Dev
Idle 2.90% 2.86% 0.09%
Simple Server | 7.50% | 7.50% | 0.12%
Sendfile Server | 5.90% | 6.20% | 0.08%
Offloaded Server 2.90% | 2.86% | 0.09%

Table 8.3: Server Side CPU Utilization

Video Server CPU Utilization

This benchmark is intended to validate our assumption that offloading certain parts of an applica-
tion will reduce pressure on the host memory subsystem. The L2 cache miss rate that is experi-
enced by the kernel is measured on the server during each one of the following tests. Samples were
taken every 5 seconds during a 10 minute run. All measurements were normalized to the miss rate
experienced by an otherwise idle system. Figlifeshows the results.

Although the TiVoPC application is mostly I/0O bound, executing it at the host inctf a
increase in the L2 cache miss rate.

The second implementation uses the “sendfile” API which avoids unnecessary buffer copies
between kernel and user buffers. As indicated by Figusethe effect on the L2 cache is negli-
gible. The reason becomes clear as the “sendfile” source code is examined. Since most of today’s

network devices support scatter-gather operations, the kernel essentially follows a zero-copy data

70

CHAPTER 8. FRAMEWORK EVALUATION 8.1. TIVOPC

path between the two sockets. This approach reduces the number of context switches and totally

eliminates data duplication inside the kernel.

11

Slowdown

Idle Simple Server Sendfile Server Offloaded Server

Figure 8.5: L2 Slowdown (Server Side)

Table8.3 presents the CPU utilization at the server side. Each row corresponds to one of the
three scenarios presented in Fig8rg Notice that the CPU utilization of the offloaded version of
our server aligns with thille scenario results, as the host processor is unaware of the underlying

activity.

Video Client Memory and CPU Utilization

The client side implementation, shown on the right of Fig8u® is more interesting from the of-
fload point of view, as it involves five offloaded components and interesting constraints, compared
to the two components in the server. But the overall performance results are more modest, thus we

only give a brief overview to save space.

Scenario Median | Average | Std Dev
Idle Client 2.90% | 2.86% | 0.09%
User-space Client 7.30% | 6.90% | 0.32%
Offloaded Client | 2.90% | 2.86% | 0.09%

Table 8.4: Client Side CPU Utilization

Table 8.4 shows that the offloading is complete in the sense that there are no components left
on the host processor. An idle machine and a machine that is running the fully offloaded client both
consume the same background level of CPU cycles. The non-offloaded user-space client consumes

more CPU, although the load is very small compared to the total capability of the host processor.

71

8.2. TOTAL ORDERING CHAPTER 8. FRAMEWORK EVALUATION

In terms of L2 cache misses, the idle machine and offloaded client have the same count, while
the non-offloaded client generates 12% more misses. Much of this is due to the MPEG decoding

process.

8.2 Total Ordering

Total Order (TO) algorithms have been extensively studied in the litera2dteA TO algorithm

is a fundamental building block in the construction of distributed fault-tolerant applications. They
are typically used to provide a communication primitive that allows processes to agree on the set
of messages they deliver and also on their delivery order. Total ordering is particularly useful for
implementing fault-tolerant services, database replication and locking serdicea [TO algo-

rithm that assumes an unreliable failure detector is equivalent to the consensus prijlern [

has been shown that consensus cannot be solved in this type of systems in fewer than two commu-
nication steps37]. Many TO algorithms for asynchronous systems use consensus as a building
block, but the implementation can be expensive both in terms of communication steps and num-
ber of messages exchanged between hosts. This overhead is further exacerbated if in addition to
the TO algorithm, the host also executes a resource-demanding application such as a typical High

Performance Computing (HPC) application.

Offloading a TO algorithm, either in full or for particular components, can greatly improve
the performance of distributed applications for several reasons. First, a TO algorithm packaged
as an Offcode can be easily reused by a variety of applications. Second, the reduced load on
the host machine will improve the performance of such applications; and third, an offloaded TO
may take advantage of specific hardware capabilities in order to improve its overall performance.
For example, as shown in the traffic generator example (Se8tRnthe small dispersion of the
inter-arrival times of ethernet packets may be used to implement better accurate failure detectors
and to maintain finer-grained timeouts for message retransmissions. Another possibility is to use
hardware-based encryption engines, which are found on several computer peripheral devices, in

order to support Byzantine models.

72

CHAPTER 8. FRAMEWORK EVALUATION 8.2. TOTAL ORDERING

8.2.1 Offload-Aware TO Architecture

A simple offload-aware total order application has been designed and implemented for our NIC
(the application uses theitlos framework discussed in Chapté). To simplify the proof of

concept implementation, we assume that there are no physical link disconnections, switch failures,

or process or node crashes. We do not assume a reliable message transmission—messages can be
lost due to buffer overflow at the NIC, host or switch. The sample application is comprised of

several components that appear on the left side of Figuie

Offload—Aware Total-Order Offloading Layout
| — Method- —_ | PTTTTTITmTmemmmemoeoooenoey
| mvocation ! !
| @- i | (::: >Std. ref

Link

/
Zero—Copy R/W Channel
I

IOrderer /
/

IBroadcaster

LamportOrderer

Fy

NIC ReliableBroadcast

Figure 8.6: Total-Order Offload Architecture

1. GUI: The Graphical User Interface controls the TO application. It enables the user to define
the rate at which messages are transmitted and their size. The GUI presents the message

order once it is determined.

2. TO Service The TO Service is an application library used by the GUI, that in turn uses the
Offcode to provide two basic total-order APITO_Broadcaseind TO_Receive The first
API broadcasts a message and the second receives the next message for which the TO has

been established.

3. LamportOrderer This Offcode (denoted by the lette) presents th&Orderer interface that

implements a TO algorithm. Specifically, we have implemented the Lamport's Timestamp

73

8.2. TOTAL ORDERING CHAPTER 8. FRAMEWORK EVALUATION

ordering algorithm40Q]. This Offcode interacts with th€O Servicen a well defined inter-

face, discussed below.

4. ReliableBroadcastThis Offcode (denoted by), provides the reliable broadcast service that
is needed by theamportOrdererOffcode. In our implementation, multicast is used in order
to efficiently send messages to peer hosts. Albeit our simplifying assumptions, message
omissions may still occur due to buffer overflow. To address this issue, this component
implements a simple negative acknowledgment scheme. Once a missing message is detected
(indicated by a “hole” in the message sequence numbers), the receiving node periodically
sends a retransmit request to the sending source of the missing message. Once the message’s

source receives the retransmit request, it multicasts the message.

The left side of Figure3.6 also indicates the ¥bRA communication channels that are used.
A reliable unicast channel with a zero-copy policy for read and write is used in order to eliminate
the OS networking stack overhead. Basically, @ Servicemanages the application’s mem-
ory descriptors and effectively determines the control-flow policies of the application (descriptors
for received messages are also posted by this component). In order to send a messEQe, the
Servicecreates &all object and invokes the channel. The NIC-residembRA runtime DMAs
the message and notifies themportOrdererOffcode that a new message should be transmitted.
The “orderer” Offcode timestamps the message and multicasts it usif@ydhecasterinterface,
which is implemented by thReliableBroadcasDffcode.

Received packets are first handled by RediableBroadcasDffcode. The Offcode is operated
in two phases: At the first phase, the Offcode transfers the received packet to a pre-posted descrip-
tor at the host using DMA. Note that the message cannot be delivered to the application yet, since
the message order has not been determined. Because the NIC has a small amount of memory, it is
better to release the NIC’'s memory as soon as possible. The message identifier and timestamp are
the only data that is saved on the NIC by tteamportOrdererOffcode. The second phase begins
once the message order has been determined by the TO algorithrhafipertOrdererOffcode

creates Lall with the messages’ order and invokes the channel connectedT®tBervice Once

74

CHAPTER 8. FRAMEWORK EVALUATION 8.2. TOTAL ORDERING

Nodes Hardware-based TO Offload-Aware TO
Throughput [Mbps]| Latency [ms]| Throughput [Mbps]| Latency [ms]
3 310.5 4.2 301.8 8.7
5 362.5 4.1 324.6 9.5

Table 8.5: TO Performance (all-to-all)

the order is known at th€O Servicecomponent, the ordered messages can safely be delivered to
the application.

The right side of Figure.6 presents the offloading layout that is designed by the developer.
The GUI holds a standard reference to th@ Servicecomponent. This component holdd ik
reference to the “orderer” components since it has no special offloading constraints. On the
other hand, the “orderer” Offcode must be offloadeth the broadcast Offcode (i.¢) hence a
Pull constraint is used. Note that in order to compare the results of this offload-aware TO algorithm
with a non-offloaded version, a developer merely needs to interchange the two constraints and re-
execute the application. The effect of doing so is that the “orderer” will be executed at the host

while the broadcaster remains at the NIC.

8.2.2 Total Ordering Evaluation

The benchmark consists of five Intel Pentium 4 2.4 GHz systems, with 512MB of RAM and 32-
bit, 33 MHz PCI bus. Each machine was equipped with programmable Netgear 620 NICs, which
have 512 kB of memory. Each host executed Linux OS version 2.6.11 with Yb&A module
enabled. The hosts were interconnected by a Gigabit ethernet switch (Dell PowerConnect 6024).
The right side of Tablé.5 presents the maximum throughput and latency measurements for the
offload-aware TO when all nodes act as both senders and receivers. Each node generate traffic at
a rate bounded by the flow control mechanism imposed by @é&ervicecomponent. The pre-
sented latency is defined as the time elapsed betweerQhBroadcasandTO_Receivenethod
invocations that refer to the same message.

The benchmark results have been compared with those from a recent work by Dolebjt al. [
which are given on the left side of the table with title “Hardware-based TO”. That work implements

a wire-speed total order algorithm using hardware-based component comprised of two switches

75

8.3. TRAFFIC GENERATOR CHAPTER 8. FRAMEWORK EVALUATION

connected back-to-back. Each host is equipped with two NICs: one NIC is used for transmitting
(connected to the first switch) and one for receiving (connected to the second switch). The back-
to-back switch connection serializes the packets, thus effectively acts as a hardware sequencer.
In addition to the switch configuration, a lightweight user-space TO algorithm is invoked at each
node.

Thethroughputobtained from the offload-aware TO application is close to that of the hardware-
based solution. Note that the throughput increases with the number of nodes due to PCI bus
properties as explained in previous woB71].

Although with HYDRA we have used softwarealgorithm to order the messages we found that
bypassing the OS networking stack overhead enabled us to significantly increase the throughput
over typical user-based total ordering. This fact strengthens the motivation for offloading and
specifically for using HDRA.

As for the measured latency, the results are approximately twice those in the hardware-based
configuration. Although the ordering algorithm is offloaded to the NIC, a distributed solution
requires an extra round of communication that is not required in centralized solutions (like the
hardware-based solution). In addition, Lamport’s timestamp algorithm is known to be very expen-
sive in terms of communication overhead and latency; messages must be received from every node
in order to be able to determine the messages’ order. Other ordering algorithms can reduce this

overhead.

8.3 Traffic Generator

Generating steady network traffic at high rates is difficult given the variety of sources of delays and
unpredictability in a modern computer system, including interrupts from devices, cache and TLB
misses, and power management changes. This section presents an offload-aware traffic generator
that produces a packet stream with fixed inter-packet delays. The offloaded traffic generator is
evaluated and compared with an equivalent user-level application.

The traffic generator is comprised of two components: a GUI that is used by the user to con-

figure the traffic attributes, andStreamGeneratocomponent that generates the stream of packets

76

CHAPTER 8. FRAMEWORK EVALUATION 8.3. TRAFFIC GENERATOR

given user settings on protocol type, length, ports, inter-packet delay, burst size, etstrddre-
Generatorcomponent is designed as an offcode. The GUI is the offcode’s controller and creates a
specialized, zero-copy, channel for communication. The APIs for interaction between the GUI and
the StreamGeneratooffcode ore omitted here for brevity, as are details of the offcode description
file.

The traffic generator is implemented twice: once usingRA and once without the use of an
offloaded component. The benchmark consists of two hosts, Intel Pentium 4 2.4 GHz with 512 MB
and a Tigon2 programmable network card, interconnected by a 100 Mb/s switch. The link capacity

is fully utilized by generating packets at fixed inter-packet delays and for different frame sizes.

8.3.1 User-Space Traffic Generator

The benchmark results for the user-space application are given ing:&bkthough the achieved
throughput is quite good, the dispersion of the inter-arrival times is enormous, so large as to make
the average almost meaningless. Figdigshows the cumulative distribution function (CDF) for
three packet sizes to better display the distribution of arrival times and illustrate the wide dispersion

in these measurements.

Size | Tput | Avg. Arrival+ Std | CPU + Std
Bytes| Mb/s 1S %
64| 6.0 140+ 8000 100+ 3
80 | 13.4 141+ 9000 9+ 7
9 | 21.8 1594+ 11000 9+ 8
192 | 56.8 164+ 6000 98+ 11
384 | 96.7 175+ 4000 81+11
768 | 97.8 205+ 4000 37+ 28
1514 | 98.6 244+ 5000 33+ 5

Table 8.6: User Space Traffic Results

It is also evident from the table that delivering the generated data to the application is diffi-
cult due to the very high CPU load, especially with small packet sizes. The processor capacity
problem, driven by the costs associated with interrupts, directly impacts the throughput seen by
the applications. As an example, the calculated inter-arrival times for 1500 byte ethernet frames

is approximately 12Qus for 100 Mb/s, 12us for 1 Gb/s and 1.2s for 10 Gb/s ethernet. The

77

8.3. TRAFFIC GENERATOR CHAPTER 8. FRAMEWORK EVALUATION

90r

e -

rd
|-

701

60

%

501

201

1

1

1 :

1 o — 64 Bytes
: S 768 Bytes
1

100 i “““““ 1514 Bytes |

10" 10° 10°

Inter—arrival time [usec]

Figure 8.7: User-Space Traffic Distribution

observed interrupt overhead for an empty interrupt handler is betweem&-ddhsuming all but

only 17% of the total available CPU cycles.

Size | Tput | Avg. Arrival+ Std | CPU
Bytes | Mb/s JIES %
64 | 23.9 34+ 6 2
64* | 51.5 16+ 8 2
768 | 98.4 65+ 13 2
1514 | 98.8 126+ 50 2

Table 8.7: Offload-Aware Traffic Results

8.3.2 Offload-Aware Traffic Generator

The results from the offload-aware traffic generator are summarized in §atded shown as a

CDF in Figure8.8 For both tests, in order to accurately measure the throughput and the inter-
arrival times, a second NIC with a simple traffic analyzer offcode has been used. The data shows
that the inter-arrival times are uniform with small standard deviation. The sharp vertical edges in

the CDF indicate that the majority of the packets arrived within the same expected inter-arrival

78

CHAPTER 8. FRAMEWORK EVALUATION 8.4. OFFLOADED FIREWALL

100 — : S S

90r

701

60

%

501

— 64 Bytes
e 768 Bytes
10} | [i 1514 Bytes |

201

0 100 200 300 400 500
Inter—arrival time [usec]

Figure 8.8: Offload-Aware Traffic Distribution

time. Notice that for 64-byte packets, the achieved throughput is only a quarter of the link’s
bandwidth. In order to achieve the full link capacity, a generator must produce a 64-byte packet
approximately every s. Since the runtime is not optimized for this or any specific application,
the generator can only send packets at a rate limited by the device’s OS constraints, which in this
case is limited by the number of MAC descriptors at the NIC and the processing overhead involved
in managing them. In order to further improve the throughput for such small packets, an optimized
version of the device’s OS has been implemented. This modified version can reuse a single MAC
descriptor for sending the same packet multiple times. The table shows that for the optimized
version (indicated by thed* table entry) the throughput has been significantly improved. This sort

of optimization may be undertaken as needed by particular applications thavosaH

8.4 Offloaded Firewall

An application of particular promise for offloading is a network firewall. Performing packet filter-
ing closer to the network ingress can significantly improve overall capability by freeing the host

processor to perform other network activities such as forwarding. A firewall application on a NIC

79

8.4. OFFLOADED FIREWALL CHAPTER 8. FRAMEWORK EVALUATION

also has the additional advantage that it adds an interesting level of complexity to intruders who
would attempt to attack the filtering system.

We have designed and implemented a firewall application (henceforth catterlo®) that is
implemented as a set of offcodes that perform basic rules. Rules can be dynamically created or

removed by the firewall controller which is executed at the host.

8.4.1 Overview and Motivation

Offloading firewall logic to a NIC offers several benefits. First, an offloaded firewall is an OS
independent implementation. Second, itis harder to tamper with hardware as opposed to a software

implementation. Firewall applications are computationally expensive for several reasons:

e The host's CPU is repeatedly interrupted by the NIC on incoming packets. The processing

power required to handle the interrupts is wasted if the packet is doomed to be discarded.

e An adversary can try to perform a denial of service (DoS) attack by sending packets from

many computers, in an attempt to overload the system.

e The networking stack has significant overhead.

e The PCI P] bus is a major bottleneck especially in today’s incline towards faster networking

fabrics.

8.4.2 SCIRON Architecture

This section presents the main components@RBN runtime. The runtime is comprised of two
main components: TheC3RON enforcement module andcBRON'S management console.

The enforcement module is the engine afi®oN's firewall that actively enforces the security
policy upon incoming and outgoing packetsCi8oN's firewall is an ordered 5-tuple firewall.
When a packet arrives, a sequential pass over the rules is performed. The action (accept or reject)
associated with the first rule that matches the packet header is performed. If there is no match, the

default policy action (reject all) is performed.

80

CHAPTER 8. FRAMEWORK EVALUATION 8.4. OFFLOADED FIREWALL

Scenario Kernel based Firewall NIC based Firewall
CPU Load| Throughput [Mbps]| CPU Load| Throughput [Mbps]
100% Discard] 78.96% 0 0.04% 0
50% Discard| 93.02% 19 10.43% 43

Table 8.8: Firewall Performance

SCIRON'S management console provides remote administration and logging capabilities. Ad-
ministrators can remotely install security policies at enforcement modules of machines in their
domain. This is done by communicating witlti@oN's embedded enforcement module using a
proprietary protocol calle8RPP(SCIRON Remote Policy Protocol).

An administrator can also determine the policy for monitoring and logging events to the man-
agement console. This is done by marking specific rulésgaaules Packets caught by these rules
will generate a log packet containing the packet’s information. The logged packet is then sent to
the management console. Allowing real-time monitoring and tracking of the network activities,
enables the administrator to immediately act upon potential attacks.

SCIRON management console is comprised of the following modules: (1) Management con-
sole GUI - a tool used for defining and managing the security policy; (2) Log viewer - A server
application which receives log packets sent by the various enforcement modules and displays them
graphically to the administrator; (3) Policy builder - a tool for verifying the correctness of the se-
curity policy defined by the administrator, by searching for shadowed and redundancy rules. The

verifier implements the algorithm presented3 [

8.4.3 ScIRON Evaluation

In order to simulate common kernel-based firewalls for performance evaluation, we have also im-
plemented the firewall at the kernel. All comparisons shown below compare the same firewall code,
with the same filtering policy, between the kernel-based firewall and the offload-aware firewall.
Performance can be measured using two parameters. The first is the load on the CPU and the
second is the throughput. In this section we discuss several typical scenarios. In the first scenario,
shown in the top row of Tabl8.8, the firewall simply discards all packets. During this scenario the

CPU is only running system processes. As we expect, in this scenario the CPU utilization when

81

8.4. OFFLOADED FIREWALL CHAPTER 8. FRAMEWORK EVALUATION

using the firewall implemented on the NIC is approximately zéx64(:), whilst for the same
firewall on the host it is quite highv8.96%).

The second scenario presented is shown in the bottom row of Sabhhere half of the traffic
is discarded randomly. It is evident again that the NIC based firewall has much better performance
both in CPU utilization and throughput. The benchmark machine was the same in both cases, an
Intel Pentium 4 CPU at 2.4 GHz with 512 MB of memory and 100 Mb/s ethernet.

The results clearly show that offloading firewall logic to a NIC has many advantages. In sce-
narios with a heavy incoming packet load (especially if packets need to be discarded) a firewall
offloaded to a NIC significantly improves both CPU utilization as well as packet throughput. On
the less likely scenarios of heavy outgoing packet traffic, offloading firewall logic to a NIC is
slower than conventional firewalls. It is important to note that our implementation is based on an
obsolete NIC. We expect that the performance gain will be more pronounced when utilizing an
advanced NIC. Although current NICs hardware is continuously improving, the host CPU speed
will likely continue to be faster than NIC hardware. In order to further improve the sending flow
performance, a mixed paradigm can be used. In this model, the processing of outgoing packet is

performed at the host while the incoming packets are processed in the NIC.

82

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

Chapter 9

Conclusions and Future work

Hardware and software are neck and neck, pushing each other forward. This research claims that it
is the OS’s turn to act. Hardware manufacturers have provided an excessive amount of computing
resources, which are just sitting there idling most of the time. It is time for the OS community
to design tools and programming abstracts that will enable a developer to efficiently utilize every
programmable component in the system.

In this chapter we summarize the contribution of this work, outline the conclusions and describe

ongoing and future work.

9.1 Contribution

This research presented thebRA framework [75,73, 76, 77] which proposes a unique new di-
mension of flexibility for the architects of high performance applications: the ability to program
offloading layout policies separately from the application’s logigDHA defines a programming
model that carefully balances between programmer scalability and system scalability. As pro-
grammable devices will continue to grow in popularity, it is only a matter of time until an OS on
a workstation or a PC will be considered as a switching element among heterogenous processing
cores.

The contributions of the research described in this dissertation are twofold: 1. A programming

model that enables the developer to encode applications capable of utilizing programmable devices

83

9.2. ONGOING WORK CHAPTER 9. CONCLUSIONS AND FUTURE WORK

by specifying an offloading layout; and 2. an effective runtime infrastructure that realize the model

and supports it efficiently.

9.2 Ongoing Work

This research is an ongoing effort. The natural evolution of this framework is in supporting kernel
level components, such as device drivers. As the problem of device drivers reliability is acute, it
should be our first target. Harnessing the existing power of peripheral devices to offload and isolate
device drivers may drastically improve the overall system’s reliability and dependability. Pushing
drivers down into the peripheral itself could also simplify current kernels. Each peripheral would
be required to emulate a standard “virtualized” device interface, thus the kernel would only support
one device interface per peripheral type. One for storage devices, one for network devices, one for
graphics cards, etc. In “this world”, kernel developers would focus on optimiapmication
support,not on devicesupport. Device vendors would then be free to optimize and improve their
embedded implementations. New operating system versions would be easier to deploy because
they could be tested on a standard device instead of all reasonably current devices. In addition to
that, from a security perspective, implementing device drivers in the peripheral will make them

harder to attack and penetrate.

84

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Killer NIC. Homepage at http://www:.killernic.com/KillerNic/.
PCISIG industry organization, PCI specification. http://www.pcisig.com/specifications.

Ehab S. Al-Shaer and Hazem H. Hamed. Discovery of policy anomalies in distributed fire-

walls. InINFOCOM, 2004.

Yair Amir and Ciprian Tutu. From total order to database replicationlCIDCS '02 IEEE

Computer Society.

Tal Anker, Danny Dolev, Gregory Greenman, and llya Shnayderman. Wire-speed total order.

In IPDPS’06

Muli Ben-Yehuda, Jon Mason, Jimi Xenidis, Orran Krieger, Leendert van Doorn, Jun Naka-
jima, Asit Mallick, and Elsie Wahlig. Utilizing iommus for virtualization in linux and xen.

In OLS '06: The 2006 Ottawa Linux Symposjypages 71-86, July 2006.

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. Fiuczynski, D. Becker, S. Eggers, and
C. Chambers. Extensibility, safety and performance in the SPIN operating systeithin
SOSR1995.

Nathan L. Binkert, Ali G. Saidi, and Steven K. Reinhardt. Integrated network interfaces for
high-bandwidth TCP/IP. IASPLOS-XII: Proceedings of the 12th international conference
on Architectural support for programming languages and operating sysigsges 315-324,
New York, NY, USA, 2006. ACM Press.

85

BIBLIOGRAPHY BIBLIOGRAPHY

[9] A. Birell and B. Nelson. Implementing remote procedure cal€M Transactions on Com-

puter System®(1):39-59, February 1984.

[10] Ken Birman, Robert Constable, Mark Hayden, Jason Hickey, Christoph Kreitz, Robbert van
Renesse, Ohad Rodeh, and Werner Vogels. Hbris and Ensemble projects: Accom-
plishments and limitations. IDARPA Information Survivability Conference and Exposition

(DISCEX 2000)pages 149-161, Hilton Head, SC, 2000. IEEE Computer Society Press.

[11] N. Brown and C. Kindel. Distributed Component Object Model Protocol — DCOM/1.0.
Internet Draft January 1998. Available &itp://www.microsoft.com/oledev/

olecom/draft-brown-dcom-v1-spec-02.txt

[12] Matthew Burnside and Angelos D. Keromytis. High-speed i/o: the operating system as a
signalling mechanism. INICELI '03: Proceedings of the ACM SIGCOMM workshop on
Network-l/O convergenc@ages 220-227, New York, NY, USA, 2003. ACM Press.

[13] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed

systems.J. ACM pages 225-267, 1996.

[14] S.-C. Cheng, J.-A. Stankovic, and K. Ramamritham. Scheduling algorithms for hard real-
time systems: a brief survey. pages 150-173, 1989.

[15] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An empir-
ical study of operating systems errors. 3OSP '01: Proceedings of the eighteenth ACM
symposium on Operating systems principfegyes 73—88, New York, NY, USA, 2001. ACM

Press.

[16] ClearSpeed. Clearspeed advance. Available at kitp://www.clearspeed.com/

products/cs_advance/

[17] "Microsoft Corporation”. "scalable networking: Network protocol offload introducing tcp

chimney". WinHEGC 2004.

[18] Andy Currid. TCP offload to the rescu@ueue 2(3):58-65, 2004.

86

 http://www.microsoft.com/oledev/olecom/ draft-brown-dcom-v1-spec-02.txt
 http://www.microsoft.com/oledev/olecom/ draft-brown-dcom-v1-spec-02.txt
http://www.clearspeed.com/products/cs_advance/
http://www.clearspeed.com/products/cs_advance/

BIBLIOGRAPHY BIBLIOGRAPHY

[19] Ariel Daliot and Danny Dolev. Self-stabilization of Byzantine protocols Pmceedings of

7th Symposium on Self-Stabilizing Systems (SS®B@8)elona, 2005.

[20] Ariel Daliot and Danny Dolev. Self-stabilizing Byzantine agreementTwenty-fifth ACM
Symposium on Principles of Distributed Computing (PODC ' @&nver, Colorad, July 2006.

[21] X. Defago, A. Schiper, and P. Urban. Total order broadcast and multicast algorithms: Taxon-

omy and surveyACM Computing Survey86(4):372-421, 2004.

[22] Suru Dissanaike, Pierre Wijkman, and Mitra Wijkman. Utilizing xml-rpc or soap on an

embedded system. IEDCS Workshopgages 438-440, 2004.

[23] Shlomi Dolev and Jennifer L. Welch. Wait-free clock synchronizatioAlgorithmica

18(4):486-511, 1997.

[24] Shlomi Dolev and Jennifer L. Welch. Self-stabilizing clock synchronization in the presence

of Byzantine faultsJournal of the ACM51(5):780-799, 2004.

[25] Marc E. Fiuczynski, Richard P. Martin, Tsutomu Owa, and Brian N. Bershad. Spine: a safe

programmable and integrated network environmenEW § 1998.

[26] A. P. Foong, T. R. Huff, H. H. Hum, J. R. Patwardhan, and G. J. Regnier. TCP performance
re-visited. INNSPASS '03: Proceedings of the 2003 IEEE International Symposium on Perfor-
mance Analysis of Systems and Softwpeges 70-79, Washington, DC, USA, 2003. IEEE

Computer Society.

[27] Alessandro Forin, Johannes Helander, Paul Pham, and Jagadeeswaran Rajendiran. Compo-

nent based invisible computing.

[28] Maxim Garbarnik. Dynamic Offloading Infrastructure for Programmable Devices. Master’s

thesis, The Hebrew University Of Jerusalem, Israel., October 2007.

[29] P. Gilfeather and A. B. Maccabe. Modeling protocol offload for message-oriented communi-

cation. InCluster 20052005.

87

BIBLIOGRAPHY BIBLIOGRAPHY

[30] Naga K. Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gputerasort: High
performance graphics coprocessor sorting for large database managemiEwiDnJune

2006.
[31] J. Helander and A. Forin. Mmlite: A highly componentized system architecture, 1998.

[32] O. Holder, I. Ben-Shaul, and H. Gazit. System support for dynamic layout of distributed
applications. IrProceedings of the 0International Conference on Distributed Computing

Systems (ICDCS’99pages 163-173, Austin, TX, May 1999.

[33] Ophir Holder, Israel Ben-Shaul, and Hovav Gazit. Dynamic layout of distributed applica-
tions in FarGo. INCSE '99: Proceedings of the 21st international conference on Software

engineeringpages 163-173, Los Alamitos, CA, USA, 1999. IEEE Computer Society Press.

[34] J. Holliday. Replicated database recovery using multicast communicati®mod¢eedings of
the Symposium on Network Computing and Applications (NCA©anbridge, MA, 2001.
IEEE.

[35] Larry Huston, Rahul Sukthankar, Rajiv Wickremesinghe, M. Satyanarayanan, et al. Dia-

mond: A storage architecture for early discard in interactive seardPAST 04

[36] IBM. IBM System z cryptography for highly secure transactions. Available at kitp:

Ilwww-03.ibm.com/systems/z/security/cryptography.html

[37] Keidar and Rajsbaum. On the cost of fault-tolerant consensus when there are no faults.

SIGACT News2001.

[38] Bettina Kemme and Gustavo Alonso. A new approach to developing and implementing eager
database replication protocolsACM Transactions on Computer Systera§(3):333-379,
September 2000.

[39] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals proBlem.Transactions

on Programming Languages and Systed{8):382-401, July 1982.

88

http://www-03.ibm.com/systems/z/security/cryptography.html
http://www-03.ibm.com/systems/z/security/cryptography.html

BIBLIOGRAPHY BIBLIOGRAPHY

[40] Leslie Lamport. Time, clocks, and the ordering of events in a distributed systemmun.

ACM, 21(7):558-565, 1978.

[41] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-

real-time envi ronmentJournal of the ACM20(1):46-61, 1973.

[42] Panagiotis Louridas. Soap and web servidE&E Software23(6):62—67, 2006.

[43] Arthur B. Maccabe, Wenbin Zhu, Jim Otto, and Rolf Riesen. Experience in offloading pro-
tocol processing to a programmable NIC.IEEE ICCC 2002.

[44] Inc. Sun Microsystems. RPC: Remote procedure call. Proposal RFC1050, Internet Engineer-

ing Task Force, April 1988.

[45] Jeffrey C. Mogul. TCP offload is a dumb idea whose time has comdot®S pages 25-30,
2003.

[46] Stephen James MuiPRiglet: an operating system for network applianc@D thesis, 2001.

Supervisor-Jonathan M. Smith.

[47] Adamovsky Ola. ILP Formulation for Dynamic Offloading Layouts. Master’s thesis, The

Hebrew University Of Jerusalem, Israel, October 2007.

[48] OpenGroup. DRC announcement at theregister. Available at gitg://www.

drccomputer.com

[49] Physx. Ageia physx. Available at sitdittp://www.ageia.com/physx/index.
html .

[50] lan Pratt and Keir Fraser. Arsenic: A user-accessible gigabit ethernet interfatidFO3

COM, pages 67-76, 2001.

[51] RDMA Consortium. Architectural specifications for RDMA over TCP/IRtp://www.

rdmaconsortium.org/

89

http://www.drccomputer.com
http://www.drccomputer.com
http://www.ageia.com/physx/index.html
http://www.ageia.com/physx/index.html
http://www.rdmaconsortium.org/
http://www.rdmaconsortium.org/

BIBLIOGRAPHY BIBLIOGRAPHY

[52] R. Recio, P. Culley, D. Garcia, J. Hilland, and B. Metzler. An RDMA protocol specification.
http://www.ietf.org/internet-drafts/draft-ietf-rddp-rdmap-04.
txt , 2005.

[53] Greg Regnier, Srihari Makineni, Ramesh lllikkal, Ravi lyer, Dave Minturn, Ram Huggabhalli,
Don Newell, Linda Cline, and Annie Foong. TCP onloading for data center serZens.-

puter, 37(11):48-58, 2004.

[54] Greg Regnier, Dave Minturn, Gary McAlpine, Vikram A. Saletore, and Annie Foong. Eta:
Experience with an intel xeon processor as a packet processing endiftfeE Micro,

24(1):24-31, 2004.

[55] E. Riedel and G. Gibson. Active disks - remote execution for network-attached storage, 1997.

[56] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. Active storage for large-scale data

mining and multimedia. I’'vLDB’90.

[57] R. Riggs, J. Waldo, and A. Wollrath. Pickling state in the Java systelfArdoceedings of the
USENIX Second International Conference on Object-Oriented Technologies (COQTS’96)
Ontario, Canada, June 1996.

[58] Piyush Shivam, Pete Wyckoff, and Dhabaleswar Panda. EMP: zero-copy OS-bypass NIC-
driven gigabit ethernet message passingS@i01, November 2001.

[59] Edi Shmueli and Dror G. Feitelson. Backfilling with lookahead to optimize the performance
of parallel job scheduling. In Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn,
editors,Job Scheduling Strategies for Parallel Processipgges 228—-251. Springer Verlag,
2003. Lect. Notes Comput. Sci. vol. 2862.

[60] Jon Siegel. OMG overview: CORBA and the OMA in enterprise computdgnmun. ACM
41(10):37-43, 1998.

90

http://www.ietf.org/internet-drafts/draft-ietf-rddp-rdmap-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-rddp-rdmap-04.txt

BIBLIOGRAPHY BIBLIOGRAPHY

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

Sun Microsystems, Inc.Java Remote Method Invocation (RMI) Specificati@Qttober
1998. Available ahttp://java.sun.com/products/jdk/1.2/docs/guide/

rmi/spec/rmiTOC.doc.html

Sun Microsystems IncJava Remote Method Invocation Security Extension (drag99.

Available at:http://java.sun.com/products/jdk/rmi/

Michael M. Swift, Steven Martin, Henry M. Levy, and Susan J. Eggers. Nooks: an archi-
tecture for reliable device drivers. EBW10: Proceedings of the 10th workshop on ACM
SIGOPS European workshop: beyond the B&ges 102-107, New York, NY, USA, 2002.
ACM Press.

TiVo Inc homepage. Available at sitattp://www.tivo.com

Dan Tsafrir, Yoav Etsion, Dror G. Feitelson, and Scott Kirkpatrick. System noise, OS clock
ticks, and fine-grained parallel applications. @S '05: Proceedings of the 19th annual
international conference on Supercomputipgges 303-312, New York, NY, USA, 2005.
ACM Press.

Dean M. Tullsen, Susan Eggers, and Henry M. Levy. Simultaneous multithreading: Maxi-
mizing on-chip parallelism. I#Proceedings of the 22th Annual International Symposium on

Computer Architecturgpages 392—-403, 1995.

R. van Engelen and K. Gallivan. The gsoap toolkit for web services and peer-to-peer com-

puting networks, 2002.

P. Verissimo and A. Casimiro. The Timely Computing Base model and archite¢EEE

Transactions on Computers1(8), 2002.

Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Ac-
tive messages: A mechanism for integrated communication and computatidr®@thliin-
ternational Symposium on Computer Architeciyrages 256-266, Gold Coast, Australia,

1992.

91

 http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/ rmiTOC.doc.html
 http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/ rmiTOC.doc.html
http://java.sun.com/products/jdk/rmi/
http://www.tivo.com

BIBLIOGRAPHY BIBLIOGRAPHY

[70] w3 organization. Web Service Definition Language (WSDL). http://www.w3.0org/TR/wsdl.

[71] W. Wadge. Achieving gigabit performance on programmable ethernet network interface

cards. B.Sc. Final Report, University of Malta, 2001.

[72] Ralph O. Weber. Information technology—SCSI object-based storage device commands -2

(OSD-2). Technical Report T10/1731-D, INCITS Technical Committee T10, October 2004.

[73] Yaron Weinsberg, Tal Anker, Danny Dolev, and Scott Kirkpatrick. On a NIC’s operating

system, schedulers and high-performance networking applicatioh?GC-06

[74] Yaron Weinsberg and Israel Ben-Shaul. A programming model and system support for
disconnected-aware applications on resource-constrained devicé€SHE'02: Proceed-
ings of the 24th International Conference on Software Enginegpages 374-384, New

York, NY, USA, 2002. ACM Press.

[75] Yaron Weinsberg, Danny Dolev, Pete Wyckoff, and Tal Anker. Accelerating distributed com-

puting applications using a network offloading frameworkIRDPS’07.

[76] Yaron Weinsberg, Danny Dolev, Pete Wyckoff, and Tal Anker. Hydra: A novel framework
for making high-performance computing offload capablel@N’06.

[77] Yaron Weinsberg, Elan Pavlov, Yossi Amir, Gilad Gat, and Sharon Wulff. Putting it on the
NIC: A case study on application offloading to a Network Interface Card (NIC)IEEE
CCNC'06

[78] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic storage
allocation: A survey and critical review. IRroc. Int. Workshop on Memory Management

Kinross Scotland (UK), 1995.

[79] World Wide Web Consortium (W3C). Simple Object Access Protocol (SOAP) 1.1. Available

at site:http://www.w3.org/TR/soap

92

http://www.w3.org/TR/soap

BIBLIOGRAPHY BIBLIOGRAPHY

[80] World Wide Web Organization. Web Services Activity. Available fattp://www.w3.
org/2002/ws/

[81] XML-RPC Specification Homepage. XML-RPC Specification. Available at ditép:

Ilwww.xmlrpc.com/spec

[82] Yaron Weinsberg, Shimrit Tzur-David, Tal Anker and Danny Dolev. High performance string

matching algorithm for a Network Intrusion Prevention System (NIPS), 2006.

93

http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/
http://www.xmlrpc.com/spec
http://www.xmlrpc.com/spec

	Contents
	Introduction
	Offloading Vs. Onloading
	The Future Of Offloading
	Virtualization
	Gaming
	Advanced Storage Services
	Accelerating Distributed Applications
	Isolation of Device Drivers

	Dissertation Outline

	Motivation
	Framework's Motivation
	TiVoPC: A Motivating Example
	Research Objectives

	Related Work
	Storage Offload
	Network Offload
	Spine
	Arsenic and EMP
	TCP Offload Engines (TOE)

	Computation Offload
	Graphics Offload
	Onloading
	Related Frameworks
	FlowOS
	FarGo and FarGo-DA

	Summary

	Programming Model
	Offcodes
	Offcode Creation
	Offcode URL
	Offcode Attributes
	Offcode Invocation
	The Call Object
	Call's Encoding
	Pseudo Offcodes vs. User Offcodes

	Channels
	Out-Of-Band Channel
	Specialized Channel

	Offcode Manifesto
	Deployment Process

	Architecture
	Hydra Components
	Offcode Internals
	Call Internals
	Call Encoding
	Custom Encoding
	SOAP Encoding

	Channel Internals
	Offcode Dynamic Loading

	Nicos Case Study
	Nicos Environment
	Nicos Services
	Memory Management
	Task Management
	Networking
	Filtering
	Scheduling

	<Sched>++ Algorithm
	Common Schedulers
	Related Definitions
	Algorithm Overview
	<EDF>++ Algorithm
	<EDF>++ Evaluation

	Multi-User Environments
	Formulation
	Definitions
	Constraints Formulation

	Optimization Objectives

	Framework Evaluation
	TiVoPC
	TiVoPC Architecture
	TiVoPC Logic
	TiVoPC Offloading Layout
	Benchmarks Description

	Total Ordering
	Offload-Aware TO Architecture
	Total Ordering Evaluation

	Traffic Generator
	User-Space Traffic Generator
	Offload-Aware Traffic Generator

	Offloaded Firewall
	Overview and Motivation
	Sciron Architecture
	Sciron Evaluation

	Conclusions and Future work
	Contribution
	Ongoing Work

	Bibliography

