
A NETWORK INTRUSION PREVENTION SYSTEM (NIPS)
FOR HIGH-SPEED NETWORKS

A Thesis Submitted in fulfillment
of the requirements for the degree of

Master of Science

by
Shimrit Tzur-David

Supervised by
Prof. Danny Dolev

School of Engineering and Computer Science
The Hebrew University of Jerusalem

Jerusalem, Israel

September 2005

Acknowledgments

First, I would like to deeply thank my advisor Prof. Danny Dolev, for his great support

and for believing in me. I thank Danny for his most helpful guidance, his brilliant ideas

and for spending many hours on my work.

I am especially thankful to Dr. Tal Anker who’s original ideas, advices and enthu-

siasm about this work, made the whole project possible. His valuable suggestions and

elucidations help me to significantly improve this research quality.

Special thanks go to Yaron Weinsberg for his endless support. I’m grateful for his

precious time and efforts. I really enjoyed the time that we worked together. I thank Yaron

for carefully reading my drafts, designated unclear points and help to improve this thesis

with his original ideas and insights.

Thanks also to Elan Pavlov, Ariel Daliot and my brother, Asaf David for proof-reading

my drafts and for their helpful comments. I’m grateful to all the members of the DANSS

lab for their support and friendliness.

Last, but not least, I would like to thank my husband and partner Danny for his unend-

ing support. His endless love and encouragement make it possible for me to carry out this

project.

This work has received sponsorship from Marvell Semiconductor. Any opinions, find-

ings, recommendations or conclusions expressed in this thesis are those of the author and

do not necessarily reflect the views of the sponsors.

Abstract

In the late 1990s, as hacker attacks and network worms began to affect the internet,

Intrusion Detection systems were developed to identify and report attacks. Traditional

Intrusion Detection technologies detect hostile traffic and send alerts but do nothing to

stop the attacks. Network Intrusion Prevention Systems (NIPS) are deployed in-line with

the network segment being protected. All data that flows between the protected segment

and the rest of the network must pass through the NIPS. As the traffic passes through the

NIPS, it is inspected for the presence of an attack. Like viruses, most intruder activities

have some sort of signatures. Thus, the pattern matching algorithm resides at the heart of

the NIPS. The pattern matching algorithm typically uses a large predefined and complex

signatures set and deeply inspects the packets for attacks. When an attack is identified, the

NIPS discards or blocks the offending data from passing through the system. There is an

alleged trade-off between the accuracy of detection and algorithmic efficiency. Both are

paramount in ensuring that legitimate traffic is not delayed or disrupted as it flows through

the device. Thus, the pattern matching algorithm must be able to operate at wire speed,

while at the same time detect the main bulk of intrusions. With networking speeds doubling

every year, it is becoming increasingly difficult for software based solutions to keep up with

the line rates. This thesis presents a NIPS design with a novel pattern matching algorithm.

The algorithm uses a Ternary Content Addressable Memory (TCAM) and is capable of

matching multiple patterns in a single operation. The algorithm achieves line-rate speed

of several order of magnitude faster than current works, while attaining similar accuracy

of detection. Furthermore, our system is fully compatible with Snort’s rules syntax [Sno],

which is the de facto standard for intrusion prevention systems.

Table of Contents

Acknowledgments 1

Abstract 2

Thesis Overview 8

Part I - Pattern Matching Algorithm 11

1 Introduction 12

2 Notations and Definitions 14
2.1 General Definitions . 14

2.2 Snort Specific Notations . 15

2.2.1 Rule’s Syntax . 16

2.3 ClamAV Anti Virus . 17

3 Related Work 18
3.1 Software Based Pattern Matching . 18

3.1.1 KMP Algorithm . 18

3.1.2 BM Algorithm . 19

3.1.3 AC Algorithm . 20

3.2 Hardware Based Pattern Matching . 21

3.2.1 Parallel Bloom Filters . 21

Table of Contents 4

3.2.2 Network Processor Pattern Matching 22

3.2.3 TCAM Pattern Matching . 23

4 Rotating TCAM (RTCAM) Pattern Matching 25
4.1 TCAM String Search Algorithm . 29

4.1.1 Patterns with Negations . 33

4.1.2 Long Patterns Optimization . 34

4.1.3 Cross-Packets Attacks . 34

4.1.4 False Positives . 35

4.2 Window Size Considerations . 36

4.2.1 Effects of the TCAM Width on the Shift Value 38

4.3 Pure TCAM Costs . 39

4.4 The Trie Solution . 40

4.4.1 Trie Overview . 40

4.4.2 The Algorithm . 41

4.4.3 Comparison to the Pure TCAM Algorithm 42

4.4.4 Paralleling The Trie . 43

4.5 The Prefixes Solution . 44

4.6 The 2-TCAMs Solution . 44

4.7 Possible Attack . 46

5 Porting RTCAM to SRAM 48
5.1 Data Structures . 49

5.2 Hashed-Based Pattern Matching Algorithm 50

5.3 Dealing with Short Patterns . 50

Part II - Classification Engine Component 54

1 Introduction 55

Table of Contents 5

2 Related Work 57
2.1 Snort . 57

2.2 Fortigate Appliance . 58

2.3 SecureSoft Absolute IPS NP5G, NP10G 59

3 The IDS 60
3.1 Data Structures . 61

3.2 FTP Example . 64

3.2.1 Data Structures . 64

3.2.2 Control Flow . 66

Part III - Simulation 68

1 Experimental Results 69
1.1 Results on ClamAV Pattern Set . 70

1.1.1 Test Results . 70

1.2 Results on Snort Pattern Set . 71

1.2.1 Shift Average Results . 72

1.2.2 Scanning Time Results . 75

2 Conclusions 79
2.1 Future Work . 80

Appendices 81

A Light Bulb Example 81

Bibliography 83

List of Figures

4.1 Part 1: Data Structures . 29

4.2 Part 1: TCAM Size Requirement . 36

4.3 Part 1: Signatures Lengths . 37

4.4 Part 1: The Trie . 41

5.1 Part 2: Constructing The Hash Value . 52

3.1 Part 2: Enhanced Classification Engine Architecture 60

3.2 Part 2: GFC and SFD . 61

3.3 Part 2: Event Packet Classifier Operation 63

3.4 Part 2: FTP Finite State Machine . 64

1.1 Part 3: TCAM Size Requirement . 73

1.2 Part 3: TCAM Size vs. Shift Average 75

1.3 Part 3: Memory Accesses . 76

1.4 Part 3: TCAM Accesses . 76

1.5 Part 3: Effect of Memory Ratio on Scan Rate 78

A.1 Sample Light Bulb Finite State Machine 81

List of Tables

4.1 Part 1: 2-TCAM solution - TCAM size requirements 45

3.1 Part 2: FTP EPC . 65

3.2 Part 2: FTP PDT . 65

3.3 Part 2: FTP EAT . 66

1.1 Part 3: TCAM width Impact on Shift Average 74

1.2 Part 3: Sum of TCAM accesses vs. Sum of SRAM accesses 77

A.1 Light-Bulb PDT . 81

Thesis Overview

A recent security survey [Van] has revealed that the top eight threats experienced by those

surveyed were viruses (78 percent of respondents), system penetration (50 percent), denial

of service (40 percent), insider abuse (29 percent), spoofing (28 percent), laptop theft (22

percent), data/network sabotage (20 percent) and unauthorized insider access (16 percent).

Although viruses were the most significant threats faced by the respondents, 66 percent of

the companies said that they perceive system penetration to be the largest threat to their

enterprises. The survey also revealed that despite the fact that 86 percent of the companies

used firewalls, the companies did not feel secure against penetrations.

A typical firewall will allow or deny incoming packets based on the port that the TCP

or UDP request is arriving on. It is designed to deny clearly suspicious traffic but is also

designed to allow some traffic through. This behavior has a a major disadvantage, as any

packet is allowed through an open port in the firewall.

Many exploits take advantage of weaknesses in the very protocols that are allowed

through the perimeter firewalls and once the web server has been compromised, this can

often be used as a springboard to launch additional attacks on other internal servers. Once

a “rootkit” or “back door” has been installed on a server, the hacker has unfettered access

to that server at any point in the future.

The inadequacies inherent in current defences has driven the development of a new

breed of security products known as Intrusion Detection Systems (IDS). These systems are

evolving and Intrusion Prevention capabilities are gradually integrated into these products

in order to discard or block the offending data from passing through the system. Intrusion

Prevention Systems (IPS) are proactive defense mechanisms designed to detect malicious

Thesis Overview 9

packets within normal network traffic. These systems stop intrusions by blocking the

offending traffic automatically before it does any damage rather than simply raising an

alert as, or after, the malicious payload has been delivered.

Within the IPS market place, there are two main categories of products: Host IPS

and Network IPS. The host IPS relies on agents installed directly on the system being

protected. It binds closely to the operating system kernel and services, monitoring and

intercepting system calls to the kernel or APIs in order to prevent attacks as well as log

them. The Network IPS (NIPS) combines features of a standard IDS, an IPS and a firewall.

NIPS is sometimes known as an In-line IDS or Gateway IDS (GIDS). Most NIPS products

are basically IDS engines that operate in-line and are thus dependent on protocol analysis

or pattern matching to recognize malicious content within individual packets (or across

groups of packets). This thesis focuses on network IPS devices.

NIPS systems are usually comprised of two major components: a pattern matching

engine and a complementary packet classification engine. The pattern matching engine’s

input is a received packet and its output is a set of patterns which are a subset of a set

of signatures. The signatures are usually provided as byte arrays that identify worms,

viruses and protocol specific keywords. The classification engine tracks each connection

traversing the packet processor and ensure the packets are valid.

Today’s pattern matching algorithms must be able to operate at wire speeds. With

networking speeds doubling every year, it is becoming increasingly difficult for software

based solutions to keep up with the line rates. This has underscored the need for special-

ized hardware-based solutions that can operate faster than 2 Gbps.

There is a number of challenges to the implementation of a NIPS. These challenges all

stem from the fact that the NIPS device is designed to work in-line, presenting a potential

choke point and a single point of failure. If an in-line NIPS device fails, it can seriously

impact the performance of the network. Even if the NIPS device does not fail altogether,

it still has the potential to act as a bottleneck, increasing latency and reducing throughput

as it struggles to keep up with up to a Gigabit or more of network traffic. As an integral

element of the network fabric, the NIPS device must perform like a network switch. NIPS

Thesis Overview 10

must meet stringent network performance and reliability requirements as a prerequisite to

deployment. NIPS that slows down traffic, stops good traffic, or crashes the network, is

counter-effective.

This thesis presents the design of a hardware based NIPS device comprised of a pattern

matching module and a classification engine module. These modules can be used to build

a dynamic and stateful inspection NIPS for high speed networks.

The thesis is comprised of three parts. The first part presents the pattern matching

component. The second part presents the classification engine, which uses the pattern

matching component as a ”black box”. The last part describes our NIPS simulation and

its experimental results.

Part I
Pattern Matching Algorithm

Chapter 1

Introduction

The pattern matching algorithm is a building block in any intrusion detection system.

There is a need to move beyond filtering traffic based just on the information contained

in data packet headers to monitor active connections. Well known internet worms like

Nimda, Code Red and Slammer contain a string of bytes as signature. The location of a

signature in the packet payload is not deterministic, so the algorithm must be able to detect

patterns of different lengths starting at arbitrary locations. The pattern matching algorithm

allows to deeply dig into traffic flows to spot hidden attacks on targets like Web, e-mail,

and DNS servers. The algorithm must be able to operate at wire speeds that are doubling

every year.

The string matching algorithm we focus on, functions by analyzing the text using a

search window and then systematically shifting the window along the text. This is known

as the “sliding window” mechanism. The patterns length may be smaller or wider than

the window width. We make use of the bad character heuristic in order to reduce the

number of comparisons required. A brute force approach requires O(mn) comparisons,

where m is the pattern length and n is the text length. In the bad character approach

the algorithm needs to preprocess the set of patterns (with a fixed length of m) to create

a shift table. The shift table contains shift-values for each character from the patterns

alphabet. The algorithm starts by comparing the rightmost character in the text sliding

Introduction 13

window with the m’th character of the pattern. If the mismatching character appears in the

search window, the search window is shifted so that the mismatching character is aligned

with the rightmost position of the mismatching character in the search window. If the

mismatching character does not appear in the search window, the search window can be

shifted by its width. In the case of a mismatch, the shift table entry of the mismatching

character determines how further we can skip the search window. When a match occurs,

an exact match algorithm is invoked to efficiently compare the text and the set of patterns.

The string matching algorithm has the following characteristics:

1. The algorithm matches multi-pattern strings of various sizes.

2. The algorithm runtime complexity is independent of pattern length or count.

3. Many of the processing of the algorithm and data structures can be done offline.

4. The algorithm can be easily implemented in hardware (ASICs).

5. The algorithm’s worst-case performance still enable processing packets in several

Gbps.

6. Decreasing the algorithm’s space complexity is a major goal.

7. The algorithm can be easily ported to TCAM and/or to regular memory (SRAM).

We devise two algorithms: One solely based on a TCAM and second using a standard

memory.

Chapter 2 of this part presents several common algorithms that are used in various

systems. Most of the algorithms are software oriented but some can be implemented in

hardware. Chapter 3 describe s the problem and gives some notations. Chapters 4 and

5 present our two algorithms, the TCAM-based algorithm and the Hash-based algorithm.

Both algorithms are efficient and operate at wire speed.

Chapter 2

Notations and Definitions

This chapter provides the necessary terms and notations, which are commonly used in

the field of intrusion detection systems. We also briefly survey the very popular Snort

IDS [Sno] and the widely used GPL anti-virus library, ClamAV [Cla].

2.1 General Definitions

DEFINITION 2.1.1 Define a pattern P to be a string of characters from an alphabet Σ

which needs to be identified within the input text. Define a sub-pattern Ps to be a sub-

string of a pattern P.

DEFINITION 2.1.2 Define a search window to be a sequential part of the input text within

which a sub-pattern is looked for.

DEFINITION 2.1.3 Define a string-matching algorithm as follows: We assume that the

text is an array T[1..n] of length n and that the pattern is an array P[1..m] of length m. We

further assume that the elements of P and T are characters drawn from a finite alphabet

Σ. For example, we may have Σ = 0,1 or Σ = a,b, ..,z. We say that pattern P occurs

with shift s in text T (or, equivalently, that pattern P occurs at position s + 1 in text T) if

0 ≤ s ≤ n−m and T[s+1..s+m] = P[1..m] (that is, if T[s+ j] = P[j], for 1 ≤ j ≤ m). If P occurs

Snort Specific Notations 15

with shift s in T , then we call s a valid shift; otherwise, we call s an invalid shift.

The string-matching problem is the problem of finding valid shifts, which a given

pattern P occurs in a given text T . The extended problem of finding multiple patterns in a

given text is called “multiple pattern matching”.

DEFINITION 2.1.4 Define a multiple pattern string-matching algorithm as follows: The

text is an array T = t[1..n] of length n and the set of patterns is Pj, where 1 ≤ j ≤ r (the

patterns may have different lengths). The algorithm goal is to output the positions of all

occurrences of the patterns in the text

Since we use Snort and ClamAV rules set in our simulation, we overview them both

and present their specific notation.

2.2 Snort Specific Notations

Snort [Sno] is an open source Network Intrusion Detection System (NIDS), which is avail-

able free of cost. Snort uses rules stored in text files that can be modified by a text editor.

Snort comes with a rich set of pre-defined rules to detect intrusion activity and it is possible

to add more rules to the set at will.

Each Snort rule can contain header and content fields. The header part checks the pro-

tocol, source and destination IP address and port. The content part scans packets payload

for one or more patterns. Rules with more than one pattern are called correlated rules.

Rules can also contain negation patterns. Negation of patterns stands for no occurrence of

the pattern. The matching pattern may be in ASCII, HEX or mixed format. HEX parts are

between vertical bar symbols “j”. An example of a Snort rule is:

alert tcp any any -> 132.65.200.24/32 111 (content:

"idcj|3a3b|j"; msg: "mountd access";)

The above rule looks for a TCP packet, with any source IP and port, destination IP:

132.65.200.24 and port 111. To match this rule, packet payload must contain pattern

Snort Specific Notations 16

“idcj|3a3b|j”, which is ASCII characters “i”, “d” and “c”, and also bytes ”3a” and “3b” in

HEX format.

In contrary to previous works, our solution is Snort compatible. We handle correlated

rules and negation patterns.

2.2.1 Rule’s Syntax

Snort uses a simple, lightweight rules description language that is flexible and quite pow-

erful. There are a number of simple guidelines for writing Snort rules.

Snort rules are divided into two logical sections, the rule header and the rule options.

The rule header contains the rule’s action, protocol, source and destination IP addresses

and netmasks and the source and destination ports information. The rule option section

contains alert messages and information on which parts of the packet should be inspected

to determine if the rule action should be taken.

Snort defines a set of rule options. Rule options form the heart of Snort’s intrusion

detection engine. All Snort rule options are separated from each other using the semicolon

character. Rule option keywords are separated from their arguments with a colon character.

This section provides some of the more important keyword definitions that are used to

specify where in the text the string matching algorithm should operate. They also enable

writing correlated rules with position relation among them.

DEFINITION 2.2.1 Define a rule to be a set of patterns with some correlation among them.

A rule is matched only if all its patterns are also matched with the expected correlation

among them.

DEFINITION 2.2.2 Define offset to be the position in the text where to start searching for

a pattern. It specifies how far into a packet the string-matching algorithm should ignore

before starting to search for the specified pattern relative to the beginning of the packet.

For example, an offset of 5 would tell the string-matching algorithm to start looking

for the specified pattern after the first 5 bytes of the payload.

ClamAV Anti Virus 17

DEFINITION 2.2.3 Define depth to be the position in the text where to stop searching for

a pattern. It specifies how far into a packet the string-matching algorithm search for the

specified pattern.

For example, an depth of 5 would tell the string-matching algorithm to only look for

the specified pattern within the first 5 bytes of the payload.

DEFINITION 2.2.4 Define distance to be the number of characters the string matching

algorithm should ignore before starting to search for the specified pattern relative to the

end of the previous pattern match.

Distance can be thought of as exactly the same thing as offset, except it is relative to

the end of the last pattern match instead of the beginning of the packet.

DEFINITION 2.2.5 Define within to be the number of characters in which the string match-

ing algorithm should search for the specified pattern relative to the end of the previous

pattern match. It specifies the maximum number of bytes between two pattern matches.

Within can be thought of as exactly the same thing as depth, except it is relative to the

end of the last pattern match instead of the beginning of the packet.

2.3 ClamAV Anti Virus

ClamAV [Cla] is an anti-virus toolkit for UNIX, initially designed for e-mail scanning on

mail gateways. It provides a flexible and scalable multi-threaded daemon, a command line

scanner and an advanced tool for automatic database updating via Internet. The package

also includes a virus scanner shared library. ClamAV includes a virus database that cur-

rently contains nearly 27,000 signatures (version 0.82). Although this number is smaller

than those of major commercial virus scanners, which detect anywhere from 65,000 to

120,000 viruses, the number of viruses recognized by ClamAV has been steadily increas-

ing [MDWZ04]. All ClamAV signatures are simple patterns with no keywords or any

other options.

Chapter 3

Related Work

3.1 Software Based Pattern Matching

Since a string matching algorithm is an essential building block for numerous applications

it has been extensively studied [CLR90, WZN92]. This section briefly describe some

of the best known software based algorithms which are: Knuth-Morris-Pratt [KMP77,

MN98], Boyer-Moore [BM77, CCG+99], and Aho-Corasick [AC75, CW79].

3.1.1 KMP Algorithm

The naive algorithm forgets all information about previously matched symbols after the

pattern shifts. Thus, it is possible that it re-compares a text symbol with different pattern

symbols again and again. This leads to its worst case complexity of (nm) (n: length of

the text, m: length of the pattern). The algorithm of Knuth, Morris and Pratt [KMP77,

MN98] makes use of the information gained by previous symbol comparisons. It never

re-compares a text symbol that has matched a pattern symbol. As a result, the complexity

of the searching phase of the Knuth-Morris-Pratt algorithm is in O(n).

However, a preprocessing of the pattern is necessary in order to analyze its structure.

The preprocessing phase has a complexity of O(m). Since m ≤ n (text length ≤ pattern

length), the overall complexity of the Knuth-Morris-Pratt algorithm is in O(n). In order to

Software Based Pattern Matching 19

understand how this algorithm works, we define the following:

Let Σ be an alphabet and x = x0...xk−1, a string of length k over Σ.

DEFINITION 3.1.1 Define prefix of x to be a substring u with u = x0...xb−1 where b ∈
0, ...,k, i.e. x starts with u.

DEFINITION 3.1.2 Define suffix of x to be a substring u with u = xk−b...xk−1 where b ∈
0, ...,k, i.e. x ends with u.

DEFINITION 3.1.3 A prefix u of x or a suffix u of x is called a proper prefix or suffix,

respectively, if u 6= x, i.e. if its length b is less than k.

DEFINITION 3.1.4 Define a border of x to be a substring r with r = x0...xb−1 and r =

xk−b...xk−1 where b ∈ 0, ...,k−1

A border of x is a substring that is both proper prefix and proper suffix of x. Its length

b is the width of the border. The shift distance is determined by the widest border of the

matching prefix of p. If the length of the matching prefix is j and the length of the widest

border is b, the shift distance is j−b.

3.1.2 BM Algorithm

The basic idea of the Boyer-Moore [BM77, CCG+99] algorithm is that more information

is gained by matching patterns from the right than from the left. This allows to reduce the

number of the needed comparisons.

We denote the pattern to search in the string as pat and the patterns length as patlen.

pat is aligned with the string such that the first character of pat is aligned with the first

character of string. We will call the patlen’th character of the string char. The algorithm

uses three main observations:

1. if char is known not to occur in pat, then there is no possibility of an occurrence of

pat starting at string positions 1 to patlen.

Software Based Pattern Matching 20

2. This observation is a generalization of the first one. If the last occurrence of char

in pat is delta1 characters from the right end of pat, pat can be slide down delta1

positions without checking for matches. If char does not occur in pat, delta1 is

patlen. In the case where the last character of pat matches char, there is a need to

determine if the previous character of the string matches the previous character of

pat. The algorithm continues with this examination until it reaches the first character

of pat or until it notices a mismatch. In the later case, m is the number of matched

characters until the algorithm recognized the mismatch.

3. In the case where the algorithm matches part of pat (until some mismatched char-

acter), it shifts pat by m + k characters where k depends on where char occurs in

pat. If the last occurrence of char in pat is from the right to the mismatched char-

acter (within the characters the algorithm already matched), the algorithm does not

gain anything from delta1 so k = 1. In this case the algorithm shifts pat in 1 + m

characters. On the other hand, if the last occurrence of char is from the left side of

the mismatched character, the algorithm can set k to delta1(char)−m, so pat can be

shifted in delta1(char) characters.

Both algorithms build a shift table that contains shift-values for each character from

the patterns alphabet. They use the shift table to avoid back tracking and to shift the text

when possible. The search time for an m bytes pattern in a n bytes text is O(n + m). If

there are r patterns, the search time is O(r(n+m)), which grows linearly with r.

3.1.3 AC Algorithm

The Aho-Corasick [AC75] algorithm matches multiple patterns simultaneously. It pre-

processes the patterns and builds a finite-state-machine which can process the text in a

single path in O(n) time. The behavior of the pattern matching machine is dictated by

three functions: a goto function g, a failure function f and an output function out put. g

maps a pair consisting of a state and an input symbol into a state or a f ail message. Each

pattern has a track in the pattern matching machine, g simply proceeds to the next state

Hardware Based Pattern Matching 21

with the given input or fails in case there is no such a transition. f maps a state into a state.

f is consulted whenever g reports f ail. f (s) = 0 for all states s of depth 1. To compute

f for the states of depth d, the algorithm performs the following actions: for each state r

with depth d−1

• If g(r,a) = f ail for all a, do nothing

• Otherwise, for each symbol a such that g(r,a) = s, do the following:

– state = f (r)

– Execute state ⇐= f (state) until g(state,a) 6= f ail.

– f (s) = g(state,a).

Certain states are designated as output states which indicate that a pattern has been found.

Whenever the pattern matching machine encounters one of these states, s′, out put emits

the set out put(s′).

The problem with this technique is the exponential state explosion (see [FKL04]).

3.2 Hardware Based Pattern Matching

Packet inspection application, must be able to operate at wire speeds. With network-

ing speeds doubling every year, it is becoming increasingly difficult for software based

solutions to keep up with the line rates. This has underscored the need for specialized

hardware-based solutions which are portable and operate at wire speed. This section

presents some of the best known hardware based algorithms.

3.2.1 Parallel Bloom Filters

The Parallel Bloom Filters algorithm [DKSL03, TKD03] can handle thousands of patterns

but it uses a bloom filter for each possible pattern length. A Bloom filter is a data structure

that stores a set of signatures compactly by computing multiple hash functions on each

Hardware Based Pattern Matching 22

member of the set. Each Bloom filter computes k hash functions of each pattern in its set

and produces k hash values ranging from 1 to its corresponding patterns length. It sets the

k bits in a m bits vector. It repeats this process for each pattern in its set. Each Bloom filter

scans a substring of its corresponding length of the streaming data and detects suspicious

signatures. If all the k hash functions give the same values as some of the patterns, the

bloom filter declares this pattern as suspicious and the analyser determines if the string

is indeed a member of the set or a false positive. Multiple engines can be instantiated to

monitor the data, thus the byte stream can be advanced by more than one byte at a time.

With four parallel engines, the algorithm can push four bytes in a single clock cycle and

the throughput is over 2.46Gbps. The fact that each pattern’s length requires a separate

Bloom filter is a limiting factor, especially when dealing with very long virus definitions

that can be thousands of bytes long.

3.2.2 Network Processor Pattern Matching

The work of Liu, Huang and Chin [LHCK04] uses a shift based algorithm that uses a

network processor enhanced with a memory based hashing engine. It uses a prefix sliding

window (PSW) of length w, which shifts from the left most byte to the rightmost byte of

the text T . The shift value is determined as follows: if the w sequential bytes covered

by the PSW contains k bytes of pattern Pj such that PSWw−k...PSWw−1 = a0...ak−1 where

1≤ k≤ w, the algorithm can shift by w−k bytes. If there is no such pattern, the algorithm

can shift by w bytes. Their solution focuses on single patterns and compositions of patterns

without any correlation among them. Their algorithm is also optimized for patterns of

length of 4. The motivation behind their “optimization” was the memory requirement

that were a function of the width of the patterns. The integer value of the bytes in the

PSW is used as the entry address for looking up the skip distance (the skip table size is

(28)width). At that time, analysis of Snort’s rules pattern supported their assumption since

the majority of the patterns was indeed of length of four (which is not the case anymore).

This algorithm can get a shift average of around 2.

Hardware Based Pattern Matching 23

3.2.3 TCAM Pattern Matching

Most memory devices store and retrieve data by addressing specific memory locations. As

a result, this path often becomes the limiting factor for systems that rely on fast memory

access. The time required to find an item stored in memory can be reduced considerably if

the stored data item can be identified for access by the content of the data itself rather than

by its address. Memory that is accessed in this way is called content-addressable memory

(CAM) [ACS03]. CAMs can be binary or ternary. A Ternary CAM, TCAM, can store

three binary values for every bit: zero, one and ”dont care”. This extra feature enables

more advanced algorithms to exploit the memory.

The work of Lakshman, Yu and Katz [FKL04] present a TCAM based pattern matching

algorithm. A TCAM key is constructed for every byte in the packet. The width of the key

is configurable and equals the TCAM width. Each row in the TCAM presents a pattern

that is needed to be matched against. The algorithm repeatedly extracts a key comprised

of w consecutive bytes from the packet. Once the TCAM reports a hit (a matched TCAM

row has identified) the algorithm reports the matched pattern. This process is performed

for every byte in the packet. If the packet length is n, the algorithm has n TCAM lookups.

Assuming TCAM lookup time is 4 ns, this algorithm yields a matching speed of 8×
n/4n = 2 Gbps rate. This algorithm maintains a matching table in order to recover the

long patterns. This table stores all the valid combination of prefixes and suffixes patterns.

For any combination it stores the prefix index, the suffix index and the distance between

the two. If a combination yields a new valid prefix, it is also added to the table as a

new prefix. The algorithm also maintains a Partial Hit List (PHL). When it matches a

prefix pattern it records it in this list. At every TCAM hit, the algorithm checks if it

matches a prefix or suffix. If it matches a prefix, it simply adds it to the PHL but if it

matches a suffix, it needs to check if a combination of the matched pattern with one of

the prefixes in the PHL yields a valid combination (pattern hit or valid prefix). Since the

lookup process requires searching the matching table to check wether the combination is

valid, they trade space for speed. The matching table is a three-dimensional array. The

total memory consumption for this array is w×a×b, where w is the TCAM width, a is the

Hardware Based Pattern Matching 24

number of prefixes, b is the number of suffixes and they are both equal to ∑i(dmi/we−1)

where mi is the length of pattern i. Needless to say, most of the entries in this array are

just empty. Another drawback of their solution is the fact that it relies solely on TCAM

memory. The increased updates to signatures suggest that designing a pattern matching

engine solely based on TCAM memory can be quite expensive. For example, at the time

that the paper was published, populating ClamAV 2.3 viruses definition within a TCAM

memory required 240KB1 (TCAM width of 128 Bytes). In today’s ClamAV version2,

it requires 4.8MB, which is very expensive in today’s TCAM prices. Note that Snort’s

signatures are fewer (around 3100, version 2.3.2) and can be realized in a TCAM of about

150KB (for TCAM width of 64 Bytes).

They define a scan ratio as the total scanning time (including memory lookups) vs. the

time spent on TCAM lookups only. Their simulation shows that 60% of the packets have

a scan ration of 1, meaning that there are no memory hits at all and 80% of the packets

have a scan ration of 1.2. The max scan ratio for all packets is less than 2 resulting a scan

rate of 1 Gbps.

1Version 0.15, 1768 definitions.
2Version 0.82, 27,000 definitions.

Chapter 4

Rotating TCAM (RTCAM) Pattern
Matching

This section presents an innovative TCAM based pattern matching algorithm, called RT-

CAM. The algorithm is intuitive and easy to understand. In chapter 5 we introduce a

port of the RTCAM algorithm to regular memory that uses the same logic. We begin by

introducing the data structures which are used by the RTCAM algorithm.

TCAM sub-patterns table - this table contains the r patterns divided by w which is the

TCAM width. TCAM entries, which contain a part of a split pattern with length less

than w bytes, are prepended (padding at the prefix) with the suffix of the previous

part in order to reduce the number of false matches (as done in [FKL04]). If the

length of a complete pattern is less than w, the pattern is appended with don’t care

characters.

Each TCAM entry has a corresponding TCAM Rule Table Entry (TRTE) which is

defined in a regular memory region called: TCAM Rules Table. The bad character

heuristic is applied here by creating a corresponding shift value in the TRTE that

states the number of bytes we can shift if a match occurs. Entries of the split pat-

terns contain a shifting value of 0 since this indicates a possible full pattern match.

Since a pattern may start at an arbitrary point within a given search window, a set

Rotating TCAM (RTCAM) Pattern Matching 26

of shifted sub-patterns (and their corresponding shift values) should be created for

every possible sub-pattern which is a prefix of the full pattern 1. If the shift value is

equal to w then the mismatching character does not appear in any of the patterns.

A shifted sub-pattern is created by shifting each prefix sub-pattern to the right (losing

the rightmost character and adding don’t care at the left) and increasing the shift

value starting from 0.

Example: Assume our patterns set is comprised of: { “abcdefghij”, “cgi”, “cdef”,

“filename”, “ab” } and the TCAM width is 4. Patterns of length greater than 4 are

split into sub-patterns and patterns of length smaller than 4 will be padded. Patterns

with the same prefix are ordered according to their length in a descending order

(enabling longest prefix match first scheme).

Split patterns= {“abcd”,“efgh”,“ghji”,“cgi?”,“cdef”,“file”,“name”,“ab??”}.

The shifted sub-patterns are created as follows: The shift value of the pattern “abcd”

equals to 0 where the shift value of “?abc” is 1, the shift value of “??ab” is 2 and the

shift value of “???a” is 3. Note that the last pattern in the split patterns set (“ab??”)

is treated in the same way even though its length is smaller than the width, thus, it

is yielding the following shifts: [(ab??,0);(?ab?,1);(??ab,2);(???a,3)]. The last

TCAM entry contains all don’t care and the shift value is the width=4. The shifted

sub-patterns are ordered according to their shift values in an ascending order after

the real patterns. The last entry in the TCAM composed of w don’t care signs.

TCAM Rules Table Entry (TRTE) - each table entry corresponds to a TCAM row and

contains the additional information needed for the follow up pattern matching algo-

rithm. Each entry contains the following fields:

shift offset - indicates how many bytes we can safely skip. If this value is 0 then

a matching sub-pattern was found in the text. If this value is not 0, then the

1Note that this is done only for pattern prefixes and NOT for all sub-patterns, thus the TCAM space is
not wasted.

Rotating TCAM (RTCAM) Pattern Matching 27

fact that we have a match in the TCAM means that we can shift the text by this

field value (this will reduce the average search time).

Inclusion Patterns - a list of pointers to patterns list nodes that contains patterns

that are matched by inclusion. Since the TCAM entries are descendent ordered

by their length, patterns with length smaller than the TCAM width must be

tracked when a longer pattern is matched. This list provides this information.

In the example above, the TRTE for the sub-pattern prefix “abcd” must include

the pattern “ab”.

Associative Patterns - a list of pointers to patterns nodes that start with the matched

sub-pattern (TCAM row content).

Patterns List - This list is ordered2 by the pattern identifier (sub-patterns which belong to

the same rule are directly linked). This list is meaningful only when the shift value

is 0 and the TCAM row matched a prefix of a pattern. A rule can be comprised

of several patterns which are linked together from the root pattern (e.g. a set of

correlated patterns in Snort comprising a single Snort rule [Sno]). Rules do not share

a similar text pattern since each pattern in the list contains a context information

needed for validating the correlation (e.g, packet offset etc.).

Each entry contains the following:

pattern - the pattern’s string

id - the pattern’s id

len - the pattern’s length

root - a boolean value indicating that this pattern is a root in the rule (root means

that this pattern is the first in the rule).

next - a pointer to the next pattern in the rule. The next pointer of the last pattern

in each rule is equal to null (including the next pointers in the patterns of the

simple rules).

2The reason is explained later on.

Rotating TCAM (RTCAM) Pattern Matching 28

offset - how far into a packet the search algorithm should ignore before starting to

search for the specified pattern relative to the beginning of the packet.

distance - distance specifies the minimum number of bytes between two consec-

utive matches. i.e. how far into a packet the search algorithm should ignore

before starting to search for the specified pattern relative to the end of the pre-

vious pattern match. This keyword is relevant to correlated patterns.

within - within specifies the maximum number of bytes between two consecutive

matches. i.e. how far into the packet the algorithm should search for the spec-

ified pattern relative to the end of the previous pattern match. This keyword is

relevant to correlated patterns.

depth - how far into the packet the algorithm should search for the specified pattern.

Matched Patterns List - each entry contains the matched patterns and its corresponding

end position in the text. In case of a match, if the pattern is not a root and is a related

pattern (depends on previous match), the algorithm checks if the previous pattern

(by id) is already in the list. In addition, the algorithm should check if the pattern

position is compatible with the four keywords (offset, distance, within and depth).

If the two conditions hold, the algorithm inserts the pattern to the list. Some of the

correlated rules have no relation among the patterns, e.g., the patterns can appear in

the text at any order. In this kind of rules, there is no root and the patterns ids do not

indicate the appearance of the patterns in the text. In order to deal with these rules,

it is insufficient to look for the previous pattern (by id) in the table. For that reason

we also maintain a rules table.

Rules Table - each entry corresponds to a single rule end contains the following:

patNum - the number of patterns in the rule

patIdxArray - an array of size patNum, whenever the algorithm hits one of the

rule’s pattern, it marks the corresponding entry. If all the entries are marked,

we found an attack.

TCAM String Search Algorithm 29

The data structures used in the pattern matching process are presented in figure 4.1.

Figure 4.1: Part 1: Data Structures

4.1 TCAM String Search Algorithm

The matching procedure is quite simple. Initially the text (pattern) is aligned with the

TCAM. A string of width bytes is fetched and inserted as a key to the TCAM. The TCAM

Rule Table is indexed with the TCAM matched entry and the shift is retrieved. If the shift

value N is not equal to 0, the text position is shifted right by N. If it is 0, then we have a

possible pattern match and we need to look at patterns pointers. We first follow the TCAM

rule entry’s associative list which points to the patterns that contain the corresponding

TCAM value as their prefix. For each pattern in the list, we check the following:

The offset value - if it is greater than the current position, do nothing.

TCAM String Search Algorithm 30

The depth value - if it is lower than the current position+ len−1, do nothing (the pattern

should end within depth bytes).

The len value - If the len value is less or equal to the TCAM width, the algorithm sets

the matched flag to true, otherwise we extract the next w bytes from the text and

use them as a key to the TCAM. In continuance to our example, suppose the text

contains: “abcdefghijklmnop”. The first match is “abcd” which gives a shift value

of 0. Since in pattern (Id = 0) Len > 4, we extract the next 4 bytes from the text

and enter the TCAM again. “efgh” is matched again (shift value is 0). We now

have a residue of 2, so we’ll have to take 2 additional bytes from the text in order

to match ghij (from text position minus 2 bytes). Checking the TCAM again yields

a match with shift value equals to zero which concludes the process and we can set

the matched flag as true. Note that getting a shift 0 is not enough. The algorithm

needs to check that the entry it gets is the one that corresponded to the sub-pattern of

the specific pattern. In order to achieve that, we add an id to each TRTE. At the first

match (the first w byte of the pattern), the algorithm stores the TRTE id. The next w

bytes of the patterns has to have a consequent TRTE id. The algorithm checks this

id for each sub-pattern match. If all the sub-patters were matched, the algorithm sets

the matched flag to true.

If this is a related pattern (has distance or within) the algorithm checks if a previous

pattern id appears in the matched patterns list. If yes, it also checks distance and within.

The distance value - if the current position is lower or equal to the end position value of

the previous pattern in the matched patterns list entry plus distance, do nothing.

The within value - if the current position plus len minus one is greater than the end po-

sition value of the previous pattern in the matched patterns list entry plus distance

and within values, do nothing.

If the two conditions hold or if the pattern is not related, the algorithm inserts the

pattern to the matched patterns list and marks the pattern entry in the patIdxArray.3. If
3patIdxArray located in the rule’s entry in the rules table

TCAM String Search Algorithm 31

all the entries in the patIdxArray in the rule entry are marked, we found an attack. The

algorithm can now continue with the next list element in the associative list.

We also need to check the inclusion list, for each pattern in this list the algorithm

repeats these operations. After checking all the patterns also in the inclusion list, we can

move the text position by one. After the packet has been fully consumed, we can empty

the matched patterns list.

The algorithm is given at 1.

The checkSubPatterns method in the algorithm, takes the next width bytes from the

packet and checks the TCAM for a match with o f f set = 0. It also has to compare the

TRTE id with the previous sub-pattern match. The method returns true if all the sub-

patterns are matched.

TCAM String Search Algorithm 32

Algorithm 1 TCAM Pattern Matching
1: T (Packet) = {Ti,1 ≤ i≤ n}
2: pos ⇐ 1
3: shi f t ⇐ 0
4: width ⇐ de f ault
5: while pos ≤ n−width do
6: key ⇐ T[pos,..,pos+width−1] {construct a TCAM search key}
7: shi f t ⇐ T RT [matchedRow].o f f set
8: if shi f t is 0 then {TCAM exact or partial matched rule}
9: for all current = T RT [matchedRow].AssociativePatterns.next 6= null do

10: if pos < current.o f f set then {check offset}
11: continue
12: end if
13: if pos+ current.len > current.o f f set + current.depth then {check depth}
14: continue
15: end if
16: if current.len ≤ width then {exact match!}
17: matched ⇐ true
18: else
19: matched ⇐ checkSubPatterns(current) {iteratively checks for sub-patterns}
20: end if
21: if matched = true then
22: if current.distance 6=−1 OR current.within 6=−1 then {related pattern}
23: if MatchedList.contains(current.id - 1) then {previous pattern in matched list}
24: prevPos ⇐ MatchedList.get(current.Id−1).pos
25: if pos≤ prevPos+ current.distance then {check distance}
26: continue
27: end if
28: distance ⇐ Max{current.distance,0}
29: if pos + current.len− 1 > prevPos + distance + current.within then {check

within}
30: continue
31: end if
32: else
33: continue
34: end if
35: end if
36: MatchedList.add(current.id, pos+ current.len)
37: Rules[ruleId].markEntry(current.id)
38: if Rules[ruleId].allMatched() then
39: FOUND AN AT TACK
40: end if
41: end if
42: end for
43: for all current = MatchedTable[matchedRow].patterns.next 6= null do
44: repeat lines 10 to 41
45: end for
46: else
47: pos ⇐ pos+ shi f t
48: end if
49: end while

TCAM String Search Algorithm 33

4.1.1 Patterns with Negations

Some of Snort rules contain negated patterns. Negation of patterns stands for no oc-

currence of the pattern. Negation patterns always come in correlated rules, for exam-

ple: content : ”MAILFROM”;content :!”|0A|”;. This rule means that if the algorithm

has found the string MAIL FROM and has not found the hex value of 0A in the same

packet, it found an attack. There can be a relation between the patterns, for example,

content : ”Username”;content :!”Password”;within : 30. This rule means that if the algo-

rithm has found the string Username and the string Password does not appears within 30

bytes, it found an attack.

In order to handle this negated patterns, we maintain matched negation patterns list

which is a matching list for the negation patterns (we can use the matched pattern table

with a negation flag at each entry). Each time the algorithm matches a negation pattern, it

adds the pattern to matched negation patterns table. If the algorithm matches a related pat-

tern it checks if the previous pattern appears in the matched pattern table. If the matched

pattern is related to a negation pattern, the algorithm looks for the previous pattern at the

matching negation patterns list. If the previous patterns appear at the negation list, the al-

gorithm has to check the following: if the within value of the pattern is w and the distance

value is d, the algorithm checks that the match is not within w bytes from previous match

and that the match is not far d bytes from previous match. Note that these conditions are

inverted to the conditions the algorithm checks once it matches a non-negation pattern.

In contrast to rules that do not contain negation, which the algorithm can decide before

the end of the packet if there was an attack, at this kind of rules the algorithm needs

to check the rules entries at the end of the packet to determine if there was an attack.

The patNum field in each rule entry in the rules table represents the number of the non-

negation patterns in the rule. In addition to patNum, each entry holds a negPatNum field

that represents the number of negation patterns in the rule. At the end of each packet

scan, the algorithm checks if the number of non-negation patterns it matches is equal to

patNum. If so, it also checks the number of the negation patterns it matches, if it is not

equal to negPatNum, it found an attack.

TCAM String Search Algorithm 34

4.1.2 Long Patterns Optimization

We can treat a long pattern whose length exceeds the width of the TCAM, as several pat-

terns. Using the distance and within keywords, we can split one pattern into two patterns

without making any change to the algorithm. The second pattern will have 0 as its distance

value and its within value will be equal to its length. For example, we can split the pattern:

abcdefgh into the two following patterns: abcd (all the keywords of the original pattern

remains in the first sub-pattern) and efgh with distance:0 and within:4. In this way, we

enforce the second part of the pattern to appear after the first part (distance:0) and it has

to be right after it (within:4). The reason we add this optimization is because it enables

us to skip the checkSubPatterns sub-routine in our algorithm. Instead of proceeding with

checking the packet with the sub-patterns and then return to the original position, we can

ignore the rest of the pattern, knowing we will check it when we reach the right position.

This approach is better when the patterns are long, as in ClamAV.

At long patterns, we might proceed into the packet in order to check the sub patterns

and finally discover that there is no match. For example, suppose that the TCAM width is

32, the algorithm matches a prefix of pattern P and P’s length is 100. We also assume that

the last byte of P is different than the corresponding byte in the text. After matching P’s

prefix, the algorithm has to shift all the length of P in order to decide if there is an attack.

The algorithm wastes precious time since at the end of the process it has to return to the

position where it first matched P’s prefix. Although, the probability to match w bytes of

the pattern without having a complete match is pretty low and is inversely proportional to

the value of w, sending a lot of prefixes in a packet can be foiled as if it was an attack.

4.1.3 Cross-Packets Attacks

The cross packets attacks problem stands for rules that start at the end of one packet and

continue at the next packet of the same flow. This problem can be solved easily for sim-

ple patterns. The algorithm maintains a last-width-match field for each flow. When the

algorithm gets a match for the last width bytes of a packet, it saves these bytes at this

TCAM String Search Algorithm 35

field. When it starts scanning a packet, the algorithm checks this field, if it is not null,

the algorithm prepends these bytes to the payload of the scanned packet and continues the

algorithm exactly as described earlier. This solution assumes that the packets arrive to the

algorithm in the correct order; for more information see section 2.1.

4.1.4 False Positives

There are two types of the false positives problem. The first type occurs when the TCAM

matches a pattern of correlated rule and after some processing the algorithm discovers

that there is no attack. The second type occurs when the algorithm matches a patterns

corresponded to one protocol, say HTTP, and it scans a packet related to another protocol,

say FTP. This problem can slow down the speed of the inspection mechanism significantly.

Ideally, the algorithm should not get a match unless there is a real attack.

We can eliminate the second kind of the false positives problem by adding some of

the rule’s flow data to each TCAM entry. For example, we can add a protocol bitmap that

contains a bit for each main protocol. If the pattern appears in both FTP and HTTP rules,

both bits are turned on. When the algorithm scans the packet, it adds the protocols bitmap

to the search key with the flow protocol bit turned on. In this way, it matches only patterns

that appears at rules that are applicable to the flow’s protocol (or at rules that don’t specify

a protocol at all).

We generalize this by having a hash function whose input is some additional data

related to the pattern (gathered from the rule or from the flow) and whose output is the

addition to the TCAM key. The algorithm uses this function twice: the first time, when

creating the TCAM table, the algorithm prepends each entry with the generated key and

the second time, when the packet is received the algorithm uses the flow identifier, which

can be obtained at wire speed, to create the hash key when constructing the key to enter

the TCAM.

Window Size Considerations 36

4.2 Window Size Considerations

The TCAM width is the most influential factor and is configurable. Suppose the TCAM

width is w; there are k patterns, each one of length mi. Each pattern is cut to dmi/we
pieces. The total TCAM memory requirement of our algorithm is w2×∑dmi/we bytes.

Note that short patterns, or suffixes patterns are padded to the TCAM width so that the

TCAM memory size increases with w. Figure 4.2 shows the TCAM size required in order

to accommodate all the patterns in Snort and in ClamAV signature databases.

0 50 100 150
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

TCAM width

M
em

or
y

(K
B

)

TCAM For Snort

full shift
half shift
10 shift
no shift

0 50 100 150
0

0.5

1

1.5

2

2.5
x 10

5

TCAM width

M
em

or
y

(K
B

)

TCAM For ClamAV

full shift
half shift
10 shift
no shift

Figure 4.2: Part 1: TCAM Size Requirement

Window Size Considerations 37

Figure 4.3 shows the amount of signatures (in each database) that can be covered by

choosing a specific window size. We can see that for Snort, a TCAM width of 128 bytes

covers all patterns. The higher the TCAM width, the less false positives there are. In

addition, we minimize the need to check for sub-pattern matches that might complicate

and decelerate the algorithm. Another major point is the effect of the TCAM width on the

shift values. Since the TCAM contains all the shifted patterns, a wide TCAM results in a

high shift value.

0 50 100 150
0

10

20

30

40

50

60

70

80

90

100

Length up to (i)/total

R
at

io

(b) Snort Signature Length Ratio

0 100 200 300 400 500
0

10

20

30

40

50

60

70

80

90

100

Length up to (i)/total

R
at

io

(a) ClamAv Signature Length Ratio

Figure 4.3: Part 1: Signatures Lengths

Window Size Considerations 38

4.2.1 Effects of the TCAM Width on the Shift Value

Assume the packet has a random payload; there are (28)w different possibilities for each

w bytes from the payload. We know the shift value of each TCAM entry (the number of

don’t care signs that prepend the pattern). In order to calculate the shift average, we need

to calculate the probability to hit each one of the TCAM entries.

We define two relations: antecessor-descendant and intersecting patterns.

Antecessor-Descendant - let patterns Pi and Pj be different. If for each character at posi-

tion t, either Pi[t] = Pj[t] or Pi[t] is equal to the don’t care sign, then we say that Pj

is a descendant of Pi.

For example the pattern ??cd is a descendant of the pattern ?bcd. Note that the shift

value of Pi is less or equal to the shift value of Pj (there are never any don’t care

signs in the middle of a pattern).

Intersecting patterns - let patterns Pi and Pj be different and do not fulfil the antecessor-

descendant relation. If for each character at position t, either Pi[t] = Pj[t] or if either

Pi[t] or Pj[t] is equal to the don’t care sign, then we say that Pi and Pi have intersect-

ing patterns.

For example the intersection of the patterns ??cd and xy?? is the pattern xycd.

Now, for each entry we calculate the number of the potential TCAM hits it can have.

If the number of the don’t care signs in the pattern Pi is Ki (they can appear either at the

beginning of Pi or at its end), then the initial number of the potential hits is (28)Ki . Suppose

that the shift value of Pi is Si (Si ∈ 0,1,2, ...w), then we can say that Pi contributes the sum

(28)Ki ×Si to the total shift sum. This number is not precise.

Consider the two patterns ??cd and ?bcd, ??cd contributes (28)2×2 to the total shift

sum and ?bcd contributes (28)1 × 1 to it. Note that there are 28 patterns that we count

twice. This is the reason we calculated the descendants for each pattern. We decrease

from the sum (28)Ki × Si that Pi (the antecessor) contributes to the shift sum, the amount

∑(28)K j ×S j for each descendant Pj of Pi.

Pure TCAM Costs 39

This is still not enough. Consider the two patterns ??cd and xy??. These patterns

do not fulfil the antecessor-descendant relationship, but they still count the pattern xycd

twice. This is the reason we also calculated the intersecting patterns. We also decrease

the number of the intersecting patterns from the sum of the pattern that its shift value is

greater, ??cd, in the given example.

Finally, if Si is the shift value and Sn
i is the number of patterns that yield Si as a shift

value, then the total average shift value is ∑Si∈0..w Sn
i ×Si

(28)w .

We calculated the shift average for each TCAM width, the results show that the average

shift value is w/2. Assuming TCAM lookup time is 4ns, hence the total time to scan an n

bytes packet is 4(n/(w/2)) ns. This yields a matching speed of 8×n
4(n/(w/2) = w Gbps4. Thus,

we would like to increase the TCAM width but there is a clear tradeoff between window

size, required memory, speed and cost.

4.3 Pure TCAM Costs

In order to implement the pure TCAM solution we need to have all Snort patterns and

their shifted patterns inside the TCAM (the patterns are divided by predetermined length

- the TCAM width). As shown in figure 4.2, in order to implement the current solution

while the TCAM width is 32, we need 1990KB of TCAM memory. TCAM costs much

more than conventional memory so this implementation might not be acceptable by some

of the IPS devices manufacturers. We would like to reduce the required TCAM memory.

There are several ways to do so, each with well defined tradeoffs. Our first solution is

an optimization of the algorithm described in section 4.1. The basic idea is to reduce the

TCAM size by the price of reducing the average shift value. Instead of having the patterns

and all their shifts inside the TCAM, we insert to the TCAM only half of the shifted

patterns. For each pattern, instead of creating w-1 shifted patterns, we create only the first

w/2 shifted patterns. This optimization decreases the shift value as shown at figure 4.2

but we still need 1148KB of TCAM for width= 32 which may still not be practical. We

4This speed corresponds only to the TCAM lookups.

The Trie Solution 40

can create even less shifted patterns, for example, we can create no more than 10 shifted

patterns for each pattern, i.e. the minimum of w/2 and 10. At this case, we decrease

the needed TCAM memory to 733 KB which might be more reasonable. As explained at

section 4.2.1, this optimization directly influences the shift average resulting in decreasing

the algorithm rate. In this solution, the shift value can not exceed w/2. In other words,

if we fall in to the last entry in the TCAM the shift value is w/2 and not w as this entry

would have returned at the original solution.

We would like to find a way that keeps the average shift value high but still uses less

TCAM memory than the original solution. We also want to have wide enough TCAM so

we can avoid false-positives and keep the search speed on several GBps.

4.4 The Trie Solution

In this solution we combine, in addition to the TCAM memory, a trie that will supply us

the shift values. The trie can be implemented on a regular memory. All the shifted patterns

are removed from the TCAM therefore, this solution satisfies the TCAM size constraints.

4.4.1 Trie Overview

A Trie is an ordered tree data structure that is used to store an associative array where the

keys are strings. Unlike a binary search tree, no node in the tree stores the key associated

with that node; instead, its position in the tree shows what key it is associated with. All

the descendants of any one node have a common prefix of the string associated with that

node and the root is associated with the empty string. Values are normally not associated

with every node, only with leaves and some inner nodes that happen to correspond to keys

of interest. A trie can be seen as a deterministic finite automaton, although the symbol on

each edge is often implicit in the order of the branches.

Looking up a key of length m takes at the worst case O(m). Also, the simple operations

tries use during lookup, such as array indexing using a character, are fast on real machines.

Since the keys are not stored explicitly, only an amortized constant amount of space is

The Trie Solution 41

needed to store each key. Since the key is not present, tries are most useful when the keys

are of varying lengths and we expect some key lookups to fail.

4.4.2 The Algorithm

We use the same principles as the Aho-Corasick [AC75, CW79] solution. The input to the

trie is all the prefixes to the patterns (without their shifted patterns). The trie’s height can

be different than the TCAM width. The trie height determines the size of the prefixes that

are inserted to it. We call this size the trie width. For each pattern prefix from the input,

there is a path in the trie. There are, of course, less nodes than the number of prefixes

×w, since there are a lot of patterns that share the same prefix, these patterns also share

the same nodes in the trie. In the root node, there is a self-loop with the don’t-care sign,

this loop gives us the shift values. Figure 4.4 illustrates the trie for w = 4 and the prefixes

ABCD and XYZW:

Figure 4.4: Part 1: The Trie

At the RTCAM solution we had the patterns ABCD, ?ABC, ??AB, ???A, XYZW, ?XYZ,

??XY, ???X, ????. Each pattern from this list can be represented using the trie, the shift

value is the number of steps that we stepped in the root. The height of the trie is exactly

the trie width. The algorithm is very similar to the RTCAM algorithm, we will emphasize

the parts where the two algorithms are different.

The Trie Solution 42

Initially the text is aligned with the TCAM. A string of the size TCAM width is fetched

and inserted as a key to the TCAM. At the same time, a string of the size trie width is

fetched and inserted as a key to the trie. The TCAM width can be different than the trie

width, in fact, TCAM width, most of the time, is greater than the trie width. Thus, we can

use a reasonably small trie even though the TCAM width is wider. If the TCAM finds a

match, we continue with the TCAM algorithm. In case there is no match, we use the shift

value we get from the trie in order to shift more than one step in the text.

We extend this approach and remove from the TCAM all patterns whose length is

smaller than the trie width. Since, the match for these patterns can be found in the trie,

there is no need to put them in the TCAM. In order to do this we need to add a pointer to

the patterns table from each node in the trie that represents a pattern match. The trie width

can be determined by the time it takes the TCAM to return an answer, we want the TCAM

and the trie to simultaneously finish.

In current memory technologies, memory access speed is 5 times faster than TCAM

access speed. Therefore, the trie width can be 5 and both engines (TCAM and trie) can

work freely in parallel.

We will now compare this solution with the RTCAM algorithm.

4.4.3 Comparison to the Pure TCAM Algorithm

It seems that if we can have the trie width to be large enough, the solution will be as good

as the RTCAM algorithm. The truth is that by using less TCAM we lose a little in the rate

of the algorithm.

For example, if we look at the trie in figure 4.4 and the key is ABRR, in the RTCAM

algorithm we would get 4 as the shift value but in the trie we will start at ABCD path and

after two steps we will not be able to proceed. As we described the trie algorithm till now,

the returned shift value is 0.

We add two optimizations to the algorithm - the first: if we start in some path in the trie

and after few steps we can not proceed, we can return 1 as a shift value, meaning: there is

no match from the first character of the key. The second optimization: If in one search we

The Trie Solution 43

can make w comparisons and we found out after k steps (k < w) that there is no match, we

can continue to search w− k characters. In this case, we will return to the root of the trie

with the next position in the text.

In the given example, since after taking two steps (reading A and B) we couldn’t pro-

ceed in the trie, we can search two more characters. We will go back to the root with the

key BR (we have only two more comparisons to make). Therefore, the returned shift value

is 2.

Even if the key was RABR, we would step once in the root (shift value is one), then we

would start to proceed in the ABCD path, we would get stuck after two more steps. In this

stage, we return to the root and the key is B. The shift value is 2 again.

4.4.4 Paralleling The Trie

If we enter to the trie in parallel, we can insert several keys at the same time. Let’s

assume that we have k tries working in parallel and the trie width is w. The first key

is Text[pos, pos + w− 1], the second key is Text[pos + 1, pos + w] and the k′th key is

Text[pos + k−1, pos + k + w−2]. In this way we can gain a better shift value. Each en-

trance to the trie can give us a shift value between 0 to w. If the i′th key gives w as a shift

value, the i+1′th key has to give at least w−1, the i+2′th key w−2 and so on. For that

reason, the most significant value is the one that returned from the k′th key. The maximum

returned shift value is k−1+ shi f t[k] unless some of the keys give 0 as a shift value.

Generally, if t keys returned shift value that is greater than 0 before the first key which

gave 0, the total returned shift value is t−1 + shift[t]. If t/neqk, shi f t[t] = 1. The maxi-

mum number that we can get as a returned shift value from all the k keys is k−1+w.

For example, suppose the text is ABRRRRR and we have 4 engines that work in parallel,

the first key is ABRR and the returned shift value is 1, the second key is BRRR and the

returned shift value is 4, the third key is RRRR and the returned shift value is 4 and the

fourth key is RRRR and the returned shift value is also 4. The total returned shift value

from all the engines is 3+4 = 7, which is the maximum value we can get.

With this extension, we miniaturize the ”less-shift” problem we described, since even

The Prefixes Solution 44

if the i′th key gives a smaller shift value as it would have give in the RTCAM algorithm,

the keys that follows it will find the real shift. The problem remains for the k′th key.

4.5 The Prefixes Solution

In this solution, the TCAM contains only the prefixes of the patterns and their full shifted

patterns. Each entry points to a list of suffixes which is stored in a regular memory. When

there is a match, the algorithm continues the comparison on the regular memory (the bus is

usually 4 bytes wide so we can compare 4 bytes at a time). In contrast to the trie algorithm,

the TCAM does not need to wait for the regular memory result, it can continue to the next

position. Since more than one sequential TCAM match can occur, the second match might

wait for the first match to finish, therefore, the regular memory lookup can be a bottle neck.

By having few engines working in parallel, we can finish the suffix comparison within

one TCAM lookup which will solve the problem completely.

4.6 The 2-TCAMs Solution

This solution contains three separated TCAMs T1, T2 and T3 and two different sizes, w1

and w2. The first TCAM, T1, has a wider width, w1, and it contains all patterns whose size

is greater than w2 (without their shifted patterns). The patterns are divided by w1 as in the

RTCAM algorithm. The second and third TCAMs, T2 and T3, have a narrower width, w2,

and they contain patterns whose size is less than w2 and all the shifted patterns (of both

TCAMs). T2 and T3 are exactly the same.

The key for T1 is T[pos,..,pos+w1−1] and the two keys for T2 and T3 are T[pos,..,pos+w2+1]

and T[pos+w2,..,pos+2×w2−1]. By having all the three TCAMs work in parallel, we simulate

the scenario where in one hit at the wide TCAM we hit twice the narrow TCAM.

There is no constraint on the relation between w1 and w2, however, if w1=2×w2, we

could achieve the same result as if we had one TCAM at width w1 that contains all the

patterns and their shifted patterns.

The 2-TCAMs Solution 45

Let S1 denote the shift value that is returned by the T2 and S2 the shift value that is

returned T3. If S1 < w2, S1 will be the actual shift value, otherwise (S1 = w2), the actual

shift value will be w2 + S2. If S1 < w2, we lose the benefit of having two copies of the

narrow TCAM. By making some probabilistic assumptions we can achieve better results.

Since we assume a gaussian distribution, 68% of the data elements are within one standard

deviation of the mean, 95% are within two standard deviations and 99.7% are within three

standard deviations.

Let mean denote the shift average results by TCAM width w2 and sigma the standard

deviation, we can use this information to determine the key start position of T3. If pos is

the starting position of the key to T2, the second key can start at position pos+mean−n×
sigma. So, if we take n = 2, in 95% of the cases, pos + mean− n× sigma will be lower

or equal to S1. In the remaining 5%, where S1 is lower than pos + mean−n× sigma, the

actual shift value for the first TCAM will be S1, no matter what is the value of S2.

The larger w1 is, the less patterns divisions we have (less false positives). The larger

w2 is, the bigger shift value we get and the faster our algorithm is. If for example, we take

w1 to be 32 and w2 to be 12, we will need to divide only 5% of Snort’s patterns, we will

get a shift average of 6 and we will need only 472KB of TCAM memory. If we’ll take

w1 to be 64, around 0.001% of the patterns will have to be divided and we will need only

500KB of TCAM memory.

Table 4.1 shows the TCAM memory size for two different combinations of w1 and w2.

TCAM size requirement
w1 w2 TCAM size
12 32 472
12 64 500

Table 4.1: Part 1: 2-TCAM solution - TCAM size requirements

The main advantage of this solution is that we still gain a high shift average with a

practical size of TCAM. The TCAM separation causes less divisions of patterns which

reduce the search speed. Another advantage is that the short patterns don’t waste a lot of

space in the TCAM since w2 is relatively small. There are two drawbacks, one - we double

Possible Attack 46

T2 and second - since we use a smaller TCAM, we will have more false positives than in

the RTCAM solution which may slow down the algorithm.

4.7 Possible Attack

Since we save all the matched patterns in the matched patterns list, attackers can send

packets that will enlarge this list without the NIPS intercepting the attack. For example, if

there is a rule of the form: content:”ab”; content:”cd”; within:10; and the packet payload

contains 500 appearances of ”ab”, as it was described till now, we will have at least 500

entries in our matched list. We can reduce the list length by keeping to the following

principles: One, if we matched a pattern of a correlated rule and the next pattern in the

rule contains only the distance keyword, we can save only the first match of this pattern.

Second, if the next pattern in the rule contains only the within keyword, we can save

only the last match of this pattern. This is significantly decreases the size of the Matched

List table but it does not solve the problem completely. There is more than one way to

completely solve the problem:

• The first way is dropping the packet to the CPU - we can decide that if the length of

the matched list exceeds some predetermined number, we drop the packet to CPU

treatment.

For the next two solutions we need to store in each entry of the matched list another field

called removePos. The value of this field is the current position of the match plus within

value of the next pattern (if exists). If the current position is greater than this value, we

can remove the entry from the list. The following two solutions use this value to minimize

the length of the list.

• Heap - we can use a heap ordered by the ’removePos’ value in an ascending order.

At each position we’ll check the head of this heap and remove it if its value is smaller

than the current position.

Possible Attack 47

• Different Task - a different task runs in the background, its role is to check the

’removePos’ field of each entry and remove those whose value is smaller than the

current position.

Chapter 5

Porting RTCAM to SRAM

Due to the high price of TCAM memory and the increasing number of signatures, a TCAM

oriented solution may not be acceptable to the industry. In order to elevate the problem,

we propose an alternative algorithm using a hash function that creates fingerprints of the

packet payload which are then compared with the patterns signatures (previous works that

are using hashing technique can be found in [KR81] and [WM93, WM91]).

For brevity we assume that all patterns have a length1 of m which is larger than the

sliding window of width bytes. The hash value is calculated on the sliding window and is

used as a key later on.

As in the RTCAM algorithm, we use a shift table. Instead of creating a shift table that

maps a single character to a shift value, we create shift values for a block which contains

B characters. Using blocks we reduce the amount of false matches. When a packet is

processed, a block of characters is extracted from the search window (right to left) which

are used as an index to the shift table. The shift value is retrieved from the shift table. If it

is zero, then an exact match must be performed, otherwise we can shift the text.

In order to minimize the search space, the patterns are linked using a hash value. We

calculate a hash value using the sliding window’s text and locate the patterns bucket in the

hash-table. The algorithm iterates the relevant patterns as done in the RTCAM algorithm.

1We will later show how the algorithm is used for matching patterns of smaller lengths.

Data Structures 49

5.1 Data Structures

In order to implement the hash-based solution we maintain several data-structures. We

start by describing each one.

Sub-Patterns Hash Table (HT) - replaces the TCAM in the TCAM based algorithm.

The table resides in SRAM and contains the r patterns divided by w which is the

search window’s width. Entries with less than w bytes are prepended (padding at the

prefix) with the suffix of the previous part. A key is calculated on the sub-pattern

and the sub-pattern is placed in the table accordingly.

Shift Table - we keep a shift table for a block of characters B (as in the algorithm pre-

sented by Manber [WM93, WM92, WM91]). The block of characters is used while

preprocessing the patterns to construct the shifting table. Within the sliding widow,

we look at the text, B characters at a time. For simplicity2 assume that the table size

is ΣB, where Σ is our alphabet. Each entry corresponds to a distinct substring of

length B.

Let X = {x1,x2, ..,xB} be a string corresponding to the i’th entry of the shift table.

There are two cases: either X appears somewhere in one of the patterns or not. If

X does not appear in any of the patterns, we store m−B + 1 in the corresponding

shift entry, otherwise, we find the rightmost occurrence of X in any of the patterns

that contain it; suppose it is in Pj and that X ends at position q of Pj. Then we store

m−q in the table.

If the shift value is greater than zero, we can safely shift. Otherwise, it is possible

that the current substring we are looking at in the text matches some pattern in the

pattern list. To avoid comparing the substring to every pattern in the pattern list,

we use the previous defined hash table (that minimizes the number of patterns to be

compared).

2The table can be easily compacted by hashing the B characters and setting the shift value to be the
minimum of the values corresponding to the same bucket.

Hashed-Based Pattern Matching Algorithm 50

Patterns Table - an array of patterns ordered by a patternID.

Matched Patterns List - each entry contains the matched patterns and its corresponding

end position in the text.

5.2 Hashed-Based Pattern Matching Algorithm

The algorithm follows the same logic as the RTCAM algorithm. A string of width bytes

is fetched, the string’s rightmost block bytes are inserted as a key to the shift table and the

shift is retrieved. If the shift value N is not equal to 0, the text position is shifted right

by N. If it is 0, then we have a possible pattern match and we need to look at the patterns

pointers. We follow the hash entry’s list, which points to the patterns that have the same

key as the matched string. The rest of the algorithm is exactly the same as the RTCAM

solution. The algorithm is given at 2.

5.3 Dealing with Short Patterns

There is a major difficulty in designing a unified algorithm that deals with long patterns

and short ones since the performance is typically influenced by the overhead caused by the

short patterns.

It is important to note that ClamAV signatures are quite long (an average of 124 bytes),

where Snort’s signatures are shorter (average is only 12 bytes).

In order to deal with short patterns, we need to pad them to the width on which the

hash is applied. Since there is no way to pad short patterns with don’t care signs as we

did in the TCAM based solution, a real pad must be constructed. The pad can be usually

extracted from the flow context. We remind the reader that the pattern matching algorithm

is invoked in the context of a specific packet. This packet is a part of a flow which is

identified by the protocol identifier, ports, source and destination IPs etc.

The pad is constructed twice, once, when creating the hash function (the flow is ex-

tracted from the rule) and the second time, when constructing the search key (the flow data

Dealing with Short Patterns 51

Algorithm 2 Hash-Based Pattern Matching
1: T (Packet) = {Ti,1 ≤ i≤ n}
2: pos ⇐ 1;
3: shi f t ⇐ 0
4: width ⇐ de f ault
5: B⇐ de f ault
6: while pos ≤ n−width do
7: block ⇐ T[pos+width−B,..,pos+width−1]
8: shi f t ⇐ SHIFT TABLE[block]
9: if shi f t is 0 then

10: key ⇐ hash(T[pos,..,pos+width−1]) {construct a fingerprint}
11: for all current = hash[matchedRow].next 6= null do
12: if pos < current.o f f set then {check offset}
13: continue
14: end if
15: if pos+ current.Len > current.O f f set + current.Depth then {check depth}
16: continue
17: end if
18: if current.len ≤ width then {exact match!}
19: matched ⇐ true
20: else
21: matched ⇐ checkSubPatterns(current); {iteratively checks for sub-patterns}
22: end if
23: if matched = true then
24: if current.distance 6=−1 OR current.within 6=−1 then {related pattern}
25: if MatchedList.contains(current.Id - 1) then {previous pattern in Matched List}
26: prevPos ⇐ MatchedList.get(current.Id−1).pos
27: if pos≤ prevPos+ current.Distance then {check distance}
28: continue
29: end if
30: distance ⇐ Max{current.distance,0}
31: if pos + current.len− 1 > prevPos + distance + current.within then {check

within}
32: continue
33: end if
34: else
35: continue
36: end if
37: end if
38: MatchedList.add(current.Id, pos+ current.Len)
39: Rules[ruleId].markEntry(current.id)
40: if Rules[ruleId].allMatched() then
41: FOUND AN AT TACK
42: end if
43: end if
44: end for
45: else
46: pos ⇐ pos+ shi f t
47: end if
48: end while

Dealing with Short Patterns 52

is constructed from the received packet).

Most of the short rules specifically state their flow identifier so actually a patterns is

more than just the text - it is part of a flow. It is rather intuitive that as the pattern length

increases the flow identifiers become general (i.e., any source ip etc.).

A padding technique must be used in order to create a key for locating short patterns. A

random pad is the most trivial solution. This method is suitable for patterns with almost no

flow identifiers. Using the flow identifier to create a pad is better practice since it reduces

the amount of false positives while comparing the hash value with the fingerprints. For

example, if we are currently parsing an FTP packet, the hash function will use the protocol

(sub-protocol) as a pattern padding thus reducing the amount of false matches.

The following figure illustrates the hash calculation for short patterns as the packet

received:

padding

text/payload

hash value

Figure 5.1: Part 2: Constructing The Hash Value

In order to locate short patterns fingerprints we must continuously calculate the hash

for increasing sizes of text (pattern length) up to the hashing window size. Calculating the

hash value should be done quickly. For example, one can create a full pad using a hash

function and only use a simple XOR operation on the text. In order to recalculate the next

hash we can XOR the text again, increase the text window width and XOR again with the

pad.

The problem with this solution is the need to calculate w− 1 hashing keys. Suppose

that w = 4, the text key is ABCD and the patterns are XYZW, D. Since D is a short pattern, its

Dealing with Short Patterns 53

key in the hast table is padded. We need to locate D in our text. If Ti is the result of padding

the i’th character from the text, we need to create the keys: TposBCD, TposTpos+1CD and

TposTpos+1Tpos+2D. The hash search with the last key will find the pattern D.

In order to deal with this problem we can use several hash engines in parallel, each en-

gine calculates the key and searches the hash. This solution solves the described problem,

it is simple and it can be easily implemented in hardware or with a network processor with

several hash engines.

Part II
Classification Engine Component

Chapter 1

Introduction

Stateful classification engine is usually a network layer operation. Unlike static packet fil-

tering, which examines a packet based on the information in its headers, stateful inspection

tracks each connection traversing the packet processor and ensures the packets are valid.

An example of a stateful device is a firewall. A firewall may examine not just the

header information but also the contents of the packet in order to determine more about

the packet than just information about its source and destination. A stateful inspection

firewall also monitors the state of the connection and compiles the information in a state

table. Therefore, filtering decisions are based not only on administrator-defined rules (as

in static packet filtering) but also on context that has been established by prior packets that

have passed through the firewall.

An additional example is a virus scanning application, which filters packets that may

contain viruses (or unwanted cookies etc.), a content based switch which switches packets

according to either XML tags in the packet payload or the URL within them etc. The

“state” needed here is due to the possibility that the object that is searched for in the

packet stream may well cross packet payload boundary (i.e., it is carried in more than one

packet).

Like viruses, most intruder activities have some sort of signatures. Signatures may

appear in different parts of a data packet depending upon the nature of the attack. For

Introduction 56

example, one can find signatures in the IP header, transport layer header (TCP or UDP

header), application layer header or payload. Usually IDS depends upon signatures to find

out about intruder activities. Some vendor-specific IDS require updates from the vendor

to add new signatures when a new type of attack is discovered. In other IDSs, e.g. Snort,

one can update signatures manually.

Our presented classification engine is dynamic and stateful for high speed networks.

It is capable of looking within the application payload and making decisions on the sig-

nificance of that data based on its content. The engine classifies the packet using the

string-matching technology described at the first part of this thesis.

Chapter 2 presents some of the best known hardware-based IDSs in the industry. Chap-

ter 3 describes our algorithm and the interactions with the string-matching algorithm.

Chapter 2

Related Work

Stateful inspection provides an analysis of packets at the network layer as well as other

layers in order to assess the overall packet. By combining information from various layers,

the engine is better able to understand the protocol it is inspecting. This also provides the

ability to create virtual sessions in order to track connectionless protocols. The reality of

modern application demands and capabilities requires more intimate knowledge of the ap-

plication payload. The engine must not only maintain the state of the underlying network

connection but also the state of the application utilizing that communication channel.

While current stateful firewall technology provides for tracking the state of a connec-

tion, most current firewall products offer limited analysis of the application data.

The best known IPSs are Fortigate-800 appliance [For], Secure Soft Absolute IPS

NP5G, NP10G [Sec] and Snort [Sno, NR03]. Since Snort is an open source, high-performance

IDS it is very common and documented.

2.1 Snort

Snort is an open source Network Intrusion Detection System (NIDS), which is available

free of cost. It is a host based IPS, implemented fully in software. Snort uses rules stored

in text files that can be modified by a text editor. Rules are grouped in categories. Rules

Fortigate Appliance 58

belonging to different categories are stored in separate files. These files are included in a

main configuration file called “snort.conf”. Snort reads these rules at start-up and builds

internal data structures to apply these rules to the received data traffic. Finding signatures

and using them in rules is a tricky job, since the more rules one uses, the more processing

power is required to scan the data in real time. It is important to implement as many

signatures as one can, using as few rules as possible. Snort comes with a rich set of pre-

defined rules to detect intrusion activity and it is possible to add more rules at will.

In earlier days, Snort used brute force pattern matching which was very slow. The

first thing done to boost performance was implementing a partial Boyer-Moore pattern

matching algorithm [BM77]. After a couple of months a full implementation of Boyer-

Moore was implemented. Next was the implementation of a 2-dimensional linked list with

recursive node walking, which gave Snort a 200 to 500 percent performance increase.

Finally the detection engine was rewritten to include a linked-list-of-function-pointers,

also called a three-dimensional linked list. It is a Boyer-Moore like algorithm applied

to a set of keywords held in an Aho-Corassick like keyword tree that overlays common

prefixes of the keywords. This new algorithm takes the best characteristics of both the

Boyer-Moore and Aho-Corasick algorithms [AC75]. Current Snort performance with one

high end PC is 300-400 Mbit/s

2.2 Fortigate Appliance

Fortigate appliance is an edge security appliance that is installed at the edge of the network

and provides security protection to the network from harmful traffic through the gateway.

Specific functions provided by the vendor include anti-virus scanning, including the

ability to scan for viruses within VPN encrypted tunnels, stateful inspection firewalling,

Web content filtering based on URL and/or keyword and phrase-based blocking and intru-

sion detection/prevention of over 1300 types of attacks. The appliance data itself (attack

patterns, signatures, etc.) is automatically maintained and updated via continuous updates

SecureSoft Absolute IPS NP5G, NP10G 59

from the vendor’s FortiProtect Network. Primary differences in the many FortiGate mod-

els made available by the vendor are in terms of speed/capacity. FortiGate-3000 appliance

provides 3G of firewall throughput and 1G intrusion detection speed. As for anti-virus and

content filtering, Fortinet uses an ASIC-based architecture.

The 3000 NPG comes with three gigabit and three 10/100 Ethernet ports. Users can

group ports and assign different security and content filtering policies to each, providing

multiple security zones within the enterprise.

2.3 SecureSoft Absolute IPS NP5G, NP10G

The Absolute IPS series of SecureSoft [Sec] is a family of hardware appliances designed

to detect and prevent attacks across multiple network segments at up to 8Gbps (maximum

aggregate throughput). Three models are available covering various sizes of installation

and ranging from 2-8Gbps bandwidth.

The NP5G protects multiple network segments at up to 4Gbps. The device supports

four 10/100/1000Mbps ports for detection and protection and three additional ports for

management. The NP10G provides maximum aggregate throughput of 8Gbps and maxi-

mum open sessions of 3,000,000.

All packet processing is performed by a dedicated network processor (NP) on board

of the card, which provides very high level of performance. SecureSoft claims up to

8Gbps throughput while conducting deep packet inspection. SecureSoft uses a proprietary

signature matching algorithm called BPM (Bi-parallel Matching) which ensured that all

signatures (currently, 1700 of them) are matched in a single operation.

Since the resources found on the web doesn’t tell if this throughput is the worse or

average case, it is impossible to compare the two. We argue that a major drawback of

this device is its lack of compatibility with Snort. The administrator is required to enter

platform dependant rules manually. Since Snort rules syntax is becoming a standard, future

intrusion prevention systems are encouraged to adopt it.

Chapter 3

The IDS

This part of the thesis specifies the requirements from the new classification framework. In

the context of this thesis we will refer to the whole classification framework as “Enhanced

Classification Engine (ECE)”.

Figure 3.1 shows the general classification engine architecture. The packet is first

received at the static flow classifier (SFC) component which only extracts information

from the headers, a process that yields a flow descriptor. The packet is then transferred to

the classification engine which uses the pattern-matching algorithms presented at 4.1.

Packet IN Flow Descriptor Flow Descriptor

Static Flow Classifier

SFC

Stateful Inspection

Engin

Pattern Matching

Figure 3.1: Part 2: Enhanced Classification Engine Architecture

Data Structures 61

3.1 Data Structures

We first describe the various data structures needed in order to implement the Enhanced

Classification Engine. The first two tables are part of the implementation of the SFC

component (see Figure 3.1).

Packet IN FlowID

Global Flow Table

pro subPro age

Static Flow Classifier

5-tuple logic

(a) SFC Inner Look

State Flow Descriptor Table

preConditioncurrentStateflowID

(b) State Flow Descriptor

Figure 3.2: Part 2: GFC and SFD

Global Flow Table (GFT) - contains the currently active flows. A flow is usually identi-

fied by 5-tuple: source IP, source port, target IP, target port and protocol (sometime

the TOS/DSCP field is also used). The Static Flow Classifier returns an index to this

table. Each GFT entry includes a protocol field (for example TCP), a subProtocol

field (for example FTP) and an age field that may be used to destruct obsolete flows.

Static Flow Classifier (SFC) The SFC module performs the first stage of the classifica-

tion process. The output of this process is a flowID index of the GFT data structure.

Figure 3.2(a) presents an inner look at the static flow classifier. The flow descriptor

is constantly used in order to identify the flow’s protocol and state machine descrip-

tions.

Data Structures 62

State-Flow Descriptor Table (SDT) Each packet flow follows a state machine (imple-

menting a predefined protocol) according to the flow’s protocol (or sub-protocol).

The SDT contains entries regarding the current state within the state machine of

each flow. Each entry contains a currentState and precondition (see fig 3.2(b)). The

currentState indicates the current flow’s state in the protocol’s state machine. The

field precondition is used to enable conditional state machine transitions. Every

state transition is triggered by a protocol specific event. However, some events are

expected only if a given previous event had occurred. This requirement is reflected

in the precondition variable. The preCondition is used when indexing the PDT in

order to find the next state. Quite a few protocol state machines can be compressed

using this field thus avoiding creating many intermediate states.

Protocol Description Table (PDT) The PDT table contains the actual state machine for

each protocol. Each table entry describes an edge (link) between two states ac-

cording to the specific protocol’s state machine. Since this table is accessed by

searching it using a search-key, it is best implemented by a TCAM. The table can

be written and updated at any given time (though we expect to update it rarely as

protocols hardly change). The normal procedure would be that the SW installs the

finite state machines that need to be tracked at initialization time. A state transition

within a specific protocol is triggered by an external event (e.g., the reception of a

packet). Upon the reception of such an event, the PDT is searched for the next state.

The search is done using a search-key comprised by a protocolID, the currentState

(which is taken from the SDT), the preCondition and the eventID which had just

occurred. Each PDT Entry (PDTE) contains the following fields: ProtocolID, cur-

rentState, eventID, preCondition and nextState. Appendix A provides an example

for the Protocol Description Table of a light-bulb on/off state machine.

Event Packet Classifier (EPC) The transition of the flow’s state according to the proto-

col’s state machine is triggered by an eventID. The EPC module provides the map-

ping between a protocol’s packet and an eventID. For example, a TCP packet that

contains a SYN flag should be mapped to a TCP SYN EVENT identifier. The EPC

Data Structures 63

uses the string matching algorithm as a tool to search for protocol specific patterns

in the packet. The EPC operation is illustrated in Figure 3.3.

Event Packet
 Classifier

USER<SP>

Pattern Matching

PASS<SP>
LOGIN<SP>

protocols patters:
FTP protocol patterns

Packet In Event ID

Figure 3.3: Part 2: Event Packet Classifier Operation

The pattern matching mechanism is used for two purposes. One is to find an event

within the packet. The second purpose is for virus and intrusion detection. The

lookup can be done concurrently or sequentially. In any case, the result is combined

and if a virus was detected various actions can be taken (among them are dropping

the packet with/without notifying the host CPU, or just trapping the host CPU with

the relevant information) 1.

Event Attribute Table (EAT) The EAT entries extend each eventID with additional in-

formation. The EAT is a two dimensional table that is indexed by the protocolID

and the eventID. The entry EAT[protocolID,eventID] contains a postConditon value.

The postConditon value should be copied to the SDT as it will be used as a preCon-

dition for the next state machine transition . Note that this mechanism has been

introduced to simplify the creation of the protocol state machine and to decrease

1Note that if no cross-packet searches are assumed then the virus lookup (not Snort rules!) can be done
at a previous stage (even before the initial packet classification into a flow) independent of the whole stateful
classification process.

FTP Example 64

memory requirements (so enable them to reside on a TCAM).

Protocol Associations Table (PAT) The PAT purpose is to maintain associations between

protocols and sub-protocol flows. For example, suppose an FTP flow has been ini-

tiated. If the FTP is closed by the user it is possible using PAT, to locate the related

TCP data flow and modify it (for example decrease the flow’s age field 2).

3.2 FTP Example

The best way to describe the algorithm operations is through an example. The following

section presents the data structure and the basic control flow for the FTP protocol.

3.2.1 Data Structures

The general FTP state machine is described in figure 3.4. A command is a general FTP

command like: USER, PASS, PORT, CDUP etc. The OK, OK CONT and FAIL are also

FTP events which correspond to the server’s response. We assume that the Enhanced

Classification Engine is locates as an edge server thus receiving all of the requests and

responses.

OK_WAIT

OK,OK_CONT, FAIL

Command

0
init

1
wait

Figure 3.4: Part 2: FTP Finite State Machine

Assume that the EPC provides the mapping states in table 3.1. The eventID is returned

from the EPC after consulting the string matching utility.
2This field can be a single aging bit.

FTP Example 65

EPC Mappings
eventID Pattern

10 USER < SP > Φ×LIMIT < CRLF >
11 PASS < SP > Φ×LIMIT < CRLF >
12 PORT < SP > Φ×3,Φ×3,Φ×3,Φ×3, portNum, portNum < CRLF >
13 CDUP < CRLF >
14 LIST < SP > Φ×LIMIT < CRLF >
20 1ΦΦ < SP > Φ < CRLF > ⇔ OK WAIT
21 2ΦΦ < SP > Φ < CRLF > ⇔ OK
22 3ΦΦ < SP > Φ < CRLF > ⇔ OK CONT
23 4ΦΦ < SP > Φ < CRLF > ⇔ FAIL
24 5ΦΦ < SP > Φ < CRLF > ⇔ FAIL2

Table 3.1: Part 2: FTP EPC

Protocol Description Table
ProtocolID currentState eventID nextState preCondition

2021 0 10 1 Φ

2021 0 11 1 10
2021 0 14 1 11
2021 0 14 1 12
2021 0 12 1 11
2021 1 21 0 Φ

2021 1 20 1 Φ

Table 3.2: Part 2: FTP PDT

The relevant Protocol Description Table is given in table 3.2.

Assume that the protocol ID is 2021. Notice that in order to process eventID = 11

(PASS) a previous event of 10 (USER) must hold. Also for eventID = 14 (LIST) the

previous event must be 11 (PORT) or 12 (PASV) so we create two PDTEs. Also notice

that there are cases where the state machine must introduce intermediate states in order to

enforce the precondition. For example consider event A→B (A depends on B) and C→D.

If B is received at the initial state and sets the precondition to “B”, then D is received (and

allowed) - the precondition is overridden by D to “D”. Finally, when A arrives, there

is no trace that precondition B existed. In order to overcome this, we must introduce an

FTP Example 66

Event Attribute Table
eventID postCondition

10 10
11 11
12 12
13 Φ

14 Φ

Table 3.3: Part 2: FTP EAT

intermediate state in the state machine. It is important to note that the precondition and post

condition is used as long as we gain memory space in the price of a slightly complicated

state precedence rules.

In order to return to state 0 (to enable issuing a new command) we must get a response

from connection peer and identify the corresponding flow. Thus, we must consider all of

the packets relating to the specific flow in both directions (transmitted and received). We

also have to identify the two sides of the flows as one conversation. This can be done

by automatically updating the SFC and pointing from both flow entries to the same GFT

entry.

The corresponding Event Attribute Table (EAT) is shown in table 3.3;

3.2.2 Control Flow

Let’s assume that a new FTP packet is received, it contains the PORT command and the

user has been already logged in (USER and PASS has been invoked). The following steps

comprise the Enhanced Classification Engine operations.

1. SFC returns the relevant flowID, protocol and subProtocol (we assume that the TCP

has been already checked according to an iterative classification assumption - see

open issues).

2. Using the flowID as an index to the SDT we get the currentState that indicates the

current flow’s state in the protocol’s state machine and the preCondition which holds

FTP Example 67

the current state’s pre-condition that must be held in order to change the flow’s state

to the next one.

3. Using the sub-protocol (which contains 2021 in the FTP case) and the packet, we

invoke the EPC module to identify the eventID which corresponds to the FTP (sub-

protocol) packet. The invocation returns the desired eventID - in this case it is 12.

The string matching algorithm is invoked in the context of this flowID.

4. Using the sub-protocol, currentState and the preCondition as indices to the PDT, we

get the nextState if there is a match (in this case 1), otherwise the packet is illegal and

may be discarded or not according to a predefined rule in some sort of a rule table.

In this example, the protocol is 2021, the currentState is 0 and the preCondition is

11 since we assume that the user has already logged in.

5. Before the SDT’s currentState is updated to the nextState, we locate the eventID’s

EAT entry to get the postCondition. If it is not Φ, we copy the value to SDT’s

preCondition and then change the current state to the next one (nextState). In our

case the currentState will be changed to 1 and the new preCondition will be set to

12 (so when event 14 will arrive its preCondition will be satisfied).

Part III
Simulation

Chapter 1

Experimental Results

We simulated our NIPS based on the pure TCAM solution since this is the basic algorithm

and can be easily extended. Moreover, this solution’s results are the basis of all the other

solutions we have presented.

We experiment our simulation with two complex pattern sets. One, is a virus signature

set from ClamAV [Cla], which contains (relatively long) simple patterns only. The sec-

ond set is from Snort [Sno] intrusion detection with many correlated patterns. Our input

packets were a real trace from the MIT DARPA project [MIT].

Since the width is the most influential factor on the solution’s cost and performance,

we examine our simulation with several TCAM widths. Choosing the right width is a very

crucial decision when importing this solution to the industry.

We compare our results with Lakshman, Yu and Katz [FKL04] results since both al-

gorithms are TCAM-based. We expected that our main improvement will be the TCAM

accesses. At Lakshman, Yu and Katz algorithm, they access the TCAM for each byte in

the text i.e. the shift value is constant and equals 1. As we analyzed it at 4.2.1, we expect

to get an average shift value of around w/2, where w is the TCAM width.

Results on ClamAV Pattern Set 70

1.1 Results on ClamAV Pattern Set

Version 0.82 of ClamAV has 26987 simple patterns. The average pattern length is 124.1.

Figure 4.2 shows the TCAM size required in order to accommodate all the patterns with

different w settings. As we can clearly see, as w increases, TCAM space requirement

increases too (even without the shifted pattern) since short or suffix patterns are padded.

Figure 4.3 presents the amount of signatures that can be covered by choosing a specific

window size. This figure shows that in order to cover most of the patterns in one TCAM

hit we need a wide TCAM which directly results in large TCAM memory size and a very

expensive solution. Thus, we stay with a reasonable TCAM width and divide the patterns

into several pieces. We can also use the long-patterns optimization described at 4.1.2 to

eliminate cases in which the algorithm proceeds into the packet in order to check the sub

patterns and finally discover that there is no match.

1.1.1 Test Results

ClamAV is the easier case, there is a clear and direct proportion between the TCAM width

and the performance. Since the average patterns length is high and the probability to match

w bytes of any of the long patterns without having a complete match is pretty low, the shift

average is directly influenced by the TCAM width and the attacks in the packets set. Thus,

we expect to have a higher shift average at ClamAV set.

Our simulation shows that when w = 8, we get a shift average of 7.53, when w = 16,

the shift average increases to 15.73 and when w = 32, the shift average is 31.75. These

results emphasize the benefit of having the shifted patterns in the TCAM. Let d denote the

deceleration caused by the SRAM accesses, with ClamAV data set and with TCAM width

of 32, we can get a speed rate of around 63.5
1+d Gbps1. d is influenced by two factors, one is

the number of SRAM accesses, Sn, for each TCAM access and the second is the speed of

each SRAM access.

We define a memory ratio, Mr, to be the relation between the TCAM access speed and

1the 1 at the denominator denotes the TCAM accesses time

Results on Snort Pattern Set 71

SRAM access speed. For example, a memory ratio of 1 means that SRAM access speed is

equal to TCAM access speed. The value 0.2 means that memory access speed is 5 times

faster than TCAM access speed. With this notations, d = Sn×Mr. Our results show that

at 60% of the packets there are no attacks, at this case, Sn = 1 (one SRAM access for each

TCAM access) resulting d = Mr. Since the values of the memory ratio are in the range of

0.2 to 1, the throughput average is in the range of 63.5
1+0.2 = 52.9 Gbps to 63.5

1+1 = 31.75. At

ClamAV, at the average case, Sn = 1, so this range holds at this case as well.

1.2 Results on Snort Pattern Set

Snort’s case is more complicated, Snort’s patterns include a lot of short patterns (of size

≤ 4). In most of the cases these patterns are part of correlated rules. Our algorithm matches

these patterns, resulting in a very low average shift (around 2 independently of the TCAM

width). Our simulation shows that excluding these patterns from the TCAM results in a

very high shift average (more than w/2).

There are three optional solutions, one, to separate the short patterns and build two

different mechanisms for short and long patterns. The short patterns mechanism can use a

trie as described at 4.4. The problem with this solution is the need to synchronize between

the two mechanisms. The second solution is to start look for the long patterns and just in

a case of a match looking for the short ones. The drawback here is the need to search the

packet backwards which will significantly slow down the algorithm rate. The last solution

is to try to eliminate the TCAM hits by adding more information at each TCAM entry

besides the pattern itself, as explained at 4.1.4.

We can add information such as protocol, sub-protocol, port etc. We created a hash

function h that it’s input is the additional data D and its output is a key k, h(D) = k. We

add k to each entry in the TCAM. By having a hash function (instead of just adding the

additional data ”as-is” to the TCAM), we reduce the length of the key we add to each

TCAM entry. The assumption under this solution is the fact that most of the short patterns

relate to specific flows and do not have to be checked for any received packet. We tried to

Results on Snort Pattern Set 72

add the protocol, sub-protocol and the source and destination ports and we get extremely

better results. We added a bitmap of one byte for the main protocols and sub-protocols.

The port’s key was calculated as follows: At the first time a pattern appears with a port,

this port is the additional key to the TCAM entry, from now on, whenever the same pattern

appears with a different port, we represent the port key as the range of the lowest port and

the highest port.

For example, if a patterns appears with the ports: 2048, 3400 and 7777, the port key

will be: 11???0??0?00?. The length of the port key is 2 bytes (for each port: source and

destination).

Note, that there can be D1 and D2 such that h(D1) = h(D2). Therefore, after matching

the TCAM, the algorithm must check the flow’s data. In order to be able to verify the

flow’s data, we save this data in each entry of the rules table. After getting a match,

the algorithm gets the matched pattern’s rule entry and verifies that the flow data of the

matched pattern is identical to the flow data of the received packet.

With the hash extension we can get much better results as shown in figures 1.1. We can

see that for w = 16, the average per packet is closely equal to the total average. Thus, the

standard deviation is relatively low. This graph is pretty close to the gaussian distribution.

The implication of this result is that the line speed is stable and it stands on around 12 Gbps

(2 Gbps which is the basic TCAM rate multiplied by the total shift average.). Regarding

the other graphs, we can see that the standard deviation is between 6 (where w = 32) to 27

(where w = 128). The high standard deviation implies that the line speed is unstable and

it is vastly varies.

1.2.1 Shift Average Results

Table 1.1 presents the TCAM memory size requirement and the shift average value for

each TCAM width. We can see that even with the addition of the flow data to the TCAM

key, the shift average grows slowly when the TCAM width is greater than 24. The benefit

of increasing the TCAM width is not as large as we thought. Initially a glance at figure

1.2 shows that as long as w≤ 128 we gain a raise in the shift value, but a closer look shows

Results on Snort Pattern Set 73

0 5 10 15 20
0

50

100

150

200

250

Shifts

P
ro

ba
bi

lit
y

D
en

si
ty

Shift Average Per Packet, TCAM width = 16

Average Per Packet = 6.1
Total Average = 6.06
Standard Deviation = 3.1

0 10 20 30 40
0

50

100

150

200

Shifts

P
ro

ba
bi

lit
y

D
en

si
ty

Shift Average Per Packet, TCAM width = 32

Average Per Packet = 8.2
Total Average = 7.7
Standard Deviation = 6.4

0 20 40 60 80
0

20

40

60

80

100

120

140

Shifts

P
ro

ba
bi

lit
y

D
en

si
ty

Shift Average Per Packet, TCAM width = 64

Average Per Packet = 11
Total Average = 9.1
Standard Deviation = 13

0 50 100 150
0

20

40

60

80

100

120

140

Shifts

P
ro

ba
bi

lit
y

D
en

si
ty

Shift Average Per Packet, TCAM width = 128

Average Per Packet = 15
Total Average = 9.6
Standard Deviation = 27

Figure 1.1: Part 3: TCAM Size Requirement

Results on Snort Pattern Set 74

TCAM width Impact on Shift Average with Snort Pattern Set
TCAM width TCAM memory size (KB) Shift average value

4 26 2.62
8 99 4.42

16 443 6.06
24 912 7.41
32 1990 7.67
48 4760 8.31
64 8735 9.11
96 20273 9.17

128 36591 9.57

Table 1.1: Part 3: TCAM width Impact on Shift Average

that the tradeoff is not so simple. While w ≤ 24, the shift average increases sharply but

from w = 24 to w = 128, the benefit becomes moderated. In contrast to the moderated

growth of the shift average, the TCAM memory size grows exponentially. Therefore, with

the Snort pattern set the advisable TCAM width is 24.

The algorithm presented at Lakshman, Yu and Katz [FKL04] offers scan rate of 2 Gbps

in the best case. Their algorithm achieves this rate when the scan ration is 1, meaning, there

are no memory accesses at all.

Results on Snort Pattern Set 75

0 20 40 60 80 100 120 140
0

1

2

3

4
x 10

4

TCAM width

T
C

A
M

 s
iz

e
 (

K
B

)

Impact of TCAM Width

0 20 40 60 80 100 120 140
2

4

6

8

10

S
h

ift
 a

ve
ra

g
e

Figure 1.2: Part 3: TCAM Size vs. Shift Average

1.2.2 Scanning Time Results

The most influential factors on the scanning time are the TCAM accesses and memory

access. In contrary to the algorithm presented at [FKL04] where a TCAM hit does not

necessarily require a memory hit, our algorithm hits the memory at any TCAM hit in order

to get the shift value.

Our main advantage over Lakshman, Yu and Katz algorithm is that our algorithm hits

the TCAM significantly less times. Even though our algorithm hits the memory for each

TCAM hit, the total number of memory hits is also significantly less than the one at Lak-

shman, Yu and Katz algorithm. Figure 1.3 shows our improvement over Lakshman, Yu

and Katz algorithm in the amount of memory hits. Figure 1.4 presents the number of

TCAM hits our algorithm required for different packets length. At TCAM accesses factor,

our algorithm is significantly better than Lakshman, Yu and Katz algorithm.

Results on Snort Pattern Set 76

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

Packet Length

Me
mo

ry
Ac

ce
ss

es

TCAM width = 16

Ours
Lakshmans

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

1600

1800

Packet Length

Me
mo

ry
Ac

ce
ss

es

TCAM width = 32

Ours
Lakshmans

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

1600

1800

Packet Length

Me
mo

ry
Ac

ce
ss

es

TCAM width = 64

Ours
Lakshmans

Figure 1.3: Part 3: Memory Accesses

0 500 1000 1500
0

500

1000

1500

2000

2500

Packet Length

TC
AM

 Ac
ce

ss
es

TCAM width = 16

Ours
Lakshmans

0 500 1000 1500
0

500

1000

1500

2000

2500

Packet Length

TC
AM

 Ac
ce

ss
es

TCAM width = 32

Ours
Lakshmans

0 500 1000 1500
0

500

1000

1500

2000

2500

Packet Length

TC
AM

 Ac
ce

ss
es

TCAM width = 64

Ours
Lakshmans

Figure 1.4: Part 3: TCAM Accesses

Results on Snort Pattern Set 77

TCAM accsees vs. SRAM accesses
TCAM width TCAM accesses SRAM accesses

16 32048 50286
24 24156 45288
32 18983 37259
64 12765 31457

128 10218 28946

Table 1.2: Part 3: Sum of TCAM accesses vs. Sum of SRAM accesses

Running the simulation using MIT DARPA trace showed that for TCAM width of 24,

60% of the TCAM hits result in a shift value greater than 0. Since the RTCAM algorithm

accesses the SRAM every TCAM lookup, the scan ratio (as defined in [FKL04]) is 2. The

simulation results for this TCAM width show that the average shift value is 7.4. Since

SRAM memory access speed is usually faster than the TCAM speed, in current memory

technologies, the memory ratio is 0.2. Taking this figure, we can achieve a throughput

of 2×7.4
1+0.2 = 12.35 Gbps. Table 1.2 shows that the relation between SRAM accesses and

TCAM access is in the range of 1.5 to 2.8, thus, even at the average case (where w = 24)

of all packets, our algorithm achieves a throughput of 2×7.4
1+1.87×0.2 = 10.77 Gbps.

Figure 1.5 shows the effect of different memory ratios on the achieved throughput.

Note that even when the memory ratio is 1, we still get an average throughput of 7.4 Gbps.

Results on Snort Pattern Set 78

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
7

8

9

10

11

12

13

Memory ratio

R
a
te

 (
G

b
p
s
)

Impact of Memory Ratio, w = 24

Figure 1.5: Part 3: Effect of Memory Ratio on Scan Rate

Chapter 2

Conclusions

In this thesis we have designed and implemented a NIPS system that is based on a novel

pattern matching algorithm, called RTCAM. We have also designed a fully dynamic and

configurable classification engine that uses the same RTCAM module as a building block.

We have shown that our solution is adequate for NIPS device implementors as it achieves

line-speed rates. Specifically, for about 60% of real network traffic, an average line-speed

of 12.35 Gbps can be achieved1. This NIPS has several major advantages over existing

NIPS devices. First, the achieved line-rate speed is of several orders of magnitude faster

than related works and we gain it without loosing the algorithm accuracy. Second, as

opposed to other solutions, our system is fully compatible with Snort’s rules syntax. This

is an important advantage as Snort is becoming the de facto standard for intrusion detection

and prevention systems. We have created a simple tool that is capable of importing Snort’s

database by a mouse click.

1Using a RTCAM of 912KB.

Future Work 80

2.1 Future Work

We have already initiated a lab project for prototyping the hash-based algorithm using

FPGA. We would like to be able to compare the performance of the FPGA and the RT-

CAM solutions. Another important research area is cross packets inspection. The intuition

says that the amount of support for this problem is proportional to the amount of memory

available on the intrusion detection device. Still, we would like to explore the various pos-

sibilities for dealing with this problem and to provide some experimental results. Last, we

plan to design an integrated RTCAM circuit that will automatically compare the provided

key with the rotations of each pattern in the TCAM (using dedicated circuitry). This will

significantly reduce the amount of TCAM memory needed by the algorithm.

Appendix A

Light Bulb Example

Consider the state machine for a light bulb protocol presented in figure A.1 (assume that

the protocolID is 100). The state machine can be expressed using two PDTEs as shown in

table A.1.

Off
 0 1

On

EventID 10, Switch On

EventID 11, Switch Off

Light Bulb

Figure A.1: Sample Light Bulb Finite State Machine

Protocol Description Table
ProtocolID currentState eventID nextState preCondition

100 0 10 1 Φ

100 1 11 0 10

Table A.1: Light-Bulb PDT

Light Bulb Example 82

The preCondition field for the “switch-off” was added (not mandatory) in order to

enforce that we only turn-off the light bulb if we received a previous event of “switch-on”.

If the preCondition is omitted and a “switch-off” event is received when the light is off,

then the default action is triggered which is probably just ignore. The protocolID is used

for indexing the table thus avoiding irrelevant protocols state machine.

Bibliography

[AC75] A. V. Aho and M. J. Corasick. Efficient String Matching. Communications

of the ACM, 18(6):333–340, June 1975.

[ACS03] I. Arsovski, T. Chandler, and A. Sheikholeslami. A Ternary Content-

Addressable Memory (TCAM) Based on 4T Static Storage and Including a

Current-Race Sensing Scheme. IEEE Journal of Solid-State Circuits, 38(1),

January 2003.

[BM77] R. S. Boyer and J. S. Moore. A Fast String Searching Algorithm. 20(10):762–

772, October 1977.

[CCG+99] M. Crochemore, A. Czumaj, L. Gasieniec, T. Lecroq, W. Plandowski, and

W. Rytter. Fast Practical Multi-Pattern Matching. Inf. Process. Lett., 71(3-

4):107–113, September 1999.

[Cla] ClamAV Anti-Virus. http://www.clamav.net/.

[CLR90] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms.

The MIT Press, 1990.

[CW79] B. Commentz-Walter. A String Matching Algorithm Fast on the Average. In

Proc. 6th Int. Coll. on Automata, Languages and Programming (ICALP’79),

LNCS, 71:118–132, July 1979.

Bibliography 84

[DKSL03] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood. Deep

Packet Inspection Using Parallel Bloom Filters. Symposium on High Perfor-

mance Interconnects (HotI), Stanford, CA, USA, pages 44–51, August 2003.

[FKL04] Y. Fang, R. H. Katz, and T. V. Lakshman. Gigabit Rate Packet Pattern-

Matching Using TCAM. In ICNP, 2004.

[For] Fortigate-800 Appliance. http://www.fortinet.com/.

[KMP77] D. E. Knuth, J.H. Morris, and V. R. Pratt. Fast Pattern Matching in Strings.

SIAM Journal of Computing, 6(2):323–350, June 1977.

[KR81] R. M. Karp and M. O. Rabin. Efficient Randomized Pattern-Matching Al-

gorithms. Technical report TR-31-81, Harvard University, Cambridge, MA,

USA, December 1981.

[LHCK04] R. T. Liu, N. F. Huang, C. H. Chen, and C. N. Kao. A Fast String-Matching

Algorithm for Network Processor-Based Intrusion Detection System. Trans.

on Embedded Computing Sys., 3(3):614–633, August 2004.

[MDWZ04] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok. Avfs: An On-Access Anti-

Virus File System. In Proceedings of the 13th USENIX Security Symposium

(Security 2004), pages 73–88, San Diego, CA, August 2004.

[MIT] MIT DARPA Project Data Set. http://www.ll.mit.edu/IST/ideval/index.html.

[MN98] D. R. Musser and G. V. Nishanov. A Fast Generic Sequence Matching Al-

gorithm. Technical report, Computer Science Dept., Rensselaer Pollytechnic

Institute, Troy, NY, March 1998.

[NR03] M. Norton and D. Roelker. Snort 2.0: High Performance Multi-

Rule Inspection Engine. http://www.cs.cuc.edu/ droelker/docs/Multi-Rule-

Inspection.pdf, April 2003.

[Sec] SecureSoft Absolute IPS NP5G, NP10G. http://www.securesoft.com.

Bibliography 85

[Sno] Snort Project. http://www.snort.org/.

[TKD03] D. E. Taylor, P. Krishnamurthy, and S. Dharmapurikar. Longest Prefix Match-

ing Using Bloom Filters. ACM SIGCOMM, 03:201–212, August 2003.

[Van] Vandyke software-related survey. http://www.vandyke.com/.

[WM91] S. Wu and U. Manber. Fast Text Searching with Errors. Technical Report

TR-91-11, University of Arizona, Department of Computer Science, June

1991.

[WM92] S. Wu and U. Manber. Agrep – A Fast Approximate Pattern-Matching Tool.

In Proceedings USENIX Winter 1992 Technical Conference, pages 153–162,

San Francisco, CA, January 1992.

[WM93] S. Wu and U. Manber. A fast Algorithm for Multi-Pattern Searching. Tech-

nical Report TR-94-17, Department of Computer Science, University of Ari-

zona, May 1993.

[WZN92] B. W. Watson, G. Zwaan, and Mrs F. Van Neerven. A Taxonomy of Key-

word Pattern Matching Algorithms. Technical Report 27, Faculty of Comput-

ing Science, Eindhoven University of Technology, The Netherlands, January

1992.

	Acknowledgments
	Abstract
	Thesis Overview
	Part I - Pattern Matching Algorithm
	Introduction
	Notations and Definitions
	General Definitions
	Snort Specific Notations
	Rule's Syntax

	ClamAV Anti Virus

	Related Work
	Software Based Pattern Matching
	KMP Algorithm
	BM Algorithm
	AC Algorithm

	Hardware Based Pattern Matching
	Parallel Bloom Filters
	Network Processor Pattern Matching
	TCAM Pattern Matching

	Rotating TCAM (RTCAM) Pattern Matching
	TCAM String Search Algorithm
	Patterns with Negations
	Long Patterns Optimization
	Cross-Packets Attacks
	False Positives

	Window Size Considerations
	Effects of the TCAM Width on the Shift Value

	Pure TCAM Costs
	The Trie Solution
	Trie Overview
	The Algorithm
	Comparison to the Pure TCAM Algorithm
	Paralleling The Trie

	The Prefixes Solution
	The 2-TCAMs Solution
	Possible Attack

	Porting RTCAM to SRAM
	Data Structures
	Hashed-Based Pattern Matching Algorithm
	Dealing with Short Patterns

	Part II - Classification Engine Component
	Introduction
	Related Work
	Snort
	Fortigate Appliance
	SecureSoft Absolute IPS NP5G, NP10G

	The IDS
	Data Structures
	FTP Example
	Data Structures
	Control Flow

	Part III - Simulation
	Experimental Results
	Results on ClamAV Pattern Set
	Test Results

	Results on Snort Pattern Set
	Shift Average Results
	Scanning Time Results

	Conclusions
	Future Work

	Appendices
	Light Bulb Example
	Bibliography

