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Abstract

The Internetis becominga vital tool in today’s communicationinformationanddataretrieval, as
well ascommerce.lts fastspreadingnon affectedeven by the recentbubble burst, exceedsthe
rate of software andhardware development,and makesit harderfor monitoring, measuringand
understanding.

In this work we investigatedifferentaspectsf the structuralpropertiesof the Internet,and
suggesthow to elevate someof our findingsto comprisebetterapplicationandrouting layer ser
vices.

First, we investigatehe exactstructureof generakhortespathmulticasttreesin theInternet.
We presenta thoroughinvestigationof the structureof multicasttreescut from the Internetand
power-law topologies.Basedon bothgeneratedopologiesandreal Internetdata,we characterize
the structureof suchtreesand show that they obey the rank-dgreepower law; that mosthigh
degreetreenodesareconcentratedh alow diametemeighborhoodandthatthe sub-treesizealso
obeys apowerlaw.

Ourmostsurprisingempiricalfinding suggestshatthereis alinearratio betweerthenumber
of high-deggreenetwork nodes namelynodeswvhosetreedegreeis higherthansomeconstantand
thenumberof leaf nodesn themulticasttree(clients). We alsoderivethisratioanalytically Based
onthisfinding, we developthe FastAlgorithm, thatestimateshe numberof clients,andshow that
it corvergesfasterthanoneroundtrip delayfrom therootto arandomlyselectedtlient.

We leveragethis finding in anapplicationlayerschemeor the disseminatiorof very popular
contentto a very large audience. The schemeusesan integratedarchitectureof HTTP unicast
and a cyclic multicastdelivery of the popularcontent,and relies on an accurateevaluation of
the multicastgroup size. We also develop an additionalendto end countingalgorithm for this
evaluation.

We furtherinvestigatehetomographyof multicasttrees,andfind thatnotonly it conformsto
thefindingsof the scalefreepropertieof thetree,but alsohasthe exactsamecharacteristicasthe
Internets tomography This finding deepen®ur understandin@n the exact structureof multicast
treesin theInternet,on alayerby layerbasis.

We concludethe work by investigatingthe natureof the resilieng of the Internetat the Au-
tonomousSystem(AS) level to failuresand attacks,underthe real constraintof businessagree-
mentsbetweernthe ASs. The agreementsmposepoliciesthatgovernroutingin the AS level, and
thusthe resultingtopology graphis directed,anddoesnot maintaintransitvity. We shaw, using
partialviews obtainedrom thelnternet,thatthe Internetsresilieng to adeliberateattackis much
smallerthanpreviously found. Its reachabilityis alsosomevhatlower underrandomfailures,with
thesurprisingresultthatit becomesloserto the optimumwhenthe averagedegreeof the Internet
increasesWe furtherinvestigatehe effect of addedoackupconnectvity ontheresilieng.



Chapter 1

Intr oduction

1.1 Intr oduction

A few yearsago, a social studiesteacherin Taylorsville ElementarySchoolin North Carolina
startedan email projectwith hersixth-gradestudents Sheaskedthemto senda shortemailmes-
sageto all of theirfamily andfriendsaskingthemto forwardit to "everyoneyou know sothatthey
cansendit to everyonethey know (andsoon)”. They alsorequestedhateachrecipientrespondo
themsothey couldkeeparecordof how mary peoplehadbeenreachecandwhere. A few weeks
laterthe projectwascancelledafterthe classhadrecevedover 450,000responsefrom all states
and eighty-threeother countries|Wat03. The six-gradersand their teacherhave just receved
a very good exampleof a phenomenorcalled A Small World, usedto describethe topological
characteristicef complex networks,suchashumansocialconnectionandthelnternet.

The aim of this thesisis to investigatethe Internetas a very large complex network, and
useits propertiesto aid in solving andunderstandingcalability problems. While the Internetis
spreadingandincreasingn size,it wasalsofound,in recentyears,thatit exhibits characteristics
of smallworld networks. Theseincludemainly alow diameteranda power law degreedistribution
(SeeChapter2 for a detailedexplanation).This discovery canaffect almostevery possibleaspect
of serviceandapplicationover the Internet,asinformation spreadssery fastandreachesa vast
amountof receverswithin almosta constantime, regardlesf the numberof possiblerecevers.
For example, pure peerto-peerapplicationsrequiring a full distributed mechanisnin which all
messagesre broadcastare morelikely to jam the Internetthanto supply a scalableserviceto
their users. Understandinghe exact natureof the Internetstructure will enablean efficient and
scalableuseof it.

Our work startswith generatingnternetlik e networks, usingthe scalefree Notre-Dameal-
gorithm. Chapter2 is dedicatedo the understandingf the propertiesof complex networks in
generalandthe Internetin particular anddescribegshe propertiesof the Notre-Damealgorithm
we usedfor generatingopologies.We usedthe generatotto further validatedifferentcharacter
istics of the Internetandto deeperour understandingf it. We generatedopologiesof different
characteristicayhich wereusedin this work.

Next, we startedexploring andunderstandinghe structureandtopologyof large scalemulti-
casttrees.In thebeginningof the 19905, IP-multicasthasemegedwithin theresearcltommunity
asthe next generatiorkilling underlyingservice,andwasthe subjectof intensve research.The
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2 CHAPTER1. INTRODUCTION

advantagesseemedvery clear: An efficient way to reacha very large group of recevers, while
usingthe minimal possibleamountof infrastructureandduplicatingmessageascloseto theend
receversaspossible.In 1998, Chuangand Sirbu [CS98] tried to quantify the gainin multicast,
finding apowerlaw relationbetweertheamountof receversandtheaverageunicastpathlengthto
therecevers.They conductedheir experimentover exemplarydatasets.A laterwork by Shenler
etal. [PST99]exploredthisrelationshipanalyticallyon k-ary trees.However, theindustryseemed
reluctantto find theright applicationsandup until todayIP-multicasthasnot yet spreadasanun-
derlying availableservice.The structureof suchtreescould not be determinedorecisely[CA01],
nor their exactproperties.

Chapter2 describesour researclon the exact structureof large scalemulticasttreesin the
Internet. We createshortestpathtrees,cut from power law tail topologiesandthe Internet,and
obtain dataof real Internetmulticasttrees. We shav that the treesexhibit small world charac-
teristics. In particular we find thatthereis a degree-frequenc power law tail distribution of the
treesand even at eachof the trees’layers. The treesexhibit scalefree characteristicsandtheir
inner structureis scalefreein nature,aswe foundthatthe sub-treesizedexhibit a power law tall
distribution aswell. We further found thatthe hierarchicalstructureof the Internet{SARKO02] is
alsopreseredin thesetrees,andthatthereis a corein which the high degreenodesarelocated,
which in generalis very closeto the root of the multicasttree. Studyingthoroughlythe different
topologicalcharacteristic®f the multicasttrees,we discovereda surprisinglinear ratio between
thenumberof high degreenodesn thetreesandthenumberof receversthetreesspan.We further
provedthisratioanalytically andfounda predictorthatenableso estimatdahenumberof recevers
from the numberof high degreenodeg(routers)in thetree. Basedon this mechanismye devised
algorithmsfor estimatingthe sizeof alarge scalemulticasttreein lessthanthe Internetroundtrip
delay andprovedit analytically Furtherresearchwe conductedon the topologicalstructureof
large scalemulticasttreesat the differentlayersprovedthat similarly to the Internet,the power of
the distribution of degreesof nodesat eachlayer aroundthe root canbe calculatedasa function
of the tree’s power law distribution andthe numberof the layer Hence,the distribution of the
degreeof the nodesat eachlayer canbe predicted,andaid in the designof scalableservicesand
applicationssuchassener locationsfor videoon demandgcachesetc.

As aresultof our findingson the characteristic®f multicasttrees,we devised an adaptve
schemefor a large scalemulticastof semi-dynamidnformation over the Internet. Our scheme,
calledthe Integratedarchitecture gnablessitesto adjustdynamicallyto differentdemandsand
stayactive atthe highestpeaktimeswithout enlaging their hardware. The IntegratedArchitecture
definesan extensionto the HTTP protocol,calledHTTPM. The HTTPM extensionis usedonly
for pagesfor which demandis known to be very high regularly, or that have the potential of
becomingvery hot, suchas a pageoutlining the vote countingin eachstateon electiondate.
Whendemando anHTTPM pagecrossesa predeterminedhreshold the pagerevertsto a cyclic
multicastdelivery. A plug-inattherecever’s browseridentifiesthechangeandjoinsthe multicast
group. Thesenerthenactivatesa large scaleestimationsnechanismsuchasthe onewe devised,
to identify a decreasén demandjn which caseit revertsbackto an end-to-endunicastdelivery
accordingto the HTTP protocol. In this work we useboththe underlyingtopologicalstructureof
the Internetaswell asthe underlyingstructureof the World Wide Web (anothercomplex network
with smallworld characteristics)A detaileddescriptionof thework is givenin chapterd.

The last chapterof the work investigatesa specificpropertyof the Internet,its resilieng to
randomfailuresand attacks. Complex networks suchasthe Internetexhibit similar behaior in
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generaldueto their uniquetopologicalstructure. However, the topologicalstructureis only one
of the factorsthat govern the behaior of suchnetworks. We investigateherethe mechanisms
that governthe operationof the Internet,andshaw their influenceon its tolerance.The Internet
todayconsistof thousand®f subnetverks, eachwith its own administratve managementalled
autonomousystemgASSs). EachsuchAS usesaninteriorroutingprotocol(suchasOSPFERIP)in-
sideits managedetwork, andcommunicatesvith neighboringASsusinganexterior routing pro-
tocol, calledBGP. The BGP protocolenablessachadministratve domainto decidewhich routes
it acceptsaandwhich it announcesThroughthe useof the protocolthe autonomousystemsselect
thebestroute,andimposebusinesselationshipsetweerthemontop of theunderlyingconnected
topology As aresult,pathsin the Internetarenot necessarilyhe shortespossible but ratherthe
shortesthat conformto the ASs policies. Suchroutingis calledpolicy basedrouting. The busi-
nessagreementsnposerestrictionsonthe usageof network pathg{Gao00,SARK02], namely the
existenceof a path betweentwo nodes,doesnot imply that they arereachabldrom eachothet
Thus,connectvity andreachabilityarenotidentical,the formermeanghata physicalpathexists
betweerntwo nodesandthelatterthatcommunicatiorcanflow betweerthem.Reachabilityin the
network maintainsreflexivity but not transitvity; A nodecanbe reachablegrom two nodesthat
are not mutually reachable.In this work we measurdhe Internetreachabilityand compareit to
the connectvity usedin previous studiesfAJB00, CEbAHO01 CEbAH00a,BT02, PKP03]. Our
resultsshow thatthe Internetis muchmore susceptiblego attacksthan previously found, though
theresilieng to failuresis closeto the theoreticoptimum. The differenttestswe conductedalso
led usto concludethatsmallandmediumsizedASsrely hearily on multihoming.
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Chapter 2

The Topology Generator

2.1 Intr oduction

Thecommercializingf thegloballP basedhetwork, namednternet,hascausedt to grow tremen-
dously andwithoutary globalplanning.Thelnternettodayis avastcollectionof selfadministered
routingdomains calledautonomousystemscommunicatingusingthe IP protocolset. Thelnter
nethasbecomea spontaneouslgrowing network of networks,andits structurea subjectof exten-
sive research.The Internets topologyis studiedat two levels. Thefirst is therouterslevel,where
theroutersarethenodesandthe edgesarethe physicallinks connectinghem. Thesecondevel is
theautonomousystemgAS) level, modelingthe ASsasnodesconnectingwo ASswith alink if
they areBGP neighbors.

In this chaptey we describethe fundamentatcharacteristic®f complex networks; Describe
relatedwork that charactgerisethe Internetas a complex network; and describein detail the
topologygeneratomwe choseto work with.

Traditionally, comple large scalenetworks suchasthe Internetwere describedas random
graphs First studiedby the Hungarianmathematician®aul Erdos andAlfred Réryi [ER60]. Ac-
cordingto Erdos-Reryi (ER) model,the graphis constructedy startingwith the total numberof
nodesN, andconnectingeachpair of nodeswith probability p, resultingin arandomlydistributed
graphconnectvity of N(N-1)/2. In suchnetworks, all nodeshave the sameprobability to have the
graphaveragedegree.

A first attempto modeltheInternetasa complex network wasmadeby WaxmanWax88]. In
his modelhemadeslight modificationsto the ER model,by takinginto consideratiortheintuitive
obsenationthatlinks that representong distancesarelesslikely to appearin the graphthanthe
onesrepresentinghortdistancesZaguraetal. suggestednintuitive hierarchicamodel,modeling
thelnternetwith a center

In the late 1990'stherewasa significantadvancementn our understandingf the structure
of comple networks. Researcheom differentdisciplineswereengagedn theinvestigationof
comple networks suchasphysical,biological, socialor computers.The researctwasprompted
by theavailability of large scaledataandadvancedcomputingabilities.

Complex networks, suchasthe Internet,wereshowvn to have threedistinctive characteristics,
describedellow.

High Degreeof Clustering Real networks were shovn to exhibit a high degree of clustering,
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6 CHAPTERZ2. THE TOPOLOGYGENERATOR

quantifiedby a clusteringcoeficient. Wattsand StoraggWS98] discoveredthatsocialnet-
works have an inherenttendeny to clustering. A commonpropertyof social networks is

thatthey displayalargeclusteringcoeficient,i.e.,onaverageapersonsfriendsarefarmore
likely to know eachotherthantwo peoplechoseratrandom.(Ontheotherhand,it is impor-

tantto note,thatit is possibleto connecttwo peoplechoserat randomvia a chainof only a
few intermediariegMil67]). It waslatershavn thatcomplex networks suchasthe Internet
have a large clusteringcoeficient, which is distinctively higherthanthe one exhibited in

randomnetworks.

Small World Classification The small world characteristiags measuredy the averageshortest
pathbetweenary two nodesin the network, wherenodesrepresentoutersor autonomous
systemsn the caseof the Internet,or humanbeingsin complex socialnetworks. Thesmall
world phenomenomwasfirst evidentin an interestingsocial experimentconductedn the
60’s by Milgram [Mil67]. Peoplefrom all overthe US weregivenlettersto sendto acertain
addressunderthe conditionthatit will be sentto someondhey know andthink might be
closerto the given addressand so forth. The lettersthat arrived to the final destination,
arrivedaftertravelingthroughsix differentpeopleontheaverage.Thus,Milgram concluded
thatthe averagedistancebetweenary two peoplein the USis six. In fact, eventraditional
randomgraphsexhibit the small world phenomenonwith an averagepath lengththat is
logarithmicin the numberof nodes. Other popularfamousexamplesof the small world
phenomenomrethe actorsnetwork (two actorsarelinkedif they have playedtogethernn a
movie), andthenetwork of peoplewho have collaboratedvith peoplewho have collaborated
with the Hungarianmathematiciarkrdos (specifically researcherssho have a joint worked
with Erdos are given Erddos numberone,researchersho collaboratedwvith Erdos number
oneresearchearegiven Erdds numberntwo, andsoforth.)

Power Law Tail of the DegreeDistrib ution In apioneeringvork, Faloutsosetal. [FFF994 stud-
ied the connectwity patternsof the Internetat boththeroutersandthe ASslevel. They have
discoveredthatthe Internets degreedistribution follows a power law distribution. Laterre-
searchhasconcludedthat the Internetmaintainsa heterogeneoudegreedistribution with
a power law tail. Partial views of the Internetobtainedfrom BGP routing points, suchas
Oregon[Ore] andRIPE[RIip] wereusedto furtherinvestigateT heInternetsinnerAS struc-
ture[CNS*99,MMBO00, CCG"02a,BC99,GT00, SARK0Z. Thepowerlaw tail distribution
wasfoundvery characteristiof complex networks, with the majority of the nodeshaving a
low degree,andalongtail of very high degreenodes.Typical examplesnclude,apartof the
Internet,arethe World Wide Web connectity patternspiological,chemicalandsocialnet-
works. However, it is importantto notethatnotall realnetwork exhibit adegreedistribution
of apowerlaw tail, andsomedo shov exponentialdecayor acombinationof power law and
exponentialdecay]AB02]. In thiswork, we usethetermspower law distribution andpower
law tail distributioninterchangeably

Severalinterestingworks have alsotried to characterizéhe growing mechanismf the In-
ternetandmodelit [BA99, AB0OO, BT02, PKP*03]. In 2001,the pioneeringwork of Albert and
Baralasi [ABOO, BA99] introduceda novel algorithmfor the generatiorof scalefree networks.
The algorithmwas later on implementedn major network generatorgJcJOQ MLMBO1]. Back
in 2001, whenthe algorithmwasjust published we decidedto implementit to build a scalefree
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network generatar The following chapterdescribeghe characteristicef the Internetasa small
world network, andthe propertiesof the Notre-Damealgorithmdevisedby Albert and Baralasi,
asimplementedn our ToGend topologygeneratofMok01].

2.2 The Inter net Topology

Thelnternetstructurds thesubjectof anextensve researcleffort lately. It is measuredh two dif-
ferentlevels, quite differentfrom eachother At the higherlevel, calledthe autonomousystems
level, the Internetis viewedasa large collectionof routingdomains.Theseroutingdomainsonce
assigned uniquenumbey arereferredto asautonomousystems.Autonomoussystemsnteract
with other peeringautonomoussystems. Two autonomoussystemsare considerecheighborsif
they have somesortof a peeringbusinesselationsbetweerthem.In agraphnotation,the ASsare
the nodes,andtwo suchnodesare connectedvith alink if the correspondingASs have peering
relations. At the lower level, calledthe routerslevel, the underlyingphysicalstructureof the In-
ternetis consideredThenodesepresentheactualroutersthatmake up theautonomousystems.
Two nodesareconnectedf thereis a physicallink betweerthem. Clearly, thenumberof nodesn
agraphrepresentinghe underlyingphysicalrouterstopologyof the Internetis biggerby atleasta
magnitudehanthe numberof nodesin the AS correspondingraph.It wasalsoexpectedthatthe
topologicalstructurewould be muchdifferent.

In 1999, Faloutsoset al. [FFF994 publishtheir researchyhich investigatedhe characteris-
tics of the Internetstructureat boththe ASsandrouterslayers. Their somavhatsurprisingresults
werethatthe Internetconnectity pattern,gatheredrom several partial views obtainedat three
differentdates shows a clearpower law distribution characteristicait bothlevels,the AS andthe
routers. They found that both the rank-dgreeandthe frequeng-degreedistribution were power
law distributions. Two otherpower laws they foundwerethe numberof nodepairswithin aneigh-
borhoodversusneighborhoodize(in hops);andeigervaluesof the adjaceng matrix versusrank.
A laterwork by Crovella et al. [CNS*99] shaved that rank-dgreeand frequeng-degreedistri-
butions are two representationsf the samedistribution, and thus finding only one of themis
sufficient.

Albert and Baralasi [BA99, AB0O] suggested dynamicgraphgeneratiormodelthat gen-
eratessuch networks and aidedin the understandingf the evolvementof the Internet. They
suggestethatsuchnetworksgrowth patternis theresultof preferentiabttachmenandincremen-
tal growth. One of their main findings was the self similarity characteristicof such networks.
Their resultsarefurther discussedn the following section. Medinaet al [MMBO0O] investigated
the differentfactorsthatinfluencepower law topologiesandcomparedhe maintopologygenera-
tors. They cameto the conclusionthatfrequeng-degree(alongwith therank-degree)distribution
is the mosteffective factorin distinguishingdifferentkinds of topologies. They alsofound that
preferentialconnectity andincrementabrowth to bethe maincausedor all power lawsin their
simulations.

Promptedby thesefindings, Yook et al. [YJBTO01] shaved that the Internet,at the domain
level, exhibits othersmallworld characteristicsTheir research¢onductedetweeril997to 1999,
shovedthatthe Internets clusteringcoeficient rangedbetweer0.18to 0.3, comparedvith 0.001
for randomnetworksof similar parametersTheaveragepathlengthrangedbetweer3.70and3.77
atthedomainlevel, andattherouterlevel it wasaroundo.
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Theresearcloutlinedabove is partof anongoingeffort to discoverandmapthe exacttopol-
ogy of the Internet[BC99, GT00,CCGt02a]. It is generallyagreedodaythatthe Internet,atthe
AS level, hasa highly heterogeneousonnectvity patternswith a highly variablevertex degree
distribution. In aneffort to gainabetterunderstandingf thelnternetsoverallstructure[SARKO0Z]
have investigatedts structurefrom multiple vantagepoints. They have discoveredthatthe Inter-
net,asa scalefree network, alsohasa hierarchicalstructure.The coreof the Internetconsistsof
a small collectionof very high degreeASs, characterizedby their very high connectvity to each
other Thesearethetop tier US providers. Their mutualconnectity almostformsaclique. The
secondier, consistanainly of thetop EuropearandAsianproviders,canbe characterizeashigh
degreeASs,with avery high connectvity to thecore. Therestof thelnternetconsistsof smalland
smallto mediumsizedASs,which for the majority of the Internets ASs.

Several works have alsotried to characterizehe growing mechanism®f the Internetand
modelit [BA99, AB0O, BT02, PKP"03], and several networks generatorsvhich rely on some
of thesealgorithmsexist [JcJOQ MLMBO01, DMS03 andevaluatedRTY 00, TGJ" 02, MSZ02,
BTO02]. In this chaptemwe discussoneof them,the Notre-Dame(or ScaleFree)algorithm.

2.3 The Notre Dame Topology Generator

In this sectionwe describethe Albert Baralasialgorithmfor the creationof scalefreetopologies,
termedthe Notre-Damamnodel,or the ScaleFreemodel(SF).

They notedthatformer network modelsassumehatthe network startswith a fixed number
N of verticesthatarethenrandomlyconnectear rewired, without modifying N. In contrastmost
real world networks describeopensystemshat grow by the continuousaddition of new nodes.
Startingfrom a small nucleusof nodes the numberof nodesincreaseshroughoutthe lifetime of
the network by the subsequeradditionof new nodes.They termedthis characteristicncremental
growth.

Secondlythey notedthatformernetwork modelsassumehatthe probability thattwo nodes
areconnectedor their connectioris rewired) is independenof the nodes’degree,i.e. new edges
areplacedrandomly Most real networks, however, exhibit preferential attachment, suchthatthe
likelihoodof connectingo anodedepend®nthenodes degree.

Thus,thealgorithmof the SFmodelis the following:

Growth: Startingwith asmallnumber(m,) of nodesat everytimestepa nen nodeis addedwith
m < mg edgeghatlink thenew nodeto m differentnodesalreadypresenin the system.

Preferential attachment: When choosingthe nodesto which the new nodeconnectsit is as-
sumedthat the probability IT thata newv nodewill be connectedo node: dependsn the
degreek; of nodesi, suchthat

ki
Xk

After t timestepghis algorithmresultsin a network with N = ¢ + my nodesandmt edges.
Numerical simulationsindicatedthat this network evolvesinto a scaleinvariant statewith the
probability thata nodehask edgedfollowing a power-law with anexponenty = 3. The scaling
exponentis independentf m, the only parametem the model.

I1(k;)




2.3. THE NOTRE DAME TOPOLOGYGENERATOR 9

The network growth model, however, is more complicatedthan the suggestedncremental
growth model. A variety of local eventseffect the connecwity patternof nodesin the network.
Theselocal eventscanbe modeledby the following four elementsadditionor deletionof nodes,
andtheadditionor deletionof links in thenetwork. In reality, mary timesit translateso theaction
of rewiring a link, namely changingits endpoints. Therefore Albert andBarakasi suggestedn
improved versionof their algorithm,which consistedf threestagesjncluding the possibility to
rewire alink. Accordingto the new algorithm,at eachtimesteponeof the following operationss
performed:

Connectvity Growth With probabilityp, m < m, new edgesareadded.Oneendof anew edge
is selectedandomly the otherwith probability

ki1
(ki 4+1)

This probability ensuresa preferentialattachmentsincethe possibility to attachto a high
degreenodeis larger.

I (k;)

Rewiring Process: With probabilityq m edgesarerewired. For thisanodei israndomlyselected
andthe link /; ; thatis connectedo it is removed, replacingit with a new edgel; ;- that
connectsode: with node;j‘. Nodej* is choserwith the probability[1(£;) givenabove.

NodeGrowth: With probabilityl — p — ¢ anew nodeis added.Thenen nodehasm new edges
thatwith probabilityII(4;) areconnectedo nodesi alreadypresenin thesystem.

The new SFmodelhasthe following parametersm, mq, p, q. The numberof isolatednodes,
my, determinghecoreto which therestof thenodesendto connect.Thesmallerm, is, thefaster
thesenodesbecomehighly connectedandthereforemore preferredin the process.m andp are
the dominantparameter®n determiningthe richnessof the resultedtopology hencethe average
degree. g determineghe factorof local eventson the growth of the network, anddetermineghe
rateatwhich nodescandie, i.e., disconnecfrom the network.

Our ToGend topology generatoiis a straightforward implementatiorof the new scalefree
algorithmdescribedabove. It includesa simplecommandine interface,andis capableof genef
ating networksof magnitudeof millions of nodeswithin secondsThefour parametersn, myg, p, g
arereadfrom a parametefile. The outputof the ToGend generators afile, whichincludesthelist
of degreesfollowed by the list of links. The nodesareorderedaccordingto the orderthey were
created.Thegeneratowasusedin mostof theworksdescribedn following chapters.
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Chapter 3

Global Multicast Trees

3.1 Intr oduction

Thereare several inhibitors to the commercialuseof multicastprotocols. While it is clearthat
multicastis beneficialfor transmittingthe sameinformationto large groups,its exact gain over
unicasthasnot yet beendeterminedCS98 PST99,CA01]. Network supplierslack a fastand
efficient way to estimatethe size of large multicastgroups,and the researchcommunitylacks
reliabletreemodels.

We presenhereathoroughinvestigatiorof the structureandcharacteristicef multicasttrees
cut from generategower law topologiesandthe Internet. While the exact natureof the Internet
topology is in debate(JCCG*02h]), our resultsshawv that the partial views we have from the
Internetobey the power law tail of frequeng-degreefoundby [FFF994. Theseresultswerealso
verifiedby [GT00, MMB00, CNS"99], who conductedurtherinvestigationsMoreover, treescut
from theInternetandfrom the generatedopologieshadsimilar characteristics.

We found that treescut from® suchtopologiesandthe Internetobey a degree-rankandsub-
treesize-rankpower law distributions’. We alsofoundthatthe distancedistribution of nodesfrom
the root noderesemblesa Gammadistribution, as showvn previously for the Internet[CNS+99].
We obsenredthat nodeswith degreehigherthanfive tendto be rarein the resultingtrees. These
highdegreenodescanalwaysbefoundin severaladjacentings,which residetypically atthecore
of thenetwork, andin the nearvicinity of thetreeroot.

Our mostintriguing resultfinds a linear ratio betweenthe numberof high degreenodesin
the treeandthe numberof clients’. Theresultis shavn to be valid for treescut from scale-free
topologiesthat were generatedvith variousparametersaswell asfor experimentsconductedn
the Internetitself. We further verify this ratio analytically for power law trees. Basedon the
treetopologicalcharacteristicsve found, we suggesthe FastAlgorithm for estimatingthe sizeof
large multicastgroups.We analyzethe algorithm’s expecteddelayin the Internet,which sumsup
to lessthantheroundtrip delayfrom theroot nodeof thetreeto arandomclient atthe edgeof the
network.

1We usethetermtrees cut from the network to describea processvherewe selecta root nodefrom the network; a
groupof recevers;andthesubgraphcontainingall nodesandlinks thatcomprisethetreeof shortespathsconnecting
them

°Notethatrank-degyreeandfrequeng-degreepower laws canbe derivedfrom eachother[MMBOO].

3We noteby clientsthe groupof routersthatdirectly attachclients.

11
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Estimatingthe populationsize of large multicasttreescanimprove the performanceof feed-
back mechanism®f protocolssuchas RTP [SCFJ9¢ and SRM [FIM+95]. Currentfeedback
suppressiorsolutionsfor RTCP usetimersat the recevers[RS98 NB99]. Our senderasedes-
timation producesa muchfasterestimationthat canbe propagatedo the receversandeliminate
theneedfor suchtimers. Often,feedbacksuppressioprotocolsarebasecn similartechniquess
polling basedestimationalgorithmg[BTW94, NB98, FT99] andthuscanuseour fasterestimation
instead Fastestimationmayalsobe beneficialto forwarderrorcorrectionprotocolsfRKT98].

Our suggestecstimationalgorithm offers an alternatve approachby usingthe topological
characteristicgo obtainanestimatioron the numberof recevers(ratherthana specificpopulation
count).lt doesnotaggreateinformationattherouterlevel, but ratherpollsthe high degreerouters
in the multicasttree. Our resultsshaw that pathsfrom theroot of the treeto its receversarevery
likely to passthroughthe core of the network; We alsoobsened thathigh degreerouterstendto
residewithin the coreor in its closevicinity. Hence,the polled high degreenodeswill be closer
to the root thanthe receversthey connect. The algorithm adaptsitself to dynamictopological
changesand canthereforereflectchangesn the sessionsize, as doesthe populationsampling
algorithmsuggesteih [AANO2].

To the bestof our knowledge,this is the first time that the existenceof a power law in the
underlyingtopologyis leveragedo constructanalgorithm.We believe thatmoresuchalgorithms
canbedevelopedin thefuturefor avariety of purposes.

The secondpartof this chapterdiscusse®ur findingson the tomographyof Multicasttrees,
andis partof ajoint work with physicistsfrom Barllan University, who have studiedthe tomog-
raphyof the Internet. We usedthe analyticalmodelthey devisedandbacledit up with simulation
andreal network dataresults. In addition,we furtherinvestigatedhesephenomenan multicast
trees.

Thework usegheMolloy ReedgraphgeneratiommethodMR98] in conjunctionwith similar
techniqueso studythelayerstructurgtomographypf networks. Specifically thework studieshe
numberanddegreedistribution of nodesat a given(shortespath)distancefrom a chosemetwork
node. It is shavn analyticallythat the distancedistribution of all nodesfrom a specificnetwork
nodeconsistf two regimes. The first canbe describedasa very rapid growth, while the second
is foundto decayexponentially It alsoshavsthatthenodedegreedistribution ateachlayerobeys
a power law with an exponentialcut-off. The analyticalderivationsarebacledwith simulations,
andit is shovn thatthey match.

We also study shortestpath treescut from scalefree networks, asthey may representhe
structureof multicasttrees.We investigatetheir layer structureanddistribution. We show thatthe
structureof a multicasttree cut from a scalefree network exhibits a layer behaior similar to the
network it wascutfrom. We validateour analysiswith simulationsandreal Internetdata.

As notedby Lakhinaetal [LBCX03], it is asignificantchallengdo testandvalidatehypothe-
sesaboutthe Internettopologyin alack of highly accuratemaps. The analysisresultssuggesta
simplelocaltestfor thevalidity of the power law modelasanexactmodelof the Internet.Indeed
our findingsshaw thatthereis agoodagreemenof the empiricalandanalyticalresults.Theslight
differencewe hadcanbe attributedto biasin datacollectionandto secondorderphenomenauch
as,degreecorrelation hierarchiesandgeographicatonsiderations.
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Name Type Parameters No. of Nodes | Avg. Nodedegree

VS generated a = 1;p € 0:0.05: 0.5 10000 1.99 — 3.98

IS generated a = 2;p € 0:0.05: 0.5 10000 3.99-79

LS generated a = 3;p € 0:0.05:0.5 10000 5.98 — 12.04
BiglS | generated a=1.5,2;p=0.1 50000;10000d 3.3,4.4
BL[1,2] | realdata - Internet 3.2°

LC realdata - Internet 3.2°6

Table3.1: Typeof underlyingtopologiesused

3.2 Empirical Characteristics of Multicast Trees

This sectiondetailsour findingson the structureof multicasttreescut from generategower law
topologies,aswell asthe Internet. Thesefindings are the basisfor the estimationmethodwe
presenin Section3.3,andareof interestin their own right.

Little work hasbeendoneon modelingand characterizingnulticasttrees. Chalmersand
Almeroth [CAO01] investigatedthe branchingcharacteristicof Internet multicasttreeson the
MBone and their impacton multicastefficieng.. They found that multicasttreestendto have
low averageinternal degreethat grows logarithmically with the numberof receversin the tree,
anda maximumbheightof approximately23 nodes.They alsofound a high frequeng of "relay”
nodesthat have a degreeof two throughoutthe tree. In previous work, Pansiotand Grad, who
constructedreesfrom a graphbasedon true routing pathsin the Internet, also shoved a high
frequeng of relaynodesn thetreegraphgPG98].

3.2.1 Topologyand TreeGeneration

Our methodfor producingtreesis thefollowing. First, we generatgower law topologieshasedn
theNotre-Damanodel[AB00]. Themodelspecifiest parametersag, a, p andg 4. Whereq, is the
initial numberof detachedodesanda is theinitial connectvity of anode.Whenalink is added,
oneof its endpointsis choserrandomly andthe otherwith probabilitythatis proportionalto the
nodesdegree. This reflectsthe fact that new links often attachto popular(high degree)nodes.
The growth modelis the following: with probability p, a new links are addedto the topology
With probability ¢, a links arerewired, andwith probability1 — p — ¢ a new nodewith a links is
added.Notethata, p andq determinethe averagedegreeof the nodes.We createda vastrange
of topologies but concentratean several parametecombinationghat canbe roughly described
asvery sparsqVS), Internetlik e sparsg1S) andlessspars€LS). Table 3.1 summarizeshe main
characteristicef thetopologiesusedin this paper

From theseunderlyingtopologies,we createthe treesin the following manner For each
predeterminedizeof client populationwe choosearootnodeanda setof clients.UsingDijkstra’s
algorithmwe build the shortespathtreefrom the root to the clients. To createa setof treesthat
realistically resemblelinternettrees,we definedfour basictreetypes. Thesetypesare basedon
the rank of the root node and the clients nodes. The rank of a nodeis its locationin a list of

4Thenotationsin [AB0OO] aremyg, m, p andg, respectiely.
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descendinglegreeordet in which the lowestrank, one,correspondso the nodewith the highest
degreein the graph. For the caseof a treerootedat a big ISP site, we choosea root nodewith

alow rank, thusensuringtherootis a high degreenodewith respecto the underlyingtopology

Then,we eitherchoosethe clientsashigh ranked nodes,or at random,asa control group. Note,
thatdueto thecharacteristiof the powerlaw distribution, arandomselectionof arankhasa high

probabilityof choosingalow degreenode.Thenext two treetypeshave a high rankedroot, which

corresponds$o a multicastsessiorfrom anedgerouter Again, thetwo typesdiffer by the clients
degreedistribution, whichis eitherlow, or pickedat random.

The tree client populationis chosenat the range[50, 4000] for the 10000 node generated
topology [50, 10000] for the 100000nodegeneratedopology and [500, 50000] for the treescut
from real Internetdata. For eachclient populationsize, 14 instancesere generatedor eachof
thefour treetypes.All of ourresultsareaveragedvertheseinstancesThevarianceof theresults
wasalwaysnegligible.

Therearetwo underlyingassumptionsnadein the tree construction. The first, is that the
multicastrouting protocol delivers a paclet from the sourceto eachof the destinationsalong a
shortestpathtree. This scenaricconformswith currentinternetrouting. For example,IP paclets
areforwardedbasedon the reverseshortestpath,and multicastrouting protocolssuchas Source
SpecificMulticast[HCO02] deliver pacletsalongthe shortestpathroute. In addition,we assume
thatclientdistributionin thetreeis uniform, ashasbeenshavn by [PST99 CAO01].

3.2.2 TreeCharacteristics
Degree-Rankand Size-RankPower Laws

Our resultsshow that treescut from a power law topology obey a similar power law. Specif-
ically, we comparedhe degree-frequenc power law found by [FFF994. Figure 3.1 shows in
log-log scalethedegreefrequeny plot for 10000nodesopologygeneratedvith theparameteset
ap = 6,a =1,p =0.3,¢ = 0. Thedottedlineshere,andin the restof thelinearfit figures,mark
the 95% confidenceanterval.

Figure 3.2 shavs the sameplot for a multicasttree with 500 low degreeclientsand a root
with a high degree. In Table 3.2 we summarizethe bestlinear fit parametersn a log-log scale
for all treesgeneratedor the topologysetag = 6,a = 2,p = 0.1,¢ = 0. It canbe seenthatthe
power law holdsevenfor very smalltrees,e.g.,for atreewith 50 multicastclientsthathason the
averagearound200nodes.Thesamephenomenoappearsn all thetreescut from all topologies,
regardlesof theway therootandthe clientnodeswerechosen.

Thesefindingsconformwith thefindingsof [CA01, PG98]who foundaverylargefrequeny
of relaynodesn thetreesj.e.,nodeswith adegreeof two. In apowerlaw relationshipof frequeny
anddegree thefrequeng of two degreenodess thehighestin thetree.Leafnodesaredetermined
by clients,andarea subsebf theclients.

We alsofound that the distribution of degreesat a specificdistancefrom theroot, i.e., in a
certaindepthring, alsoshoveda power law distribution of degree-rankput with differentslopes.

Giventhe above findings, it is importantto note the following. Cohenet al. [CEbAHOO0Db]
showved that the maximal nodedegreein a graphof N nodesis proportional,for Internet-like

Sbasen [KRS0Q
Spasecn [BC99]
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topologies,to approximatelythe squareroot of the numberof nodes. More precisely D,,., ~
Na_il, where« is the exponentof the degree-frequeng power law of the topology Hence,all
resulteddegree-frequeng graphsof finite sizesexhibit a cut-off at the tail. This holdstrue for
partialviewstakenfrom theInternet,with thecut-off beingaresultof the partiality aswell asfrom
thefinite sizeof the Internetitself.

The Topology Frequencies of Degrees Frequencies of Degrees of a 500 Users Tree, High Degree Root
T T T T T T T T T T
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Figure 3.3: Sub-tree size CCDF distribution, for a 2000 node tree cut from topology
ag=6,a=2,p=0.1,9g=0.

Thesecondoower law we foundfor thetreesis of frequeng andsizeof thesub-treesn each
tree. Namely the self similarity holdsnot only for the degreedistribution in the tree,but alsofor
its innerstructure Figure3.3 shavstheexcellentfit of thecomplementargumulative distribution
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function of the sub-treesizesof a 2000Nodetree. Thetree,with a high degreeroot, is cut from
a10000nodetopologywith the parametesetay = 6,a = 2,p = 0.1, ¢ = 0. Thesizedistribution
differsfrom the degreedistribution in thatthe big sub-treesalthoughalmostsimilarin size,may
differ by oneor two nodes,which is negligible comparedo their overall size. Thuswe give the
ccdf graph,which plots the probability that the obsened valuesare greaterthanthe ordinate. It
canbeseerthatthefit to apowerlaw is over 99%. The slopecomputedor the PDFgraphwithout
thetail, resembleshe oneof thedegreedistribution.

a P Y ACC

topology 2 0.1 -2.50X+ 4.49 0.9721
High degreeroot, low degreeclients | Rootandclientschoserrandomly

Recevers Y ACC Y ACC
50 -2.76X+ 2.25 0.9337 -3.27X+2.68 0.9752
100 -2.64X+ 2.42 0.9613 -2.96X+2.71 0.9611
300 -2.50X+ 2.73 0.9730 -2.64X+2.85 0.9717
500 -2.58X+ 2.97 0.9732 -2.58X+2.96 0.9654
750 -2.57X+3.12 0.9825 -2.59X+3.09 0.9609
1000 -2.56X+3.23 0.9785 -2.59X+3.21 0.9728
1500 | -2.64X+3.45 0.9812 -2.56X+3.32 0.9741
2000 | -2.58X+3.52 0.9858 -2.60X+3.44 0.9620
2500 | -2.65X+ 3.66 0.9817 -2.63X+3.57 0.9731
3000 -2.66X+3.75 0.9851 -2.58X+3.57 0.9670
4000 | -2.70X+3.90 0.9825 -2.64X+3.73 0.9611

Table3.2: Linearfit of degreesandfrequencies

Per DegreeDistanceDistrib ution

Cheswickat al. [CNS™99] foundthatthe distribution of the numberof nodesat a certaindistance
from a pointin the Internetis similar to the Gammadistribution. Our resultsshow thatthe distri-

bution of distancerom theroot of nodesof a certaindegreeseemscloseto a gammadistribution,

althoughwe did notdetermindts exactnature.Figure3.4 shavs thedistribution of thedistanceof

two to five degree,leaf andhigh degreenodes wherehigh degreenodesarenodeswith a degree
six andhigher In this casetherootis alow degreenode,andthe treehas1000low degreeclients.
As canbe seen the high degreenodestendto residemuchcloserto the root thanthe low degree
nodes,andin adjacentings. In this example,mostof themarein the secondo forth depthrings

aroundtheroot.

This phenomenonvaseven more obvious whenthe root wasa high degreenode. We found
the following obsenationwith regardto power law generatedopologies.The high degreenodes
seemto form a ‘core’ with a low diameter(aroundfive hopsfor treescut from the generated
topologies,andsevenfor treescut from Internetdata)andmostof the othernodesin the network
arenot distancednorethanthreeto five hopsaway from this core. Subramaniamt al. [SARKO0Z2]
obseredasimilar phenomenomtthe InternetAS topology althoughobtainedrom directedBGP
routingtables.
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Figure3.4: Distribution of the distanceof high degree,two to five degreeandleaf nodesin atree
cutfromtopologyay =6,a =1,p=10.3,¢ =0

The distribution of client distancedrom thetreerootis givenby the leavesdistancesn Fig-
ure 3.4. Note thatthe longestpathto a client is the tree height. Our resultsshow that the less
connectedheunderlyingtopology thetaller is the averagetreecut from thetopology

Empirical Resultsfrom Inter net Data

We verify theabove findingswith resultsobtainedfrom real Internetdata. Our resultsareverified
ontwo differentdatasets.Thefirstis aninternetpartialview attheroutersevel, obtainedrom the
LucentIinternetMappingProject[BC99]. We usedthis datasetasthe underlyingtopology from
whichwe cuttreesin thesamemannerdescribedn Section3.2.1.We denotethis topologyby LC.

For the seconddatasetwe usethe client populationof ww. bel | - | abs. comwhichis a
mediumsizewebsite. This mayrepresenthe potentialaudienceof a multicastof a programwith
scientificcontent(suchasthe livecastof the INFOCOM conference).From this settwo lists of
clientswereobtainedandtraceroutavasusedto determinethe pathsfrom theroot to the clients.
It is importantto note,thatthefirst threelevelsof thetreeconsistof routersthatbelongto the site
itself, andthereforemight be treatedasthe root point of the tree, althoughin thesegraphsthey
appeaseparatelyWe denotethis treeasthe BL tree.

Figure 3.6 shows the frequeny of degreesfor a 10000nodetree cut from the LC topology
Thetree,whichis anaverageof 14 instancesexhibits a cleardegree-frequenc power law with a
goodfit’. Thetreewaschoserwith a high degreeroot, andlow degreeleaf nodes.Thevarianceof
theinstance®f eachtreewasnggligible, andthe sameresultwasobtainedor eachof thegenerated
treeswith aslow as1000clientsandashighas50000.Figure3.23shavsthefrequeng of degrees

"We fit the datafor the pointsabove the line Y=0 which captureall the degreesthat appearon average at least,
oncein every tree. To extendthefit below this line we needmoretrees. If we wantto getrid of the noisy tail all
togethemwe needto generateatleast,anorderof 10* treesasourfit predictsthatthe highestdegreepointswill appear
ontheaveragein lessthanoneof every 10° trees.
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for the BL tree. The linearfit of the log-log ratio is excellent, with a correlationcoeficient of
0.9829.

Figure 3.5 shaws the ccdf of the sub-treesizesof a treewith 7000clientscut from the LC
data. Therootis a high degreenode,andthe clientsarelow degreenodes.Note, thatevery point
in the graphis the resultof anaverageof 14 instanceshereforethe tail wasomittedfrom thefit.
Thesize-rankpower law appearsn all thetreescut from this data.

ccdf Frequencies of Degrees for 7000R sub.size Frequencies of Degrees for 10000R. TRanks
T T T T T T

+ Line:Y=-1.04 X +4.40.  ACC=0.9993 ar
I 4
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cedf Frequenci

Figure3.5: Sizedistribution of a 7000clients Figure3.6: Frequeng of degreesof a 10000
treecutfrom the LC data nodetreecut from the LC Internetdata.

Figure 3.8 shows the distribution of the distanceof two degree,leaf andhigh degreenodes,
for a15000clienttree,cut from the LC data. The majority (90%) of the high degreenodesreside
within a distanceof eighthopsfrom theroot, while the clientsare distancedup to 18 hopsfrom
theroot.
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3.3 Recever Group SizeEstimation Method

While all of theabove obsenationsareinterestingandhelpin our understandingf multicasttrees,
we were intriguedwhetherwe canuseary of this knowledgeto evaluatethe size of a multicast
tree. We comparedhe degreeof the nodesin thetreeto their degreein thetopology andfocused
onthe high degreenodes.Interestingly we found thatwhile somenodeshadatreedegreethatis

significantlysmallerthantheir degreein the underlyingnetwork topology othernodesseemedo

have a treedegreecloseto their network degree. We thencomparedhe frequeng of nodeswith

degreei andabove (high degreenodes)o thenumberof clientsin thetree,andfoundalinearratio
with a correlationcoeficient of not lessthan0.99. We term this ratio the HCN; ratio (hubs-to-
clientnumberratio), anddefineit asfollows: Let H; bethe groupof routers,or hubs,with degree
d > iinthetree;Let C bethegroupof recevers,or clients,thatthetreespan;Than,

H:
HCN; = —.
C
Next, we outline our findingson HCN; ratio for both simulatedtreesandtreescut from the
realInternet.We proceedoy giving a mathematicaanalysisof our resultsfor power law trees.

3.3.1 Empirical Findings

We have foundthatan HCNg ratio of 1:161is avery goodpredictorfor treescut from the Internet,
and most generatedopologies. Figure 3.9 shavs the HCNg ratio in treescut from a 100000
nodetopology Thetopologyparametersrea, = 6,a = 1.5,p = 0.1, ¢ = 0, andtheroot nodeof
all treesis a high degreenode. The linear ratio is obtainedafter gatheringthe informationfrom
not more thanfive depthrings aroundthe root, wherethe j — th depthring aroundthe root is
comprisedof all nodesat distancej hopsfrom theroot. We plottedthe frequeng of high degree
nodesobtainedafter scanningthree,four, five, six andnine depthrings aroundthe root. As can
be seenfrom the graphin Figure 3.9, the entire information was obtaineduntil the sixth depth
ring - the following rings did not add any more information. The HCNg ratio was found to be
16. Figure3.10shows the excellentfit of the HCNg ratio with a correlationcoeficient of 0.9998.
Whenwe plottedthedatafor treescut from thistopologywith alow degreeroot, we obtainedvery
similar results.Theratio wasagain16, with a correlationcoeficient of 0.9996.However, another
depthring wasneededo obtainaccurateesults sincetherootwasnotascloseto the coreof high
degreenodesasin the previouscase.

We verified our resultsusing actualInternetdataon the client populationof the Bell-Labs
websitedescribedn Section3.2,andon treescut from the datafrom Cheswicks Lucentinternet
mappingproject, notedLC, alsodescribedhere. The Bell-Labsclient populationdatacontains
two log files. Thefirst, denotedBL1, has10897clientsandthesecondBL2, has7356.We created
subset®of clientsby randomlyselectingentriesfrom thelog files, andcutthe correspondingrees
for thesesubsetdrom the original trees. Figure 3.11 shaws the ratio betweenthe 16 predictor
andthe actualnumberof clientsin the generatedrees. For BL1 the ratio was 1:16%° with a
fit of 99.75%,for BL2 the ratio was 1:16'-%* with a fit of 99.72%. For client populationsarger
thanroughly 1500clientsthe predictorof 16 givesan excellentestimate within 9% of the actual
numberof clients.



20 CHAPTERS3. GLOBAL MULTICAST TREES

Linear fit of Clients vs. Frgeuncy of high degree nodes

100000 Nodes: Frequency of High Degrees vs. Clients per Distance of Polling
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Figure 3.12: Clientsvs. high degree nodes
andthe HCN predictorfor the treescut from
the LC topology

Figure 3.11: Clientsvs. high degree nodes
andthe HCN predictorfor the BL[1,2] trees

The LC datagivesa partial view of the Internetat the routerlevel with morethan 110000
routers.Fromthistopology we cuttreesin thesamemannermescribedn Section3.2. Again,each
resultis averagedover 14 instances.Figure 3.12 shaws the ratio betweenthe numberof clients
andhigh degreenodes,comparedvith the predictedvaluefrom the simulations,16. The average
valueof theratio is 15.89,with a standardf deviation of 0.9. Hence,a 16 predictorfor the ratio
givesa very goodestimationfor this dataalso.

For thegeneratedopologiesandthe Internetexperimentspur resultsarelessdefinitefor very
smalltrees.We foundthatHCNg ratio=16is accuratevhenclient populationis atleast0.1%the
sizeof theunderlyingtopology Neverthelessfor the Internet,our experimentsyieldedvery good
resultsfor groupsizesof 1500clientsandmore. Note thatwhenthe groupsizeis smallenough,
exactcountingof the clientscanbe donewith reasonableost.
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While a predictorof 16 wasshawvn to be a very goodpredictorfor large groups,it becomes
lessscalablewhenthe groupsizeis extremelylarge. For example,in the caseof a multicasttree
with a million clients, the expectednumberof high degreenodesis 62500. A goodsolutionfor
this problemis to increasehe degreeof the samplenodes.For example,in the caseof very large
groups,countingthe numberof nodeswith degreehigherthanninewill produceanaccuratepre-
diction, with a ratio of 1:48. Note that samplingnodeswith a larger degreegivesus a coarser
estimation.Our experimentsshown thatwhenwe samplenodesof degreetenandabove the estima-
tionis accuratenly for groupsizesof atleastl.5%thesizeof theunderlyingtopology Remember
thatsamplingnodesof degree6 andabove yields a goodestimationfor treesassmallas0.1% of
thenetwork.

3.3.2 Analytical derivation of HCNg ratio

In this section,we derive the HCNg ratio for treesin power law topologies.Our experimentshave
shawvn thatthe groupof leaf nodesof a treecloselyapproximateshetree’s client population.For
simplicity we take the exponentof theunderlyingtopologydegreeprobabilityinsteadof thetrees,
but thesearefairly close.

Givenatreewith N nodeswe denoteby L the numberof leaf nodesandby N the number
of non leaf nodes. Let A/ be the group of non leaf nodes. The averageinternal degreeis de-

>

finedby: r = —vaLd] whered;, is the degreeof node;. But by its definitionit alsoholdsthat
Yiendi=2N+L—-1m2N+L,andy, ;d;=N+ N -1~ N+ N. Givenall the above

we canwrite
r—2

r—1

L=N- (3.1)

which holdsfor ary tree.
Giventhatp; is theprobabilityto find anodewith degreei in thetreewe canrewrite theabove
expressiorfor r

=1 o 1222 Di. (3.2)
andthe probability conserationequation
L N
N—i—;pi =1 (3.3)

Substituting(3.1) in equationg3.2) and(3.3),andgiventhatthedegreedistribution obeysthe
powerlaw p; = c- i ¢, we getthat:

c=——. (3.4)

WhereS; = YN, i~ andS, = ¥V, i@,
TheHCN; ratiois definedby:
E; 6 Di-

HCONg?
¢ L

(3.5)



22 CHAPTERS3. GLOBAL MULTICAST TREES

Plugging(3.1) and(3.4)in equation(3.5)yields

HCNg ' = -

1. (3.6)

WhereS; = Y1252,

The topology power law exponent vs. the HCN ratio
T T T

19

| I I I I I I I I
3.1 32 33 34 35 3.6 3.7 3.8 3.9 4
alpha

Figure3.13: Thechangdan HCNg ratio with «

Figure 3.13 shaws how the HCNg ratio in equation(3.6) changeswith a. For3 <o <4
the HCN; ratio changedetweenl4.5and19. Hence,a precisevaluefor thetrees o will yield
an excellentevaluationof the numberof leaf nodesin the tree,and hencea good estimationto
the client population. Neverthelesspur resultsshow that for the shortestpathtreescut from the
Internet,aswell asfrom mostof our generatedopologies,HCNg ratio = 16 givesa very good
estimation.Understandinghe precisecorrelationbetweernour empiricandanalyticalresultsmay
leadto a deepemunderstandingf the Internettopology andis the subjectof our next work.

3.4 Estimation Algorithms

3.4.1 A BasicAlgorithm

Thefindingsin the previous sectiongive rise to analgorithmfor estimatingthe numberof clients
in amulticasttree,in whichthenumberof nodeswith six or morechild nodescanbecounted.The
mainidea,givenformally in Figure3.14,is thattheroot multicastsa feedbackequestReq, along
the multicasttree. Therequestcarriesthe parameteri, which indicatesthe minimal nodedegree
thatneeddo reportback. Sucha node,uponreceving therequestreplieswith aUDP Rep paclet
sentdirectly to the root. The root waits for a time long enoughto ensurethat mostrepliesare
acceptedTherootthencountsthe numberof differentrepliesit receves,andby multiplying with
theappropriatecoeficient produceghe estimate.
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Algorithm 1 (Basic)
1. SendReq(d)

2.n+0

3. ActivateTimer, (T}, )
When Rep arrives

4. n++
WhenTimeOuf

5. returngy - n)

Figure3.14: A formal descriptionof the basicalgorithmfor therootnode.

Notethatfor the Internet, 7y, , thetime theroot waitsfor therepliesto arrive, shouldbe quite
large. Specifically T,;, needso belong enoughsuchthatthe vastmayjority of slow responsesue
to roundtrip andprocessinglelaysarenot lost. (We assumehat7;;, of several secondsatisfies
theserequirements.)

3.4.2 FastAlgorithm

The FastAlgorithm, formally presentedn Figure 3.15,is motivatedby the needto obtaina fast
estimationon the client population. We would like to determinethe terminationrule in a way
that guaranteeshat a significantportion of the Rep messagebasalreadyarrived. In the basic
algorithmwe achieve this by settinga very large timeout. Here,we monitor the Rep message
arrival procesgo achieve this goal.

We startthe algorithmwith aninitial sampling period, 7,, whosepurposeis to enablere-
sponse$rom thehigh degreenodesin the k-neighborhooaf therootto arrive backattheroot. If
by theendof theinitial samplingperiodtherootrecevesnoreplies,it assumeshegroupis either
very small or inactive. If the root receves Rep messagesa shortersamplingperiodtermedthe
iterative sampling period is activatedrepeatedlyuntil the terminationconditionis satisfied. The
purposeof theiteratve samplingperiod,noted’y, , is to enablehealgorithmto cornvergeto agood
estimatewithin ashorttime.

Thereare several optionsto determinea terminationcondition basedon the Rep message
arrival process.We canchoosea thresholdand stopwhenthe messagearrival rate dropsbelow
it. This solution,however, is notimmuneto network jams,andis very sensitve to the thresholds
value. Another option is to stop when the rate keepsdroppingfor several successie iterative
samplingperiods.In this casethealgorithmis very sensitve to thelengthof theiteratve sampling
period.If it istooshortthealgorithmmightterminateoo earlywith alargeestimatiorerror. Onthe
otherhand,alongiterative samplingperiodmight causahealgorithmto runlongerthannecessary

Thus,we deviseda terminationrule (seeline 12 in Figure3.15)thatcanself-tuneaccording
to the arrival process.Underreasonableonditionsit will guarantegerminationwithin a preset
estimatiorerror. The algorithmterminatesvhenthe numberof repliesrecevedat the root during
oneof theiterative samplingperiodsdoes not improve theestimatiorby morethan K, whereK,,
is the estimationerror. For example,settingthe iterative samplingperiodto the averagetwo-hop
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Algorithm 2 (Basic)
1. SendReq(d)

2.n+ 0
3. ndt <+ 0

4. ActivateTimer, (T},)
WhenTimeOuj

5. if ndt = 0then

6. return(0)

7. else

8. ActivateTimer(T},)
9. n< ndt

10. ndt <0
WhenTimeOut,

11. n4+ = ndt

12. if ndt < Ky, - n

13. returng, - n)

14. else

15. ActivateTimer(Ty,)

16. ndt<+ 0
When Rep arrives

17. ndt++

Figure3.15: A formal descriptionof the FastAlgorithm for therootnode.

delayandthe initial samplingperiodto 27", causeghe algorithmto terminatewhenthe replies
gatheredrom the 7" + i-th depthring, at the ith iteratve samplingperiod, do not improve the
estimationby morethan K;,. Underreasonabl@etwork conditions,abouthalf of therepliesfrom
this depthring reachthe root node by the end of the ith iteratve samplingperiod. Thus, the
terminationconditionenableghealgorithmto stopwhenit identifiestheendof theadjacendepth
ringsaroundtheroot.

Performance Evaluation of the Fast Algorithm

In thissectiorwe estimateahedelayof theFastAlgorithm anddefinetheaveragevaluesor 7, and
T,,. Thedelayof apaclettraversingasinglelink, d, is comprisedf two componentsd = A + g,

where A is the fixed minimum link delay and ¢ is a randomvariablerepresentinghe queuing
delay which is exponentiallydistributed. We would lik e to derive the distribution of the queuing
delayof apaclettraveling 4 links. Thedensityfunctionof thedelay dy,(t), is acorvolution of the
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densityfunctionsof ¢(t — hA), h times:

dp(t) = q(t — hA) * q(t — hA) * - - - q(t — hA). (3.7)
Let usdefine for simplicity:
T =1t — hA. (3.8)
Thus,dy,(7) is agammarandomvariablewith parameterg andA. Namely:
)\h,rh—le—)rr
dn(7) = D (3.9)

Where)\~! is theaveragequeuingdelay Assumingthatall high degreenodesresidewithin ~ hops
from the root nodeof the tree,andlet the probability of a high degreenodeto resideat distance
h from theroot be p,q(h), from Equationg3.7) and (3.9) we getthatthe probability distribution

functionof thetotal delayis:

D(r) = " Du(r)pnali) = 3 Afi())pu (3.10)

i=0 =0

Wherel'(-, -) istheincompletegamm&unction[Knu97, sec.1.2.11]. Pluggingback(3.8)in (3.10)
we getthatthefinal form of thetotal delayprobability distribution functionis:

hOXNT(3,3(t — hA))

ZZ

D(t) = Phd(1)- (3.11)

=0
Thevaluesof T,;, and7;, needto be establishedn away thatwill ensurehatthe majority of
therepliesaregatheredFor examplewe canselectT;, tothevalueof ¢ thatminimizesD(t) = 0.5,
meaninghatensureshatontheaverageve wait for half of therepliesto bedonewaitingatqueues.
Alternatively we shouldchoseTy, to be long enoughfor eachnodeto at leastreachthe
core, preferablyits center Let us defineby r. the estimatedradius of the core, in which we
have establishedhatmosthigh degreenodeseside.Let usdefineby r, theaveragedistancefrom
anedgenodeto thecore.Then,

Ty, =2(re +71e)(A+q) (3.12)

Thusensuringthat 7y, is sufficient for the requesto reachthe corevicinity andfor someof the
repliesof high degreenodesto arrive backto theroot. In the samemanneysetting:

T, =2(A+q) (3.13)

yieldsaniterative samplingperiodof onehoproundtrip delay thusenablingthe algorithmto ob-
tainmostof theinformationfrom thenext hop. Fromour experimentsasdescribedn Section3.2,
we discoveredthatthevaluesof . = 7 andr, = 6 aresufficientfor today’s Internet.

In Table 3.3 we summarizethe simulationresultsof the Fast Algorithm. We denoteby 7
the averageone hop delay The hop delayis either normally distributed (ND) or exponentially
distributed (ED). The lengthof the initial samplingperiodis 8, andthe length of the iterative
samplingperiodis 27. Theresultsn thistableareobtainedor treescutfromtopologya, = 6, a =
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1,p = 0.3, ¢ = 0, andthe FastAlgorithm wasexecutedwith anestimationerrorof K;, = 2%. All

thehighdegreenodesn thegeneratedreesresidewithin five depthringsfrom theroot. Time units
arein [7]. Notethatdueto thelongtail of theexponentialdistribution, aniteratve samplingperiod
of 27 is shown to be too short,sincethe exponentialcaserepresents bursty network. However,
whenthedelayis normallydistributedwith variancer, the algorithmcountsall of the high degree
nodesin thetreewithin lessthan12r time units,which is lessthanthe measuredwverageclients’
roundtrip delayof 167 for thesetrees.

Clients 300 | 500 | 750 | 1000| 1500| 2000| 3000| 4000
ND prediction| 304 | 512 | 736 | 992 | 1472| 2000 | 2992 | 4000
ND time 10.0| 12.0| 10.0| 10.0| 10.0| 10.0| 12.0| 12.0
ED prediction | 256 | 400 | 672 | 960 | 1456| 1920 | 2736 | 3856
EDtime 12.0| 12.0| 18.0| 14.0| 20.0| 18.0| 16.0| 20.0

Table3.3: FastAlgorithm time andprediction

3.5 Discussion

Our results,which shawv a strongcorrelationbetweenthe numberof high-deggreenodesandthe
numberof clients, hold for all treetypesover all testedpower laws topologies.As statedbefore,
all of the resultsobtainedfrom the simulationsaswell asthe LC datawere averagedover 14
instances Whendegreessix andhigherarechosen(i.e., d = 6), we foundthat 16 is avery good
predictorin theaveragecase.In this sectionwe discusgheaccurag of thisresultfor specifictrees.

We examinedthe specificpredictorsof the 14 instancesf a 7000 clientstree cut from the
LC data. The smallestratio was 15.52and the largest16.78, yielding a maximal error of 5%.
Figure3.16shavsourresultsfor 14 treesthatwerecutfrom a100000nodetopology Therootis a
randomlychoserhigh-deggreenodeandtheclientsarechoseruniformly. Thefigurelegenddetails
for eachof thetreesits specificslope,i.e., its averageratio betweenthe numberof clientsandthe
high degreenodesoverall points. It alsospecifiedor eachtreethemaximalandminimal deviation
points,i.e., theratio atthe pointswhich arefurthestfrom the averagefor thattree.We canseethat
the slopesof mostof the treesarewithin 10% of the averagepredictor This phenomenomranbe
seenthroughouthedifferenttreetypes. Theworstdeviation from the averagepredictorof a slope
was12.5%.A few pointsdivergeupto 30%from theestimationyetthis shouldbeexpectedgiven
the statisticalnatureof the estimationrmethod.

We foundthatthereliability of the predictionincreasesvith thegroupsize.Accordingto our
findings,describedn Section3.3,thefoundpredictoris accurateonly for mediumto largegroups.
Whengroupsizeexceedsl000clients,theaveragepredictoryieldsvery goodestimationsyith not
morethana 10%error. For thegenerakasefor all groupsizesthevastmajority of theindividual
testpointsarewithin a mamginal limit of 15%. For our analysison Internetlogs the estimation
errorwasnomorethanl15%in almostall casesThesingleexceptionwasfor agroupof size1153,
which exhibiteda 22%estimationerror.

We have found that instancesf a tree with the sameroot nodetendto have a more stable
behaior. Thus,arootcancalibratethe estimatoifor its treesby countingthenumberof clientsand
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100000 Nodes: Frequency of High Degrees vs. Users for each tree instance
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Figure3.16: Clientsvs. high degreenodesfor eachof the 14 instance®f thetree

the numberof high degreenodeswhenthe treesarereasonablysmall,andusethe moreaccurate
estimatowhenthetreesgrow. Figure3.17demonstratethis for 14 treesthatweregeneratedavith
thesameroot. It is clearthatthe bestestimatorfor thesereesis aroundl5andthedeviationis less
than4% (comparedvith 12.5%for the generalcase).Theindividual point estimatederearealso
muchbetter- within 16%of the calibratedestimate 15.

50000 Nodes: Frequency of High Degrees vs. Users for each tree instance
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Figure3.17: Clientsvs. high degreenodesfor eachof the 14 instance®f thetree
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3.6 Resultsonthe Tomography of Multicast Trees

3.6.1 Background
Graph Generation

Recenstudieshave shovn thatmary realworld networks,and,in particular theInternet,arescale
free networks. Thatis, their degreedistribution follows a power law, P(k) = ck=*, wherec is an
appropriatenormalizationfactor and )\ is the exponentof the power law.

Several techniquedor generatingsuchscalefree graphswere introduced[BA99, MR98].
Molloy andReedsuggestedninterestingconstructiormethodfor scalefree networksin [MR98].
The constructionwaspart of a modeldescribingan “exposure”procesausedto evaluatethe size
of thelargestcomponentn arandomscalefree network. We termthis modelthe MR model. The
constructionmethodis asfollows. A graphwith a given degreedistribution is generatedut of
the probability spacgensemblepf possiblegraphinstancesFor agivengraphsize N, thedegree
sequences determinedoy randomlychoosinga degreefor eachof the N nodesfrom the degree
distribution. Let usdefinel” asthe setof N chosemodes,C' asthe setof unconnecteadutgoing
links from thenodesin V', and F asthe setof edgesn thegraph.Initially, £ is empty Then,the
links in C arerandomlymatchedsuchthatat the endof the process(' is empty and F contains
all thematchedinks < u,v >, u,v € V. Throughouthis paperwe referto the setof links in C
asopen connections.

Note, thatwhile in the BA modelthe graphdegreedistribution functionemepgesonly at the
endof theprocessin theMR modelthedistributionis known a-priori, thusenablingusto useit in
our analysisduringthe constructiorof thegraph.

Distrib ution Cut-Off

Recentwork [CHO3, CbAHO0Z], hasshavn thattheradiu$, r, of scalefreegraphswith 2 < A < 3
is extremelysmallandscalesasr ~ loglog N. The meaningof this is thateven for very large
networks,finite sizeeffectsmustbetakeninto accountpecausalgorithmsfor traversingthegraph
will getto the network edgeaftera smallnumberof steps.

Sincethe scalefreedistribution hasno typical degree,its behaior is influencedby externally
imposedcutoffs, i.e. minimum andmaximumvaluesfor the allowed degrees k. The fraction of
siteshaving degreesabove and below the thresholdis assumedo be 0. The lower cutoff, m, is
usuallychoserto beof orderO(1), sinceit is naturalto assumehatin realworld networks mary
nodesof interesthave only oneor two links. Theuppercutoff, K, canalsobeenforcedexternally
(say by the maximumnumberof links thatcanbe physicallyconnectedo a router). However, in
situationswhereno suchcutoff is imposedwe assumehatthe systemhasa naturalcutoff.

To estimatethe naturalcutoff of a network, we assumehatthe network consistf N nodes,
eachof which hasa degreerandomlyselectedrom the distribution P(k) = ck=*. An estimateof

8We definetheradiusof agraph,r, asthe averagedistanceof all nodesin the graphfrom the nodewith the highest
degree(if thereis morethanonewe will arbitrarily chooseoneof them). The averagehopdistanceor diameterof the

graph.d, is restrictecto:
r<d<2r, (3.14)

Thustheaveragehopsequencés boundfrom above andfrom below by theradius.
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log(s)

Figure3.18: Numberof nodesateachlayerfor arouterlevel cutof thelnternetwith N = 112, 969
nodegLC topology).Analytical reconstructiorfor S; is donewith A = 3, andm = 1.

theaveragevalueof thelargestof the N nodescanbeobtainedoy looking for thesmallespossible
tail thatcontainsa singlenodeon the averaggf CEbAHOOD]:

S P(k) ~ /: P(k)dk = 1/N. (3.15)

k=K

Solving the integral yields K ~ mN'/*~Y which is the approximatenaturaluppercutoff of a
scalefreenetwork [CEbAHOOb,DMS01, MJSAAOQZ.

In therestof this section,in orderto simplify theanalysispresentedwe will assumehatthis
naturalcutoff is imposedon thedistribution by the exponentialfactor P(k) = ck= e */X,

Resultson Tomography of the Inter net

We discussherebriefly the resultsobtainedfor the Internetin our joint work with the Bar-llan
group.Thefull papercanbefoundat[CDH*].

Theresults presentedn Figure3.18,shav thatstartingfrom agivenlayer! = L thenumber
of nodesdecaysexponentially The actualprobability distribution is not a pure power law, rather
it canbe approximatedby A = 2.3 for smalldegreesand A = 3 at thetail. Our analyticalre-
constructionof the layer statisticsassumes\ = 3, becausehetail of a power law distribution is
theimportantfactorin determiningoropertiesof the system.This methodresultsin agoodrecon-
structionfor the numberof nodesin eachlayer, anda qualitative reconstructiorof the probability
distributionin eachlayer In generaljarge degreenodesof the network mostly residein thelower
layers,while the layersfurther away from the sourcenodeare populatedmostly by low degree
nodes[DMSO03]. This impliesthatthe tail of the distribution affectsthe lower layers,while the
distribution functionfor lower degreesaffectsthe outerlayers. Thusthe deviationsin the analyt-
ical reconstructiorof the numberof nodesperlayerfor the higherlayersmay be attributedto the
deviationin theassumedlistribution functionfor low degreeqthatis: A = 3 insteadof A = 2.3).
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Figure3.19: Third layerof a 300clienttreecutfrom topologyag = 6,a = 1.5,p = 0.1, =0

3.6.2 Empirical Findings onthe Tomography of Multicast Trees

In this sub-sectionwe detailsomeof our findingson the structureandcharacteristicef the depth
rings aroundthe root nodeof shortestpathtrees. All of our findingswere alsovalidatedon real
Internetdata.

It wasratherinterestingto obsene thatany layerwith sufficient numberof nodesto createa
valid statisticalsampleobeyed a degree-frequengrelationshipwhich wassimilar to a power law,
althoughwith differentslopes.We suspecthatthis is dueto the exponentialcut-off phenomenon
discussedn the previous sections.Figure 3.19shaws this for the third layeraroundtheroot (i.e.,
nodesat distancethreefrom the root) of a 300 client tree cut from a big IS topology (100000
nodes).Theroot waschoserwith a high degree,andthe clientswith alow degree. Althoughthe
numberof nodesis quite small, we seea very goodfit with the power law. Figure3.20shavs an
excellentfit to the powerlaw for thefifth layeraroundtheroot of a10000clienttree,cutfrom the
sametopology This phenomenoiis stableregardlessof the treetype, andthe client population
size. Note thattherangeof the power laws seenin figures3.19and3.20is lessthanoneorderof
magnitude This couldindicatea crosseerto exponentialbehaior.

To understandhe exact relationshipof the degree-frequeng at differentlayers,we plotted
the distribution of eachdegreeat differentlayers. heswickat al. [CNS*99] found a gammalaw
for the numberof nodesat a certaindistancefrom a point in the Internet. Our resultsshowv that
thedistribution of nodesof a certaindegreeat a certaindistance(layer) from the root seem<lose
to a gammadistribution, althoughwe did not determineits exact nature. Figure 3.21 shows the
distribution of thedistanceof two degreenodes andFigure3.22thedistribution of the distanceof
high degreenodesj.e., nodeswith adegreesix andhigher In bothfigurestherootis alow degree
node,andthe tree has1000low degreeclients. As canbe seen,the high degreenodestendto
residemuchcloserto therootthanthe low deg reenodesandin adjacentayers.In this example,
mostof themarein the secondto forth layersaroundthe root, with only two moreat layer five.
This phenomenomvasevenmoreobviouswhentherootwasa high degreenode.
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Figure3.20: Fifth layerof a 10000clienttreecutfrom topologyay = 6,a = 1.5,p =0.1,¢ =0
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Figure 3.21: Distribution of degreetwo nodesin a tree cut from topologyay = 6,a = 1,p =

0.3,g=0.

We alsochecled the distribution of the lengthsof the pathsto the clients. Our resultsshav
thatthelessconnectedheunderlyingtopology thehigheris theaveragereecutfrom thetopology
For a 10000nodeunderlyingtopologywith an averagedegreeof threeandhigher the heightof
the treeswasnot morethanten. On an underlyingtopologyof 100000nodes.the heightof the
treeswasnot morethanl12. In accordancevith our findingsof a’core’ of high degreenodesthe
treeswerehigheron the averagewhentheroot wasa low degreenode,comparedo treeswith a

high degreeroot.

We verify the above findingswith resultsobtainedfrom a real Internetdataset. Sincewe
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Figure3.22: Distribution of thehigh degreenodegk > 6) in atreecutfrom topologyay = 6,a =
1,p=0.3,q=0.

have no accesd2o multicasttree datawe usethe client populationof a mediumsizedweb site
with scientific/engineeringontent. This may representhe potentialaudienceof a multicastof a
programwith scientificcontent.

Two lists of clientswereobtained,andtraceroutevasusedto determinethe pathsfrom the
root to the clients. It is importantto note,thatthe first threelevels of the tree consistof routers
thatbelongto thesiteitself, andthereforemight betreatedastheroot point of thetree,althoughin
thesegraphsthey appearseparatelyFigure3.23shows the frequeng of degreesin thetree. The
linearfit of thelog-log ratio is excellent,with a correlationcoeficient of 0.9829.The exponentis
very closeto the exponentwe derivedfor treescut from topologieshatresembldhe Internet.

Figures3.24and3.25show thefrequeng of degreesatlayersb and10of thetree,respectiely.
It canbe seenthatthe slope\ of thedistributionincreasesvith thelayernumbere.g.,layer5 has
aslope) ~ 2.34, andlayer10 hasaslope) ~ 2.99. As we claimed,the shortestipathtreecut
from a scalefreetopologyinherit mary of the characteristicef the network topology Moreover,
we found for networks that the frequeng-degreefor eachseparatalistancearoundthe root can
beapproximatedy apower law with anexponentialcut-off, whichis becomingstrongemwith the
layer number In Fig. 3.26 we plottedthe slopeof the distribution in the layer againstthe layer
numberandfound a very goodlinearfit (notethe outlierat! = 7 which wasnotincludedin the
fit). Thelinearfit indicateshatfor thefirst layerthe slopewill be —1.83 + 0.125.

For scalefree networks, it hasbeenshavn [NSWO01] thatthefirst layer surroundinga chosen
network nodehasadistributionk P(k) ~ k~**1. Thereforewe canexpectthatin thefirsttreelayer
surroundinghetreerootwill have afrequeng-degreeslopeof approximately-3.18 +1 = —2.18
(A = —3.18, theslopeof thetree,is takenfrom Fig. 3.23)which is closeto thelinear prediction.
While theresultsfor the degreedistribution in the first layer did not have statisticalsig nificance
the slopefor the secondayerwas—2.09 which conformsto the above numbers.
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Figure3.24: Frequenyg of degreesatlayer5 of the Internettree.

3.7 Conclusions

We presenteaur findingson the characteristicef shortespathtreescut from power law topolo-
giesandthe Internet. Thesefindingsmay improve our understandin@f multicasttreesandthere-
fore mayhelptheoreticabndpracticalresearclionein thisarea.We have shavn thatthestructure
of suchtreesfollows power laws of rank-dggreeandrank-size andthathigh degreenodestendto
residein alow diametemeighborhood.
We foundalinearratio betweerthe numberof high degreenodesandthe numberof multicast
treeleaves. We alsoproved this ratio analytically and devisedthe FastAlgorithm that usesthis
ratioto estimatehetreeclientpopulationin lessthanthelInternetroundtrip delay Thisalgorithm,
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Figure3.26: Slopeof the degreedistribution at specificlayerasa function of thelayernumber.

whenusedasaninitial estimatoito polling basedcountingalgorithmssuchas[BTW94, FT99],en-
ablesthesealgorithmsto converge muchfaster especiallyfor mediumandlargegroups.Note, that
thesealgorithmsperformances improvedsignificantlywith atightinitial groupsizeestimation.It
is alsobeneficialfor transportayerfeedbacksuppressiomalgorithmsandcontrolalgorithmswhich
needto know the sessiorsizesuchasRTCP [RS9§. Finally, the FastAlgorithm canbe usedby
network providersin calculatingthe gain from multicastwith metricssuchasthe onesuggested
by ChuangandSirbu [CS9§. As partof our future work, we intendto includean additionto the
Fast Algorithm that enablesthe root to receve online updateson the changesof the branching
characteristicef thetrees.Theseonline updatesentby nodesgoingin or out of the high degree
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nodes group,enableefficienttrackingover time of the multicastgroupsize.

In general,we have found only a few exampleswherethe estimatorwas off by morethan
15%. Whenthe estimatorwascalibratedto a specificroot nodethe accurag wasa factorof four
better

This work presentsa novel way for leveragingtopologicalcharacteristic®f a treeto obtain
importantknowledgesuchasits size. A furtherunderstandingf the exactratio betweerthetrees
andtheunderlyingtopologycharacteristicss the subjectof our futurework.

In the secondpart of this chapter we discussedhe tomographyof multicasttreesandthe
Internet. We definea “layer” in a network asthe setof nodesat a givendistancefrom a chosen
node.Wefind thatthedegreedistribution of thenodesof a scalefree network ateachlayerobeysa
powerlaw with anexponentialcutoff. We derive equationdor this exponentialcutoff andcompare
themwith empiricalresults.We alsomodelthebehaior of thenumberof nodesateachlayer, and
explaintheobsenedexponentialdecayin theouterlayersof the network. We obtainsimilarresults
for layerssurroundingheroot of multicasttreescut from suchnetworks,aswell asthe Internet.

We believe our findings can have dual importance. First, they canhelp in devising better
network algorithmsthat take advantageof the network structure. For example,we presentedn
the past[DMSO03] an algorithm for fastestimationof the multicastgroup size that is basedon
our previous finding regardingthe distribution of high degreenodesin Internetmulticasttrees.
Secondpur analyticalfindingssuggest simplelocal testfor the validity of the power law model
asanexactmodelof theInternet.Indeedour findingssuggesthatthereis agoodagreemensf the
empiricalandanalyticalresults.
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Chapter 4

ScalableContent Delivery

4.1 Intr oduction

Theefficientandtimely delivery of web contentis oneof themostimportantchallengesn today’s
Internetindustryandresearclcommunity Sitesneedto cut delayswhile delivering contentto a
large numberof users. This need,alongwith the high costsof bandwidthat the Internetcore,
drivesthelargesitesto usecachingandcontentdelivery networks (CDNs)[Dor00, Ang0Q. How-
ever, in their competitionto attractusersto return,sitesalter contentmorefrequentlythanbefore.
Informationand objectsstoredon web senerschangequite frequently often every few minutes
(e.g.,newsflasheshids, stockquotes)DFKM97]. Recentstudiessuggestethatcachesor CDNs
areresponsibldor not morethan50% of the contentdeliveredto user§Mog00, WVS+99].

Thequestiorthatarisess whichtypeof objectschangeoften,andwhatis theaccespatterno
highly changedbjects.Breslauatal. [BCF"99] determinedhatpagerequestistributionfollows
a Zipf-lik e distribution, but found a weak correlationbetweenaccessrequeng andthe rate of
change Douglisatal. [DFKM97] foundthat16.5%o0f resourceshatwereaccessedt leasttwice
weremodifiedevery time they wereaccessedandalmosthalf of the text/html resourcegshanged
on eachaccesafterthefirst. [PQOO0]foundthatalarge partof usersrequestsandover half of the
repeatedequestsareto modifiedfiles. Accesgatternto files follows, asreportedn mary papers,
aZipf-lik e distribution [BCF*99, DFKM97, KRS00,PQ00].

In this paperwe target this phenomenorby presentingan architecturethat enablessitesto
deliver frequentlychanginginformationto (analmost)unlimited numberof users,in an efficient
andscalablenanner Our architecturdargetsthetop 2% hottestpageof busysites,whichaccount
for the majority of accessefPQO00]. At the heartof the architectureis a dynamicdistribution
selectiormechanisnthatenableghesenerto identify anincreasen demandandto activatecyclic
multicastdelivery for high demandpagesbeforethe site performancedecreasesWhendemand
abatesour mechanisnrevertsto unicastdelivery. We shonv how this schemecanbe transparently
integratedinto the currentweb operationmodein a transparentvay, requiringa simple plug-in
at the client side. We supply mechanism$&asedon currentDNS to dynamicallydirect browsers
seekingURLSs to multicastchannels.To do so, we definea new protocolspecifier called httpm,
which replaceghe http protocolspecifierfor the potentialhot pages.

Theintegratedarchitecturanodelis designedn away thatrequiresminimal changego cur
rentarchitecturesandreliesmainly on existing mechanismskFor the deploymentof our architec-

37
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ture we suggestwo differentschemesyhich arebasedon existing building blocks. We usethe
digital fountain protocol [BLMR98] that offers an excellenttradeof betweentransmissiortime
andefficiengy, for reliabledatamulticast.We alsosuggestlifferentschemegor afeedbackmech-
anism,thatenableghe site to estimatethe sizeof a hot pagemulticastgroup. Thefirst, basedon
ourwork in [DMS03], useghe FastAlgorithm for arapidsizeestimationwith amaximalerror of
15%. Theseconds basednthealgorithmsuggesteth [BTW94], thatenableghesiteto estimate
the size of a hot pagemulticastgroupwith an error ratethat decreasewith time. All the above
describedouilding blocksarealteredto handlethe multicastof dynamicallychangingcontent.

Our simulationresultsshowv thatwhenswitching from the unicastof a hot pageto the mul-
ticastmechanismthe load on the sener decreasesignificantly while both the throughputand
the goodputclientsexperienceincreaseandmay arrive to 4 timesthe datarecevedin theHTTP
model. In the Integratedarchitectureclientsexperiencea muchlower delaythanin the HTTP ar
chitecture.In addition,theload on corelinks decreaseghusenablingT CP usersto receve better
performance.

4.2 Motivation

4.2.1 Why cachingis not the ultimate answer

As theInternetis growing, the costof deliveringcontentto the userat the edgeof the Internethas
becomeanimportantproblem.The mostintuitive way to decreaseosts,is to move contentto the
edgesof the Internetand closerto the user often to a distributed cachesystem. The benefitsof
cachingaremary. It savesbandwidth while allowing head-endinks to be sharedoy moreclients,
to the benefitof the ISPs. It reducesoststo both sitesmanagerandISPs,by reducingtheir use
of the Internetcorelinks. Cachingbiggestadwantage which accountdor the rise of companies
like Adero,Akamai,ExodusandSandpiperis of coursethe muchfasteresponsd¢ime acustomer
experienceswhenreceving contentfrom a nearbysite [Dor0Q], [Ang00].

Although cachesform a valuableand importantsolution for improving web performance
and decreasinghe load from sitesseners, a substantiafraction of the content,as seenabove,
is deliveredfrom the sitesthemseles,to eitherthe usersor thedifferentcachesThis contentfalls
into thefollowing cateyories:

e Uncachablanformation,which is eitherpersonalizednformation, queryresults,real time
streamsandary time dependeninformation.

e Dynamicallygeneratediata: Several researcherbave tried to estimatethe updaterate of
sites. Douglis at al. [DFKM97] obsened a ratherhigh updaterate for about13% of re-
referencegpagesandamongthe highly referencedhtml pagesaboultfifth changedvery 15
minutesor less. Overall, they foundthata large numberof pagesareupdatedperiodically
Their findingswerealso confirmedby Rodrigezand Sibal [RS0(, who found thata large
numberof websitesupdatetheir content following anexponentialdistribution. As aresult,
mary potentiallycachableaesourceshangefairly rapidly. A recentpaperby Padmanabha
andQiu [PQO00],thatstudiedthebehaior of abusywebsite, MSNBC,foundthatsenercon-
tenttendsto be highly dynamic,andthe durationbetweersuccessie modificationsusually
lies betweeranhourand24 hours.
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e Cachemissesanddeltaencodingdeliveries whereinthesitetransmitgo thedifferentcaches
eitherthe entirepageor only thedifferencebetweerolderandcurrentversionsof apage.In
orderto maintaincacheconsistenyg, cachesisedifferentTime-To-Liveandleasingheuristics
[GC89], [Wes96],[LCI7], [DSTOO]. Delta encoding,usedin mary architecturestakes
adwantageof the obsenation that the changesare often minor. It is importantto obsene,
though,thatthesetransmissionsilsoimposesomesortof load on the sener andcorelines,
especiallyfor very popularpageswhich arecachedn mary mirror sites.

4.2.2 Characteristics of semi-dynamiccontent

The questionthat arisesis which type of objectschangeoften, andwhatis the accesgatternto
highly changedbjects.Breslauatal. [BCF"99] determinedhatpagerequestistributionfollows
a Zipf-lik e distribution, but found a weak correlationbetweenaccesdrequeng and the rate of
change Douglisatal. [DFKM97] foundthat16.5%o0f resourceshatwereaccessedt leasttwice
weremodifiedevery time they wereaccessedandalmosthalf of the text/html resourceshanged
on eachaccessfter the first. [PQO0O0] found that a large part of usersrequestsand over half of
the repeatedequestsareto modifiedfiles. Accesspatternto files follows, asreportedin mary
papersa Zipf-lik e distribution [BCF99], [DFKM97], [KRS00], [PQO00]. The latterreportedthat
the alphaparameterasseenby the sener, is largerthan previously reported,andis in therange
of 1.4- 1.6. Thisimplies, for instancethatjust the top 2% of documentsaccountfor 90% of the
accessesThey alsofoundthatthe popularity of hot pagestendsto be stableover time scaleof
days.

The above discussionled us to the conclusion,that by dealingwith the top most popular
objects,we will be ableto take a lot of the load off sitesand corelinks. We were thenfaced
with the questionof identifying thesepopularobjects.Whenviewedon a persite basis,it became
rathereasyto identify them: The changingcontentof the homepagef popularsiteswasalways
atthetop of thelist. Therewerealsopageshatwerea resultof specialoccasionsFor example,
breakingnews; the homepagef Napsterthe day the court ruled againstit; The Starrreport; Or
the votescountpageon the Florida site at electionday. Therewerevery few suchpagesat each
site,actuallyoneor two, on a perdaybasis.The mostimportantthing we notedwas,thatthe most
popularpageswere a resultof someevent, andas such,could be classifiedas new objects(see
the examplesabore). We thenconcludedhat the knowledgeof which pagesor objectshave the
potentialof becomingmostpopularexists only from the time of their creation. For example,all
voting pageof all stateshadthe potentialof becomingextremelypopularon US electionday (that
is, onepagepersite),andcould be notedassuchattheir creation.Oneof thesepagesthe Florida
voting page,actually becameextremely popular but the site could not respondto the demand,
evenafteradditionalhardwarewasinstalled.Moreover, in thereferredelectionsjt wasimpossible
to getto arny major news site online, althoughmost surferswere looking for the samespecific
fragmentsof information. The multicastof thesepagescould have solvedtheseproblems.

4.2.3 Multicast

The useof multicastfor highly popularitemshasmary adwvantageslt significantlydecreasethe
site load, especiallyat maximum peakload times, while lowering the amountof traffic in core
links. As aresultthe siteis ableto sene alarger numberof users,even during denialof service
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attacks.However, multicastitself hasa managementost,which consistf join operatiorandthe
creationandmaintenancef multicastdelivery trees.Moreover, implementingmulticastis still an
openquestionfor alot of network providers. Several studieshave beenperformedately in order
to estimatethe efficiengy of multicastversusunicastdelivery [CS98 PST99,CA01]. [CAO01]
developeda metric for measuringmulticastefficiengy, basedon the numberof traversedlinks.
They found that multicastis extremely efficient for large group sizes,andeven offers a 60-70%
reductionsn the numberof links for groupsizesassmallas20-40recevers.

Thedynamicmechanisnwe proposeenableghe senerto switch betweerunicastandmulti-
castmechanismaccordingo theidentifiedload. Our approachs scalableandenablessitesto cut
down costs,andstill be ableto handleincreasedlemand.Usersbenefitfrom betterresponseime
dueto lower load on the sener, andlesscongesteatorelinks. The incorporationof multicastas
ameandor web contentdelivery is not new. Several efforts weremadeto dealwith it, whichwe
discusdaterin Section4.5. Theseworkseitherreviewedtheproblemswhich areto be confronted,
or suggestea ratherlimited useof multicast.We assumehe existenceof multicastinfrastructure,
anddo nottackletheissuegnvolvedin deplgying thisinfrastructure.

Ourintegratedarchitecturediscussedhext, enableghe efficientandscalabledelivery of very
populardynamicallychangingcontentto a large numberof users.It's a complementargolution
to existing cachingmechanismsyhich enablesalsoscalabledelivery of contentto caches.

4.3 Integrated Ar chitecture Description

TheintegratedWWW architecturavasdesignedo allow asmoothtransitionfrom TCPbasedcon-
nectionsto a multicastbasedmechanisnior uncachablénot pages.The architecturas basedona
dynamicselectiormechanismwhichdeterminesvhich of thehot pageshouldbemulticast,based
oninputsrecevedfrom boththerelevantTCP connectiorrequestandUDP feedbacknformation
mechanism.

4.3.1 Sewer Side

The site is responsiblefor maintainingthe hot pageselectionand multicastmechanisms.We
classifyandmotivatehereeachof its parts. Therestof this sectiongivesa detaileddescriptionof
eachof theseparts.

The site predetermines list of pageswhich are candidategor becominghot pages.These
pagesare giventhe httpm protocol prefix. Thislist is quasi-statiqe.g.,Krishnanet al. [KRSO0O,
Fig. 12] shavedthatthelist of popularentitiesis quite stablejn amediumsizesitethey examined)
andthuscanbe predeterminedby thesite’s administrator®ff-line. Thelist canbeeditedto reflect
therelatively slow changesn thepopularityof pageswhich maydemandconfiguringnew entries
or deletingexisting onesatthe DNS.

Thedynamicselectiormechanisnis activatedfor eachof thepotentialhotpageslt processes
the numberof incomingconnectiorrequestdor them. Oncea thresholdhasbeencrossedor one
of thepagesthesenerbeginsthe procesof moving it to themulticastmechanismlt thennotifies
the DNS of the new addressor theappropriateentry.

Oncethe pageis multicast,nev connectionrequestdor it areansweredvith a 3xx HTTP
responseThis responsendicateswhich multicastaddresgo join, andspecifieshe neededlug-



4.3. INTEGRATED ARCHITECTUREDESCRIPTION 41

. Reliable

Unicast

TCP Queued —
Connectionsg | |[F—=3 TCP Connect =
Requests Request;
Reliable
;‘ Unicast
UDP Dynamlc :
Reports Selection o DATABASE Multicast —_—
Mechanism Engine /.. .. ... ... ;
Cyclic
Multicast

Cyclic
Multicast
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in. Theresponsdasto bedeterminedaspartof the HTTP protocolspecification.

Whenthe pageis multicast,the sener periodically estimateghe size of its multicastgroup.
Whentheestimationcrosseslovn apredefinedyroupsizethresholdthesitedistribution selection
mechanismevertsthe pagefrom cyclic multicastbackto unicastandnotifiesthe DNS of the new
addressthesener IP addressWhile multicastis beneficialfor periodsof highload,anestimation
of theamountof neededesourcestothertimesshaw it is lessbeneficial[AA97]). Unnecessary
edgedinks areloadeddueto thepropagatiorime of prunemessageslhisunnecessarpadatedge
networksimpactsthe performancetherclients,andthereforeshouldbe avoidedwhenpossible. It
is clearthatat highloadtimes,multicastis betterthanconcurrentunicast.

Switchinga pagefrom multicastto unicastrequiresagraceperiod,in whichexistingmembers
of the groupfinish receving the pageandnew joinersaredivertedbackto unicast.Thereforethe
pageis still multicastfor afew morerounds andthenadiversioncode whichcanberecognizedy
theclientbrowser is multicastfor anotheperiod. In thislaststepthe multicastgroupis exhausted.

Existing Building Blocks

For themulticastmechanisnwe incorporatdwo existing building blocks. Oneis usedfor efficient
delivery, andthe otherfor the groupsize estimation.Our designdescribeswo differentschemes
in which to incorporatethesebuilding blocks,andenabletheir usefor dynamiccontent.We give
herea shortdescriptionof thesebuilding blocks.

Coding Schemefor Multicast: Thedigital fountain[BLMR98] providesan efficient multicast
mechanismReliability is achievedwithoutthe useof feedbacknessagesom clients,andat min-
imal costs.Thedigital fountainrequiresanencodingsystematthesendingside,i.e., thesite,anda
decodingmechanisnatthereceving side,i.e.,theclient. In theschemeapageP;, which consists
of asetof k£ paclets,is encodednto a setof k£ + ¢ paclets,suchthat? of which areredundantto



42 CHAPTER4. SCALABLE CONTENTDELIVERY

atotal of n. All n pacletsaresentcyclically overtime. Theencoding/decodingrocesss highly

efficient, dueto theuseof Tornadocodesandthereforamposesrerylow overhead Theefficiency

of the encodingsystemrequiresa small stretchfactotr which determineghe ratio betweent and
¢, even at ratherhigh lossrate. The digital fountain sener designuseslayeringacrossmultiple

multicastgroups,andis basedmainly on[VRC98§]. In this approachthe sener organizeshe data
into g layers,eachcorrespondingo a multicastgroup. The layersare organizedin increasing
transmissiomate. Thelayersarecumulative, in thata clientwho joins layeri, actuallyjoinslayers
0..i. Eachlayertransmitsin anincreasingate. If theratio betweerthelayerstransmissiomrateis

B;, thenaclientwho joinslayeri, recevesbandwidthproportionalto 2 - B;, fori > 1.

Multicast Group Size Estimation We describeheretwo differentmethods,basedon exiting
results.

End to end: Thefirst mechanisnwe suggests anendto endschemebasednthefeedbackcon-
trol mechanisnpresentedy [BTW94]. The schemewasoriginally intendedfor multicast
video distribution feedback. It requiresall participantsof a multicastgroupto generatea
randomkey of 16 bits. Thesendeisendsts key, andawaitsanansweifrom receverswith a
matchingkey. Eachperiodthekey is sentwith maskof increasingength,until anansweris
obtained Answersalsocontainthe stateof the netaspercevedby recevers,for ratecontrol
mechanismandtiming.

Router layer level: This mechanisms basedon our work from [DMS03], which usesthe found
topologicalcharacteristicef amulticasttreefor afastevaluationof the sizeof the mutlicast
group,by countingthe numberof high degreeroutersin the resultediP-multicasttree. The
sourceof the sessionnitiatesthe FastAlgorithm, by activating atimer, andsendinga mul-
ticastmessag¢o all the routersin the underlyinglP-multicasttree. Eachhighly connected
router i.e., arouterwith degreesix andabove, unicastsareply to the source.Thefirst time
outis determinedy the distanceof the sourceto the coreof the network. A secondimeris
thenactivatedrepeatedlyits lengthdeterminedy the estimatedielayof onehoproundtrip.
This repeatedimer is activateduntil the datagatheredrom the next hop doesnotimprove
theestimatiorby morethana predeterminethreshold.For a detaileddescriptiorof the Fast
Algorithm see[DMSO03].

Site Distrib ution SelectionMechanism

As canbeseenn Figure4.1,thedynamicselectiormechanisniDSM) is partof thesite’s software,
which determinesvhetherhot pagesare unicastor multicast. The DSM is given the following
parameters:

e List of potentialnotpagesThislist is predeterminetby thesite’sadministrators(A discus-
sionof the quasi-staticatureof thelist is appearedn Sectior4.2).

e Unicastto multicastthreshold:This thresholdis actuallythe numberof simultaneouson-
nectionsthatthe site cannottoleratefor ary onepage,andwould rathercarry the expenses
of the multicastdelivery. For example,let usassumehatit takesan averageof 2 seconds
to deliver a hot page,whenthe sener is not overloadedandthe netis not congested(For
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simplicity, we assumehe pagerequiresonly oneconnectionasis specifiedin HTTP1.1).
If, duringa minutetime, the senerreceves300requestgor thatpage thenit hasto resene
10 simultaneous connectionghroughoutthe minutefor the delivery of this pageonly. We
formalizethis discussionn thefollowing way:

Let A; bethe averagetime estimatedor any oneconnectiorto a pagep;. Let usdefinethe
numberof requestgo F; in the j the periodof time (typically aminute)by R{ Let7; bethe
connectiorthreshold setby the siteadministratorsfor pageP;. Let S} = R? - A,.
Then,thefollowing conditionsshouldbe met,for the DSM to decideto multicastpageP;:

Threshold '
kel0.m]:SiF >,

Monotonically non-decreasing

kel0.m—1]:87F> gik1

Therangek € 0..m determineshenumberof periods,n whichtheconditionsabove should
hold. This interval is neededo determinea pattern,ratherthana momentarydeviation in

requestsate. For example,let m = 3. In this casewe getthatduring3 consecutie periods
(minutes)therewasaraisein demandor pageP;, andthe demandvasabove thethreshold,
T;.

e Multicastto unicastthreshold:This thresholdis the numberof connectionghatthe site can
toleratefor ahot pageP;. Whenthisthresholds metduringseveralconsecutre estimations
doneat the DSM, and eachtime the size of the multicastgroupdecreaseshenthe DSM
switchesthe pagefrom the cyclic multicastschemeo the HTTP unicastone. As discussed
above, this switch is doneto decreasegotentialunnecessargpverheadencounteredt the
edgesatlow loadtimes.

The DSM obtainsthe datait needdrom two sourcesOneis the HTTP connectionsequests,
andthe otheris a countingfeedbackmechanism Obtainingthe numberof requestgper hot page
is ratherstraightforward,andinvolvessimplelookup mechanismsTo obtainanestimationof the
sizeof thegroup,a feedbackmechanisnbasedon [BTW94] is activated. This mechanisnis part
of the multicastmechanismandwill bedetailedthere.

We assumeéherethataslong asIPv6 is not embeddedmulticastaddressesonstitutea pre-
ciousresourcethatmight be ratherexpensve. Therefore a sitewill beableto acquire eitherdue
to thepriceor dueto regulations,only alimited amountof suchaddressesndsharethembetween
its currenthot pages.Thus,evenin theabsencef high maintenanceostsfor multicast,a site will
be ableto usemulticastonly for a smallsubsebf its pages.

Multicast Mechanisms

We suggesheretwo differentschemedor the multicastof hot pages. Our schemesyhich are
basedon the digital fountainmechanismalsoenablean efficient delivery of dynamicallychang-
ing content.The schemedgliffer in thelevelsandrateof transmissionnumberof concurrentrans-
missionand the way the feedbackmechanismis incorporatedand used. Eachschemerequires
differentresourcegrom the site, andis intendedfor differentsite characteristicsBoth schemes
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cyclically multicastthe dataover UDP. Usersmayjoin atarbitrarytimes,andleave oncetheentire
datais obtained.

Sincepageschangedynamically a pagewhich is currentlytransmittedmay changeon disk.
A majorrequirementn our schemas to incorporateéhe changeasfastaspossible asusersrather
have an up-to-dateversion,if oneexists. For this purposethe headerof eachmulticastpaclet
containsa continuous bit. Whena pagechange®n disk, the new versionof the pageis multicast
in the following round,andthe bit is toggled. The decoderat the clientssideassembliepaclets
with the samevaluein the continuous bit. If a changeis detectedthenthe decoderiscardsall
pacletsobtainedsofar, andstartsassemblinghe pacletsagain,until it canreconstructhe page.
Sincea changen contentoccursonly whena new roundof the cyclic multicastbegins, onebit is
sufficient.

Schemel.: In this schemethe site usesonly one channelper page. The site encodeghe page
for someinitial lossrate (for example 10%) and setsthe digital fountain's stretchfactor
accordingly Theencodednformationis sentin aratecalculatedo matchthe slowestclient
possible.Here,the feedbackmechanisms usedto estimateboth the sizeof the group (for
the DSM) andthe currentlossratein the net. Sincedatais transmittedat a low rate,no rate
controlmechanisms needed.

Oncein a few rounds,the feedbackmechanismis activated. Every paclet in this round
containghefollowing fields:

e Thekey field, which consistf 16 bits,andcontainsarandomlyselectedetof 16 bits.

e Themask field, whichis abytelong, andspecifiethe numberof masksbitsin thekey.
Thevalueof the maskfield is determinedy theincreasen requestsateexhibited at
the DSM for this page.Let RM = Max R!, j € 7. Then,thevalueof the maskfield is
logRM.

If noanswemnwasreceved duringthis round,the maskfield is incrementedy one,andthe
new maskfield is sentin the next round. The processepeataintil answersareobtained.
Theclient’s decoderuponreceving a paclet containingthesetwo fields,randomlypicks a
key of 16 bits. If thefirst mask digits arethe sameasin the site’s key, it countsthe exact
numberof pacletsit needgo reconstructhe page anddeliversthisinformationbackto the
site,alongwith thereadvalueof the mask field.

The site then estimateghe size of the groupfrom the numberof responsesbtainedfor a
round, accordingto the mask field reported. It canalso estimatethe congestioralongthe
way to the usersby the numberof pacletsreceved until the pagecould be reconstructed
If this numberis biggerthanthe numberof pacletssentin a cycle, thenthe stretchfactoris
incrementedthusincrementheamountof encodingnformationsent.

Scheme2: This schemeincorporatesfully the digital fountain multi-level approach(see sec-
tion 4.3.1). Therefore the feedbackmechanisndoesnot needto incorporaten it any con-
gestioncontrolinformation. The mechanisms incorporatecasdescribedn schemel, and
is usedonly to estimatethe sizeof the group. Thetwo fieldsqueryis sentonly atthe lowest
layer, sothatit is recevedby all clients.
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4.3.2 Client Side

Browsersat the client siderequireanadditionalplug-in. This plug-in identifiesan httpm address,
andacquirests IP addresdrom the DNS. The plug-in thendeterminesvhetherthe addresss a

sener’s|P or amulticastaddressin thecaseit is amulticastaddresstheclientjoins the multicast
group, andactivatesa decoderthat decodegacletsreceved using the digital fountainscheme.
Duringthedecodingprocesscontrolinformationsentalongwith the pacletsis processedandthe

plug-in actsuponit.

4.3.3 Hot pageaddressresolution

In section4.2, we discussedhe quasi-staticnatureof the list of potentialhot pagesat a site,
and concludedthat only oneor two of thesepagescanbe a candidatefor multicastat eachsite.
Furthermore our discussionshaved that mary times a site can determinethe potentialof such
pagesonly at creationtime. Therefore|t is bestthateachsite predetermineshis list manually It
canbeautomatedjuite easilyusingthe DSM mechanismbut accordingo our understandinguch
lists areusuallymanuallyconfigured.

Eachpageon this list is giventhe httpm protocolspecifier As discussedefore,httpm pagesare
treateddifferentlybothat the site andatthe client side. In this sectionwe discusshow our system
enablegheplug-in attheclient browserto obtaintheright addresgor a httpm page.

At the site, the authoritatve DNS is updatedwith the list of httpm pages,and the appropriate
IP addresdor eachof them. At initialization, probablymostof themare not multicastyet, and
thereforetheir IP addresss still the domains IP address.Oncethe DSM decidesto multicasta
page,jt changeshepages IP addresattheauthoritatve DNS to the multicastchannelP address,
andsetsa ratherlow TTL for it. Whenthe DSM decidesto revert this pagebackto unicast,it
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updatests DNS entryagain,to thesite’'s IP address.

At the client side,whena httpm URL is enteredthe browseractivatesthe plug-in. The plug-in

sendsthe entire URL to the local DNS for addresgesolution,asshaovn in figure 4.2. Whena

resoher sendsa domainnamefor resolution,it senddt with no delimitersandin areverseordet

e.g., http://www.a.comis sentas <com><a><www>. EachDNS thenlooks for the longest
prefix it canmatch. In the httpm casethe resoher sendsthe entire URL for resolution,with the

domainnameastheprefix. For example theURL httpm://wwwa.com/hotpagis sentto resolution
as<cont<a><www><hotpage-. Accessinghe DNS with theentireURL requiresno change
in currentDNS mechanismssincethe DNS is a hashtablewhich recevesstringsandperformsa

look-up operation.Our schemeonly requiresa changein the resolutionlibrary function, so that
theentireURL stringis sent. Theuseof aniterative (non-recursie) resolutionprocessassureshat
accesse®NS’sdo notbecomeclients.

Uponreceving the DNS responsethe client plug-in determinesvhetherthe addresss a multicast
addressor thewebsener’s IP addresslf theresoledaddresss a standardP addresstheclient

usesthe normalHTTP GET mechanismIf theresohedaddresss a multicastaddressthe client

seekgo join themulticastgroup.

4.3.4 Scalability

Translatiorof namedo IP-addresseis doneviatheDomainNameSener (DNS) mechanismQur
designusesthe DNS for consisteng reasonsNext we shav thatour schemedoesnot causeDNS
scalabilityproblems.

Remembethatthe numberof httpm pagess limited andthe URLs arecachedn local DNS
senersonly on demandandfor a shortperiod. For example,assumehat 500 sitespublishtwo
httpm pagesat the exactsametime. In this case therewill be only 1000nev DNS entriesadded
to the entire DNS system.Therearemorethan 30 million registereddomainnamesodayin the
Internet,hencethe extra burdenis of lessthan0.01%.Moreover, sincethe Zipf distributionis also
valid for clientsaccesseshe numberof suchcachedentriesis limited atary specifictime atlocal
DNS seners.

4.4 Simulation Results

In this sectionwe shonv how our architectureaffects performancdor bothclientsandsites. Other
works[CS98,CA01] examinedthe efficiency of multicastat the network level. Our objectiveis to
provide afirst orderunderstandingf boththethroughpuseenby clientsandtheloadonthesener
at peaktimes. We comparethe two suggestednulticastschemedgo unicast.All resultsaregiven
for the generalcaseof scheme2.In casesvherethe two schemedliffer significantly the special
caseof schemels alsogiven.

For our simulationswe usedthe ns-2 [ns-] network simulator We useda generatorthat
creatednternet-like randomtopologieswith a power law relationshipof the nodedegree(based
on [FFF99h). We simulateda WAN network asa network of AutonomousSystemqAS’s). Each
AS representgithera LAN or adial-upline switchwith actve webclients.LAN speeds 10 Mbit
per sec,while dial-up line is 56 Kbit per sec. Dial-up line switcheshave very low connectvity.
A web sener is locatedin one of the backboneASs, connectedhrougha dedicatedrouter It
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supportsa large numberof concurrentconnectionseachis simulatedthroughan ns port entity.
Theseportsplay therole of pre-forked slave processes the sener, andareeitherTCP or UDP
ports.Therearel00TCP portsand4 UDP ports,thelattertransmitin differentrates.Arriving TCP
connectiorequestarequeuedn aconnection request queue, whichsimulateghetwo TCPqueues
of completed/incompleteonnectionslt is limited in size,andoncefilled, in-comingrequestsare
dropped.The unicastmechanisms implementedn top of atwo-way full TCP stack,which uses
the Renocongestiorcontrol protocol. The multicastmechanisnwe simulatedfor both schemes.
Clientsin the AS’s make requestdo the sener, accordingto a predefinedoehaior mechanism.
Thesener has7 available Web pagesof differentsizesanddifferentpopularity Pagesizevaries
accordingto a normaldistribution, accordingto minimal, maximalandaverageparametersThe
popularitywaschosensothat 2 of the pagesareresponsiblgor 80% of the accessesThe pages
parameteraredetailedin thefollowing table:

Type Size(KBytes) Popularity
Minimal Average  Maximal
1 25 100 300 4%
2 20 80 240 4%
3 15 50 150 4%
4 10 40 80 4%
5 5 20 60 4%
6 40 40 40 40%
7 60 60 60 40%

We alterthe client’s waiting time to achieve differentloadson the sener. A client asksfor a page
accordingto thedistribution, recevesthe page(or timesout), waitsandthe askfor anothemage.
Clients may terminatethe connectiondueto slow serviceeither at connectionestablishmenor
while receving the page.

4.4.1 Goodput

We measuretheretheamountof databytessentby thesenervs. theamountof databytesreceved
by theusersfor bothmodels.In the IntegratedArchitecture thetwo hot pageqpages and7) are
multicastat differentrates.Figure4.3andFigure4.4 shav theamountof datasentandrecevedin

botharchitecturesWhile Figure4.3 shavs thebehaior at peaktimes,in Figure4.4we gradually
increasaheloadonthesenerfor botharchitecturesln orderto increaseheloadin the Integrated
model,the usersrequesipagesat 4 timestherateof usersin the HTTP model. The resultsshaw,

thatin theHTTP model,thehighertheload,relatively lessdatais receved,upto 30%lessreceved
thansentat peaktimes.In theIntegratedmodel,on the otherhand,evenat peakperiodstheusers
receve upto 4 timesthedatasentby thesener. Aswill beseenin thissectionnotonly senerload

decreasesyhich enableit to sene on thelesshot TCP clientsmoreefficiently, but alsonetwork

load decreases.This leadsto a much betterserviceto both multicastand unicastusersat the
Integratedmodel.
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4.4.2 Sewer Load

The senerloadis obtainedfrom several differentstatistics. First, we examinethe ratio between
established¢onnectionandavailableoutchannelgi.e., ports).Obviously, theseneris overloaded
whenthereareawaiting established¢onnectionsn the queue andall outchannelsarebusy. Other
criteriaarethe amountof droppedconnectionsrom the connectiorrequesueue aswell asthe
rateof establishingconnectionsOur resultsshav thatwhenthe hot pagesaremulticast thesener
load decreasedramatically Figure4.5 showns the amountof load the sener maintains.A 100%
loadis whenall theportsarebusy, yettheconnectiormrequestjueuds empty As describecearlier
we createmoreload by shorteningthe interval betweensuccessie client requests.To maintain
perspectie, we hadto quadrupleheloadin the Integratedmodelin compareo the HTTP model.
Yet,ascanbeseenn Figure4.5,thesenerreachedaturatiormuchearlier(around1700seconds)
thanthe Integratedmodel (around3000seconds) Figure4.6 demonstratethe sener load when
we do notquadrupleheloadin the Integratedmodel.

Thesenerreachesaturationwhenall of its portsarebusy, andthe connectiorrequestjueue
is full. Figure 4.7 presentsghe amountof droppedconnectionsfrom this queue. The HTTP
modelreachesaturatiormuchquickerthanthe Integratedmodel,andwhenit does theamountof
droppedconnectionss muchhighet
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4.4.3 Clients SeenDelay: Server vs. Network load

We measuredhe delaypercevedby clientsin bothmodelsasafunctionof time, while increasing
theloadwith time until we saturatehe sener (seeFigure4.5).

Figure4.4.3showns the amountof time it takesusersin both architectureso receve pagess and
7, the hot pagesthat are multicastin the integratedarchitecture. The resultsshowv quite clearly
that clientsin the Integratedmodel receve thesepagesmuch fasterthan in the HTTP model.
Furthermoreit is beneficialto multicastthesepagesevenif theseneris notloaded(we referhere
to scheme?). As the load increasespur resultsshaov thatthe delaya usersuffersin the HTTP

modelcanbe4 timesthedelayin the Integratedmodel.

Figure 4.9 shavs the amountof time it takes clientsto receve pageswhich are unicastin both
models. Pagel represents large file, Page3 a mediumsizefile andpage5 a rathersmallfile.

All threefiles suffer smallerdelayson theirway to the userin the Integratedmodel,andthe effect
is moreobhvious with theincreasen senerload. A similar effect canbe seenwhenviewing the
first paclketdelay in Figure4.10. As theload onthe senerincreasesit takeslongerto createnewn

connectionsn botharchitecturesalthoughsignificantlylongerfor the HTTP model.

An interestingpointis thatthe smallerthe page thebiggeris the differencein delaybetween
the two architectures.Although this canalso be explainedby first paclet delay which is more
significantfor shorterconnectionsye suspectedhereis anotherfactorthatinfluenceshis delay
- theload on the network itself. Figure4.11shaows the percentagef retransmittegpacletsfrom
the sener, dueto time outsin the TCP protocol. Thesetime outs indicatethat the network is
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Figure4.10: First Packet De- Figure4.11: RetransmissionsFigure4.12: EstablishedCon-
lay from the Sener nectionsFailures

congestedwhich causeghe TCP flow control mechanisnto adjustits window size and slow
down the connection.This retransmissiopercentagealthoughquite low in bothmodels,is more
thandoublethe sizein the HTTP modelthanin the Integratedmodel,indicatingthatthe network
is morecongestedn the HTTP model. Figure4.12 showns the amountof connectiongerminated
by usersdueto toolongdelays.As soonasthesenerreachepeakload,clientsstartto give up on
connections . Sincethe sener in our simulationdoesnotimposeadditionaldelayson established
connectionsthenthis extra delay is due to the TCP flow control mechanismthat adaptsto a
congestedhetwork.

Fromtheabove we concludethatoneof thereasondor thedegradationin performanceseen
by clientsat peaktimesis thecongestionn corelinks. Thecloserthelink is to thesener, themore
congestedt canbecome Althoughthe TCP congestiorcontrolmechanisntriesto limit the effect
of suchpeaktimes, by exhibiting a socialbehaior, the effect on both the site andthe client is
big. Thesiteretransmitanextensive amountof pacletsuntil the TCP slow startmechanisntakes
effect, while the client experienceglegradationin performance.The useof multicastmechanism
for the delivery of hot pages reducesboth the traffic on corelinks, andthe load on the sener.
Clientswhichconnecby httpatsuchtimesreceve betterservice andtheamountof retransmission
decreasesignificantly

4.4.4 SpecialCase:Schemel

We look hereat the specialcase wherethe sener usesonly one outgoingchannelper multicast
page thereforetransmittingit in the rate of the slowestrecever. In our simulation,it meansat a
rateof 56Kbitspersecond.

Figures4.13,4.14 and 4.15 shaw that the load on the sener decreasesignificantly in the
Integratedmodel,while thegoodputis muchhigherthanin the HTTP model.

The specialcaseof schemel enablesusto investigatethe effect of usingmulticastinsteadof
unicastonthe network itself. Sincethe senertransmitsUDP datain alow rate,clientsreceve hot
pagegatherslow, andthe sener cannotbe over loadedin the Integratedarchitecture.Therefore,
whenwe quadrupleheamountof requestsnadeby clientsin theIntegratedarchitectureywe create
extraload onthe network, ratherthenon thesener. Figures4.16and4.17shaow the effect of slow
UDP connectionon congestechetwork - fastreceversare boundto lower rate whenreceving
multicastpaclets, while TCP paclets are deliveredin closeto dull speed. As traffic increases,
UDP pacletsthat arelost causereceversto wait till the next multicastcycle. Multicasting hot
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pagesn low ratesis thereforebeneficialonly whentheseneris overloaded.

Figures4.18 and4.19 shawv that HTTP clientsreceve betterperformancevhenthe sener
is not loaded,andthereforethe Integratedmodelis indeedbeneficialalsoin schemel, whenthe
senerbecomedoaded.

4.5 RelatedWork

An approachto use multicastin the delivery of web resourcesasfirst introducedin [CA95].

In their architectureclientsusehttp requests.Several simultaneousequestsareassembledand
groupedinto a multicastgroup. Then,the clientsjoin the dynamicallygenerateanulticastgroup
andreceve the pageusingareliablemulticastprotocol. A laterwork [AAF98] suggestedhe use
of cyclic multicastover UDP for the samearchitecturewhile determiningthe amountof time the
sener hasto cyclicly transmitthe samepageuntil all usersin thegroupreceve it. Thedisadwan-
tageof usingthis mechanisniies in the unnecessargverheadcomparedwith our scheme:TCP
connectionsare first establishedand only then closed. Overheadassociatedvith building and
maintainingmulticastgroupsexists for eachgroup, while mary groupsare createdfor the same
hot page.As a matterof fact, the hotterthe page the moregroupsarecreatedandthe biggerthe
overhead.
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In [DD99] aschemdor theuseof reliablemulticastchannelgo deliverfrequentlyupdatedbjects
to cachess suggestedTheir schemeconsistf controlanddatachannels Eachchannelis asso-
ciatedwith agroupof objects.A cachehatis interestedn any of the objectsin agroupsubscribes
to the correspondinghannelsWhenan objectin a groupchangesa controlmessagés sentover
the control channel sothatall subscribedcachesknow to listen over the datachannel.Then,the
changedbbjectis multicastover the datachannel. The main disadwantageof this schemdies in
the grouping. While groupingenableghe deploymentof the schemedueto scalabilityissuesijt
alsocausedor alot of bandwidthwaist. For example,if mostof thecachesubscribéo agroupin
orderto receve objectA, andanotherobject,B, changesnorefrequently it will be sentoverthe
datachanneleachtime to all subscribecdtaches.This schemewhenusedon a channelperobject
basis,is not scalable.It requirestwo channelger object,andeachcacheneedso keepstatefor
eachobject. The schemealtersthe receversaswell asthe sendersandrequiresstatechangefor
eachchannel.Unlessgroupedjt is notscalableandcomparedo our schemethegroupingcauses
bandwidthwaistandsomecacheseceve datathey donotrequire.

4.6 Multi Level Architecture

In this sectionwe presentway to integrateour mechanismto the currenthierarchicaktructure
of the Internet. While our integratedarchitecturewas first designedfor sites,it seemgust as
beneficialfor proxies,in generalandfor proxiesusedby Internetserviceproviders,in particular
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CurrentlISPsmaintainbig autonomousetworks andsupportvery large numberof users.In
the integratedarchitecturesuggestedo far proxiesplay the role of clients. However, for their
clients, proxiesmay take therole of the sener. Thus,we suggesheretheimplementatiorof our
integratedarchitectureone (or more)levels deeper In this implementationpncea proxy detects
anincreasan the numberof requestgo a specificpage,it multicaststhis pageto its clients,using
our scheme.Using multicastfor the delivery of hot pageswithin the ISPs’ subnetwrk canbe
very beneficialnot only to the usersbut to the ISP asit both reducests internaltraffic andgive
its payingcustomerdetterservice. It hasspecialperformancebenefitswhenthe structureof the
subnets tree-basedsuchaswith cablenetwork basedserviceproviders.

While the implementatiorof the schemein the ISPslevel is straightforward for hot pages
with the httpm protocolspecifier anotherschemes neededor locally cachedchot pages.Sucha
schemas beyondthe scopeof this paperandrequiresfurtherresearch.

4.7 Conclusions

Frequentlychangingweb contentrequiresthe use of nev mechanismdor its scalabledelivery.
Our integratedarchitectureenableghe efficient and scalabledelivery of suchcontent. Its main
advantagas its simplicity andtransparengto users.Our resultsshow thatit allows sitesto sene
agrowing amountof usersattimesof peakin loadwithoutexperiencingperformancelegradation.
Usersdelay decreasesignificantly and both goodputand throughputquadruple. An important
conclusionfrom our simulationss that, mary times,performancealegradationis dueto increased
load on corelinks. This increases causedrom the large amountof concurrentconnectiongo
sites,all aimedto getthe exact sameinformation. The resultis congestedinks, which have the
immediateeffect of increasingheload on boththe sitesandthelinks in the shortrun becausef
retransmissionsOur schemesolvesthis problemby usingmulticastat suchtimes,thusenabling
economicalseof corelinks.
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Chapter 5

Inter net Resiliencyunder BGP Routing

5.1 Intr oduction

In recentyearsthereis a growing interestin the resilieng of the Internet,asit representshe
network’s availability in timesof instabilitiesor underextremeconditions. Researchn this field
took two distinct paths. Oneis the stability of routing protocolsin caseof errorsandfailures
[LGJ97, GW99], andthe other which alsodraws attentionoutsidethe computemetworking com-
munity, focuseson the resiliengy of the Internetto randomfailuresand attackson strateyic lo-
cations[AJB00, CEbAHO1, CEbAHO0Oa]. Sucheventscan happenas a resultof a disaster or
manipulatednline attackon key Internetelements. In this researclwe focuson thelatter.

Researclin thefield wasmotivatedby thefinding thatinternetAS topologycanbeclassified
asscalefree, belongingto a classof networks for which the connectvity resembles power law
distribution [FFF99a GT00 MMBO0O, CNS*99]. In physicsterminology the susceptibilityof
the Internetto nodedeletionis consideredn termsof network phase transition, representinghe
transitionfrom a connectedpohaseto a disconnecteghase. The researchn this field [AJBOO,
CEbAHO01,CEbAH00a,BT02, PKP"03] shavedthatthe Internethasa high toleranceto random
failures,anddoesnotbreakuntil morethan95%o0f thenodeshave failed. Ontheotherhand,it was
foundthattheInternetis highly sensitve to deliberateattacksthattargetits mostconnectedodes.
Undersuchanattack,the network transitionsto a setof smalldisconnecte@domponentsafterthe
removal of a smallfractionof the highly connectechodes.Cohenet al. [CEbAHO01] have showvn
thattherateof transitionundera deliberateattackdepend®n the minimal connectvity, henceon
the averagedegree. They have alsoshown thatthe averagepathlengthgrows dramaticallyunder
suchattacknearthecritical point of transitionin which the network disintegrates.

A significantdravbackof the worksin [AJBOO, CEbAHO01,CEbAH00a,BT02, PKPt03] is
thatthey treatthelnternetasanundirectedyraph.However, routingin thelnternetbetweerthe ASs
is governedby policiesthataresetlocally with theaid of BGR theinter-network routing protocol,
accordingo businessagreementfil99]. Theimplicationof policy basedoutingis thatnotevery
two nodes(ASs) that have a physicalpath connectingthem canindeedexchangeinformation; a
valid paththat conformsto the policiesof the ASs alongit mustexist. Theseconsiderationgnd

IWwhile the collapseof anentirelarge ISP seemsunlikely, it actuallyhappenec few timesin therecentpastfor the
largestAS in theInternet,UUNet. On April 22ndandOctober3rd 2002the UUNet network collapsediueto software
problemsin its routers,andin January25th 2003dueto a DoS attack[lig].
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agreementsreatea network far differentfrom the oneusedin all theabove listedworks,andcalls
for revisiting the questionon theresilieng of theInternet.In addition,the datausedfor obtaining
theabove resultswasof partialviews of theInternet. Thesepartialviews, obtainedmainly through
dumpsof BGPannouncementtackin connectvity dueto two mainreasonsThefirstis thatthese
views aretakenfrom afew sitesin the Internet.While they containmostof thenodesthey lackin
connectvity information,sincethey containmostly links thatareon the shortestBGP pathfrom
the sourcesiteto the othernodegCCG*02a]. The secondies with therulesof the BGP protocol,
which tendnotto adwertisea backuppathwhichis notin currentuse.

In this work, we first suggest paradigmfor finding Internetconnectity underBGP pol-
icy routingbasedon existing businessagreementsWe discusghe differentmetricssuggestedor
measuringheresilieng of thenetwork, andsuggesburown. Wefind theresilieng of thelnternet
to attacksandrandomfailures,andshow thatit is evenmoresusceptibleo attackshanpreviously
found. We show that previous Internetmodels,which did not take into accountthe connectvity
constraintsmposedoy policy basedouting,yieldedtoo optimisticresultsfor thecaseof adeliber
ateattack.In the caseof randomfailuresof nodestheresultsshow thatthedifferencen resilieny
is small.

Our testbedconsistsof partial Internetviews obtainedfrom the Oregon site [Ore] andfrom
Europearexchangepoints[Rip]. We also obtainedthe very rich databaseollectedby Chenet
al. [CCG'02a],who assembled1 partialviews alongwith added_ooking Glassinformationand
shovedthattheactualconnectity betweerASsis higherthanwaspreviously known. Ourresults
shaw that the addedconnectvity improvesthe resilienceof the networks, and thereforeresults
obtainedon partial views are somavhat misleading. Moreover, hiddenbackuplinks which are
usedonly in caseof a disasterwould probablyimprove theresilienceof the network evenbetter
We madesomefirst attemptdo modelhow backuplinks mayimprove Internetreachability

5.2 A Heuristic for Added Backup Connectiity

In this section,we make a first attemptto quantify the effect of existing backuplinks, which are
usuallynot adwertisedthroughBGP until used,on thereachabilityandresilieng of the AS graph
underattacks. We constructeda backupscenariowhich relieson the existing connectvity, and
provides alternatepathsto small- and medium-sizedASs which connectonly to one provider.

TheseASs,oncetheir providerfails, usetheir peeringlinks asbackuplinks, effectively usingthem
ascustomedto-provider links. Sincewe do not addlinks to the existing graph,the effect of such
a backupscenarias only meaningfulin the caseof attacks.As we have shovn in Section5.5.2,
Internetreachabilityunderrandomfailuresis very closeto its connectvity. Thereforethe added
pathsgainedfrom usingthe backuplinks canhardlyimprove theresilieng in this case.However,

in the caseof attacks,it might allow single-homedASsto usealternatepaths. If therearemary

suchASs,which do not rely on multihoming,we expectanincreasan boththe sizeof thelargest
componenandthereachability

Our backupscenarids asfollows:

e AS x hasoneprovider.

e link < z,y > isapeerlink.



5.2. A HEURISTICFORADDED BACKUP CONNECTIVITY 57

Resilience to Deliberate Attack on Nodes x10™ Relative Size of Largest Component Under Deliberate Attack on Nodes
T

== AS Graph == AS Graph
X AS Graph + Backyip X AS Graph + Backyip

°
>
>
i
3

ercentage of links in Reachability Graph Compared to Initial State

P
°

. . . . . . . . . . . . . . . . . .
o 5 10 15 20 25 30 35 40 45 50 o 5 10 15 20 25 30 35 40 45 50
Number of dropped nodes Number of dropped nodes

Figure5.1: Addedbackup: Reachabilityun- Figure5.2: Addedbackup: Largestcompo-
derattacksn UM nentsizeunderattacksn UM

Resilience to Deliberate Attack on Nodes x10™ Relative Size of Largest Component Under Deliberate Attack on Nodes

§07 “_\Aﬂ

% 04 ﬂié%ﬁ%ﬁmgﬁm

§° 2 7AAAA%AAAAAAAA
Figure5.3: Addedbackup: Reachabilityun- Figure 5.4: Addedbackup: Largestcompo-
derattacksn OR2 nentsizeunderattacksn OR2

e if AS x disconnectdrom its provider, thenlink < z,y > becomesa custometrto provider
link.

We found that the addedbackupconnectity is more meaningfulfor the sparseiopologies(LZ,
OR1)thanfor therichertopologies(OR2,UM). We give herethe resultsfor the UM topologyin
Figs.5.1and5.2. We seethatthereachabilityis somavhatbetterwith the addedbackuplinks, as
is thesizeof thelargestcomponentbut thebehaior of thetopologieswith andwithoutthebackup
links is very similar. Figs.5.3and5.4 shaw thatfor thenewer partial-viev OR2,whichis alsorich
in connecwity, thereachabilityandsizeof thelargestcomponentrehardly effectedby theadded
backupconnecwities. Theseresultssuggesthattherehasbeena vastincreasdan the numberof
ASsthatusemultihoming,andarethereforehardly affectedif oneof their providersfails.

A more strict backupscenariowhich enabledwo ASsto usea peerlink betweenthemas
backuponly if bothASshave only oneprovider, yieldedevensmallerimprovementin bothreach-
ability andthe sizeof thelargestcomponentAdditionally, we examinedtheresilieng to a partial
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attackonthecore,i.e.,afew of the 30 mostconnectechodeswereremovedrandomly We exam-
inedthe effect of the backuplinks in this scenario.Theresultsshaovednoimprovementin thesize
of thelargestcomponentanda negligible improvementin reachability

5.3 Modeling Reachability in a DirectedAS Graph

In this sectionwe characterizeur graphmodel,anddescribeour reachabilityalgorithm.

5.3.1 AS Graph Model

We modelthe AS graphasa directed graph,in which the setof nodesis the setof distinct au-
tonomoussystemsanda link exists betweentwo suchnodesif the respectie ASs have peering
(businessYelationshig andareBGP neighbors.For eachlink we maintainits directionandchar
acteristics.For example,betweenwo nodesthatrepresent provider andits customertherewill
be an uphill link from the customerto the provider, anda downhill link from the provider to the
customerBetweernpeerghereis adirectedpeeredgein eachdirection,andbetweersiblingsthere
is anundirectedink.

Connectvity in the AS graphwith thevalley free policy rulesdescribedn Section5.4 main-
tainsreflexivity, but doesnot maintaintransitivity. For example,a small ISP with two providers
reacheseachof them on the directedlink that connectsthe customerto its provider, but the
providerscannot usethetwo link paththroughthe customerto communicate An algorithmfor
finding the shortespathundertheserestrictionsvassuggestedh [KBHLO1]. Thealgorithmuses
anadaptatiorof the Dijkstra shortespathalgorithmto the AS graph,for the problemof proxy and
cachedocation.

5.3.2 AS Reachability Algorithm

Thereachabilityalgorithmwe developedmaintainsareachabilitymap. It finds,for eachnode the
setof nodesthatcanbereachedrom it in the policy constrainedAS graph,regardlessof the path
taken. Thealgorithmdoesnotlook for the bestpathto a node,but rather for eachnode,looksfor
all nodesreachabldrom thatnodethroughsome valid AS path.

The algorithmis a free adaptatiorof a breadthfirst search(BFS) to the AS graph. Starting
from a sourcenode,the algorithmlooksfor uphill paths.A link canbetakenonly if by takingit
the pathis still avalid AS path,i.e., valley free. Eachnode whenreachedor thefirst time, marks
its stateby the directionit wasreached.Thus,a nodereachedhrougha downhill pathis marked
asdown, etc. Then,the nodeexaminesall of its neighbors A link to aneighboris takenonly if it
providesavalid AS path.

A nodecanbereachedagainonly if the pathtakenthroughit canopenmore opportunities.For
example,a nodein statedown thatis reachedy anuphill pathwill exploreit andchangats state
to theup state.Thus,eachnodecanbein oneof thefollowing states:

2Notethatthe derivativesof “peer” appearsn two distinctmeaning.We saythattwo ASshave “peeringrelation-
ship”if they exchangeBGP messageandthattwo ASsare“peers”if they have peerto-peerexchangeagreemenin
BGR namelyif they areneitherprovider-customemnor siblings.
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none - Thenodehasnotbeentraversedyet.

up - The nodewasin eithernone, side or down states,andthereis an uphill paththat canbe
traversedthroughit.

side - Thenodewasin eithernone or down stateandthereexistsa peerlink thatcanbetraversed
throughit.

down - Thenodewasin none state,andthereis adownhill paththatcanbetraversedhroughit.

The algorithm gives the highestpriority to an uphill paththrougha node, the next priority to
traversinga peerto-peerlink from thatnode,andthelowestpriority to adownhill paththroughthe
node. Eachnode,oncereachedexaminesall of its links. A link is takenonly if by takingit the
stateof the nodereachableghroughit canbeimproved,accordingto the descriptionabove.

Figure5.5 presents formal descriptionof the algorithm. Thefollowing variablesareusedin
thealgorithm:V is thesetof all nodesrepresentind\Ssin thegraph;R; is thereachabilitybitmap
of nodei, in which bit j is setif thereis a legal BGP pathbetweemode: andnodej, andst; is
the stateof nodes. N is the setof immediateBGP neighborsof node:.

The algorithmtime compleity is asfollows. Eachnodestartsin statenone, andcanchange
its stateat mostthreetimes. Hence eachnodeis reachedat most threetimes,giving aworstcase
time compleity of O(|E|), whereE is thenumberof links in thegraph(in aworstcasescenario,
eachlink is examinedthreetimes).

5.3.3 Anomaliesin the AS Graph

The algorithmdescribedn Figure5.5is resilientto anomaliesn the AS graph. However, there
aretwo anomalieghatneedto be consideredThefirst, andmorerare,is calledablackhole,and
the seconds inferencemistales.

Today eachAS administrationis responsiblefor adwertisingits own CIDR prefix through
the BGP protocol. A black hole happensvhena wrong prefix is announcedy a BGP spealer,
thushiding from other ASsthe real owner of the prefix. Sucha phenomen&anbe tracedtoday
only throughthe awarenes®f network managersandsolvedonly throughexhaustve searchand
mailing list queries(an interestingexampleis AS3908,which usedto be SuperNetnc., andwas
acquiredoy Qwestinc. It hadwronglyadwertisedprefix157.237.0.0/1éhsteadbf themorespecific
157.237.144.0/24hichit owned,hidingawayasmalllSPin SwedenFor completdraceof events
follow [Nan]).

Gaos inferring algorithmwas shown to be 97% accurateon a testcasedatabasef AT&T,
having inferenceproblemsonly for links suspecte@ssiblings. Out of the 3% inferredassibling
links, theactualrelationshipobtainedrom the AT&T datawerealmosthalf peeringlinks, aquar
tercustomerproviderlinks, andonly therestwereactualsiblinglinks. Battistaet al. [BPP03 have
investigatedheanomaliesn AS graphsshawing thatthe problemof solvingthe AS relationships
while minimizing theanomaliess NP-hardin the generalcase andsuggestedheuristicsfor min-
imizing the numberof anomalies A recentwork [HBCO03], thatcomparedracerouteso BGPAS
paths,finds that much of the disparityresultsfrom ASs connectedhroughexchangepoints,and
by groupsof ASsunderthe sameownership.



CHAPTERS. INTERNETRESILIENCY UNDER BGPROUTING

Algorithm 3 (Reachability Algorithm)
1. Vv € V do:

2. sets < v; direction«+ up;
3. setR, + 0; st, = up;

4. inspectg, direction)

5. outputR,

6. functioninspectg,d)

7. setkin R,

8. Vi € N}, do:

9. if <k,i>=sgb.linkthen
10. inspectt, d)

11. return

12. switchd: * Notethefall through*

13. caseup:

14. if <k, > = customer_to_provider then
15. if st; = none or side or down then

16. st; <= up

17. inspect{,up);

18. caseside:
19. if < k,7> = peerthen

20. if st; = none or down then

21. st; + Side

22. inspect{,down);

23. casedown:

24. if < k,7 > = provider_to_customer then
25. if st; = nonethen

26. st; < down

27. inspect{,down);

28. return

Figure5.5: A formal descriptionof the basicalgorithmfor theroot node.
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To obtainaccurateresults,we inferred manuallythroughthe useof WHOIS senersandIn-
ternetsearchesll of the automaticallyinferred sibling relationshipsin the databasesbtained
from [Rip]. For acombinedview of the LondonandZurich exchangepoints,gatheredatthe same
time for thesamesetof ASs,we obtainedhefollowing results:Out of the81inferredsibling rela-
tions,only 32%(26) wereactualsiblings.27%(22) werepeers 8% (7) werecustomeito-provider
links and32% (26) wereproviderto-customefinks.

5.3.4 Metrics for defining Resiliency

Theproblemof finding theright metricfor evaluatingthe network resilieny wasreducedn previ-
ousworksto theproblemof finding theconnectvity of thegraph[AJB0OO, CEbAHO0a CEbAHO1,
PKP*™03]. Althoughthe problemitself remainsan openproblem[FFF9943, the abose mentioned
worksusedsomeof thefollowing metrics: Averagediameteror averageshortespathlengthd; the
giantcomponensize S; the numberof connectedodepairsin the network, K; diametetinverse-
K, DIK.

The definition of d is asfollows: let d,,;, (v, u) denotethe minimal path betweenary con-
nectedpair of distinct nodesu and v, and II the numberof suchdistinct node pairs. Then:

d = W Accordingto [CEbAHO01] d canbe usedto assesvhena network underattack
reachegriticality. A measureof the size of the largestcomponent,S, is the ratio betweenthe
numberof nodesin the largestconnecteccomponenandthe numberof nodesin the graph. The
two metrics K andDIK, definedin [PKP03], areasfollows. K describeghe whole network
connectvity, by measuringall connectedhodepairsin a network: let ¥ bethe numberof distinct
nodepairs,andIl definedasabove, then: K = % Park et al. [PKP*03] have suggestea dif-
ferentversionof K, DIK, which measured®oththe expecteddistancebetweertwo nodesandthe
probability of a pathexisting betweertwo arbitrarynodes:DI K = %.

We notedthat the measureslescribedabove cannotbe directly appliedin our case,when
reachabilityis not equivalentto connectvity, sincethedirectedAS graphlackstransitvity. In this
casefor example theminimal distancebetweertwo nodesd, becomesheminimal BGPdistance
betweentwo nodes,dependingon policy constraints. Thus, we chosetwo differentratios, that
capturebest,in our understandinghe actualresilienceof the Internet.

Thefirst, denotedoy R, captureghereachabilityof theInternet,andis definedasfollows: let
r(v,u) € 0,1 denotereachabilitybetweenan arbitrary distinct pair of nodesv andu, v,u € V,
whereV is thesetof nodesdescribingASs. Let I, denotethe numberof distinctnodepairsin the
graph,for whichr = 1, andlet O, denotethe theoreticalimit of I, for the Internet(whenthere
arenofailuresin theInternetwe expectto have full reachabilitypbetweerall ASs). Then,we define

R astheratio:
11

R = o,

Thesecondnetricquantifiesghesizeof the stronglyconnecteadomponentn thedirectedAS
graph,termedRS. We createa reachability graph, in which thereexists an edgebetweentwo
nodesv andw if andonly if 7(v,u) = 1.3 Then,in orderto find the largeststrongly connected
componentn theoriginal graph,we needto find themaximalcliquein thereachabilitygraph.The
problemof finding the maximalcliquein a graphis NP-completgKar72]. The bestknown ap-

3Notethatwhile reachabilityis nottransientjt is symmetricunderthe valley freerule.
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proximationfor findingthemaximalclique[BH92] givesanO(n/(log,,)?) performanceguarantee.
Hence for our topologieswe canexpecta maximalmistake of around0.6% (seeTable5.1). We
usea greedyheuristicfor finding the maximalcliquein the graph. Sincewe know which nodes
still exist in the graphafter the simulatedfailure or attack,andtheir respectre degrees,we start
with the onewith thelargestdegree.Dueto the hierarchicalnatureof the Internet[TGJ"02], it is
likely thatsucha noderesidesn the core,andthereforeis usedby mary othernodesfor reacha-
bility. We denoteall of thenodesreachabldrom thatnodeby C. Then,iteratively, we look for the
maximaldegreenodein C, i, andextractfrom C' all the nodesnotreachabldrom i. We continue
this procesauntil all the nodesin the componentare reachabldrom eachother The processs
repeatedsereraltimeswith differentstartingnodesselectedrom thetop connecteanes.Thesize
of the strongly connectedargestcomponent,S,, is thendivided by the numberof nodesin the
original graph,to obtaintheratio RS.

5.3.5 Ciritical Point of Failure (PhaseTransition)

Fromaphysicalpointof view, aphasdransitionoccursonly whenthenetwork disintegrategCEbAHO1].
Thenetwork is considereconnectedslongasRS, theratio betweerthe sizeof thelargestcom-
ponentandthe numberof initial nodesin the graph,is a fraction of the numberof nodesin the
graph. For example,the removal of the top 20% of the nodesof a 100 nodesnetwork, yields
RS = 0.2. For anetwork with the sameconnectvity distribution, regardlessof its size,ary such
removal of thetop 20%of thenodeswill yield asimilar RS. Thus,aslongasthesizeof thelargest
componentis a fraction of the initial size of the network, the network is consideredconnected.
The phasetransitionoccurswhenRS ~ 1/N, whereN is theinitial numberof nodesin the net-
work. Hence,physicallyspeakingthe network is consideredlisintegratedonly whenthe size of
thelargestcomponents one. The samediscussiorholdsfor thereachabilityfunction, R.

¢, Froma routing perspectie, reachabilityis consideredost long beforethe Internetdisinte-
grates.We assumehere,thatwhenR < 0.5, i.e., the overall reachabilityis lessthan50% of the
original reachabilityor whenRS < 0.5, i.e.,thecomparablesizeof the largestcomponents half
theoriginal network, the network is no longerconsideredonnected.

5.4 Background on AS Connectiity and Inter net topology

TheInternettodayconsistof thousand®f subnetverks,eachwith it own administratve manage-
ment, called autonomoussystemgASs). EachsuchAS usesan interior routing protocol (such
as OSPF RIP) inside its managedhetwork, and communicatesvith neighboringASs using an
exterior routing protocol, calledBGP. The BGP protocol enablessachadministratve domainto
decidewhich routesto acceptandwhich to announce.Throughthe useof the protocolthe au-
tonomoussystemsselectthe bestroute,andimposebusinesgelationshipsbetweenthemon top
of the underlyingconnectedopology As a result, pathsin the Internetare not necessariljthe
shortestpossible but ratherthe shortesthat conformto the ASs’ policies. Suchroutingis called
policy-basedouting.

The commercialagreementbetweenthe ASs createthe following peeringrelationships:
customerprovider andprovider-customerpeerto-peerandsiblings. A customeipaysits provider
for transitservicesthusthe provider transitsall informationto andfrom its customers.The cus-
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tomer however, will not transitinformationfor its provider. For example,a customerwill not
transitinformationbetweenwo of its providers,or betweenits provider andits peers.Peersare
two ASsthatagreeto provide transitinformationbetweertheir respectre customersSuchagree-
mentsarevery commonbetweenASsthatconnectat anexchangepoint (1X) andbetweersmaller
ISPsresidingat the samegeographicalicinity. In sibling relationshipsthe two ASs provide full
transitservicesfor eachother Suchrelationshipsare mainly dueto financialacquisitionsmeg-
ers, or to a smallerdegree, businessransactiondetweensmallerISPsthat maintaintheir own
administratiorbut unify their networking services.

In apioneeringvork, Lixin Gao[Gao00]suggestednalgorithmfor inferringthetypeof rela-
tionshipsbetweermSsthroughtheiradwertisedBGP paths.Thealgorithmassumethatthedegree
of connectvity of an autonomousystemis anindicationof its size,andinfers the relationships
betweenthe ASs accordingto a setof rulesobtainedfrom the above descriptionof commercial
relationshipsGaohasdeducedthata legal AS pathmaytake oneof the following forms:

1. Up hill path,followedby a down hill path.
2. Up hill path,followedby a peeringlink, followedby a down hill path.

Whereanup hill pathis a sequentiaket, possiblyempty of customeitprovider links, anda down
hill pathis asequentiaset,possibleempty of provider-custometinks. Thus,alegalroutebetween
autonomousystemscanbe describedasa valley free path. A peeringlink canbe traversedonly
oncein eachsuchpath,andif it existsin the pathit markstheturningpointdown hill.

Furtherwork on AS relationshipgSARKO02Z] have characterizedhe Internetas hierarchi-
cal. They found that the top big Americanprovidersform a corewith almostcompleteclique
connectvity, andthe secondayer aroundthis core consistsof big providersfrom the USA and
Europe characterizednainly by their very rich connectitiesto the core. Thethird layerconsists
of smallerproviders,andforms the majority of the network. Recentworks have investigatedhe
relationsbetweenASs, looking for anomaliesandtheir possiblesolutions|BPP03 PKP"03].

Inferring the AS relationshipsanbeviewedaspartof anongoingeffort to discoverandmap
theexacttopologyof thelnternef FFF99a CNSt99, MMB00, CCG"02a,BC99, GT0(. It isgen-
erally agreedodaythatthe Internet,atthe AS level, hasa highly heterogeneousonnectvity pat-
terns,with a highly variablevertex degreedistribution. Severalworks have alsotried to character
ize thegrowing mechanismsf the Internetandmodelit [BA99, AB0O, BT02, PKP*03], andsev-
eralnetworksgeneratorsvhich rely on someof thesealgorithmsexist [JcJOQ MLMBO01, DMSO03]
andevaluatedRTY *00, TGJ'02,MSZ02,BT02].

In all previousworksontheresilienceof the Internet,it wasassumedhatthe connectvity of
the network is equivalentto its reachability We shaw in this work thatthetwo arenot equialent,
andfind theactualreachabilityof the network underdifferentconstraints.

5.5 Resiliencyof The Inter net

In thissectionwe presenburresultsfor theresilieng of thelnternetto randomfailuresandattacks,
giventhepolicy routingconstraints.

Table 5.1 describeghe differentdatasetsusedin thesetestsandtheir characteristics.The
topologieddiffer mainly in their connectity. ThelLZ datasetfrom the RIPE RoutingInformation
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Service[Rip], is the resultof combiningrouting informationfrom two exchangepoints, onein
Londonandthe otherin Zurich. The datalacksmostof the largesttop US providers. The largest
AS in this dataset hasa ratherlow degreeof 1958, and the averagedegreein the setis also
ratherlow. Thisimpliesthattherearefewer alternatve pathsbetweerthe nodesin this topology
I.e.,lessredundany, andthereforewe expectit to bethe mostvulnerableto deliberateattacks. As
discussedh Sections.3.3thetopologyis alsoinference-anomalfree,asall automaticallyinferred
sibling relationswere manuallychecled usingWHOIS databaseandInternetsearchesDatasets
OR1 and OR2 are both partial views from the Oregon routeview project[Ore], collectedMarch
andApril, 2003respectiely. The topologiesdiffer greatlyin therichnessof the connectvity, as
OR2has27%addedconnectvity comparedo OR1. Thelastview, andtherichestin connecwity,
UM, is theenrichedtiopologyobtainedby Chenet al. [CCGt02a]. Althoughcollectedthreeyears
ago, the topology is the richestin connectwity, sinceit was collectedfrom 41 BGP databases
andaugmentedvith summarydatafrom differentlooking glasssites. The ongoinggrowth of the
Internet,whichincreaseds averagedegree impliesthatsuchanenrichedview of today’s Internet
will yield amuchhigheraveragedegreethanseenfrom the partialviews OR1andOR2.

In the graphspresentedn this section,we comparethe resilieng of the policy-constrained
AS graph,referredto asthe directed graphor the reachability graphto theresilieng of the graph
usedin previous works, referredto asundirected graph. For eachtopology we presentboth the
reachability R andthe evaluationof the largestcomponent,RS, asdiscussedn Section5.3.4.
Someof the partial views do not have 100%reachability to begin with, ascanbe seenin Fig. 5.6,
for example.

Name| source Date No. of ASs | No. of Links | Avg. Degree| Max Degree
LZ RIS | 2002/07/03] 13393 22001 3.28545 1958
OR1 | Oregon | 2003/03/01] 14704 24020 3.26714 2330
OR2 | Oregon | 2003/04/01] 15128 31426 4.15468 2503
UM | Umich | 2001/05/26] 11204 25980 4.63763 2417

Tableb.1: Characteristicef datasetsused

5.5.1 Resiliencyof the Inter net to Deliberate Attacks

We evaluatethe resilieng of the Internetto deliberateattacksby tamgeting the topology’s most
connectedASs, droppingeachtime the next mostconnectechodein the graph,and measuring
bothmetricsk and RS for the directedandundirectedyraphs.

Figs.5.6 and5.7 show theresilieng of the LZ topologyto deliberateattacks. Even before
ary nodewasdropped,the reachabilityis lessthanthe connectvity, dueto the partiality of the
topology The samecanbe seenin Fig. 5.8and5.9, representingheresilieng of topologyOR1,
alsoarathersparsepartialview. However, in the moreconnectediiews, OR2andUM, the partial
view givesafully connectedetwork, in which all nodesarereachabldo begin with.

In the sparsetopologiesthe overall reachabilitydecreasesery fast. Fig. 5.6, which starts
from a 95% reachability shavs that after droppingonly the sixth mostconnectedhodes the gap
in reachabilityis 12%. The gapis even larger whenwe checkhow much of this reachability
is within the samecomponenf nodesthat communicatewith eachother(Fig. 5.7). After the
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Relative Size of Largest Component Under Deliberate Attack on Nodes

ercentage of links in Reachability Graph Compared to Initial State
s o o o o o
[ S S R -]

P
°
2

L L
40 50 60

L L
o 10 20

30
Number of dropped nodes

. . !
0 10 20 30 40 50 60
Number of dropped nodes
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Figure5.6: Reachabilityunderattacksin LZ tacksin L7

removal of thesesix nodesthereis a gapof 19%. The gapbetweernreachabilityandconnectvity

increasesas the network startsto breakup—afterdroppingthe 12th mostconnectechodesthe
largestcomponentconsistsof only 20% of the nodesin the topology while previously it was
thoughtthatit still consistsof 50% of the nodesaswe canseefrom the resultsfor the undirected
graph.

Resilience to Deliberate Attack on Nodes Relative Size of Largest Component Under Deliberate Attack on Nodes
T T T T T T T T T T

-5~ Directed Graph|
*_Undirected Gral

ercentage of links in Reachability Graph Compared to Initial State
s o o o o o o o
5 & 2 5 @ S 0& @

P
°

Figure 5.8: Reachability under attacksin Figure5.9: Largestcomponensizeunderat-
OR1 tacksin OR1

Figs.5.8 and5.9 give similar results,namely that the Internetis muchmore susceptibleéo
deliberateattacksthan previously thought. While the overall reachabilitydropsat the samerate
asthe connectvity, it canbe seenfrom Fig. 5.9 thatthe first nodethat wasdroppedwasa large
AS with alot of customersthatlost reachabilityto the restof the network. After the eighthmost
connectedchodeswereremoved,the sizeof the largestcomponents lessthan50%the size of the
network, while in the caseof the undirectedgraphit contains69% of the nodes.We seeherethat
after attackingonly the 8th mostconnectedhodesthe Internets largestcomponentontainsless
than50% of thenodes.
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Figure 5.12: Reachabilityunder attacksin Figure 5.13: Largestcomponentsize under
UM attacksn UM

Figs.5.10,5.115.125.13representhe resilieng of highly connectedopologies(OR2 and
UM), in which mostnodescanbereachedhroughsereral AS paths.Therefore we expectedthat
theresilieny of the directedAS graphwould resemblehe oneof the undirectedgraph. Indeed,
the reachability R is almostthe samefor both topologieswhenthe five most connectedhodes
aredropped sincealternatepathsaretaken. The size of the largestcomponents alsoquite sim-
ilar for both the directedand undirectedgraphs,althoughfor the UM topology (Fig. 5.13) the
gap betweenthe componentizesreachesalmost7% after the removal of only 5 nodes. In all
casesthe gapbetweerthe directedandundirectedgraphsincreasesfter the ten mostconnected
nodesareremoved. After the removal of 28 nodesthe gapin largestcomponensizeis over 15%
(Figs.5.10,5.13). After removing the 50 mostconnectechodes,for the highly connectedOR2
topology the network disintegratedto the point wherethelargestcomponenholdsonly 4% of the
nodes. In the unconnecteatase,the componentolds morethan42% of the nodes,an order of
magnitudedifference.

In summarythe resilienceof the Internet,undercurrentpolicy constraintsto deliberateat-
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tacksagainstthe top mostconnectedASs is much lower than previously found. On all partial
views we obtained the largestcomponendroppedto lessthan50% the size of the network after
theremoval of only thetenmostconnectedhodes.The network disintegratedcompletelyafterthe
removal of thetop 30 ASs(0.2%of thenumberof ASs).

5.5.2 Resiliencyto Random Failur esof Nodes
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Figure5.14: Reachabilityunderrandomfail- Figure 5.15: Largestcomponentsize under
uresin LZ randomfailuresin LZ

We checled the resiliengy of the Internetto randomfailuresby a randomremoval of 100
nodesatatime, until morethan95% of the nodeswereremoved.

Figs.5.14and5.15shaov the comparableesilieng of the Internetto randomfailuresfor the
LZ topology As previously found, the Internetis not susceptibleo suchrandomfailures,and
both R and RS do not fall belov 0.8 even after the removal of 1000nodes. The network starts
to breakdown only afterthe removal of morethan2000randomnodes.the Internetdisintegrates
only aftertheremoval of almost95% of the nodes.The differencebetweerthetwo graphmodels,
thedirected(policy-constrainedAS graph,andtheundirectedyraph,is small. However, we found
that the gapis larger for the sparseviews than for the views richerin connecwity, whereit is
negligible. This resultis somavhatsurprising,indicatingthatthe Internetmaintainsreachability
of almostthe samedegreeasits connectity, underrandomfailure of nodes.

Dueto thehigh degreeof thenodesn thecore,andthefactthatthesenodesarerarein ascale
free distribution, the statisticalprobability thatthey will beremovedin arandomfailure scenario
is low. However, it couldbe expectedhattheremoval of smallandmediumsizednodeswill effect
thereachabilityof thesmallerASsandthereforethe sizeof thelargestconnecteaaomponentThe
surprisingresults,indicatingthatthe reachabilityis very closeto the possibleimit, theundirected
connectvity, prove differently Theseresultsmay indicatethat most ASs use multihoming to
severalproviders,andthusarelesssusceptibldéo theserandomfailures.
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5.6 Conclusions

We examinetheresiliengy of the Internetto deliberateattackandrandomfailuresatthe AS level,
giventhatrouting pathsconformwith the policy imposedoy BGP. We compareour findingswith
previousfindingsthatdid notconsidetheseconstraintsandevaluatedeachabilityasconnectvity.
We suggeshnefficientalgorithmthatdetermineseachabilityin suchAS graphsanddiscussand
suggestnetricsfor measuringheresilieng.

Our resultsshav thatthe Internetis muchmoresusceptibldo deliberateattacksthan previ-
ously found, andthatreachability aswell asthe size of the largestcomponentdrop to lessthan
half aftertheremoval of the 25 mostconnectedhodes—Ilesshan0.2%of the nodes.TheInternet
alsodisintegratesnuchfasterthanpreviously found,underanattackthattargetsthetop 0.5%ASs.
We alsofoundthattheInternetis ratherresilientto randomfailures,andits reachabilityis surpris-
ingly closeto the graphconnectvity without policy constraints.Theseresultscanbe attributedto
thatroutingin the Internetis mainly throughits coreof highly connectedASs.

Our initial resultson the effect of backuplinks suggestshatthey do notimprove resiliengy
of the Internetby much. The decreasén the addedresilieng of the partial views over the years
suggesthatASstendtodayto rely moreon multihoming,andthusarelesssusceptible¢o afailure
of oneof their providers. We believe that further researcho modelbackupconnectvities at the
AS level is important.
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