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Abstract

TheInternetis becominga vital tool in today’s communication,informationanddataretrieval, as
well ascommerce.Its fastspreading,non affectedeven by the recentbubbleburst, exceedsthe
rateof softwareandhardwaredevelopment,andmakesit harderfor monitoring,measuringand
understanding.

In this work we investigatedifferentaspectsof the structuralpropertiesof the Internet,and
suggesthow to elevatesomeof our findingsto comprisebetterapplicationandrouting layerser-
vices.

First,we investigatetheexactstructureof generalshortestpathmulticasttreesin theInternet.
We presenta thoroughinvestigationof the structureof multicasttreescut from the Internetand
power-law topologies.Basedon bothgeneratedtopologiesandrealInternetdata,we characterize
the structureof suchtreesandshow that they obey the rank-degreepower law; that most high
degreetreenodesareconcentratedin a low diameterneighborhood;andthatthesub-treesizealso
obeysapower law.

Ourmostsurprisingempiricalfindingsuggeststhatthereis a linearratiobetweenthenumber
of high-degreenetwork nodes,namelynodeswhosetreedegreeis higherthansomeconstant,and
thenumberof leafnodesin themulticasttree(clients).Wealsoderivethisratioanalytically. Based
onthisfinding,wedeveloptheFastAlgorithm, thatestimatesthenumberof clients,andshow that
it convergesfasterthanoneroundtrip delayfrom theroot to a randomlyselectedclient.

We leveragethisfinding in anapplicationlayerschemefor thedisseminationof verypopular
contentto a very large audience.The schemeusesan integratedarchitectureof HTTP unicast
and a cyclic multicastdelivery of the popularcontent,and relies on an accurateevaluationof
the multicastgroupsize. We alsodevelop an additionalendto endcountingalgorithmfor this
evaluation.

Wefurtherinvestigatethetomographyof multicasttrees,andfind thatnotonly it conformsto
thefindingsof thescalefreepropertiesof thetree,but alsohastheexactsamecharacteristicsasthe
Internet’s tomography. This finding deepensour understandingon theexactstructureof multicast
treesin theInternet,ona layerby layerbasis.

We concludethework by investigatingthenatureof the resiliency of theInternetat theAu-
tonomousSystem(AS) level to failuresandattacks,underthe real constraintof businessagree-
mentsbetweentheASs. Theagreementsimposepoliciesthatgovernroutingin theAS level, and
thusthe resultingtopologygraphis directed,anddoesnot maintaintransitivity. We show, using
partialviewsobtainedfrom theInternet,thattheInternet’s resiliency to adeliberateattackis much
smallerthanpreviously found.Its reachabilityis alsosomewhatlowerunderrandomfailures,with
thesurprisingresultthatit becomescloserto theoptimumwhentheaveragedegreeof theInternet
increases.We furtherinvestigatetheeffect of addedbackupconnectivity on theresiliency.



Chapter 1

Intr oduction

1.1 Intr oduction

A few yearsago, a social studiesteacherin Taylorsville ElementarySchool in North Carolina
startedanemailprojectwith hersixth-gradestudents.Sheaskedthemto senda shortemailmes-
sageto all of their family andfriendsaskingthemto forwardit to ”everyoneyouknow sothatthey
cansendit to everyonethey know (andsoon)”. They alsorequestedthateachrecipientrespondto
themsothey couldkeepa recordof how many peoplehadbeenreachedandwhere.A few weeks
latertheprojectwascancelled,aftertheclasshadreceivedover450,000responsesfrom all states
and eighty-threeother countries[Wat03]. The six-gradersand their teacherhave just received
a very goodexampleof a phenomenoncalledA Small World, usedto describethe topological
characteristicsof complex networks,suchashumansocialconnectionsandtheInternet.

The aim of this thesisis to investigatethe Internetas a very large complex network, and
useits propertiesto aid in solving andunderstandingscalabilityproblems.While the Internetis
spreadingandincreasingin size,it wasalsofound,in recentyears,that it exhibits characteristics
of smallworld networks.Theseincludemainlyalow diameterandapower law degreedistribution
(SeeChapter2 for a detailedexplanation).This discoverycanaffect almostevery possibleaspect
of serviceandapplicationover the Internet,as informationspreadsvery fastandreachesa vast
amountof receiverswithin almosta constanttime, regardlessof thenumberof possiblereceivers.
For example,purepeer-to-peerapplicationsrequiringa full distributedmechanismin which all
messagesarebroadcast,aremore likely to jam the Internetthanto supplya scalableserviceto
their users.Understandingthe exact natureof the Internetstructure,will enablean efficient and
scalableuseof it.

Our work startswith generatingInternetlike networks,usingthescalefree Notre-Dameal-
gorithm. Chapter2 is dedicatedto the understandingof the propertiesof complex networks in
general,andthe Internetin particular, anddescribesthe propertiesof theNotre-Damealgorithm
we usedfor generatingtopologies.We usedthegeneratorto further validatedifferentcharacter-
isticsof the Internetandto deepenour understandingof it. We generatedtopologiesof different
characteristics,whichwereusedin this work.

Next, we startedexploring andunderstandingthestructureandtopologyof largescalemulti-
casttrees.In thebeginningof the1990’s,IP-multicasthasemergedwithin theresearchcommunity
asthe next generationkilling underlyingservice,andwasthe subjectof intensive research.The
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2 CHAPTER1. INTRODUCTION

advantagesseemedvery clear: An efficient way to reacha very large groupof receivers,while
usingtheminimal possibleamountof infrastructure,andduplicatingmessagesascloseto theend
receiversaspossible.In 1998,ChuangandSirbu [CS98] tried to quantify the gain in multicast,
findingapowerlaw relationbetweentheamountof receiversandtheaverageunicastpathlengthto
thereceivers.They conductedtheirexperimentoverexemplarydatasets.A laterwork by Shenker
etal. [PST99]exploredthis relationshipanalyticallyonk-ary trees.However, theindustryseemed
reluctantto find theright applicationsandup until todayIP-multicasthasnot yet spreadasanun-
derlyingavailableservice.Thestructureof suchtreescouldnot bedeterminedprecisely[CA01],
nor theirexactproperties.

Chapter2 describesour researchon the exact structureof large scalemulticasttreesin the
Internet. We createshortestpathtrees,cut from power law tail topologiesandthe Internet,and
obtaindataof real Internetmulticasttrees. We show that the treesexhibit small world charac-
teristics. In particular, we find that thereis a degree-frequency power law tail distribution of the
treesandeven at eachof the trees’ layers. The treesexhibit scalefree characteristics,andtheir
innerstructureis scalefree in nature,aswe foundthat thesub-treesizedexhibit a power law tail
distribution aswell. We further found that thehierarchicalstructureof the Internet[SARK02] is
alsopreserved in thesetrees,andthat thereis a corein which thehigh degreenodesarelocated,
which in generalis very closeto theroot of themulticasttree. Studyingthoroughlythedifferent
topologicalcharacteristicsof the multicasttrees,we discovereda surprisinglinear ratio between
thenumberof highdegreenodesin thetreesandthenumberof receiversthetreesspan.Wefurther
provedthisratioanalytically, andfoundapredictorthatenablesto estimatethenumberof receivers
from thenumberof high degreenodes(routers)in thetree.Basedon this mechanism,we devised
algorithmsfor estimatingthesizeof a largescalemulticasttreein lessthantheInternetroundtrip
delay, andproved it analytically. Furtherresearchwe conductedon the topologicalstructureof
largescalemulticasttreesat thedifferentlayersprovedthatsimilarly to theInternet,thepowerof
thedistribution of degreesof nodesat eachlayeraroundthe root canbecalculatedasa function
of the tree’s power law distribution andthe numberof the layer. Hence,the distribution of the
degreeof thenodesat eachlayercanbepredicted,andaid in thedesignof scalableservicesand
applicationssuchasserver locationsfor videoondemand,caches,etc.

As a resultof our findingson the characteristicsof multicasttrees,we devisedan adaptive
schemefor a large scalemulticastof semi-dynamicinformationover the Internet. Our scheme,
called the Integratedarchitecture,enablessitesto adjustdynamicallyto differentdemands,and
stayactiveat thehighestpeaktimeswithoutenlarging theirhardware.TheIntegratedArchitecture
definesan extensionto the HTTP protocol,calledHTTPM. The HTTPM extensionis usedonly
for pagesfor which demandis known to be very high regularly, or that have the potentialof
becomingvery hot, suchas a pageoutlining the vote counting in eachstateon electiondate.
Whendemandto anHTTPM pagecrossesa predeterminedthreshold,thepagerevertsto a cyclic
multicastdelivery. A plug-inat thereceiver’sbrowseridentifiesthechange,andjoinsthemulticast
group.Theserver thenactivatesa largescaleestimationsmechanism,suchastheonewedevised,
to identify a decreasein demand,in which caseit revertsbackto an end-to-endunicastdelivery
accordingto theHTTP protocol. In this work we useboththeunderlyingtopologicalstructureof
theInternetaswell astheunderlyingstructureof theWorld Wide Web(anothercomplex network
with smallworld characteristics).A detaileddescriptionof thework is givenin chapter4.

The last chapterof thework investigatesa specificpropertyof the Internet,its resiliency to
randomfailuresandattacks.Complex networks suchasthe Internetexhibit similar behavior in
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general,dueto their uniquetopologicalstructure.However, the topologicalstructureis only one
of the factorsthat govern the behavior of suchnetworks. We investigateherethe mechanisms
that govern the operationof the Internet,andshow their influenceon its tolerance.The Internet
todayconsistsof thousandsof subnetworks,eachwith its own administrativemanagement,called
autonomoussystems(ASs).EachsuchAS usesaninteriorroutingprotocol(suchasOSPF, RIP)in-
sideits managednetwork, andcommunicateswith neighboringASsusinganexterior routingpro-
tocol, calledBGP. TheBGPprotocolenableseachadministrative domainto decidewhich routes
it acceptsandwhich it announces.Throughtheuseof theprotocoltheautonomoussystemsselect
thebestroute,andimposebusinessrelationshipsbetweenthemontopof theunderlyingconnected
topology. As a result,pathsin theInternetarenot necessarilytheshortestpossible,but ratherthe
shortestthatconformto theASspolicies. Suchrouting is calledpolicy basedrouting. Thebusi-
nessagreementsimposerestrictionsontheusageof network paths[Gao00,SARK02],namely, the
existenceof a pathbetweentwo nodes,doesnot imply that they arereachablefrom eachother.
Thus,connectivity andreachabilityarenot identical,theformermeansthata physicalpathexists
betweentwo nodes,andthelatterthatcommunicationcanflow betweenthem.Reachabilityin the
network maintainsreflexivity but not transitivity; A nodecanbe reachablefrom two nodesthat
arenot mutually reachable.In this work we measurethe Internetreachabilityandcompareit to
theconnectivity usedin previousstudies[AJB00, CEbAH01, CEbAH00a,BT02, PKP

�
03]. Our

resultsshow that the Internetis muchmoresusceptibleto attacksthanpreviously found, though
theresiliency to failuresis closeto the theoreticoptimum. Thedifferenttestswe conductedalso
led usto concludethatsmallandmediumsizedASsrely heavily on multihoming.
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Chapter 2

The TopologyGenerator

2.1 Intr oduction

Thecommercializingof theglobalIP basednetwork,namedInternet,hascausedit to grow tremen-
dously, andwithoutany globalplanning.TheInternettodayis avastcollectionof selfadministered
routingdomains,calledautonomoussystems,communicatingusingtheIP protocolset.TheInter-
nethasbecomeaspontaneouslygrowing network of networks,andits structureasubjectof exten-
sive research.TheInternet’s topologyis studiedat two levels. Thefirst is therouterslevel,where
theroutersarethenodesandtheedgesarethephysicallinks connectingthem.Thesecondlevel is
theautonomoussystems(AS) level, modelingtheASsasnodes,connectingtwo ASswith a link if
they areBGPneighbors.

In this chapter, we describethe fundamentalcharacteristicsof complex networks; Describe
relatedwork that charactgerisesthe Internetas a complex network; and describein detail the
topologygeneratorwechoseto work with.

Traditionally, complex large scalenetworks suchasthe Internetweredescribedasrandom
graphs,First studiedby theHungarianmathematiciansPaul ErdösandAlfred Rényi [ER60]. Ac-
cordingto Erdös-Ŕenyi (ER) model,thegraphis constructedby startingwith thetotal numberof
nodes,N, andconnectingeachpairof nodeswith probabilityp, resultingin arandomlydistributed
graphconnectivity of N(N-1)/2. In suchnetworks,all nodeshave thesameprobabilityto have the
graphaveragedegree.

A first attemptto modeltheInternetasacomplex network wasmadeby Waxman[Wax88]. In
hismodelhemadeslightmodificationsto theERmodel,by takinginto considerationtheintuitive
observation that links that representlong distancesarelesslikely to appearin thegraphthanthe
onesrepresentingshortdistances.Zaguraetal. suggestedanintuitivehierarchicalmodel,modeling
theInternetwith a center.

In the late1990‘stherewasa significantadvancementin our understandingof thestructure
of complex networks. Researchesfrom differentdisciplineswereengagedin the investigationof
complex networkssuchasphysical,biological,socialor computers.Theresearchwasprompted
by theavailability of largescaledataandadvancedcomputingabilities.

Complex networks,suchastheInternet,wereshown to have threedistinctivecharacteristics,
describedbellow.

High Degreeof Clustering Real networks were shown to exhibit a high degreeof clustering,

5



6 CHAPTER2. THE TOPOLOGYGENERATOR

quantifiedby a clusteringcoefficient. WattsandStorage[WS98] discoveredthatsocialnet-
works have an inherenttendency to clustering. A commonpropertyof socialnetworks is
thatthey displayalargeclusteringcoefficient, i.e.,onaverageaperson’sfriendsarefarmore
likely to know eachotherthantwo peoplechosenat random.(Ontheotherhand,it is impor-
tantto note,thatit is possibleto connecttwo peoplechosenat randomvia a chainof only a
few intermediaries[Mil67]). It waslatershown thatcomplex networkssuchastheInternet
have a large clusteringcoefficient, which is distinctively higher than the oneexhibited in
randomnetworks.

Small World Classification The small world characteristicis measuredby the averageshortest
pathbetweenany two nodesin thenetwork, wherenodesrepresentroutersor autonomous
systemsin thecaseof theInternet,or humanbeingsin complex socialnetworks. Thesmall
world phenomenonwasfirst evident in an interestingsocialexperimentconductedin the
60’sby Milgram [Mil67]. Peoplefrom all over theUSweregivenlettersto sendto acertain
address,underthe conditionthat it will be sentto someonethey know andthink might be
closerto the given address,andso forth. The lettersthat arrived to the final destination,
arrivedaftertravelingthroughsix differentpeopleontheaverage.Thus,Milgram concluded
that theaveragedistancebetweenany two peoplein theUS is six. In fact,even traditional
randomgraphsexhibit the small world phenomenon,with an averagepath length that is
logarithmic in the numberof nodes. Otherpopularfamousexamplesof the small world
phenomenonaretheactorsnetwork (two actorsarelinkedif they have playedtogetherin a
movie),andthenetwork of peoplewhohavecollaboratedwith peoplewhohavecollaborated
with theHungarianmathematicianErdös(specifically, researcherswho have a joint worked
with Erdös aregivenErdös numberone,researcherswho collaboratedwith Erdös number
oneresearchesaregivenErdösnumbertwo, andsoforth.)

Power Law Tail of the DegreeDistrib ution In apioneeringwork,Faloutsosetal. [FFF99a] stud-
ied theconnectivity patternsof theInternetat boththeroutersandtheASslevel. They have
discoveredthattheInternet’s degreedistribution follows a power law distribution. Laterre-
searchhasconcludedthat the Internetmaintainsa heterogeneousdegreedistribution with
a power law tail. Partial views of the Internetobtainedfrom BGP routing points,suchas
Oregon[Ore] andRIPE[Rip] wereusedto furtherinvestigateTheInternet’s innerAS struc-
ture[CNS

�
99,MMB00, CCG

�
02a,BC99,GT00, SARK02]. Thepowerlaw tail distribution

wasfoundvery characteristicof complex networks,with themajority of thenodeshaving a
low degree,anda longtail of veryhighdegreenodes.Typicalexamplesinclude,apartof the
Internet,aretheWorld WideWebconnectivity patterns,biological,chemicalandsocialnet-
works.However, it is importantto notethatnotall realnetwork exhibit adegreedistribution
of apower law tail, andsomedoshow exponentialdecayor acombinationof power law and
exponentialdecay[AB02]. In thiswork, weusethetermspower law distributionandpower
law tail distribution interchangeably.

Several interestingworkshave alsotried to characterizethegrowing mechanismsof the In-
ternetandmodelit [BA99, AB00, BT02, PKP

�
03]. In 2001,the pioneeringwork of Albert and

Barab́asi [AB00, BA99] introduceda novel algorithmfor the generationof scalefree networks.
The algorithmwaslater on implementedin major network generators[JcJ00, MLMB01]. Back
in 2001,whenthealgorithmwasjust published,we decidedto implementit to build a scalefree
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network generator. The following chapterdescribesthe characteristicsof the Internetasa small
world network, andthepropertiesof theNotre-Damealgorithmdevisedby Albert andBarab́asi,
asimplementedin our ToGend topologygenerator[Mok01].

2.2 The Inter net Topology

TheInternetstructureis thesubjectof anextensiveresearcheffort lately. It is measuredin two dif-
ferentlevels,quitedifferentfrom eachother. At thehigherlevel, calledtheautonomoussystems
level, theInternetis viewedasa largecollectionof routingdomains.Theseroutingdomains,once
assigneda uniquenumber, arereferredto asautonomoussystems.Autonomoussystemsinteract
with otherpeeringautonomoussystems.Two autonomoussystemsareconsideredneighborsif
they havesomesortof apeeringbusinessrelationsbetweenthem.In agraphnotation,theASsare
the nodes,andtwo suchnodesareconnectedwith a link if the correspondingASs have peering
relations.At the lower level, calledtherouterslevel, theunderlyingphysicalstructureof the In-
ternetis considered.Thenodesrepresenttheactualroutersthatmakeup theautonomoussystems.
Two nodesareconnectedif thereis aphysicallink betweenthem.Clearly, thenumberof nodesin
agraphrepresentingtheunderlyingphysicalrouterstopologyof theInternetis biggerby at leasta
magnitudethanthenumberof nodesin theAS correspondinggraph.It wasalsoexpected,thatthe
topologicalstructurewouldbemuchdifferent.

In 1999,Faloutsoset al. [FFF99a] publishtheir research,which investigatedthecharacteris-
tics of theInternetstructureat boththeASsandrouterslayers.Their somewhatsurprisingresults
werethat the Internetconnectivity pattern,gatheredfrom several partial views obtainedat three
differentdates,shows a clearpower law distribution characteristicsat both levels,theAS andthe
routers.They found thatboth the rank-degreeandthe frequency-degreedistribution werepower
law distributions.Two otherpower lawsthey foundwerethenumberof nodepairswithin aneigh-
borhoodversusneighborhoodsize(in hops);andeigenvaluesof theadjacency matrix versusrank.
A later work by Crovella et al. [CNS

�
99] showed that rank-degreeandfrequency-degreedistri-

butions are two representationsof the samedistribution, and thus finding only one of them is
sufficient.

Albert andBarab́asi [BA99, AB00] suggesteda dynamicgraphgenerationmodel that gen-
eratessuchnetworks and aidedin the understandingof the evolvementof the Internet. They
suggestedthatsuchnetworksgrowth patternis theresultof preferentialattachmentandincremen-
tal growth. One of their main findings was the self similarity characteristicof suchnetworks.
Their resultsarefurther discussedin the following section.Medinaet al [MMB00] investigated
thedifferentfactorsthat influencepower law topologiesandcomparedthemaintopologygenera-
tors. They cameto theconclusionthatfrequency-degree(alongwith therank-degree)distribution
is the mosteffective factor in distinguishingdifferentkinds of topologies.They alsofound that
preferentialconnectivity andincrementalgrowth to bethemaincausesfor all power laws in their
simulations.

Promptedby thesefindings,Yook et al. [YJBT01] showed that the Internet,at the domain
level, exhibitsothersmallworld characteristics.Their research,conductedbetween1997to 1999,
showedthattheInternet’s clusteringcoefficient rangedbetween0.18to 0.3,comparedwith 0.001
for randomnetworksof similarparameters.Theaveragepathlengthrangedbetween3.70and3.77
at thedomainlevel, andat therouterlevel it wasaround9.
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Theresearchoutlinedabove is partof anongoingeffort to discoverandmaptheexacttopol-
ogy of theInternet[BC99, GT00,CCG

�
02a]. It is generallyagreedtodaythattheInternet,at the

AS level, hasa highly heterogeneousconnectivity patterns,with a highly variablevertex degree
distribution. In aneffort togainabetterunderstandingof theInternet’soverallstructure,[SARK02]
have investigatedits structurefrom multiple vantagepoints. They have discoveredthat the Inter-
net,asa scalefreenetwork, alsohasa hierarchicalstructure.Thecoreof the Internetconsistsof
a small collectionof very high degreeASs,characterizedby their very high connectivity to each
other. Thesearethetop tier US providers. Their mutualconnectivity almostformsa clique. The
secondtier, consistsmainlyof thetopEuropeanandAsianproviders,canbecharacterizedashigh
degreeASs,with averyhighconnectivity to thecore.Therestof theInternetconsistsof smalland
smallto mediumsizedASs,which for themajority of theInternet’sASs.

Several works have also tried to characterizethe growing mechanismsof the Internetand
model it [BA99, AB00, BT02, PKP

�
03], and several networks generatorswhich rely on some

of thesealgorithmsexist [JcJ00, MLMB01, DMS03] andevaluated[RTY
�

00, TGJ
�

02, MSZ02,
BT02]. In this chapterwediscussoneof them,theNotre-Dame(or ScaleFree)algorithm.

2.3 The NotreDameTopologyGenerator

In this sectionwe describetheAlbert Barab́asialgorithmfor thecreationof scalefreetopologies,
termedtheNotre-Damemodel,or theScaleFreemodel(SF).

They notedthat formernetwork modelsassumethat thenetwork startswith a fixednumber
N of verticesthatarethenrandomlyconnectedor rewired,withoutmodifyingN. In contrast,most
real world networks describeopensystemsthat grow by the continuousadditionof new nodes.
Startingfrom a smallnucleusof nodes,thenumberof nodesincreasesthroughoutthe lifetime of
thenetwork by thesubsequentadditionof new nodes.They termedthis characteristicincremental
growth.

Secondly, they notedthat formernetwork modelsassumethat theprobability that two nodes
areconnected(or their connectionis rewired) is independentof thenodes’degree,i.e. new edges
areplacedrandomly. Most realnetworks,however, exhibit preferential attachment, suchthat the
likelihoodof connectingto anodedependson thenode’sdegree.

Thus,thealgorithmof theSFmodelis thefollowing:

Growth: Startingwith asmallnumber( ��� ) of nodes,at every timestepanew nodeis addedwith� � ��� edgesthatlink thenew nodeto � differentnodesalreadypresentin thesystem.

Preferential attachment: Whenchoosingthe nodesto which the new nodeconnects,it is as-
sumedthat the probability � that a new nodewill be connectedto node � dependson the
degree �
	 of node� , suchthat ���
�
	���� �
	��� � ���

After t timestepsthis algorithmresultsin a network with ����������� nodesand ��� edges.
Numericalsimulationsindicatedthat this network evolves into a scaleinvariant statewith the
probability thata nodehas � edgesfollowing a power-law with anexponent���! . Thescaling
exponentis independentof � , theonly parameterin themodel.
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The network growth model, however, is morecomplicatedthan the suggestedincremental
growth model. A variety of local eventseffect the connectivity patternof nodesin the network.
Theselocal eventscanbemodeledby thefollowing four elements:additionor deletionof nodes,
andtheadditionor deletionof links in thenetwork. In reality, many timesit translatesto theaction
of rewiring a link, namely, changingits endpoints. Therefore,Albert andBarab́asi suggestedan
improvedversionof their algorithm,which consistedof threestages,including thepossibility to
rewire a link. Accordingto thenew algorithm,at eachtimesteponeof thefollowing operationsis
performed:

Connectivity Growth With probability " , � � ��� new edgesareadded.Oneendof anew edge
is selectedrandomly, theotherwith probability

�#�$�
	��%� �&	'�)(� � �$� � �)(*� �
This probability ensuresa preferentialattachment,sincethe possibility to attachto a high
degreenodeis larger.

Rewiring Process: With probability +,� edgesarerewired. For thisanode� is randomlyselected
and the link -.	./ � that is connectedto it is removed, replacingit with a new edge -.	0/ �21 that
connectsnode� with node354 . Node 354 is chosenwith theprobability ���
� � 46� givenabove.

NodeGrowth: With probability (879":7;+ anew nodeis added.Thenew nodehas� new edges
thatwith probability ���$�
	<� areconnectedto nodes� alreadypresentin thesystem.

Thenew SFmodelhasthefollowing parameters:�>=?���@=$"A=2+ . Thenumberof isolatednodes,��� , determinethecoreto which therestof thenodestendto connect.Thesmaller��� is, thefaster
thesenodesbecomehighly connectedandthereforemorepreferredin the process. � and " are
thedominantparameterson determiningtherichnessof the resultedtopology, hencetheaverage
degree. + determinesthe factorof local eventson thegrowth of thenetwork, anddeterminesthe
rateat whichnodescandie, i.e.,disconnectfrom thenetwork.

Our ToGend topologygeneratoris a straightforward implementationof the new scalefree
algorithmdescribedabove. It includesa simplecommandline interface,andis capableof gener-
atingnetworksof magnitudeof millions of nodeswithin seconds.Thefour parameters�>=2���@=$"A=?+
arereadfrom aparameterfile. Theoutputof theToGend generatoris afile, which includesthelist
of degreesfollowedby the list of links. The nodesareorderedaccordingto the orderthey were
created.Thegeneratorwasusedin mostof theworksdescribedin following chapters.
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Chapter 3

Global Multicast Trees

3.1 Intr oduction

Thereareseveral inhibitors to the commercialuseof multicastprotocols. While it is clear that
multicastis beneficialfor transmittingthe sameinformationto large groups,its exact gain over
unicasthasnot yet beendetermined[CS98, PST99,CA01]. Network supplierslack a fastand
efficient way to estimatethe size of large multicastgroups,and the researchcommunitylacks
reliabletreemodels.

Wepresenthereathoroughinvestigationof thestructureandcharacteristicsof multicasttrees
cut from generatedpower law topologiesandthe Internet.While theexactnatureof the Internet
topology is in debate([CCG

�
02b]), our resultsshow that the partial views we have from the

Internetobey thepower law tail of frequency-degreefoundby [FFF99a]. Theseresultswerealso
verifiedby [GT00, MMB00, CNS

�
99], who conductedfurtherinvestigations.Moreover, treescut

from theInternetandfrom thegeneratedtopologieshadsimilar characteristics.
We found that treescut from1 suchtopologiesandthe Internetobey a degree-rankandsub-

treesize-rankpower law distributions2. Wealsofoundthatthedistancedistributionof nodesfrom
the root noderesemblesa Gammadistribution, asshown previously for the Internet[CNS

�
99].

We observed thatnodeswith degreehigherthanfive tendto berarein the resultingtrees.These
highdegreenodescanalwaysbefoundin severaladjacentrings,whichresidetypically at thecore
of thenetwork, andin thenearvicinity of thetreeroot.

Our most intriguing resultfinds a linear ratio betweenthe numberof high degreenodesin
the treeandthe numberof clients3. The result is shown to be valid for treescut from scale-free
topologiesthatweregeneratedwith variousparameters,aswell asfor experimentsconductedon
the Internetitself. We further verify this ratio analytically for power law trees. Basedon the
treetopologicalcharacteristicswe found,wesuggesttheFastAlgorithm for estimatingthesizeof
largemulticastgroups.We analyzethealgorithm’s expecteddelayin theInternet,which sumsup
to lessthantheroundtrip delayfrom therootnodeof thetreeto a randomclientat theedgeof the
network.

1We usetheterm trees cut from the network to describea processwhereweselecta rootnodefrom thenetwork; a
groupof receivers;andthesubgraphcontainingall nodesandlinks thatcomprisethetreeof shortestpathsconnecting
them

2Notethatrank-degreeandfrequency-degreepower lawscanbederivedfrom eachother[MMB00].
3We noteby clientsthegroupof routersthatdirectlyattachclients.

11
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Estimatingthepopulationsizeof largemulticasttreescanimprove theperformanceof feed-
back mechanismsof protocolssuchas RTP [SCFJ96] and SRM [FJM

�
95]. Current feedback

suppressionsolutionsfor RTCP usetimersat the receivers[RS98, NB99]. Our senderbasedes-
timationproducesa muchfasterestimationthatcanbepropagatedto thereceiversandeliminate
theneedfor suchtimers.Often,feedbacksuppressionprotocolsarebasedonsimilar techniquesas
polling basedestimationalgorithms[BTW94, NB98,FT99]andthuscanuseour fasterestimation
instead.Fastestimationmayalsobebeneficialto forwarderrorcorrectionprotocols[RKT98].

Our suggestedestimationalgorithmoffers an alternative approachby usingthe topological
characteristicsto obtainanestimationonthenumberof receivers(ratherthanaspecificpopulation
count).It doesnotaggregateinformationattherouterlevel,but ratherpollsthehighdegreerouters
in themulticasttree.Our resultsshow thatpathsfrom theroot of thetreeto its receiversarevery
likely to passthroughthecoreof thenetwork; We alsoobserved thathigh degreerouterstendto
residewithin thecoreor in its closevicinity. Hence,thepolledhigh degreenodeswill becloser
to the root than the receivers they connect. The algorithmadaptsitself to dynamictopological
changes,andcan thereforereflectchangesin the sessionsize,asdoesthe populationsampling
algorithmsuggestedin [AAN02].

To the bestof our knowledge,this is the first time that the existenceof a power law in the
underlyingtopologyis leveragedto constructanalgorithm.We believe thatmoresuchalgorithms
canbedevelopedin thefuturefor avarietyof purposes.

Thesecondpartof this chapterdiscussesour findingson thetomographyof Multicast trees,
andis partof a joint work with physicistsfrom Bar-Ilan University, who have studiedthetomog-
raphyof theInternet.Weusedtheanalyticalmodelthey devisedandbackedit up with simulation
andrealnetwork dataresults.In addition,we further investigatedthesephenomenaon multicast
trees.

Thework usestheMolloy Reedgraphgenerationmethod[MR98] in conjunctionwith similar
techniquesto studythelayerstructure(tomography)of networks.Specifically, thework studiesthe
numberanddegreedistributionof nodesatagiven(shortestpath)distancefrom achosennetwork
node. It is shown analyticallythat the distancedistribution of all nodesfrom a specificnetwork
nodeconsistsof two regimes.Thefirst canbedescribedasa very rapidgrowth, while thesecond
is foundto decayexponentially. It alsoshowsthatthenodedegreedistributionateachlayerobeys
a power law with anexponentialcut-off. Theanalyticalderivationsarebackedwith simulations,
andit is shown thatthey match.

We also study shortestpath treescut from scalefree networks, as they may representthe
structureof multicasttrees.We investigatetheir layerstructureanddistribution. We show thatthe
structureof a multicasttreecut from a scalefreenetwork exhibits a layerbehavior similar to the
network it wascut from. Wevalidateour analysiswith simulationsandrealInternetdata.

As notedby Lakhinaetal [LBCX03], it is asignificantchallengeto testandvalidatehypothe-
sesaboutthe Internettopologyin a lack of highly accuratemaps.Theanalysisresultssuggesta
simplelocal testfor thevalidity of thepower law modelasanexactmodelof theInternet.Indeed
ourfindingsshow thatthereis agoodagreementof theempiricalandanalyticalresults.Theslight
differencewehadcanbeattributedto biasin datacollectionandto secondorderphenomenasuch
as,degreecorrelation,hierarchies,andgeographicalconsiderations.
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Name Type Parameters No. of Nodes Avg. Nodedegree
VS generated B:�C(&D$"FEHG:IJG � GLK�IJG � K 10000 ( �NM&M 7O �NM&P
IS generated B:�RQ'D$"FEHG:IJG � GLK�IJG � K 10000  �NM&M 7TS �NM
LS generated B:�U VD$"FEHG:IJG � GLK�IJG � K 10000 K �NM&P 7�(*Q � G
W

Big IS generated B#�X( � K'=YQ'D$"Z�RG � ( 50000;100000  �  ,W � W
BL[1,2] realdata – Internet 3.2 5

LC realdata – Internet 3.2 6

Table3.1: Typeof underlyingtopologiesused

3.2 Empirical Characteristicsof Multicast Trees

This sectiondetailsour findingson thestructureof multicasttreescut from generatedpower law
topologies,as well as the Internet. Thesefindings are the basisfor the estimationmethodwe
presentin Section3.3,andareof interestin their own right.

Little work hasbeendoneon modelingand characterizingmulticast trees. Chalmersand
Almeroth [CA01] investigatedthe branchingcharacteristicsof Internet multicast treeson the
MBone and their impact on multicastefficiency. They found that multicast treestend to have
low averageinternaldegreethat grows logarithmicallywith the numberof receivers in the tree,
anda maximumheightof approximately23 nodes.They alsofounda high frequency of ”relay”
nodesthat have a degreeof two throughoutthe tree. In previous work, PansiotandGrad,who
constructedtreesfrom a graphbasedon true routing pathsin the Internet,also showed a high
frequency of relaynodesin thetreegraphs[PG98].

3.2.1 Topologyand TreeGeneration

Ourmethodfor producingtreesis thefollowing. First,wegeneratepower law topologiesbasedon
theNotre-Damemodel[AB00]. Themodelspecifies4 parameters:BL� , B , " and + 4. WhereBL� is the
initial numberof detachednodes,and B is theinitial connectivity of anode.Whena link is added,
oneof its endpointsis chosenrandomly, andtheotherwith probabilitythat is proportionalto the
nodesdegree. This reflectsthe fact that new links often attachto popular(high degree)nodes.
The growth model is the following: with probability " , B new links areaddedto the topology.
With probability + , B links arerewired, andwith probability ([7>"�7�+ a new nodewith B links is
added.Note that B , " and + determinetheaveragedegreeof the nodes.We createda vastrange
of topologies,but concentratedon severalparametercombinationsthatcanberoughlydescribed
asvery sparse(VS), Internetlikesparse(IS) andlesssparse(LS). Table3.1summarizesthemain
characteristicsof thetopologiesusedin this paper.

From theseunderlyingtopologies,we createthe treesin the following manner. For each
predeterminedsizeof clientpopulationwechoosearootnodeandasetof clients.UsingDijkstra’s
algorithmwe build theshortestpathtreefrom theroot to theclients. To createa setof treesthat
realisticallyresembleInternettrees,we definedfour basictreetypes. Thesetypesarebasedon
the rank of the root nodeand the clients nodes. The rank of a nodeis its location in a list of

4Thenotationsin [AB00] are \^] , \ , _ and ` , respectively.
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descendingdegreeorder, in which the lowestrank,one,correspondsto thenodewith thehighest
degreein the graph. For the caseof a treerootedat a big ISP site, we choosea root nodewith
a low rank, thusensuringthe root is a high degreenodewith respectto theunderlyingtopology.
Then,we eitherchoosetheclientsashigh rankednodes,or at random,asa controlgroup. Note,
thatdueto thecharacteristicof thepower law distribution,a randomselectionof a rankhasahigh
probabilityof choosinga low degreenode.Thenext two treetypeshaveahighrankedroot,which
correspondsto a multicastsessionfrom anedgerouter. Again, thetwo typesdiffer by theclients
degreedistribution,which is eitherlow, or pickedat random.

The tree client populationis chosenat the range aNK
G'=?WLG&G&Gcb for the 10000nodegenerated
topology, adK
GV=e(@G&G&G&Gcb for the 100000nodegeneratedtopology, and adK
G&GV=fK
G&G&G&Gcb for the treescut
from real Internetdata. For eachclient populationsize,14 instancesweregeneratedfor eachof
thefour treetypes.All of our resultsareaveragedover theseinstances.Thevarianceof theresults
wasalwaysnegligible.

Thereare two underlyingassumptionsmadein the treeconstruction. The first, is that the
multicastrouting protocoldeliversa packet from the sourceto eachof the destinationsalonga
shortestpathtree. This scenarioconformswith currentInternetrouting. For example,IP packets
areforwardedbasedon the reverseshortestpath,andmulticastroutingprotocolssuchasSource
SpecificMulticast [HC02] deliver packetsalongthe shortestpathroute. In addition,we assume
thatclientdistribution in thetreeis uniform,ashasbeenshown by [PST99, CA01].

3.2.2 TreeCharacteristics

Degree-Rankand Size-RankPower Laws

Our resultsshow that treescut from a power law topology obey a similar power law. Specif-
ically, we comparedthe degree-frequency power law found by [FFF99a]. Figure 3.1 shows in
log-logscalethedegreefrequency plot for 10000nodestopologygeneratedwith theparametersetBJ�g�ihV=?B��X(&=
"��RG �  '=?+j�iG . Thedottedlineshere,andin therestof the linearfit figures,mark
the95%confidenceinterval.

Figure3.2 shows the sameplot for a multicasttreewith 500 low degreeclientsanda root
with a high degree. In Table3.2 we summarizethe bestlinear fit parametersin a log-log scale
for all treesgeneratedfor the topologyset BL�8�UhV=fB:�RQ'=$"k�iG � (&=?+l�UG . It canbe seenthat the
power law holdsevenfor very small trees,e.g.,for a treewith 50 multicastclientsthathason the
averagearound200nodes.Thesamephenomenonappearsin all thetreescut from all topologies,
regardlessof theway therootandtheclientnodeswerechosen.

Thesefindingsconformwith thefindingsof [CA01, PG98]whofoundavery largefrequency
of relaynodesin thetrees,i.e.,nodeswith adegreeof two. In apowerlaw relationshipof frequency
anddegree,thefrequency of two degreenodesis thehighestin thetree.Leafnodesaredetermined
by clients,andareasubsetof theclients.

We alsofound that the distribution of degreesat a specificdistancefrom the root, i.e., in a
certaindepthring, alsoshowedapower law distributionof degree-rank,but with differentslopes.

Given the above findings, it is importantto note the following. Cohenet al. [CEbAH00b]
showed that the maximal nodedegreein a graphof � nodesis proportional,for Internet-like

5basedon [KRS00]
6basedon [BC99]
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topologies,to approximatelythe squareroot of the numberof nodes. More precisely, m�n�oqpsr� tuwv t , where x is the exponentof the degree-frequency power law of the topology. Hence,all
resulteddegree-frequency graphsof finite sizesexhibit a cut-off at the tail. This holds true for
partialviewstakenfrom theInternet,with thecut-off beingaresultof thepartialityaswell asfrom
thefinite sizeof theInternetitself.
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Figure 3.1: Frequency of degrees
for a 10000 node topology withBJ�g�ihV=?B��X(&=
"��UG �  V=?+l�iG .
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Figure 3.2: Tree with 500 low degree
clients,high degreeroot. Cut from topologyBL�g�ihV=fB#�X(&=$"k�UG �  '=?+l�iG .
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Figure 3.3: Sub-tree size CCDF distribution, for a 2000 node tree cut from topologyBL�8�RhV=fB��iQ'=$"k�RG � (&=?+j�iG .
Thesecondpower law we foundfor thetreesis of frequency andsizeof thesub-treesin each

tree. Namely, theself similarity holdsnot only for thedegreedistribution in thetree,but alsofor
its innerstructure.Figure3.3showstheexcellentfit of thecomplementarycumulativedistribution



16 CHAPTER3. GLOBAL MULTICAST TREES

functionof thesub-treesizesof a 2000Nodetree. The tree,with a high degreeroot, is cut from
a 10000nodetopologywith theparameterset BL�y�UhV=fB#�zQ'=$"k�iG � (&=?+{�iG . Thesizedistribution
differs from thedegreedistribution in that thebig sub-trees,althoughalmostsimilar in size,may
differ by oneor two nodes,which is negligible comparedto their overall size. Thuswe give the
ccdf graph,which plots the probability that the observed valuesaregreaterthanthe ordinate. It
canbeseenthatthefit to apower law is over99%.Theslopecomputedfor thePDFgraphwithout
thetail, resemblestheoneof thedegreedistribution.

B " Y ACC
topology 2 0.1 -2.50X+ 4.49 0.9721

High degreeroot, low degreeclients Rootandclientschosenrandomly
Receivers Y ACC Y ACC

50 -2.76X+ 2.25 0.9337 -3.27X+2.68 0.9752
100 -2.64X+ 2.42 0.9613 -2.96X+2.71 0.9611
300 -2.50X+ 2.73 0.9730 -2.64X+2.85 0.9717
500 -2.58X+ 2.97 0.9732 -2.58X+2.96 0.9654
750 -2.57X+ 3.12 0.9825 -2.59X+3.09 0.9609
1000 -2.56X+3.23 0.9785 -2.59X+3.21 0.9728
1500 -2.64X+ 3.45 0.9812 -2.56X+3.32 0.9741
2000 -2.58X+ 3.52 0.9858 -2.60X+3.44 0.9620
2500 -2.65X+ 3.66 0.9817 -2.63X+3.57 0.9731
3000 -2.66X+3.75 0.9851 -2.58X+3.57 0.9670
4000 -2.70X+ 3.90 0.9825 -2.64X+3.73 0.9611

Table3.2: Linearfit of degreesandfrequencies

Per DegreeDistanceDistrib ution

Cheswickat al. [CNS
�

99] foundthatthedistribution of thenumberof nodesat a certaindistance
from a point in theInternetis similar to theGammadistribution. Our resultsshow that thedistri-
bution of distancefrom theroot of nodesof a certaindegreeseemscloseto a gammadistribution,
althoughwedid notdetermineits exactnature.Figure3.4showsthedistributionof thedistanceof
two to five degree,leaf andhigh degreenodes,wherehigh degreenodesarenodeswith a degree
six andhigher. In this casetheroot is a low degreenode,andthetreehas1000low degreeclients.
As canbeseen,thehigh degreenodestendto residemuchcloserto theroot thanthe low degree
nodes,andin adjacentrings. In this example,mostof themarein thesecondto forth depthrings
aroundtheroot.

This phenomenonwasevenmoreobviouswhentheroot wasa high degreenode.We found
thefollowing observationwith regardto power law generatedtopologies.Thehigh degreenodes
seemto form a ‘core’ with a low diameter(aroundfive hopsfor treescut from the generated
topologies,andsevenfor treescut from Internetdata)andmostof theothernodesin thenetwork
arenot distancedmorethanthreeto fivehopsaway from this core.Subramanianet al. [SARK02]
observedasimilarphenomenonat theInternetAS topology, althoughobtainedfrom directedBGP
routingtables.



3.2. EMPIRICAL CHARACTERISTICSOFMULTICAST TREES 17

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400
Distribution of Degrees vs. Distance from the Root

Distance from root

F
re

qu
en

cy
 o

f d
eg

re
es

Leaf nodes
Degree two nodes
Degree three nodes
Degree four nodes
Degree five nodes
High degree nodes

Figure3.4: Distribution of thedistanceof high degree,two to five degreeandleaf nodesin a tree
cut from topology BL�y�UhV=fB:�C(&=$"k�iG �  V=?+j�RG

Thedistribution of client distancesfrom thetreeroot is givenby the leavesdistancesin Fig-
ure 3.4. Note that the longestpath to a client is the treeheight. Our resultsshow that the less
connectedtheunderlyingtopology, thetaller is theaveragetreecut from thetopology.

Empirical Resultsfr om Inter net Data

We verify theabovefindingswith resultsobtainedfrom realInternetdata.Our resultsareverified
ontwo differentdatasets.Thefirst is anInternetpartialview at therouterslevel,obtainedfrom the
LucentInternetMappingProject[BC99]. We usedthis datasetastheunderlyingtopology, from
whichwecut treesin thesamemannerdescribedin Section3.2.1.Wedenotethis topologyby LC.

For theseconddatasetwe usetheclient populationof www.bell-labs.com which is a
mediumsizewebsite.This mayrepresentthepotentialaudienceof amulticastof a programwith
scientificcontent(suchasthe livecastof the INFOCOM conference).From this settwo lists of
clientswereobtained,andtraceroutewasusedto determinethepathsfrom theroot to theclients.
It is importantto note,thatthefirst threelevelsof thetreeconsistof routersthatbelongto thesite
itself, andthereforemight be treatedasthe root point of the tree,althoughin thesegraphsthey
appearseparately. Wedenotethis treeastheBL tree.

Figure3.6 shows the frequency of degreesfor a 10000nodetreecut from theLC topology.
Thetree,which is anaverageof 14 instances,exhibits a cleardegree-frequency power law with a
goodfit7. Thetreewaschosenwith ahighdegreeroot,andlow degreeleafnodes.Thevarianceof
theinstancesof eachtreewasnegligible,andthesameresultwasobtainedfor eachof thegenerated
trees,with aslow as1000clientsandashighas50000.Figure3.23showsthefrequency of degrees

7We fit the datafor the pointsabove the line Y=0 which captureall the degreesthatappearon average,at least,
oncein every tree. To extendthe fit below this line we needmoretrees. If we want to get rid of the noisy tail all
togetherweneedto generate,at least,anorderof |2}Y~ treesasourfit predictsthatthehighestdegreepointswill appear
on theaveragein lessthanoneof every |�}�� trees.
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for the BL tree. The linear fit of the log-log ratio is excellent,with a correlationcoefficient of
0.9829.

Figure3.5 shows the ccdf of the sub-treesizesof a treewith 7000clientscut from the LC
data.Theroot is a high degreenode,andtheclientsarelow degreenodes.Note,thatevery point
in thegraphis theresultof anaverageof 14 instancesthereforethetail wasomittedfrom thefit.
Thesize-rankpower law appearsin all thetreescut from this data.
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Figure3.5: Sizedistributionof a7000clients
treecut from theLC data
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Figure3.6: Frequency of degreesof a 10000
nodetreecut from theLC Internetdata.

Figure3.8 shows thedistribution of thedistanceof two degree,leaf andhigh degreenodes,
for a 15000client tree,cut from theLC data.Themajority (90%)of thehigh degreenodesreside
within a distanceof eighthopsfrom theroot, while theclientsaredistancedup to 18 hopsfrom
theroot.
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Figure3.7: Frequency of degreesof the BL
Internettree.
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3.3 Receiver Group SizeEstimation Method

While all of theaboveobservationsareinterestingandhelpin ourunderstandingof multicasttrees,
we wereintriguedwhetherwe canuseany of this knowledgeto evaluatethe sizeof a multicast
tree.We comparedthedegreeof thenodesin thetreeto their degreein thetopology, andfocused
on thehigh degreenodes.Interestingly, we foundthatwhile somenodeshada treedegreethat is
significantlysmallerthantheir degreein theunderlyingnetwork topology, othernodesseemedto
have a treedegreecloseto their network degree.We thencomparedthe frequency of nodeswith
degree� andabove(highdegreenodes)to thenumberof clientsin thetree,andfounda linearratio
with a correlationcoefficient of not lessthan0.99. We term this ratio the HCN	 ratio (hubs-to-
client numberratio),anddefineit asfollows: Let ��	 bethegroupof routers,or hubs,with degree�Z� � in thetree;Let � bethegroupof receivers,or clients,thatthetreespan;Than,

������	�� ��	� �
Next, we outlineour findingson HCN	 ratio for bothsimulatedtreesandtreescut from the

realInternet.Weproceedby giving amathematicalanalysisof our resultsfor power law trees.

3.3.1 Empirical Findings

We have foundthatanHCN� ratio of 1:16is a verygoodpredictorfor treescut from theInternet,
and most generatedtopologies. Figure 3.9 shows the HCN� ratio in treescut from a 100000
nodetopology. Thetopologyparametersare BL�y�UhV=fB:�C( � K�=$"k�iG � (&=?+j�RG , andtheroot nodeof
all treesis a high degreenode. The linear ratio is obtainedafter gatheringthe informationfrom
not more thanfive depthrings aroundthe root, wherethe 3�7U��� depthring aroundthe root is
comprisedof all nodesat distance3 hopsfrom theroot. We plottedthefrequency of high degree
nodesobtainedafter scanningthree,four, five, six andninedepthrings aroundthe root. As can
be seenfrom the graphin Figure3.9, the entire informationwasobtaineduntil the sixth depth
ring - the following rings did not addany more information. The HCN� ratio was found to be
16. Figure3.10shows theexcellentfit of theHCN� ratio with a correlationcoefficient of 0.9998.
Whenweplottedthedatafor treescut from this topologywith a low degreeroot,weobtainedvery
similar results.Theratio wasagain16,with a correlationcoefficient of 0.9996.However, another
depthring wasneededto obtainaccurateresults,sincetherootwasnotascloseto thecoreof high
degreenodesasin thepreviouscase.

We verified our resultsusingactualInternetdataon the client populationof the Bell-Labs
websitedescribedin Section3.2,andon treescut from thedatafrom Cheswick’s LucentInternet
mappingproject,notedLC, alsodescribedthere. The Bell-Labsclient populationdatacontains
two log files. Thefirst, denotedBL1, has10897clientsandthesecond,BL2, has7356.Wecreated
subsetsof clientsby randomlyselectingentriesfrom thelog files,andcut thecorrespondingtrees
for thesesubsetsfrom the original trees. Figure3.11 shows the ratio betweenthe 16 predictor
and the actualnumberof clients in the generatedtrees. For BL1 the ratio was 1: (@h �2� ��� with a
fit of 99.75%,for BL2 the ratio was1: (wh�� � ��� with a fit of 99.72%. For client populationslarger
thanroughly1500clientsthepredictorof 16 givesanexcellentestimate- within 9% of theactual
numberof clients.
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The LC datagivesa partial view of the Internetat the router level with morethan110000
routers.Fromthis topology, wecut treesin thesamemannerdescribedin Section3.2.Again,each
result is averagedover 14 instances.Figure3.12shows the ratio betweenthe numberof clients
andhigh degreenodes,comparedwith thepredictedvaluefrom thesimulations,16. Theaverage
valueof theratio is 15.89,with a standardof deviation of 0.9. Hence,a 16 predictorfor theratio
givesa verygoodestimationfor this dataalso.

For thegeneratedtopologiesandtheInternetexperiments,ourresultsarelessdefinitefor very
small trees.We foundthatHCN� ratio=16is accuratewhenclient populationis at least0.1%the
sizeof theunderlyingtopology. Nevertheless,for theInternet,our experimentsyieldedverygood
resultsfor groupsizesof 1500clientsandmore. Note thatwhenthegroupsizeis smallenough,
exactcountingof theclientscanbedonewith reasonablecost.
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While a predictorof 16 wasshown to bea very goodpredictorfor largegroups,it becomes
lessscalablewhenthegroupsizeis extremelylarge. For example,in thecaseof a multicasttree
with a million clients,the expectednumberof high degreenodesis 62500. A goodsolutionfor
this problemis to increasethedegreeof thesamplenodes.For example,in thecaseof very large
groups,countingthenumberof nodeswith degreehigherthanninewill produceanaccuratepre-
diction, with a ratio of 1:48. Note that samplingnodeswith a larger degreegivesus a coarser
estimation.Ourexperimentsshow thatwhenwesamplenodesof degreetenandabovetheestima-
tion is accurateonly for groupsizesof atleast1.5%thesizeof theunderlyingtopology. Remember
thatsamplingnodesof degree6 andabove yieldsa goodestimationfor treesassmallas0.1%of
thenetwork.

3.3.2 Analytical derivation of HCN � ratio

In this section,wederive theHCN� ratio for treesin power law topologies.Our experimentshave
shown thatthegroupof leaf nodesof a treecloselyapproximatesthetree’s client population.For
simplicity wetaketheexponentof theunderlyingtopologydegreeprobabilityinsteadof thetree’s,
but thesearefairly close.

Givena treewith � nodes,we denoteby � thenumberof leaf nodesandby �� thenumber
of non leaf nodes. Let �� be the group of non leaf nodes. The averageinternal degreeis de-

fined by: �>� �Z���A���� ��� where
� �

is the degreeof node 3 . But by its definition it alsoholdsthat� �f� �� � � �zQ:��!�T�;7 (^¡¢Q���!�£� , and
� �f� �� � � �i�¤� ��¥7�([¡z�¤� �� . Given all the above

wecanwrite �O�U�§¦ �{7�Q�{7 ( � (3.1)

whichholdsfor any tree.
Giventhat "5	 is theprobabilityto find anodewith degree� in thetreewecanrewrite theabove

expressionfor �
�j� ((y7�" � ¦

�¨ 	ª©5« �A¦?"V	 � (3.2)

andtheprobabilityconservationequation

�� � �¨	ª©5« "5	��X( � (3.3)

Substituting(3.1)in equations(3.2)and(3.3),andgiventhatthedegreedistributionobeysthe
power law "5	¬�R­g¦@�q®�¯ , wegetthat:

�l�¥° �° « D ­±� �
° � ¦��²�^7 (*� � (3.4)

Where ° � � � �	ª©5« �³®µ´6¯
® �
¶ and ° «g� � �	·©5« �³®�¯ .TheHCN� ratio is definedby:

�¸�¹� ® �� � � 	ª© �	ª© � "V	º¦*�� � (3.5)
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Plugging(3.1)and(3.4) in equation(3.5)yields

�¸�¹� ® �� � �³(±7 °�» �¼¦J�²�^7�(*��^7TQ 7 ( � (3.6)

Where °�» � � 	ª©5½	ª©5« �q®�¯ .

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4
14.5

15

15.5

16

16.5

17

17.5

18

18.5

19

alpha

H
C

N

The topology power law exponent vs. the HCN ratio
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Figure 3.13 shows how the HCN� ratio in equation(3.6) changeswith x . For  � x � W

the HCN� ratio changesbetween14.5and19. Hence,a precisevaluefor the tree’s x will yield
an excellentevaluationof the numberof leaf nodesin the tree,andhencea goodestimationto
theclient population.Nevertheless,our resultsshow that for theshortestpathtreescut from the
Internet,aswell asfrom mostof our generatedtopologies,HCN � ratio = 16 givesa very good
estimation.Understandingtheprecisecorrelationbetweenour empiricandanalyticalresultsmay
leadto a deeperunderstandingof theInternettopology, andis thesubjectof our next work.

3.4 Estimation Algorithms

3.4.1 A BasicAlgorithm

Thefindingsin theprevioussectiongive riseto analgorithmfor estimatingthenumberof clients
in amulticasttree,in whichthenumberof nodeswith six or morechild nodescanbecounted.The
mainidea,givenformally in Figure3.14,is thattherootmulticastsa feedbackrequest,¾j¿w+ , along
themulticasttree. Therequestcarriestheparameter

�
, which indicatestheminimal nodedegree

thatneedsto reportback.Suchanode,uponreceiving therequest,replieswith aUDP ¾j¿2" packet
sentdirectly to the root. The root waits for a time long enoughto ensurethat most repliesare
accepted.Theroot thencountsthenumberof differentrepliesit receives,andby multiplying with
theappropriatecoefficientproducestheestimate.
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Algorithm 1 (Basic)
1. Send¾j¿w+V� � �
2. ÀÂÁ G
3. ActivateTimer� ��Ã � t �When ¾j¿2" arrives

4. À%�Ä�
WhenTimeOut�

5. return(­ � ¦@À )

Figure3.14:A formal descriptionof thebasicalgorithmfor therootnode.

Notethatfor theInternet,Ã � t , thetime therootwaitsfor therepliesto arrive,shouldbequite
large. Specifically, Ã � t needsto belong enoughsuchthatthevastmajority of slow responsesdue
to roundtrip andprocessingdelaysarenot lost. (We assumethat Ã � t of severalsecondssatisfies
theserequirements.)

3.4.2 FastAlgorithm

The FastAlgorithm, formally presentedin Figure3.15, is motivatedby theneedto obtaina fast
estimationon the client population. We would like to determinethe terminationrule in a way
that guaranteesthat a significantportion of the ¾j¿2" messageshasalreadyarrived. In the basic
algorithmwe achieve this by settinga very large timeout. Here,we monitor the ¾j¿2" message
arrival processto achieve this goal.

We start the algorithmwith an initial sampling period, Ã � t , whosepurposeis to enablere-
sponsesfrom thehigh degreenodesin the � -neighborhoodof theroot to arrivebackat theroot. If
by theendof theinitial samplingperiodtheroot receivesno replies,it assumesthegroupis either
very small or inactive. If the root receives ¾j¿2" messages,a shortersamplingperiodtermedthe
iterative sampling period is activatedrepeatedlyuntil the terminationconditionis satisfied.The
purposeof theiterativesamplingperiod,notedÃ �qÅ , is to enablethealgorithmto convergeto agood
estimatewithin ashorttime.

Thereare several optionsto determinea terminationcondition basedon the ¾j¿2" message
arrival process.We canchoosea thresholdandstopwhenthe messagearrival ratedropsbelow
it. This solution,however, is not immuneto network jams,andis very sensitive to thethreshold’s
value. Another option is to stop when the rate keepsdroppingfor several successive iterative
samplingperiods.In thiscase,thealgorithmis verysensitiveto thelengthof theiterativesampling
period.If it is tooshortthealgorithmmightterminatetooearlywith alargeestimationerror. Onthe
otherhand,alongiterativesamplingperiodmightcausethealgorithmto runlongerthannecessary.

Thus,we deviseda terminationrule (seeline 12 in Figure3.15)thatcanself-tuneaccording
to the arrival process.Underreasonableconditionsit will guaranteeterminationwithin a preset
estimationerror. Thealgorithmterminateswhenthenumberof repliesreceivedat theroot during
oneof theiterativesamplingperiodsdoes not improvetheestimationby morethan ÆÄÇªÈ , whereÆÄÇªÈ
is theestimationerror. For example,settingthe iterative samplingperiodto theaveragetwo-hop
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Algorithm 2 (Basic)
1. Send¾j¿w+5� � �
2. ÀÂÁ G
3. À � �%Á G
4. ActivateTimer� �<Ã � t �WhenTimeOut�
5. if À � �%�iG then

6. return(0)

7. else

8. ActivateTimer«@�<Ã �qÅ �
9. ÀÂÁ À � �

10. À � �%Á G
WhenTimeOut«
11. ÀA�z�UÀ � �
12. if À � � � Æ�ÇªÈ^¦wÀ
13. return(­ � ¦@À )

14. else

15. ActivateTimer«@�<Ã �qÅ �
16. À � �%Á G
When ¾j¿2" arrives

17. À � �e�Z�
Figure3.15:A formaldescriptionof theFastAlgorithm for therootnode.

delayand the initial samplingperiod to QcÃ , causesthe algorithmto terminatewhenthe replies
gatheredfrom the Ãi�¢� -th depthring, at the � th iterative samplingperiod,do not improve the
estimationby morethan ÆÄÇªÈ . Underreasonablenetwork conditions,abouthalf of therepliesfrom
this depthring reachthe root nodeby the end of the � th iterative samplingperiod. Thus, the
terminationconditionenablesthealgorithmto stopwhenit identifiestheendof theadjacentdepth
ringsaroundtheroot.

PerformanceEvaluation of the FastAlgorithm

In thissectionweestimatethedelayof theFastAlgorithm anddefinetheaveragevaluesfor Ã � t andÃ � Å . Thedelayof apacket traversingasinglelink,
�
, is comprisedof two components:

� �iÉÊ�>+ ,
where É is the fixed minimum link delayand + is a randomvariablerepresentingthe queuing
delay, which is exponentiallydistributed. We would like to derive thedistribution of thequeuing
delayof apacket traveling � links. Thedensityfunctionof thedelay,

� È������ , is aconvolutionof the
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densityfunctionsof +5�<�¼7T�µÉÄ� , � times:� È������%�U+V����7T�µÉZ�ÌËg+V���Í7O�ºÉÄ��Ë^¦@¦@¦�+V���¼7��µÉZ� � (3.7)

Let usdefine,for simplicity: Î �)�¼7T�µÉ � (3.8)

Thus,
� È�� Î � is agammarandomvariablewith parameters� and Ï . Namely:

� È�� Î �%� Ï È Î È ® � ¿Ð®�ÑYÒ�$��7�(*�ÔÓ � (3.9)

WhereÏ�® � is theaveragequeuingdelay. Assumingthatall highdegreenodesresidewithin � hops
from the root nodeof the tree,andlet theprobabilityof a high degreenodeto resideat distance� from theroot be "µÈ � �$�º� , from Equations(3.7) and(3.9) we get that theprobabilitydistribution
functionof the total delayis:

m>� Î ��� È¨ 	ª©5� m:ÈJ�
Î �<"µÈ � �����%� È¨	ª©5� Ï

	 Î 	ÖÕ �²�2=2� Î ���� Î � 	 "µÈ � �²��� � (3.10)

WhereÕ �q¦0=e¦·� is theincompletegammafunction[Knu97, sec.1.2.11].Pluggingback(3.8)in (3.10)
wegetthatthefinal form of thetotal delayprobabilitydistribution functionis:

m>�<���%� È¨ 	·©5� Ï
	ÖÕ ���2=?�?����7T�µÉZ���� 	 "µÈ � ����� � (3.11)

Thevaluesof Ã � t and Ã �qÅ needto beestablishedin away thatwill ensurethatthemajorityof
therepliesaregathered.For examplewecanselectÃ±×� t to thevalueof � thatminimizesm>�<���%�RG � K ,
meaningthatensuresthatontheaveragewewait for half of therepliesto bedonewaitingatqueues.

Alternatively we shouldchose Ã � t to be long enoughfor eachnodeto at least reachthe
core, preferablyits center. Let us defineby �wØ the estimatedradiusof the core, in which we
haveestablishedthatmosthighdegreenodesreside.Let usdefineby �eÙ theaveragedistancefrom
anedgenodeto thecore.Then,

Ã � t �RQ5�²�wØ��T�eÙ?���
Éz�XÚ+&� (3.12)

Thusensuringthat Ã � t is sufficient for the requestto reachthecorevicinity andfor someof the
repliesof highdegreenodesto arrivebackto theroot. In thesamemanner, setting:

Ã � Å �iQ5�²Éz��Ú+
� (3.13)

yieldsaniterativesamplingperiodof onehoproundtrip delay, thusenablingthealgorithmto ob-
tainmostof theinformationfrom thenext hop.Fromourexperiments,asdescribedin Section3.2,
wediscoveredthatthevaluesof �wØÍ�iS and �eÙ%�ih aresufficient for today’s Internet.

In Table3.3 we summarizethe simulationresultsof the FastAlgorithm. We denoteby
Î

the averageonehop delay. The hop delay is eithernormally distributed(ND) or exponentially
distributed(ED). The lengthof the initial samplingperiod is 8

Î
, andthe lengthof the iterative

samplingperiodis 2
Î
. Theresultsin thistableareobtainedfor treescutfrom topology BL�8�ih'=fB��
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(&=$"k�iG �  V=?+l�UG , andtheFastAlgorithm wasexecutedwith anestimationerrorof Æ�ÇªÈj�RQ %. All
thehighdegreenodesin thegeneratedtreesresidewithin fivedepthringsfrom theroot. Timeunits
arein [

Î
]. Notethatdueto thelongtail of theexponentialdistribution,aniterativesamplingperiod

of 2
Î

is shown to betoo short,sincetheexponentialcaserepresentsa burstynetwork. However,
whenthedelayis normallydistributedwith variance

Î
, thealgorithmcountsall of thehighdegree

nodesin thetreewithin lessthan (*Q Î time units,which is lessthanthemeasuredaverageclients’
roundtrip delayof (@h Î for thesetrees.

Clients 300 500 750 1000 1500 2000 3000 4000
ND prediction 304 512 736 992 1472 2000 2992 4000
ND time 10.0 12.0 10.0 10.0 10.0 10.0 12.0 12.0
ED prediction 256 400 672 960 1456 1920 2736 3856
ED time 12.0 12.0 18.0 14.0 20.0 18.0 16.0 20.0

Table3.3: FastAlgorithm timeandprediction

3.5 Discussion

Our results,which show a strongcorrelationbetweenthe numberof high-degreenodesandthe
numberof clients,hold for all treetypesover all testedpower laws topologies.As statedbefore,
all of the resultsobtainedfrom the simulationsas well as the LC datawere averagedover 14
instances.Whendegreessix andhigherarechosen(i.e.,

� �Ûh ), we foundthat (@h is a very good
predictorin theaveragecase.In thissectionwediscusstheaccuracy of thisresultfor specifictrees.

We examinedthe specificpredictorsof the 14 instancesof a 7000clientstreecut from the
LC data. The smallestratio was15.52and the largest16.78,yielding a maximal error of 5%.
Figure3.16showsourresultsfor 14treesthatwerecut from a100000nodetopology. Theroot is a
randomlychosenhigh-degreenodeandtheclientsarechosenuniformly. Thefigurelegenddetails
for eachof thetreesits specificslope,i.e., its averageratio betweenthenumberof clientsandthe
highdegreenodesoverall points.It alsospecifiesfor eachtreethemaximalandminimaldeviation
points,i.e., theratioat thepointswhicharefurthestfrom theaveragefor thattree.Wecanseethat
theslopesof mostof thetreesarewithin 10%of theaveragepredictor. This phenomenoncanbe
seenthroughoutthedifferenttreetypes.Theworstdeviation from theaveragepredictorof aslope
was12.5%.A few pointsdivergeupto 30%from theestimation,yet thisshouldbeexpected,given
thestatisticalnatureof theestimationmethod.

We foundthatthereliability of thepredictionincreaseswith thegroupsize.Accordingto our
findings,describedin Section3.3,thefoundpredictoris accurateonly for mediumto largegroups.
Whengroupsizeexceeds1000clients,theaveragepredictoryieldsverygoodestimations,with not
morethana10%error. For thegeneralcase,for all groupsizes,thevastmajorityof theindividual
testpointsarewithin a marginal limit of 15%. For our analysison Internetlogs the estimation
errorwasnomorethan15%in almostall cases.Thesingleexceptionwasfor agroupof size1153,
which exhibiteda22%estimationerror.

We have found that instancesof a treewith the sameroot nodetendto have a morestable
behavior. Thus,arootcancalibratetheestimatorfor its treesby countingthenumberof clientsand
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Figure3.16:Clientsvs. highdegreenodesfor eachof the14 instancesof thetree

thenumberof high degreenodeswhenthe treesarereasonablysmall,andusethemoreaccurate
estimatorwhenthetreesgrow. Figure3.17demonstratesthis for 14 treesthatweregeneratedwith
thesameroot. It is clearthatthebestestimatorfor thesetreesis around15andthedeviation is less
than4% (comparedwith 12.5%for thegeneralcase).Theindividualpoint estimatesherearealso
muchbetter- within 16%of thecalibratedestimate,15.
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Figure3.17:Clientsvs. highdegreenodesfor eachof the14 instancesof thetree
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3.6 Resultson the Tomography of Multicast Trees

3.6.1 Background

Graph Generation

Recentstudieshaveshown thatmany realworld networks,and,in particular, theInternet,arescale
freenetworks. That is, their degreedistribution follows a power law, Ük�
�5�8�C­e�µ®�Ñ , where ­ is an
appropriatenormalizationfactor, and Ï is theexponentof thepower law.

Several techniquesfor generatingsuchscalefree graphswere introduced[BA99, MR98].
Molloy andReedsuggestedaninterestingconstructionmethodfor scalefreenetworksin [MR98].
Theconstructionwaspartof a modeldescribingan “exposure”processusedto evaluatethesize
of thelargestcomponentin a randomscalefreenetwork. We termthismodeltheMR model. The
constructionmethodis asfollows. A graphwith a given degreedistribution is generatedout of
theprobabilityspace(ensemble)of possiblegraphinstances.For agivengraphsize � , thedegree
sequenceis determinedby randomlychoosinga degreefor eachof the � nodesfrom thedegree
distribution. Let usdefine Ý asthesetof � chosennodes,� asthesetof unconnectedoutgoing
links from thenodesin Ý , and Þ asthesetof edgesin thegraph.Initially, Þ is empty. Then,the
links in � arerandomlymatched,suchthatat theendof theprocess,� is empty, and Þ contains
all thematchedlinks ßRàá=?âÂã , àá=?âÂEäÝ . Throughoutthis paper, we referto thesetof links in �
asopen connections.

Note, thatwhile in theBA modelthegraphdegreedistribution functionemergesonly at the
endof theprocess,in theMR modelthedistributionis known a-priori, thusenablingusto useit in
our analysisduringtheconstructionof thegraph.

Distrib ution Cut-Off

Recentwork [CH03,CbAH02], hasshown thattheradius8, � , of scalefreegraphswith Q:ß�Ï¸ß  
is extremelysmall andscalesas �>ræå0ç&è%å.ç&èé� . The meaningof this is that even for very large
networks,finite sizeeffectsmustbetakeninto account,becausealgorithmsfor traversingthegraph
will getto thenetwork edgeafterasmallnumberof steps.

Sincethescalefreedistributionhasno typicaldegree,its behavior is influencedby externally
imposedcutoffs, i.e. minimum andmaximumvaluesfor thealloweddegrees,� . The fractionof
siteshaving degreesabove andbelow the thresholdis assumedto be G . The lower cutoff, � , is
usuallychosento beof order ê��³(*� , sinceit is naturalto assumethat in realworld networksmany
nodesof interesthaveonly oneor two links. Theuppercutoff, Æ , canalsobeenforcedexternally
(say, by themaximumnumberof links thatcanbephysicallyconnectedto a router).However, in
situationswhereno suchcutoff is imposed,we assumethatthesystemhasanaturalcutoff.

To estimatethenaturalcutoff of a network, weassumethatthenetwork consistsof � nodes,
eachof which hasa degreerandomlyselectedfrom thedistribution ÜZ�$�5�,�z­e� ®�Ñ . An estimateof

8Wedefinetheradiusof agraph,ë , astheaveragedistanceof all nodesin thegraphfrom thenodewith thehighest
degree(if thereis morethanonewe will arbitrarily chooseoneof them).Theaveragehopdistanceor diameterof the
graph,ì , is restrictedto: ëgíkìyí�îfëfï (3.14)

Thustheaveragehopsequenceis boundfrom aboveandfrom below by theradius.
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Figure3.18:Numberof nodesateachlayerfor arouterlevel cutof theInternetwith �ð�X(&(@Q'= M h M
nodes(LC topology).Analytical reconstructionfor °�ñ is donewith Ï��i , and �§��( .
theaveragevalueof thelargestof the � nodescanbeobtainedby lookingfor thesmallestpossible
tail thatcontainsasinglenodeon theaverage[CEbAH00b]:ò¨ó ©µô ÜZ�$�V��¡¢õ

òô Ük�
�5� � �:�X(*ö�� � (3.15)

Solving the integral yields Æ ¡ð�9� �
÷ ´øÑ@® �
¶ , which is the approximatenaturaluppercutoff of a
scalefreenetwork [CEbAH00b,DMS01, MJSAA02].

In therestof thissection,in orderto simplify theanalysispresented,wewill assumethatthis
naturalcutoff is imposedon thedistributionby theexponentialfactor ÜZ�$�5���i­�� ®�Ñ ¿ ® ó ÷ ô .

Resultson Tomography of the Inter net

We discussherebriefly the resultsobtainedfor the Internetin our joint work with the Bar-Ilan
group.Thefull papercanbefoundat [CDH

�
].

Theresults,presentedin Figure3.18,show thatstartingfrom a givenlayer -á�R� thenumber
of nodesdecaysexponentially. Theactualprobabilitydistribution is not a purepower law, rather
it canbe approximatedby Ï)�ùQ �  for small degreesand ÏR�ú at the tail. Our analyticalre-
constructionof the layerstatisticsassumesÏs�û , becausethe tail of a power law distribution is
theimportantfactorin determiningpropertiesof thesystem.This methodresultsin agoodrecon-
structionfor thenumberof nodesin eachlayer, anda qualitative reconstructionof theprobability
distribution in eachlayer. In general,largedegreenodesof thenetwork mostlyresidein thelower
layers,while the layersfurther away from the sourcenodearepopulatedmostly by low degree
nodes[DMS03]. This implies that the tail of the distribution affectsthe lower layers,while the
distribution functionfor lower degreesaffectstheouterlayers.Thusthedeviationsin theanalyt-
ical reconstructionof thenumberof nodesper layerfor thehigherlayersmaybeattributedto the
deviation in theassumeddistribution functionfor low degrees(thatis: Ïk�i insteadof Ï��zQ �  ).
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Figure3.19:Third layerof a300client treecut from topology BL�y�UhV=fB#�X( � K'=$"k�iG � (&=?+{�iG

3.6.2 Empirical Findings on the Tomography of Multicast Trees

In this sub-section,wedetailsomeof ourfindingson thestructureandcharacteristicsof thedepth
rings aroundthe root nodeof shortestpathtrees.All of our findingswerealsovalidatedon real
Internetdata.

It wasratherinterestingto observe thatany layerwith sufficient numberof nodesto createa
valid statisticalsampleobeyeda degree-frequency relationshipwhich wassimilar to a power law,
althoughwith differentslopes.We suspectthat this is dueto theexponentialcut-off phenomenon
discussedin theprevioussections.Figure3.19shows this for thethird layeraroundtheroot (i.e.,
nodesat distancethreefrom the root) of a 300 client treecut from a big IS topology (100000
nodes).Theroot waschosenwith a high degree,andtheclientswith a low degree.Althoughthe
numberof nodesis quitesmall,we seea very goodfit with thepower law. Figure3.20shows an
excellentfit to thepower law for thefifth layeraroundtherootof a10000client tree,cut from the
sametopology. This phenomenonis stableregardlessof the treetype, andthe client population
size.Notethat therangeof thepower laws seenin figures3.19and3.20is lessthanoneorderof
magnitude.Thiscouldindicateacrossover to exponentialbehavior.

To understandthe exact relationshipof the degree-frequency at different layers,we plotted
the distribution of eachdegreeat differentlayers. heswickat al. [CNS

�
99] found a gammalaw

for thenumberof nodesat a certaindistancefrom a point in the Internet. Our resultsshow that
thedistributionof nodesof a certaindegreeat a certaindistance(layer)from theroot seemsclose
to a gammadistribution, althoughwe did not determineits exact nature. Figure3.21shows the
distributionof thedistanceof two degreenodes,andFigure3.22thedistributionof thedistanceof
highdegreenodes,i.e.,nodeswith adegreesix andhigher. In bothfigurestheroot is a low degree
node,andthe treehas1000 low degreeclients. As canbe seen,the high degreenodestendto
residemuchcloserto theroot thanthelow deg reenodes,andin adjacentlayers.In this example,
mostof themarein thesecondto forth layersaroundthe root, with only two moreat layer five.
Thisphenomenonwasevenmoreobviouswhentherootwasahighdegreenode.
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Figure3.21: Distribution of degreetwo nodesin a treecut from topology üLýFþ ÿ��füTþ � ���)þ
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We alsochecked thedistribution of the lengthsof thepathsto theclients. Our resultsshow
thatthelessconnectedtheunderlyingtopology, thehigheris theaveragetreecutfrom thetopology.
For a 10000nodeunderlyingtopologywith an averagedegreeof threeandhigher, theheightof
the treeswasnot morethanten. On an underlyingtopologyof 100000nodes,the heightof the
treeswasnot morethan12. In accordancewith our findingsof a ’core’ of high degreenodes,the
treeswerehigheron theaveragewhentheroot wasa low degreenode,comparedto treeswith a
highdegreeroot.

We verify the above findingswith resultsobtainedfrom a real Internetdataset. Sincewe
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Figure3.22:Distributionof thehighdegreenodes( ���Uÿ ) in a treecut from topology üLýgþiÿ��fü#þ� ���kþ�� ��
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have no accessto multicasttree datawe usethe client populationof a mediumsizedweb site
with scientific/engineeringcontent.This mayrepresentthepotentialaudienceof a multicastof a
programwith scientificcontent.

Two lists of clientswereobtained,andtraceroutewasusedto determinethe pathsfrom the
root to the clients. It is importantto note,that the first threelevels of the treeconsistof routers
thatbelongto thesiteitself, andthereforemightbetreatedastherootpointof thetree,althoughin
thesegraphsthey appearseparately. Figure3.23shows thefrequency of degreesin the tree. The
linearfit of thelog-log ratio is excellent,with a correlationcoefficient of 0.9829.Theexponentis
verycloseto theexponentwederivedfor treescut from topologiesthatresembletheInternet.

Figures3.24and3.25show thefrequency of degreesatlayers5and10of thetree,respectively.
It canbeseenthattheslope � of thedistribution increaseswith thelayernumber, e.g.,layer � has
a slope ����� ��
�� , andlayer

� � hasa slope ����� ����� . As we claimed,the shortestpathtreecut
from a scalefreetopologyinherit many of thecharacteristicsof thenetwork topology. Moreover,
we found for networks that the frequency-degreefor eachseparatedistancearoundthe root can
beapproximatedby apower law with anexponentialcut-off, which is becomingstrongerwith the
layer number. In Fig. 3.26we plottedthe slopeof the distribution in the layer againstthe layer
numberandfounda very goodlinearfit (notetheoutlier at �8þ! which wasnot includedin the
fit). Thelinearfit indicatesthatfor thefirst layertheslopewill be " � ��#�
%$ � � � � � .

For scalefreenetworks,it hasbeenshown [NSW01] thatthefirst layersurroundinga chosen
networknodehasadistribution ��&(')�+*-,.�0/214365 . Therefore,wecanexpectthatin thefirst treelayer
surroundingthetreerootwill haveafrequency-degreeslopeof approximately" 
V� � #-7 � þ8"9� � � #
( �>þ:" 
V� � # , theslopeof thetree,is takenfrom Fig. 3.23)which is closeto the linearprediction.
While theresultsfor thedegreedistribution in thefirst layerdid not have statisticalsig nificance
theslopefor thesecondlayerwas "9� � � � whichconformsto theabovenumbers.
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Figure3.23:Frequency of degreesof theInternettree.
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Figure3.24:Frequency of degreesat layer5 of theInternettree.

3.7 Conclusions

We presentedour findingson thecharacteristicsof shortestpathtreescut from power law topolo-
giesandtheInternet.Thesefindingsmayimproveour understandingof multicasttreesandthere-
foremayhelptheoreticalandpracticalresearchdonein thisarea.Wehaveshown thatthestructure
of suchtreesfollowspower laws of rank-degreeandrank-size,andthathigh degreenodestendto
residein a low diameterneighborhood.

Wefounda linearratiobetweenthenumberof highdegreenodesandthenumberof multicast
treeleaves. We alsoproved this ratio analytically, anddevisedthe FastAlgorithm that usesthis
ratio to estimatethetreeclientpopulationin lessthantheInternetroundtrip delay. Thisalgorithm,
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Figure3.25:Frequency of degreesat layer10 of theInternettree.
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Figure3.26:Slopeof thedegreedistributionatspecificlayerasa functionof thelayernumber.

whenusedasaninitial estimatorto polling basedcountingalgorithmssuchas[BTW94, FT99],en-
ablesthesealgorithmsto convergemuchfaster, especiallyfor mediumandlargegroups.Note,that
thesealgorithmsperformanceis improvedsignificantlywith atight initial groupsizeestimation.It
is alsobeneficialfor transportlayerfeedbacksuppressionalgorithmsandcontrolalgorithmswhich
needto know thesessionsizesuchasRTCP[RS98]. Finally, theFastAlgorithm canbeusedby
network providersin calculatingthe gain from multicastwith metricssuchasthe onesuggested
by ChuangandSirbu [CS98]. As partof our futurework, we intendto includeanadditionto the
FastAlgorithm that enablesthe root to receive online updateson the changesof the branching
characteristicsof thetrees.Theseonlineupdatessentby nodesgoingin or out of thehigh degree
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nodes group,enableefficient trackingover timeof themulticastgroupsize.
In general,we have found only a few exampleswherethe estimatorwasoff by morethan

15%. Whentheestimatorwascalibratedto a specificroot nodetheaccuracy wasa factorof four
better.

This work presentsa novel way for leveragingtopologicalcharacteristicsof a treeto obtain
importantknowledgesuchasits size.A furtherunderstandingof theexactratio betweenthetrees
andtheunderlyingtopologycharacteristicsis thesubjectof our futurework.

In the secondpart of this chapter, we discussedthe tomographyof multicasttreesandthe
Internet. We definea “layer” in a network asthesetof nodesat a givendistancefrom a chosen
node.Wefind thatthedegreedistributionof thenodesof ascalefreenetwork ateachlayerobeysa
powerlaw with anexponentialcutoff. Wederiveequationsfor thisexponentialcutoff andcompare
themwith empiricalresults.Wealsomodelthebehavior of thenumberof nodesateachlayer, and
explaintheobservedexponentialdecayin theouterlayersof thenetwork. Weobtainsimilarresults
for layerssurroundingtherootof multicasttreescut from suchnetworks,aswell astheInternet.

We believe our findings can have dual importance. First, they can help in devising better
network algorithmsthat take advantageof the network structure.For example,we presentedin
the past[DMS03] an algorithm for fast estimationof the multicastgroup size that is basedon
our previous finding regardingthe distribution of high degreenodesin Internetmulticasttrees.
Second,our analyticalfindingssuggesta simplelocal testfor thevalidity of thepower law model
asanexactmodelof theInternet.Indeedourfindingssuggestthatthereis agoodagreementof the
empiricalandanalyticalresults.
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Chapter 4

ScalableContent Delivery

4.1 Intr oduction

Theefficientandtimely deliveryof webcontentis oneof themostimportantchallengesin today’s
Internetindustryandresearchcommunity. Sitesneedto cut delayswhile deliveringcontentto a
large numberof users. This need,alongwith the high costsof bandwidthat the Internetcore,
drivesthelargesitesto usecachingandcontentdeliverynetworks(CDNs)[Dor00, Ang00]. How-
ever, in their competitionto attractusersto return,sitesaltercontentmorefrequentlythanbefore.
Informationandobjectsstoredon web serverschangequite frequently, often every few minutes
(e.g.,newsflashes,bids,stockquotes)[DFKM97]. Recentstudiessuggestedthatcachesor CDNs
areresponsiblefor not morethan50%of thecontentdeliveredto users[Mog00, WVS3 99].

Thequestionthatarisesis whichtypeof objectschangeoften,andwhatis theaccesspatternto
highly changedobjects.Breslauatal. [BCF3 99] determinedthatpagerequestdistributionfollows
a Zipf-lik e distribution, but found a weakcorrelationbetweenaccessfrequency and the rateof
change.Douglisat al. [DFKM97] foundthat16.5%of resourcesthatwereaccessedat leasttwice
weremodifiedevery time they wereaccessed,andalmosthalf of thetext/html resourceschanged
on eachaccessafterthefirst. [PQ00]foundthata largepartof usersrequests,andoverhalf of the
repeatedrequests,areto modifiedfiles. Accesspatternto files follows,asreportedin many papers,
aZipf-lik edistribution [BCF3 99,DFKM97, KRS00,PQ00].

In this paperwe target this phenomenonby presentingan architecturethat enablessitesto
deliver frequentlychanginginformationto (analmost)unlimitednumberof users,in anefficient
andscalablemanner. Ourarchitecturetargetsthetop2%hottestpagesof busysites,whichaccount
for the majority of accesses[PQ00]. At the heartof the architectureis a dynamicdistribution
selectionmechanismthatenablestheserverto identify anincreasein demandandto activatecyclic
multicastdelivery for high demandpagesbeforethe site performancedecreases.Whendemand
abatesour mechanismrevertsto unicastdelivery. We show how this schemecanbetransparently
integratedinto the currentweb operationmodein a transparentway, requiringa simpleplug-in
at theclient side. We supplymechanismsbasedon currentDNS to dynamicallydirect browsers
seekingURLs to multicastchannels.To do so,we definea new protocolspecifier, calledhttpm,
which replacesthehttpprotocolspecifierfor thepotentialhotpages.

Theintegratedarchitecturemodelis designedin a way thatrequiresminimal changesto cur-
rentarchitectures,andreliesmainly on existing mechanisms.For thedeploymentof our architec-

37
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turewe suggesttwo differentschemes,which arebasedon existing building blocks. We usethe
digital fountainprotocol [BLMR98] that offers an excellent tradeoff betweentransmissiontime
andefficiency, for reliabledatamulticast.Wealsosuggestdifferentschemesfor a feedbackmech-
anism,thatenablesthesite to estimatethesizeof a hot pagemulticastgroup. Thefirst, basedon
ourwork in [DMS03], usestheFastAlgorithm for arapidsizeestimation,with amaximalerrorof
15%.Thesecondis basedonthealgorithmsuggestedin [BTW94], thatenablesthesiteto estimate
the sizeof a hot pagemulticastgroupwith an error ratethat decreaseswith time. All theabove
describedbuilding blocksarealteredto handlethemulticastof dynamicallychangingcontent.

Our simulationresultsshow thatwhenswitchingfrom theunicastof a hot pageto themul-
ticastmechanism,the load on the server decreasessignificantly, while both the throughputand
thegoodputclientsexperienceincrease,andmayarrive to 4 timesthedatareceivedin theHTTP
model. In theIntegratedarchitectureclientsexperiencea muchlower delaythanin theHTTP ar-
chitecture.In addition,theloadon corelinks decreases,thusenablingTCPusersto receivebetter
performance.

4.2 Moti vation

4.2.1 Why cachingis not the ultimate answer

As theInternetis growing, thecostof deliveringcontentto theuserat theedgeof theInternethas
becomeanimportantproblem.Themostintuitiveway to decreasecosts,is to movecontentto the
edgesof the Internetandcloserto the user, often to a distributedcachesystem.The benefitsof
cachingaremany. It savesbandwidth,while allowing head-endlinks to besharedby moreclients,
to thebenefitof theISPs. It reducescoststo bothsitesmanagersandISPs,by reducingtheir use
of the Internetcorelinks. Cachingbiggestadvantage,which accountsfor the rise of companies
likeAdero,Akamai,ExodusandSandpiper, is of coursethemuchfasterresponsetimeacustomer
experiences,whenreceiving contentfrom anearbysite[Dor00], [Ang00].

Although cachesform a valuableand importantsolution for improving web performance
anddecreasingthe load from sitesservers,a substantialfraction of the content,asseenabove,
is deliveredfrom thesitesthemselves,to eithertheusersor thedifferentcaches.Thiscontentfalls
into thefollowing categories:

; Uncachableinformation,which is eitherpersonalizedinformation,queryresults,real time
streams,andany timedependentinformation.

; Dynamicallygenerateddata: Several researchershave tried to estimatethe updaterateof
sites. Douglis at al. [DFKM97] observed a ratherhigh updaterate for about13% of re-
referencedpages,andamongthehighly referencedhtml pages,aboutfifth changedevery15
minutesor less.Overall, they foundthata largenumberof pagesareupdatedperiodically.
Their findingswerealsoconfirmedby RodrigezandSibal [RS00], who found thata large
numberof websitesupdatetheir content,following anexponentialdistribution. As a result,
many potentiallycachableresourceschangefairly rapidly. A recentpaperby Padmanabha
andQiu [PQ00],thatstudiedthebehavior of abusywebsite,MSNBC,foundthatservercon-
tent tendsto behighly dynamic,andthedurationbetweensuccessive modificationsusually
liesbetweenanhourand24 hours.
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; Cachemissesanddeltaencodingdeliveries,whereinthesitetransmitsto thedifferentcaches
eithertheentirepageor only thedifferencebetweenolderandcurrentversionsof apage.In
orderto maintaincacheconsistency, cachesusedifferentTime-To-Liveandleasingheuristics
[GC89], [Wes96], [LC97], [DST00]. Delta encoding,usedin many architectures,takes
advantageof the observation that the changesareoften minor. It is importantto observe,
though,thatthesetransmissionsalsoimposesomesortof loadon theserver andcorelines,
especiallyfor verypopularpages,whicharecachedin many mirror sites.

4.2.2 Characteristicsof semi-dynamiccontent

The questionthat arisesis which type of objectschangeoften,andwhat is the accesspatternto
highly changedobjects.Breslauatal. [BCF3 99] determinedthatpagerequestdistributionfollows
a Zipf-lik e distribution, but found a weakcorrelationbetweenaccessfrequency and the rateof
change.Douglisat al. [DFKM97] foundthat16.5%of resourcesthatwereaccessedat leasttwice
weremodifiedevery time they wereaccessed,andalmosthalf of thetext/html resourceschanged
on eachaccessafter the first. [PQ00] found that a large part of usersrequests,andover half of
the repeatedrequests,areto modifiedfiles. Accesspatternto files follows, asreportedin many
papers,a Zipf-lik e distribution [BCF3 99], [DFKM97], [KRS00], [PQ00]. Thelatterreportedthat
thealphaparameter, asseenby theserver, is larger thanpreviously reported,andis in the range
of 1.4 - 1.6. This implies,for instance,that just thetop 2% of documentsaccountfor 90%of the
accesses.They alsofound that the popularityof hot pagestendsto be stableover time scaleof
days.

The above discussionled us to the conclusion,that by dealingwith the top most popular
objects,we will be able to take a lot of the load off sitesandcore links. We were then faced
with thequestionof identifying thesepopularobjects.Whenviewedon aper-sitebasis,it became
rathereasyto identify them: Thechangingcontentof thehomepageof popularsiteswasalways
at thetop of the list. Therewerealsopagesthatwerea resultof specialoccasions.For example,
breakingnews; the homepageof Napsterthe day the court ruled againstit; The Starrreport;Or
thevotescountpageon theFloridasiteat electionday. Therewerevery few suchpagesat each
site,actuallyoneor two, onaperdaybasis.Themostimportantthingwenotedwas,thatthemost
popularpageswerea resultof someevent, andassuch,could be classifiedasnew objects(see
theexamplesabove). We thenconcludedthat theknowledgeof which pagesor objectshave the
potentialof becomingmostpopularexistsonly from the time of their creation.For example,all
votingpagesof all stateshadthepotentialof becomingextremelypopularonUSelectionday(that
is, onepagepersite),andcouldbenotedassuchat their creation.Oneof thesepages,theFlorida
voting page,actuallybecameextremelypopular, but the site could not respondto the demand,
evenafteradditionalhardwarewasinstalled.Moreover, in thereferredelections,it wasimpossible
to get to any major news site online, althoughmostsurferswere looking for the samespecific
fragmentsof information.Themulticastof thesepagescouldhavesolvedtheseproblems.

4.2.3 Multicast

Theuseof multicastfor highly popularitemshasmany advantages.It significantlydecreasesthe
site load, especiallyat maximumpeakload times,while lowering the amountof traffic in core
links. As a resultthesite is ableto serve a largernumberof users,evenduringdenialof service
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attacks.However, multicastitself hasamanagementcost,whichconsistsof join operationandthe
creationandmaintenanceof multicastdelivery trees.Moreover, implementingmulticastis still an
openquestionfor a lot of network providers.Severalstudieshave beenperformedlately in order
to estimatethe efficiency of multicastversusunicastdelivery [CS98, PST99,CA01]. [CA01]
developeda metric for measuringmulticastefficiency, basedon the numberof traversedlinks.
They found that multicastis extremelyefficient for large groupsizes,andeven offers a 60-70%
reductionsin thenumberof links for groupsizesassmallas20-40receivers.

Thedynamicmechanismweproposeenablestheserver to switchbetweenunicastandmulti-
castmechanismsaccordingto theidentifiedload.Ourapproachis scalableandenablessitesto cut
down costs,andstill beableto handleincreaseddemand.Usersbenefitfrom betterresponsetime
dueto lower loadon theserver, andlesscongestedcorelinks. The incorporationof multicastas
a meansfor webcontentdelivery is not new. Severalefforts weremadeto dealwith it, which we
discusslaterin Section4.5.Theseworkseitherreviewedtheproblemswhichareto beconfronted,
or suggestedaratherlimited useof multicast.Weassumetheexistenceof multicastinfrastructure,
anddonot tackletheissuesinvolvedin deploying this infrastructure.

Our integratedarchitecture,discussednext, enablestheefficientandscalabledeliveryof very
populardynamicallychangingcontentto a largenumberof users.It’ s a complementarysolution
to existingcachingmechanisms,whichenablesalsoscalabledeliveryof contentto caches.

4.3 Integrated Ar chitectureDescription

TheintegratedWWW architecturewasdesignedto allow asmoothtransitionfrom TCPbasedcon-
nectionsto a multicastbasedmechanismfor uncachablehot pages.Thearchitectureis basedon a
dynamicselectionmechanism,whichdetermineswhichof thehotpagesshouldbemulticast,based
on inputsreceivedfrom boththerelevantTCPconnectionrequestsandUDPfeedbackinformation
mechanism.

4.3.1 Server Side

The site is responsiblefor maintainingthe hot pageselectionand multicastmechanisms.We
classifyandmotivatehereeachof its parts.Therestof this sectiongivesa detaileddescriptionof
eachof theseparts.

The site predeterminesa list of pageswhich arecandidatesfor becominghot pages.These
pagesaregiven the httpm protocolprefix. This list is quasi-static(e.g.,Krishnanet al. [KRS00,
Fig.12] showedthatthelist of popularentitiesis quitestable,in amediumsizesitethey examined)
andthuscanbepredeterminedby thesite’sadministratorsoff-line. Thelist canbeeditedto reflect
therelatively slow changesin thepopularityof pages,whichmaydemandconfiguringnew entries
or deletingexistingonesat theDNS.

Thedynamicselectionmechanismis activatedfor eachof thepotentialhotpages.It processes
thenumberof incomingconnectionrequestsfor them.Oncea thresholdhasbeencrossedfor one
of thepages,theserverbeginstheprocessof moving it to themulticastmechanism.It thennotifies
theDNSof thenew addressfor theappropriateentry.

Oncethe pageis multicast,new connectionrequestsfor it areansweredwith a 3xx HTTP
response.This responseindicateswhich multicastaddressto join, andspecifiestheneededplug-
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in. Theresponsehasto bedeterminedaspartof theHTTP protocolspecification.
Whenthepageis multicast,theserver periodicallyestimatesthesizeof its multicastgroup.

Whentheestimationcrossesdown apredefinedgroupsizethreshold,thesitedistributionselection
mechanismrevertsthepagefrom cyclic multicastbackto unicast,andnotifiestheDNSof thenew
address,theserver IP address.While multicastis beneficialfor periodsof high load,anestimation
of theamountof neededresourcesat othertimesshow it is lessbeneficial([AA97]). Unnecessary
edgelinks areloadeddueto thepropagationtimeof prunemessages.Thisunnecessaryloadatedge
networksimpactstheperformanceotherclients,andthereforeshouldbeavoidedwhenpossible.It
is clearthatat high loadtimes,multicastis betterthanconcurrentunicast.

Switchingapagefrom multicastto unicastrequiresagraceperiod,in whichexistingmembers
of thegroupfinish receiving thepageandnew joinersaredivertedbackto unicast.Therefore,the
pageis still multicastfor afew morerounds,andthenadiversioncode,whichcanberecognizedby
theclientbrowser, is multicastfor anotherperiod.In this laststepthemulticastgroupis exhausted.

Existing Building Blocks

For themulticastmechanismweincorporatetwo existingbuilding blocks.Oneis usedfor efficient
delivery, andtheotherfor thegroupsizeestimation.Our designdescribestwo differentschemes
in which to incorporatethesebuilding blocks,andenabletheir usefor dynamiccontent.We give
herea shortdescriptionof thesebuilding blocks.

Coding Schemefor Multicast: Thedigital fountain[BLMR98] providesanefficient multicast
mechanism.Reliability is achievedwithout theuseof feedbackmessagesfrom clients,andatmin-
imal costs.Thedigital fountainrequiresanencodingsystemat thesendingside,i.e., thesite,anda
decodingmechanismat thereceiving side,i.e., theclient. In thescheme,apage&=< , whichconsists
of a setof � packets,is encodedinto a setof � 7�> packets,suchthat > of which areredundant,to
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a total of ? . All ? packetsaresentcyclically over time. Theencoding/decodingprocessis highly
efficient,dueto theuseof Tornadocodes,andthereforeimposesverylow overhead.Theefficiency
of theencodingsystemrequiresa small stretchfactor, which determinestheratio between� and
> , even at ratherhigh lossrate. The digital fountainserver designuseslayeringacrossmultiple
multicastgroups,andis basedmainly on [VRC98]. In this approach,theserverorganizesthedata
into @ layers,eachcorrespondingto a multicastgroup. The layersare organizedin increasing
transmissionrate.Thelayersarecumulative,in thataclientwho joins layer A , actuallyjoins layers
��BCBDA . Eachlayertransmitsin anincreasingrate.If theratio betweenthelayerstransmissionrateisE < , thenaclientwho joins layer A , receivesbandwidthproportionalto �9F E < , for AG� �

.

Multicast Group SizeEstimation We describeheretwo differentmethods,basedon exiting
results.

End to end : Thefirst mechanismwesuggestis anendto endscheme,basedonthefeedbackcon-
trol mechanismpresentedby [BTW94]. The schemewasoriginally intendedfor multicast
video distribution feedback.It requiresall participantsof a multicastgroupto generatea
randomkey of 16bits. Thesendersendsits key, andawaitsananswerfrom receiverswith a
matchingkey. Eachperiodthekey is sentwith maskof increasinglength,until anansweris
obtained.Answersalsocontainthestateof thenetasperceivedby receivers,for ratecontrol
mechanismsandtiming.

Router layer level: This mechanismis basedon our work from [DMS03], which usesthefound
topologicalcharacteristicsof amulticasttreefor a fastevaluationof thesizeof themutlicast
group,by countingthenumberof high degreeroutersin theresultedIP-multicasttree.The
sourceof thesessioninitiatestheFastAlgorithm, by activatinga timer, andsendinga mul-
ticastmessageto all theroutersin theunderlyingIP-multicasttree. Eachhighly connected
router, i.e., a routerwith degreesix andabove,unicastsa reply to thesource.Thefirst time
out is determinedby thedistanceof thesourceto thecoreof thenetwork. A secondtimer is
thenactivatedrepeatedly, its lengthdeterminedby theestimateddelayof onehoproundtrip.
This repeatedtimer is activateduntil thedatagatheredfrom thenext hopdoesnot improve
theestimationby morethanapredeterminedthreshold.For adetaileddescriptionof theFast
Algorithm see[DMS03].

Site Distrib ution SelectionMechanism

As canbeseenin Figure4.1,thedynamicselectionmechanism(DSM) is partof thesite’ssoftware,
which determineswhetherhot pagesareunicastor multicast. The DSM is given the following
parameters:

; List of potentialhotpages:This list is predeterminedby thesite’sadministrators.(A discus-
sionof thequasi-staticnatureof thelist is appearedin Section4.2).

; Unicastto multicastthreshold:This thresholdis actuallythenumberof simultaneouscon-
nectionsthat thesitecannottoleratefor any onepage,andwould rathercarry theexpenses
of themulticastdelivery. For example,let usassumethat it takesan averageof 2 seconds
to deliver a hot page,whentheserver is not overloadedandthenet is not congested.(For
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simplicity, we assumethe pagerequiresonly oneconnection,asis specifiedin HTTP1.1).
If, duringaminutetime,theserver receives300requestsfor thatpage,thenit hasto reserve
10 simultaneous connectionsthroughouttheminutefor thedelivery of this pageonly. We
formalizethisdiscussionin thefollowing way:

Let HI< betheaveragetime estimatedfor any oneconnectionto a page&=< . Let usdefinethe
numberof requeststo &=< in the J theperiodof time (typically aminute)by KML< . Let NO< bethe
connectionthreshold,setby thesiteadministrators,for page&P< . Let Q L< þ�K L< FRHS< .
Then,thefollowing conditionsshouldbemet,for theDSM to decideto multicastpage&P< :
Threshold

�UTWVD��BXBXB�Y[Z=\2Q L /2]< �^N6<
Monotonically non-decreasing

�[T�VD��BCBXB�Y:" � Z=\2Q_L /2]< ��Q=L /2]`/a5<
Therange��Tb��BXB�Y determinesthenumberof periods,in whichtheconditionsaboveshould
hold. This interval is neededto determinea pattern,ratherthana momentarydeviation in
requestsrate.For example,let Yðþ 
 . In this casewe getthatduring3 consecutiveperiods
(minutes)therewasaraisein demandfor page&P< , andthedemandwasabovethethreshold,
NO< .

; Multicastto unicastthreshold:This thresholdis thenumberof connectionsthatthesitecan
toleratefor ahotpage&P< . Whenthis thresholdis metduringseveralconsecutiveestimations
doneat the DSM, andeachtime the sizeof the multicastgroupdecreases,thenthe DSM
switchesthepagefrom thecyclic multicastschemeto theHTTP unicastone.As discussed
above, this switch is doneto decreasepotentialunnecessaryoverheadencounteredat the
edgesat low loadtimes.

TheDSM obtainsthedatait needsfrom two sources:Oneis theHTTP connectionsrequests,
andtheotheris a countingfeedbackmechanism.Obtainingthenumberof requestsperhot page
is ratherstraightforward,andinvolvessimplelookupmechanisms.To obtainanestimationof the
sizeof thegroup,a feedbackmechanismbasedon [BTW94] is activated.This mechanismis part
of themulticastmechanism,andwill bedetailedthere.

We assumeherethataslong asIPv6 is not embedded,multicastaddressesconstitutea pre-
ciousresource,thatmight beratherexpensive. Therefore,a sitewill beableto acquire,eitherdue
to thepriceor dueto regulations,only alimited amountof suchaddresses,andsharethembetween
its currenthotpages.Thus,evenin theabsenceof highmaintenancecostsfor multicast,asitewill
beableto usemulticastonly for asmallsubsetof its pages.

Multicast Mechanisms

We suggestheretwo differentschemesfor the multicastof hot pages.Our schemes,which are
basedon thedigital fountainmechanism,alsoenableanefficient delivery of dynamicallychang-
ing content.Theschemesdiffer in thelevelsandrateof transmission,numberof concurrenttrans-
missionand the way the feedbackmechanismis incorporatedandused. Eachschemerequires
differentresourcesfrom the site,andis intendedfor differentsite characteristics.Both schemes
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cyclically multicastthedataoverUDP. Usersmayjoin atarbitrarytimes,andleaveoncetheentire
datais obtained.

Sincepageschangedynamically, a pagewhich is currentlytransmittedmaychangeon disk.
A majorrequirementin our schemeis to incorporatethechangeasfastaspossible,asusersrather
have an up-to-dateversion,if oneexists. For this purpose,the headerof eachmulticastpacket
containsa continuous bit. Whena pagechangeson disk, thenew versionof thepageis multicast
in the following round,andthebit is toggled.Thedecoderat theclientssideassembliespackets
with the samevaluein the continuous bit. If a changeis detected,thenthe decoderdiscardsall
packetsobtainedsofar, andstartsassemblingthepacketsagain,until it canreconstructthepage.
Sincea changein contentoccursonly whena new roundof thecyclic multicastbegins,onebit is
sufficient.

Scheme1: In this schemethe site usesonly onechannelper page. The site encodesthe page
for someinitial loss rate (for example10%) and setsthe digital fountain’s stretchfactor
accordingly. Theencodedinformationis sentin a ratecalculatedto matchtheslowestclient
possible.Here,the feedbackmechanismis usedto estimateboth thesizeof thegroup(for
theDSM) andthecurrentlossratein thenet.Sincedatais transmittedat a low rate,no rate
controlmechanismis needed.

Oncein a few rounds,the feedbackmechanismis activated. Every packet in this round
containsthefollowing fields:

; Thekey field, whichconsistsof 16bits,andcontainsarandomlyselectedsetof 16bits.
; Themask field, which is abytelong,andspecifiesthenumberof masksbits in thekey.

Thevalueof themaskfield is determinedby the increasein requestsrateexhibitedat
theDSM for this page.Let Kdc< = Max KML< , JUTfe . Then,thevalueof themaskfield is
�hgR@�Kdc< .

If no answerwasreceivedduringthis round,themaskfield is incrementedby one,andthe
new maskfield is sentin thenext round.Theprocessrepeatsuntil answersareobtained.
Theclient’s decoder, uponreceiving a packet containingthesetwo fields,randomlypicksa
key of 16 bits. If the first mask digits arethe sameasin the site’s key, it countsthe exact
numberof packetsit needsto reconstructthepage,anddeliversthis informationbackto the
site,alongwith thereadvalueof themask field.
The site thenestimatesthe sizeof the groupfrom the numberof responsesobtainedfor a
round,accordingto the mask field reported. It canalsoestimatethe congestionalongthe
way to theusersby thenumberof packetsreceiveduntil thepagecouldbe reconstructed.
If this numberis biggerthanthenumberof packetssentin a cycle, thenthestretchfactoris
incremented,thusincrementtheamountof encodinginformationsent.

Scheme2: This schemeincorporatesfully the digital fountain multi-level approach(seesec-
tion 4.3.1). Therefore,thefeedbackmechanismdoesnot needto incorporatein it any con-
gestioncontrol information. Themechanismis incorporatedasdescribedin scheme1, and
is usedonly to estimatethesizeof thegroup.Thetwo fieldsqueryis sentonly at thelowest
layer, sothatit is receivedby all clients.
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Figure4.2: dns

4.3.2 Client Side

Browsersat theclient siderequireanadditionalplug-in. This plug-in identifiesanhttpm address,
andacquiresits IP addressfrom the DNS. The plug-in thendetermineswhetherthe addressis a
server’s IP or amulticastaddress.In thecaseit is amulticastaddress,theclient joins themulticast
group,andactivatesa decoder, that decodespacketsreceived usingthe digital fountainscheme.
Duringthedecodingprocess,controlinformationsentalongwith thepacketsis processed,andthe
plug-in actsuponit.

4.3.3 Hot pageaddressresolution

In section4.2, we discussedthe quasi-staticnatureof the list of potentialhot pagesat a site,
andconcludedthat only oneor two of thesepagescanbe a candidatefor multicastat eachsite.
Furthermore,our discussionshowed that many timesa site candeterminethe potentialof such
pagesonly at creationtime. Therefore,it is bestthateachsitepredeterminesthis list manually. It
canbeautomatedquiteeasilyusingtheDSM mechanism,but accordingto ourunderstandingsuch
listsareusuallymanuallyconfigured.
Eachpageon this list is giventhehttpm protocolspecifier. As discussedbefore,httpm pagesare
treateddifferentlybothat thesiteandat theclientside.In this section,wediscusshow oursystem
enablestheplug-in at theclientbrowserto obtaintheright addressfor a httpm page.
At the site, the authoritative DNS is updatedwith the list of httpm pages,and the appropriate
IP addressfor eachof them. At initialization, probablymostof themarenot multicastyet, and
thereforetheir IP addressis still the domain’s IP address.Oncethe DSM decidesto multicasta
page,it changesthepage’s IP addressat theauthoritativeDNSto themulticastchannelIP address,
andsetsa ratherlow TTL for it. Whenthe DSM decidesto revert this pagebackto unicast,it
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updatesits DNS entryagain,to thesite’s IP address.
At the client side,whena httpm URL is entered,the browseractivatesthe plug-in. The plug-in
sendsthe entireURL to the local DNS for addressresolution,asshown in figure 4.2. Whena
resolver sendsa domainnamefor resolution,it sendsit with no delimitersandin a reverseorder,
e.g., http://www.a.comis sentas i comjki ajki www j . EachDNS then looks for the longest
prefix it canmatch. In the httpm casethe resolver sendsthe entireURL for resolution,with the
domainnameastheprefix. For example,theURL httpm://www.a.com/hotpageis sentto resolution
as i comjki ajki www jli hotpagej . AccessingtheDNSwith theentireURL requiresno change
in currentDNS mechanisms,sincetheDNS is a hashtablewhich receivesstringsandperformsa
look-up operation.Our schemeonly requiresa changein the resolutionlibrary function,so that
theentireURL stringis sent.Theuseof aniterative(non-recursive)resolutionprocessassuresthat
accessedDNS’sdo notbecomeclients.
Uponreceiving theDNSresponse,theclientplug-indetermineswhethertheaddressis amulticast
address,or thewebserver’s IP address.If theresolvedaddressis a standardIP address,theclient
usesthenormalHTTP GET mechanism.If theresolvedaddressis a multicastaddress,theclient
seeksto join themulticastgroup.

4.3.4 Scalability

Translationof namesto IP-addressesis donevia theDomainNameServer (DNS)mechanism.Our
designusestheDNS for consistency reasons.Next we show thatour schemedoesnot causeDNS
scalabilityproblems.

Rememberthatthenumberof httpm pagesis limited andtheURLs arecachedin local DNS
serversonly on demandandfor a shortperiod. For example,assumethat 500 sitespublishtwo
httpm pagesat theexactsametime. In this case,therewill beonly 1000new DNS entriesadded
to theentireDNS system.Therearemorethan30 million registereddomainnamestodayin the
Internet,hencetheextraburdenis of lessthan0.01%.Moreover, sincetheZipf distribution is also
valid for clientsaccesses,thenumberof suchcachedentriesis limited at any specifictimeat local
DNSservers.

4.4 Simulation Results

In this sectionwe show how our architectureaffectsperformancefor bothclientsandsites.Other
works[CS98,CA01] examinedtheefficiency of multicastat thenetwork level. Ourobjective is to
provideafirst orderunderstandingof boththethroughputseenby clientsandtheloadontheserver
at peaktimes. We comparethetwo suggestedmulticastschemesto unicast.All resultsaregiven
for thegeneralcaseof scheme2.In caseswherethe two schemesdiffer significantly, thespecial
caseof scheme1is alsogiven.

For our simulationswe usedthe ns-2 [ns-] network simulator. We useda generatorthat
createsInternet-like randomtopologieswith a power law relationshipof the nodedegree(based
on [FFF99b]). We simulateda WAN network asa network of AutonomousSystems(AS’s). Each
AS representseitheraLAN or adial-upline switchwith activewebclients.LAN speedis 10Mbit
per sec,while dial-up line is 56 Kbit per sec. Dial-up line switcheshave very low connectivity.
A web server is locatedin oneof the backboneASs, connectedthrougha dedicatedrouter. It
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supportsa large numberof concurrentconnections,eachis simulatedthroughan ns port entity.
Theseportsplay the role of pre-forkedslave processesin theserver, andareeitherTCPor UDP
ports.Thereare100TCPportsand4 UDPports,thelattertransmitin differentrates.Arriving TCP
connectionrequestsarequeuedin aconnection request queue, whichsimulatesthetwoTCPqueues
of completed/incompleteconnections.It is limited in size,andoncefilled, in-comingrequestsare
dropped.Theunicastmechanismis implementedon top of a two-way full TCPstack,which uses
theRenocongestioncontrolprotocol. Themulticastmechanismwe simulatedfor bothschemes.
Clients in the AS’s make requeststo the server, accordingto a predefinedbehavior mechanism.
Theserver has7 availableWebpagesof differentsizesanddifferentpopularity. Pagesizevaries
accordingto a normaldistribution, accordingto minimal, maximalandaverageparameters.The
popularitywaschosenso that2 of thepagesareresponsiblefor 80%of theaccesses.Thepages
parametersaredetailedin thefollowing table:
Type Size(KBytes) Popularity

Minimal Average Maximal

1 25 100 300 4%
2 20 80 240 4%
3 15 50 150 4%
4 10 40 80 4%
5 5 20 60 4%
6 40 40 40 40%
7 60 60 60 40%

We altertheclient’s waiting time to achieve differentloadson theserver. A client asksfor a page
accordingto thedistribution, receivesthepage(or timesout), waitsandtheaskfor anotherpage.
Clientsmay terminatethe connectiondue to slow serviceeitherat connectionestablishmentor
while receiving thepage.

4.4.1 Goodput

Wemeasuredheretheamountof databytessentby theservervs. theamountof databytesreceived
by theusersfor bothmodels.In theIntegratedArchitecture,thetwo hotpages(pages6 and7) are
multicastatdifferentrates.Figure4.3andFigure4.4show theamountof datasentandreceivedin
botharchitectures.While Figure4.3shows thebehavior at peaktimes,in Figure4.4we gradually
increasetheloadontheserver for botharchitectures.In orderto increasetheloadin theIntegrated
model,theusersrequestpagesat 4 timestherateof usersin theHTTP model. Theresultsshow,
thatin theHTTPmodel,thehighertheload,relatively lessdatais received,upto 30%lessreceived
thansentatpeaktimes.In theIntegratedmodel,on theotherhand,evenat peakperiods,theusers
receiveupto 4 timesthedatasentby theserver. As will beseenin thissection,notonly serverload
decreases,which enableit to serve on the lesshot TCPclientsmoreefficiently, but alsonetwork
load decreases.This leadsto a much betterserviceto both multicastand unicastusersat the
Integratedmodel.
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4.4.2 Server Load

The server load is obtainedfrom severaldifferentstatistics.First, we examinethe ratio between
establishedconnectionsandavailableoutchannels(i.e.,ports).Obviously, theserver is overloaded
whenthereareawaitingestablishedconnectionsin thequeue,andall outchannelsarebusy. Other
criteriaaretheamountof droppedconnectionsfrom theconnectionrequestqueue,aswell asthe
rateof establishingconnections.Our resultsshow thatwhenthehotpagesaremulticast,theserver
loaddecreasesdramatically. Figure4.5 shows theamountof load theserver maintains.A 100%
loadis whenall theportsarebusy, yet theconnectionrequestqueueis empty. As describedearlier,
we createmore load by shorteningthe interval betweensuccessive client requests.To maintain
perspective,wehadto quadrupletheloadin theIntegratedmodelin compareto theHTTP model.
Yet,ascanbeseenin Figure4.5,theserver reachedsaturationmuchearlier(around1700seconds)
thanthe Integratedmodel(around3000seconds).Figure4.6 demonstratestheserver loadwhen
wedo notquadrupletheloadin theIntegratedmodel.

Theserver reachessaturationwhenall of its portsarebusy, andtheconnectionrequestqueue
is full. Figure 4.7 presentsthe amountof droppedconnectionsfrom this queue. The HTTP
modelreachessaturationmuchquickerthantheIntegratedmodel,andwhenit does,theamountof
droppedconnectionsis muchhigher.
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Figure4.9: ClientSeenDelay: pages1, 3 and5

4.4.3 Clients SeenDelay: Server vs. Network load

Wemeasuredthedelayperceivedby clientsin bothmodelsasa functionof time,while increasing
theloadwith timeuntil wesaturatetheserver (seeFigure4.5).
Figure4.4.3shows theamountof time it takesusersin botharchitecturesto receive pages6 and
7, the hot pagesthat aremulticastin the integratedarchitecture.The resultsshow quite clearly
that clients in the Integratedmodel receive thesepagesmuch fasterthan in the HTTP model.
Furthermore,it is beneficialto multicastthesepagesevenif theserver is not loaded(wereferhere
to scheme2). As the load increases,our resultsshow that the delaya usersuffers in the HTTP
modelcanbe4 timesthedelayin theIntegratedmodel.
Figure4.9 shows the amountof time it takesclients to receive pageswhich areunicastin both
models. Page1 representsa large file, Page3 a mediumsizefile andpage5 a rathersmall file.
All threefilessuffer smallerdelayson theirway to theuserin theIntegratedmodel,andtheeffect
is moreobviouswith the increasein server load. A similar effect canbeseenwhenviewing the
first packet delay, in Figure4.10.As theloadon theserver increases,it takeslongerto createnew
connectionsin botharchitectures,althoughsignificantlylongerfor theHTTP model.

An interestingpoint is thatthesmallerthepage,thebiggeris thedifferencein delaybetween
the two architectures.Although this canalsobe explainedby first packet delay, which is more
significantfor shorterconnections,we suspectedthereis anotherfactorthat influencesthis delay
- the loadon thenetwork itself. Figure4.11shows thepercentageof retransmittedpacketsfrom
the server, due to time outs in the TCP protocol. Thesetime outs indicatethat the network is



50 CHAPTER4. SCALABLE CONTENTDELIVERY

500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

600

Simulation time in seconds

F
irs

t p
kt

 d
el

ay
 (

R
T

T
s)

http unicast       
integrated, average
integrated, TCP    
integrated, UDP    

Figure4.10: First Packet De-
lay

500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Simulation time in seconds

P
er

ce
nt

 o
f s

er
ve

r 
re

tr
an

sm
itt

ed
 p

ac
ke

ts

http unicast
integrated  
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congested,which causesthe TCP flow control mechanismto adjust its window size and slow
down theconnection.This retransmissionpercentage,althoughquitelow in bothmodels,is more
thandoublethesizein theHTTP modelthanin theIntegratedmodel,indicatingthat thenetwork
is morecongestedin theHTTP model. Figure4.12shows theamountof connectionsterminated
by users,dueto too longdelays.As soonastheserver reachespeakload,clientsstartto giveupon
connections.Sincetheserver in our simulationdoesnot imposeadditionaldelayson established
connections,then this extra delay is due to the TCP flow control mechanism,that adaptsto a
congestednetwork.

Fromtheaboveweconclude,thatoneof thereasonsfor thedegradationin performanceseen
by clientsatpeaktimesis thecongestionin corelinks. Thecloserthelink is to theserver, themore
congestedit canbecome.AlthoughtheTCPcongestioncontrolmechanismtriesto limit theeffect
of suchpeaktimes,by exhibiting a socialbehavior, the effect on both the site andthe client is
big. Thesiteretransmitsanextensiveamountof packetsuntil theTCPslow startmechanismtakes
effect, while theclient experiencesdegradationin performance.Theuseof multicastmechanism
for the delivery of hot pages,reducesboth the traffic on core links, andthe load on the server.
Clientswhichconnectbyhttpatsuchtimesreceivebetterservice,andtheamountof retransmission
decreasessignificantly.

4.4.4 SpecialCase:Scheme1

We look hereat the specialcase,wherethe server usesonly oneoutgoingchannelper multicast
page,thereforetransmittingit in the rateof theslowestreceiver. In our simulation,it meansat a
rateof 56Kbitspersecond.

Figures4.13,4.14 and4.15 show that the load on the server decreasessignificantly in the
Integratedmodel,while thegoodputis muchhigherthanin theHTTP model.

Thespecialcaseof scheme1 enablesusto investigatetheeffect of usingmulticastinsteadof
unicaston thenetwork itself. Sincetheserver transmitsUDPdatain a low rate,clientsreceivehot
pagesratherslow, andtheserver cannotbeover loadedin theIntegratedarchitecture.Therefore,
whenwequadrupletheamountof requestsmadeby clientsin theIntegratedarchitecture,wecreate
extra loadon thenetwork, ratherthenon theserver. Figures4.16and4.17show theeffectof slow
UDP connectionon congestednetwork - fast receiversareboundto lower ratewhen receiving
multicastpackets,while TCP packetsaredeliveredin closeto dull speed. As traffic increases,
UDP packets that are lost causereceivers to wait till the next multicastcycle. Multicastinghot
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Figure 4.15: Scheme1:
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Figure4.16:Scheme1ClientSeenDelay:pages6 and7

pagesin low ratesis thereforebeneficialonly whentheserver is overloaded.
Figures4.18 and4.19 show that HTTP clients receive betterperformancewhenthe server

is not loaded,andthereforethe Integratedmodelis indeedbeneficialalsoin scheme1, whenthe
serverbecomesloaded.

4.5 RelatedWork

An approachto usemulticastin the delivery of web resourceswasfirst introducedin [CA95].
In their architecture,clientsusehttp requests.Several simultaneousrequestsareassembled,and
groupedinto a multicastgroup. Then,theclientsjoin thedynamicallygeneratedmulticastgroup
andreceive thepageusinga reliablemulticastprotocol.A laterwork [AAF98] suggestedtheuse
of cyclic multicastover UDP for thesamearchitecture,while determiningtheamountof time the
server hasto cyclicly transmitthesamepageuntil all usersin thegroupreceive it. Thedisadvan-
tageof usingthis mechanismlies in theunnecessaryoverheadcomparedwith our scheme:TCP
connectionsarefirst established,andonly then closed. Overheadassociatedwith building and
maintainingmulticastgroupsexists for eachgroup,while many groupsarecreatedfor the same
hot page.As a matterof fact, thehotterthepage,themoregroupsarecreated,andthebiggerthe
overhead.
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Figure4.17:Scheme1,quadrupleintegratedrequestrate,ClientSeenDelay:pages6 and7
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Figure4.18:Scheme1,quadrupleintegratedrequestrate,ClientSeenDelay: pages1, 3 and5

In [DD99] aschemefor theuseof reliablemulticastchannelsto deliver frequentlyupdatedobjects
to cachesis suggested.Their schemeconsistsof controlanddatachannels.Eachchannelis asso-
ciatedwith agroupof objects.A cachethatis interestedin any of theobjectsin agroupsubscribes
to thecorrespondingchannels.Whenanobjectin a groupchanges,a controlmessageis sentover
thecontrolchannel,so thatall subscribedcachesknow to listenover thedatachannel.Then,the
changedobject is multicastover the datachannel.The main disadvantageof this schemelies in
thegrouping.While groupingenablesthedeploymentof thescheme,dueto scalabilityissues,it
alsocausesfor a lot of bandwidthwaist.For example,if mostof thecachessubscribeto agroupin
orderto receive objectA, andanotherobject,B, changesmorefrequently, it will besentover the
datachanneleachtime to all subscribedcaches.This scheme,whenusedon a channelperobject
basis,is not scalable.It requirestwo channelsperobject,andeachcacheneedsto keepstatefor
eachobject. Theschemealtersthereceiversaswell asthesenders,andrequiresstatechangefor
eachchannel.Unlessgrouped,it is notscalable,andcomparedto ourscheme,thegroupingcauses
bandwidthwaistandsomecachesreceivedatathey donot require.

4.6 Multi Level Ar chitecture

In thissectionwepresentaway to integrateourmechanismsinto thecurrenthierarchicalstructure
of the Internet. While our integratedarchitecturewas first designedfor sites, it seemsjust as
beneficialfor proxies,in general,andfor proxiesusedby Internetserviceproviders,in particular.



4.7. CONCLUSIONS 53

500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

Simulation time in seconds

se
cs

http unicast
integrated  

500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

Simulation time in seconds

se
cs

http unicast
integrated  

500 1000 1500 2000 2500 3000 3500
0

2

4

6

8

10

12

14

16

18

20

Simulation time in seconds

se
cs

http unicast
integrated  

Figure4.19:Scheme1ClientSeenDelay:pages1, 3 and5

CurrentISPsmaintainbig autonomousnetworksandsupportvery largenumberof users.In
the integratedarchitecturesuggestedso far proxiesplay the role of clients. However, for their
clients,proxiesmaytake therole of theserver. Thus,we suggestherethe implementationof our
integratedarchitectureone(or more)levelsdeeper. In this implementation,oncea proxy detects
anincreasein thenumberof requeststo a specificpage,it multicaststhis pageto its clients,using
our scheme.Using multicastfor the delivery of hot pageswithin the ISPs’ subnetwork canbe
very beneficialnot only to the usersbut to the ISP asit both reducesits internaltraffic andgive
its payingcustomersbetterservice.It hasspecialperformancebenefitswhenthestructureof the
subnetis tree-based,suchaswith cablenetwork basedserviceproviders.

While the implementationof the schemein the ISPslevel is straightforward for hot pages
with thehttpm protocolspecifier, anotherschemeis neededfor locally cachedhot pages.Sucha
schemeis beyondthescopeof this paper, andrequiresfurtherresearch.

4.7 Conclusions

Frequentlychangingweb contentrequiresthe useof new mechanismsfor its scalabledelivery.
Our integratedarchitectureenablesthe efficient andscalabledelivery of suchcontent. Its main
advantageis its simplicity andtransparency to users.Our resultsshow that it allows sitesto serve
agrowing amountof usersat timesof peakin loadwithoutexperiencingperformancedegradation.
Usersdelaydecreasessignificantly, andboth goodputandthroughputquadruple.An important
conclusionfrom our simulationsis that,many times,performancedegradationis dueto increased
load on core links. This increaseis causedfrom the large amountof concurrentconnectionsto
sites,all aimedto get the exact sameinformation. The result is congestedlinks, which have the
immediateeffect of increasingthe loadon boththesitesandthelinks in theshortrun becauseof
retransmissions.Our schemesolvesthis problemby usingmulticastat suchtimes,thusenabling
economicaluseof corelinks.
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Chapter 5

Inter net Resiliencyunder BGP Routing

5.1 Intr oduction

In recentyearsthereis a growing interestin the resiliency of the Internet,as it representsthe
network’s availability in timesof instabilitiesor underextremeconditions.Researchin this field
took two distinct paths. One is the stability of routing protocolsin caseof errorsand failures
[LGJ97, GW99],andtheother, whichalsodraws attentionoutsidethecomputernetworkingcom-
munity, focuseson the resiliency of the Internetto randomfailuresandattackson strategic lo-
cations[AJB00, CEbAH01,CEbAH00a]. Sucheventscan happenas a result of a disaster, or
manipulatedonlineattackon key Internetelements.1 In this researchwe focuson thelatter.

Researchin thefield wasmotivatedby thefinding thatInternetAS topologycanbeclassified
asscalefree,belongingto a classof networks for which theconnectivity resemblesa power law
distribution [FFF99a, GT00, MMB00, CNS3 99]. In physicsterminology, the susceptibilityof
the Internetto nodedeletionis consideredin termsof network phase transition, representingthe
transitionfrom a connectedphaseto a disconnectedphase. The researchin this field [AJB00,
CEbAH01,CEbAH00a,BT02,PKP3 03] showedthat theInternethasa high toleranceto random
failures,anddoesnotbreakuntil morethan95%of thenodeshavefailed.Ontheotherhand,it was
foundthattheInternetis highly sensitiveto deliberateattacksthattargetits mostconnectednodes.
Undersuchanattack,thenetwork transitionsto a setof smalldisconnectedcomponents,afterthe
removal of a small fractionof thehighly connectednodes.Cohenet al. [CEbAH01] have shown
thattherateof transitionundera deliberateattackdependson theminimal connectivity, henceon
theaveragedegree.They have alsoshown that theaveragepathlengthgrows dramaticallyunder
suchattacknearthecritical point of transitionin which thenetwork disintegrates.

A significantdrawbackof theworks in [AJB00, CEbAH01,CEbAH00a,BT02, PKP3 03] is
thatthey treattheInternetasanundirectedgraph.However, routingin theInternetbetweentheASs
is governedby policiesthataresetlocally with theaidof BGP, theinter-network routingprotocol,
accordingto businessagreements[III99]. Theimplicationof policy basedroutingis thatnotevery
two nodes(ASs) that have a physicalpathconnectingthemcanindeedexchangeinformation;a
valid paththatconformsto thepoliciesof theASsalongit mustexist. Theseconsiderationsand

1While thecollapseof anentirelargeISPseemsunlikely, it actuallyhappenedafew timesin therecentpastfor the
largestAS in theInternet,UUNet. OnApril 22ndandOctober3rd2002theUUNetnetwork collapseddueto software
problemsin its routers,andin January25th2003dueto a DoSattack[lig].

55
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agreementscreateanetwork fardifferentfrom theoneusedin all theabove listedworks,andcalls
for revisiting thequestionon theresiliency of theInternet.In addition,thedatausedfor obtaining
theaboveresultswasof partialviewsof theInternet.Thesepartialviews,obtainedmainly through
dumpsof BGPannouncements,lackin connectivity dueto two mainreasons.Thefirst is thatthese
viewsaretakenfrom afew sitesin theInternet.While they containmostof thenodes,they lack in
connectivity information,sincethey containmostly links thatareon theshortestBGPpathfrom
thesourcesiteto theothernodes[CCG3 02a].Thesecondlieswith therulesof theBGPprotocol,
which tendnot to advertiseabackuppathwhich is not in currentuse.

In this work, we first suggesta paradigmfor finding Internetconnectivity underBGP pol-
icy routingbasedon existing businessagreements.We discussthedifferentmetricssuggestedfor
measuringtheresiliency of thenetwork, andsuggestourown. Wefind theresiliency of theInternet
to attacksandrandomfailures,andshow thatit is evenmoresusceptibleto attacksthanpreviously
found. We show that previous Internetmodels,which did not take into accountthe connectivity
constraintsimposedby policy basedrouting,yieldedtoooptimisticresultsfor thecaseof adeliber-
ateattack.In thecaseof randomfailuresof nodes,theresultsshow thatthedifferencein resiliency
is small.

Our testbedconsistsof partial Internetviews obtainedfrom theOregonsite [Ore] andfrom
Europeanexchangepoints [Rip]. We alsoobtainedthe very rich databasecollectedby Chenet
al. [CCG3 02a],whoassembled41partialviewsalongwith addedLooking Glassinformationand
showedthattheactualconnectivity betweenASsis higherthanwaspreviouslyknown. Our results
show that the addedconnectivity improvesthe resilienceof the networks, and thereforeresults
obtainedon partial views are somewhat misleading. Moreover, hiddenbackuplinks which are
usedonly in caseof a disaster, would probablyimprove theresilienceof thenetwork evenbetter.
Wemadesomefirst attemptsto modelhow backuplinks mayimproveInternetreachability.

5.2 A Heuristic for Added Backup Connectivity

In this section,we make a first attemptto quantify theeffect of existing backuplinks, which are
usuallynot advertisedthroughBGPuntil used,on thereachabilityandresiliency of theAS graph
underattacks.We constructeda backupscenario,which relieson the existing connectivity, and
provides alternatepathsto small- and medium-sizedASs which connectonly to one provider.
TheseASs,oncetheirproviderfails,usetheirpeeringlinks asbackuplinks, effectively usingthem
ascustomer-to-provider links. Sincewe do not addlinks to theexisting graph,theeffect of such
a backupscenariois only meaningfulin thecaseof attacks.As we have shown in Section5.5.2,
Internetreachabilityunderrandomfailuresis very closeto its connectivity. Thereforetheadded
pathsgainedfrom usingthebackuplinks canhardlyimprovetheresiliency in this case.However,
in thecaseof attacks,it might allow single-homedASs to usealternatepaths. If therearemany
suchASs,which do not rely on multihoming,we expectanincreasein boththesizeof thelargest
componentandthereachability.

Our backupscenariois asfollows:

; AS m hasoneprovider.

; link inm=��opj is apeerlink.
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Figure5.1: Addedbackup:Reachabilityun-
derattacksin UM
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Figure5.2: Addedbackup: Largestcompo-
nentsizeunderattacksin UM
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Figure5.3: Addedbackup:Reachabilityun-
derattacksin OR2
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Figure5.4: Addedbackup: Largestcompo-
nentsizeunderattacksin OR2

; if AS m disconnectsfrom its provider, thenlink iqm=��oWj becomesa customerto provider
link.

We found that the addedbackupconnectivity is moremeaningfulfor the sparsetopologies(LZ,
OR1)thanfor thericher topologies(OR2,UM). We give heretheresultsfor theUM topologyin
Figs.5.1and5.2. We seethat thereachabilityis somewhatbetterwith theaddedbackuplinks, as
is thesizeof thelargestcomponent,but thebehavior of thetopologieswith andwithout thebackup
links is verysimilar. Figs.5.3and5.4show thatfor thenewerpartial-view OR2,which is alsorich
in connectivity, thereachabilityandsizeof thelargestcomponentarehardlyeffectedby theadded
backupconnectivities. Theseresultssuggestthat therehasbeena vastincreasein thenumberof
ASsthatusemultihoming,andarethereforehardlyaffectedif oneof theirprovidersfails.

A morestrict backupscenario,which enabledtwo ASs to usea peerlink betweenthemas
backuponly if bothASshaveonly oneprovider, yieldedevensmallerimprovementin bothreach-
ability andthesizeof thelargestcomponent.Additionally, weexaminedtheresiliency to apartial
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attackon thecore,i.e.,a few of the30 mostconnectednodeswereremovedrandomly. We exam-
inedtheeffectof thebackuplinks in thisscenario.Theresultsshowedno improvementin thesize
of thelargestcomponent,andanegligible improvementin reachability.

5.3 Modeling Reachability in a Dir ectedAS Graph

In this sectionwecharacterizeour graphmodel,anddescribeour reachabilityalgorithm.

5.3.1 AS Graph Model

We model the AS graphasa directed graph,in which the setof nodesis the setof distinct au-
tonomoussystemsanda link exists betweentwo suchnodesif the respective ASs have peering
(business)relationship2 andareBGPneighbors.For eachlink we maintainits directionandchar-
acteristics.For example,betweentwo nodesthatrepresenta provider andits customer, therewill
bean uphill link from thecustomerto theprovider, anda downhill link from theprovider to the
customer. Betweenpeersthereis adirectedpeeredgein eachdirection,andbetweensiblingsthere
is anundirectedlink.

Connectivity in theAS graphwith thevalley freepolicy rulesdescribedin Section5.4main-
tainsreflexivity, but doesnot maintaintransitivity. For example,a small ISP with two providers
reacheseachof them on the directedlink that connectsthe customerto its provider, but the
providerscannot usethe two link paththroughthecustomerto communicate.An algorithmfor
finding theshortestpathundertheserestrictionswassuggestedin [KBHL01]. Thealgorithmuses
anadaptationof theDijkstrashortestpathalgorithmto theAS graph,for theproblemof proxyand
cachelocation.

5.3.2 AS Reachability Algorithm

Thereachabilityalgorithmwedevelopedmaintainsareachabilitymap.It finds,for eachnode,the
setof nodesthatcanbereachedfrom it in thepolicy constrainedAS graph,regardlessof thepath
taken.Thealgorithmdoesnot look for thebestpathto a node,but rather, for eachnode,looksfor
all nodesreachablefrom thatnodethroughsome valid AS path.

The algorithmis a free adaptationof a breadthfirst search(BFS) to the AS graph. Starting
from a sourcenode,thealgorithmlooksfor uphill paths.A link canbetakenonly if by taking it
thepathis still a valid AS path,i.e.,valley free.Eachnode,whenreachedfor thefirst time,marks
its stateby thedirectionit wasreached.Thus,a nodereachedthrougha downhill pathis marked
asdown, etc. Then,thenodeexaminesall of its neighbors.A link to a neighboris takenonly if it
providesavalid AS path.
A nodecanbe reachedagainonly if thepathtaken throughit canopenmoreopportunities.For
example,a nodein statedown that is reachedby anuphill pathwill exploreit andchangeits state
to theup state.Thus,eachnodecanbein oneof thefollowing states:

2Notethatthederivativesof “peer” appearsin two distinctmeaning.We saythat two ASshave “peeringrelation-
ship” if they exchangeBGPmessages,andthat two ASsare“peers” if they have peer-to-peerexchangeagreementin
BGP, namelyif they areneitherprovider-customernorsiblings.
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none - Thenodehasnotbeentraversedyet.

up - The nodewas in either none, side or down states,and thereis an uphill path that canbe
traversedthroughit.

side - Thenodewasin eithernone or down stateandthereexistsa peerlink thatcanbetraversed
throughit.

down - Thenodewasin none state,andthereis adownhill paththatcanbetraversedthroughit.

The algorithm gives the highestpriority to an uphill path througha node, the next priority to
traversingapeer-to-peerlink from thatnode,andthelowestpriority to adownhill paththroughthe
node. Eachnode,oncereached,examinesall of its links. A link is takenonly if by taking it the
stateof thenodereachablethroughit canbeimproved,accordingto thedescriptionabove.

Figure5.5presentsa formaldescriptionof thealgorithm.Thefollowing variablesareusedin
thealgorithm: r is thesetof all nodesrepresentingASsin thegraph;s(< is thereachabilitybitmap
of node A , in which bit J is setif thereis a legal BGPpathbetweennode A andnodeJ , and tvuw< is
thestateof nodeA . xy< is thesetof immediateBGPneighborsof nodeA .

Thealgorithmtime complexity is asfollows. Eachnodestartsin statenone, andcanchange
its stateat mostthreetimes.Hence,eachnodeis reachedat most threetimes,giving a worstcase
time complexity of z('|{~}U{�* , where } is thenumberof links in thegraph(in a worstcasescenario,
eachlink is examinedthreetimes).

5.3.3 Anomaliesin the AS Graph

The algorithmdescribedin Figure5.5 is resilientto anomaliesin the AS graph. However, there
aretwo anomaliesthatneedto beconsidered.Thefirst, andmorerare,is calleda blackhole,and
thesecondis inferencemistakes.

Today, eachAS administrationis responsiblefor advertising its own CIDR prefix through
the BGP protocol. A black hole happenswhena wrong prefix is announcedby a BGP speaker,
thushiding from otherASs the real ownerof theprefix. Sucha phenomenacanbe tracedtoday
only throughtheawarenessof network managers,andsolvedonly throughexhaustivesearchand
mailing list queries(an interestingexampleis AS3908,which usedto beSuperNetInc., andwas
acquiredbyQwestInc. It hadwronglyadvertisedprefix157.237.0.0/16insteadof themorespecific
157.237.144.0/24whichit owned,hidingawayasmallISPin Sweden.Forcompletetraceof events
follow [Nan]).

Gao’s inferring algorithmwasshown to be 97% accurateon a testcasedatabaseof AT&T,
having inferenceproblemsonly for links suspectedassiblings. Out of the3% inferredassibling
links, theactualrelationshipsobtainedfrom theAT&T datawerealmosthalf peeringlinks, aquar-
tercustomer-providerlinks, andonly therestwereactualsiblinglinks. Battistaet al. [BPP03] have
investigatedtheanomaliesin AS graphs,showing thattheproblemof solvingtheAS relationships
while minimizing theanomaliesis NP-hardin thegeneralcase,andsuggestedheuristicsfor min-
imizing thenumberof anomalies.A recentwork [HBC03], thatcomparestraceroutesto BGPAS
paths,finds thatmuchof thedisparityresultsfrom ASsconnectedthroughexchangepoints,and
by groupsof ASsunderthesameownership.



60 CHAPTER5. INTERNET RESILIENCYUNDERBGPROUTING

Algorithm 3 (Reachability Algorithm)
1. �6�[Tfr do:

2. set t9� � ; direction � up;

3. set sU�G� � ; tvu�� = up;

4. inspect(t , direction)

5. output sU�

6. functioninspect(� , � )
7. set � in sU�
8. �6A�Tpx ] do:

9. if i��6��AGj = sib link then

10. inspect(A
��� )
11. return

12. switchd: * Notethefall through*

13. caseup:

14. if i��6��A-j = customer to provider then

15. if t�uw<�þ none or side or down then

16. tvuw<�� up

17. inspect(A ,up);

18. caseside:

19. if i��6��A-j = peer then

20. if t�uw<�þ none or down then

21. tvuw<�� side

22. inspect(A ,down);

23. casedown:

24. if i��6��A-j = provider to customer then

25. if t�uw<�þ none then

26. tvuw<�� down

27. inspect(A ,down);

28. return

Figure5.5: A formal descriptionof thebasicalgorithmfor therootnode.
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To obtainaccurateresults,we inferredmanuallythroughtheuseof WHOIS serversandIn-
ternetsearchesall of the automaticallyinferred sibling relationshipsin the databasesobtained
from [Rip]. For acombinedview of theLondonandZurich exchangepoints,gatheredat thesame
timefor thesamesetof ASs,weobtainedthefollowing results:Outof the81inferredsiblingrela-
tions,only 32%(26)wereactualsiblings.27%(22)werepeers,8%(7) werecustomer-to-provider
links and32%(26)wereprovider-to-customerlinks.

5.3.4 Metrics for defining Resiliency

Theproblemof findingtheright metricfor evaluatingthenetwork resiliency wasreducedin previ-
ousworksto theproblemof findingtheconnectivity of thegraph[AJB00,CEbAH00a, CEbAH01,
PKP3 03]. Althoughtheproblemitself remainsanopenproblem[FFF99a], theabove mentioned
worksusedsomeof thefollowing metrics:Averagediameteror averageshortestpathlength � ; the
giantcomponentsize Q ; thenumberof connectednodepairsin thenetwork, � ; diameter-inverse-
� , DIK.

The definition of � is asfollows: let ���P<��+'��0���6* denotethe minimal pathbetweenany con-
nectedpair of distinct nodes � and � , and � the numberof such distinct nodepairs. Then:

�sþ �����+�D������� �v ¡ ¢£¡ B Accordingto [CEbAH01] � canbe usedto asseswhena network underattack
reachescriticality. A measureof the sizeof the largestcomponent,Q , is the ratio betweenthe
numberof nodesin the largestconnectedcomponentandthenumberof nodesin thegraph.The
two metrics � andDIK, definedin [PKP3 03], areas follows. � describesthe whole network
connectivity, by measuringall connectednodepairsin a network: let ¤ bethenumberof distinct
nodepairs,and � definedasabove, then: � þ ¡ ¢6¡¡ ¥�¡ B Park et al. [PKP3 03] have suggesteda dif-
ferentversionof � , DIK, which measuresboththeexpecteddistancebetweentwo nodesandthe
probabilityof apathexistingbetweentwo arbitrarynodes:¦(§2� þ �¨ B

We notedthat the measuresdescribedabove cannotbe directly appliedin our case,when
reachabilityis not equivalentto connectivity, sincethedirectedAS graphlackstransitivity. In this
case,for example,theminimaldistancebetweentwo nodes,� , becomestheminimalBGPdistance
betweentwo nodes,dependingon policy constraints.Thus,we chosetwo different ratios, that
capturebest,in our understanding,theactualresilienceof theInternet.

Thefirst, denotedby K , capturesthereachabilityof theInternet,andis definedasfollows: let© '��0���6*ªT���� � denotereachabilitybetweenan arbitrarydistinct pair of nodes� and � , �0���nT�r ,
wherer is thesetof nodesdescribingASs.Let �¬« denotethenumberof distinctnodepairsin the
graph,for which © þ �

, andlet z­« denotethetheoreticallimit of �¬« for theInternet(whenthere
arenofailuresin theInternetweexpectto havefull reachabilitybetweenall ASs).Then,wedefine
K astheratio:

Kzþ �®«
z­« B

Thesecondmetricquantifiesthesizeof thestronglyconnectedcomponentin thedirectedAS
graph,termed KkQ . We createa reachability graph, in which thereexists an edgebetweentwo
nodes� and � if andonly if © 'h�O�
�£*�þ �

.3 Then,in orderto find the largeststronglyconnected
componentin theoriginalgraph,weneedto find themaximalcliquein thereachabilitygraph.The
problemof finding the maximalclique in a graphis NP-complete[Kar72]. The bestknown ap-

3Notethatwhile reachabilityis not transient,it is symmetricunderthevalley freerule.
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proximationfor findingthemaximalclique[BH92] givesan z['h?_¯+'h°²±´³ � *�µ4* performanceguarantee.
Hence,for our topologies,we canexpecta maximalmistake of around0.6%(seeTable5.1). We
usea greedyheuristicfor finding themaximalclique in thegraph. Sincewe know which nodes
still exist in the graphafter the simulatedfailure or attack,andtheir respective degrees,we start
with theonewith thelargestdegree.Dueto thehierarchicalnatureof theInternet[TGJ3 02], it is
likely thatsucha noderesidesin thecore,andthereforeis usedby many othernodesfor reacha-
bility. Wedenoteall of thenodesreachablefrom thatnodeby ¶ . Then,iteratively, we look for the
maximaldegreenodein ¶ , A , andextractfrom ¶ all thenodesnot reachablefrom A . We continue
this processuntil all the nodesin the componentarereachablefrom eachother. The processis
repeatedseveraltimeswith differentstartingnodesselectedfrom thetopconnectedones.Thesize
of the stronglyconnectedlargestcomponent,Q � , is thendivided by the numberof nodesin the
original graph,to obtaintheratio KkQ .

5.3.5 Critical Point of Failur e (PhaseTransition)

Fromaphysicalpointof view, aphasetransitionoccursonlywhenthenetworkdisintegrates[CEbAH01].
Thenetwork is consideredconnectedaslongas KkQ , theratiobetweenthesizeof thelargestcom-
ponentandthe numberof initial nodesin the graph,is a fraction of the numberof nodesin the
graph. For example,the removal of the top 20% of the nodesof a 100 nodesnetwork, yields
KkQ þ·��B�� . For a network with thesameconnectivity distribution, regardlessof its size,any such
removal of thetop20%of thenodeswill yield asimilar KkQ . Thus,aslongasthesizeof thelargest
componentis a fraction of the initial sizeof the network, the network is consideredconnected.
Thephasetransitionoccurswhen KkQ^� � ¯v¸ , where ¸ is the initial numberof nodesin thenet-
work. Hence,physicallyspeaking,thenetwork is considereddisintegratedonly whenthesizeof
thelargestcomponentis one.Thesamediscussionholdsfor thereachabilityfunction, K .

¿Froma routingperspective, reachabilityis consideredlost long beforethe Internetdisinte-
grates.We assumehere,thatwhen K¹iº��B � , i.e., theoverall reachabilityis lessthan50%of the
original reachability, or when KkQni»��B � , i.e., thecomparablesizeof thelargestcomponentis half
theoriginal network, thenetwork is no longerconsideredconnected.

5.4 Background on AS Connectivity and Inter net topology

TheInternettodayconsistsof thousandsof subnetworks,eachwith it own administrativemanage-
ment,calledautonomoussystems(ASs). EachsuchAS usesan interior routing protocol (such
as OSPF, RIP) inside its managednetwork, andcommunicateswith neighboringASs usingan
exterior routing protocol,calledBGP. The BGP protocolenableseachadministrative domainto
decidewhich routesto acceptandwhich to announce.Throughthe useof the protocol the au-
tonomoussystemsselectthe bestroute,andimposebusinessrelationshipsbetweenthemon top
of the underlyingconnectedtopology. As a result,pathsin the Internetarenot necessarilythe
shortestpossible,but rathertheshortestthatconformto theASs’ policies. Suchrouting is called
policy-basedrouting.

The commercialagreementsbetweenthe ASs createthe following peeringrelationships:
customer-providerandprovider-customer, peer-to-peer, andsiblings.A customerpaysits provider
for transitservices,thustheprovider transitsall informationto andfrom its customers.Thecus-
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tomer, however, will not transit information for its provider. For example,a customerwill not
transitinformationbetweentwo of its providers,or betweenits provider andits peers.Peersare
two ASsthatagreeto provide transitinformationbetweentheir respectivecustomers.Suchagree-
mentsareverycommonbetweenASsthatconnectat anexchangepoint (IX) andbetweensmaller
ISPsresidingat thesamegeographicalvicinity. In sibling relationships,thetwo ASsprovide full
transitservicesfor eachother. Suchrelationshipsaremainly dueto financialacquisitions,merg-
ers,or to a smallerdegree,businesstransactionsbetweensmallerISPsthat maintaintheir own
administrationbut unify their networkingservices.

In apioneeringwork, Lixin Gao[Gao00]suggestedanalgorithmfor inferringthetypeof rela-
tionshipsbetweenASsthroughtheiradvertisedBGPpaths.Thealgorithmassumesthatthedegree
of connectivity of an autonomoussystemis an indicationof its size,andinfers the relationships
betweenthe ASs accordingto a setof rulesobtainedfrom the above descriptionof commercial
relationships.Gaohasdeduced,thata legalAS pathmaytakeoneof thefollowing forms:

1. Up hill path,followedby a down hill path.

2. Up hill path,followedby apeeringlink, followedby a down hill path.

Whereanup hill pathis a sequentialset,possiblyempty, of customer-provider links, anda down
hill pathis asequentialset,possibleempty, of provider-customerlinks. Thus,alegalroutebetween
autonomoussystemscanbedescribedasa valley free path. A peeringlink canbetraversedonly
oncein eachsuchpath,andif it existsin thepathit markstheturningpointdown hill.

Furtherwork on AS relationships[SARK02] have characterizedthe Internetas hierarchi-
cal. They found that the top big Americanproviders form a corewith almostcompleteclique
connectivity, andthe secondlayer aroundthis coreconsistsof big providersfrom the USA and
Europe,characterizedmainly by their very rich connectivities to thecore.Thethird layerconsists
of smallerproviders,andforms themajority of thenetwork. Recentworkshave investigatedthe
relationsbetweenASs,looking for anomaliesandtheirpossiblesolutions[BPP03, PKP3 03].

Inferring theAS relationshipscanbeviewedaspartof anongoingeffort to discoverandmap
theexacttopologyof theInternet[FFF99a, CNS3 99,MMB00, CCG3 02a,BC99, GT00]. It is gen-
erally agreedtodaythattheInternet,at theAS level, hasa highly heterogeneousconnectivity pat-
terns,with ahighly variablevertex degreedistribution. Severalworkshavealsotried to character-
ize thegrowing mechanismsof theInternetandmodelit [BA99, AB00, BT02,PKP3 03], andsev-
eralnetworksgeneratorswhichrely onsomeof thesealgorithmsexist [JcJ00, MLMB01, DMS03]
andevaluated[RTY 3 00,TGJ3 02,MSZ02,BT02].

In all previousworkson theresilienceof theInternet,it wasassumedthattheconnectivity of
thenetwork is equivalentto its reachability. We show in this work thatthetwo arenot equivalent,
andfind theactualreachabilityof thenetwork underdifferentconstraints.

5.5 Resiliencyof The Inter net

In thissectionwepresentourresultsfor theresiliency of theInternetto randomfailuresandattacks,
giventhepolicy routingconstraints.

Table5.1 describesthe differentdatasetsusedin thesetestsandtheir characteristics.The
topologiesdiffer mainly in theirconnectivity. TheLZ dataset,from theRIPERoutingInformation
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Service[Rip], is the resultof combiningrouting information from two exchangepoints,one in
Londonandtheotherin Zurich. Thedatalacksmostof thelargesttop US providers.Thelargest
AS in this dataset hasa rather low degreeof 1958, and the averagedegreein the set is also
ratherlow. This impliesthat therearefewer alternative pathsbetweenthenodesin this topology,
i.e., lessredundancy, andthereforeweexpectit to bethemostvulnerableto deliberateattacks.As
discussedin Section5.3.3thetopologyis alsoinference-anomalyfree,asall automaticallyinferred
sibling relationsweremanuallycheckedusingWHOIS databasesandInternetsearches.Datasets
OR1 andOR2 areboth partial views from the Oregon routeview project [Ore], collectedMarch
andApril, 2003respectively. The topologiesdiffer greatlyin therichnessof theconnectivity, as
OR2has27%addedconnectivity comparedto OR1.Thelastview, andtherichestin connectivity,
UM, is theenrichedtopologyobtainedby Chenet al. [CCG3 02a].Althoughcollectedthreeyears
ago, the topology is the richest in connectivity, sinceit was collectedfrom 41 BGP databases
andaugmentedwith summarydatafrom differentlooking glasssites.Theongoinggrowth of the
Internet,which increasesits averagedegree,impliesthatsuchanenrichedview of today’s Internet
will yield amuchhigheraveragedegreethanseenfrom thepartialviewsOR1andOR2.

In the graphspresentedin this section,we comparethe resiliency of the policy-constrained
AS graph,referredto asthedirected graphor thereachability graphto theresiliency of thegraph
usedin previous works, referredto asundirected graph. For eachtopology, we presentboth the
reachability K and the evaluationof the largestcomponent,KkQ , asdiscussedin Section5.3.4.
Someof thepartialviewsdo not have100%reachability to begin with, ascanbeseenin Fig. 5.6,
for example.

Name source Date No. of ASs No. of Links Avg. Degree Max Degree
LZ RIS 2002/07/03 13393 22001 3.28545 1958

OR1 Oregon 2003/03/01 14704 24020 3.26714 2330
OR2 Oregon 2003/04/01 15128 31426 4.15468 2503
UM Umich 2001/05/26 11204 25980 4.63763 2417

Table5.1: Characteristicsof datasetsused

5.5.1 Resiliencyof the Inter net to DeliberateAttacks

We evaluatethe resiliency of the Internetto deliberateattacksby targeting the topology’s most
connectedASs, droppingeachtime the next mostconnectednodein the graph,andmeasuring
bothmetricsK and KkQ for thedirectedandundirectedgraphs.

Figs.5.6 and5.7 show the resiliency of the LZ topologyto deliberateattacks.Even before
any nodewasdropped,the reachabilityis lessthanthe connectivity, dueto the partiality of the
topology. Thesamecanbeseenin Fig. 5.8and5.9, representingtheresiliency of topologyOR1,
alsoa rathersparsepartialview. However, in themoreconnectedviews,OR2andUM, thepartial
view givesa fully connectednetwork, in which all nodesarereachableto begin with.

In the sparsetopologiesthe overall reachabilitydecreasesvery fast. Fig. 5.6, which starts
from a 95%reachability, shows thatafterdroppingonly thesixth mostconnectednodes,thegap
in reachabilityis 12%. The gap is even larger when we checkhow much of this reachability
is within the samecomponentof nodesthat communicatewith eachother (Fig. 5.7). After the
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Figure5.6: Reachabilityunderattacksin LZ
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Figure5.7: Largestcomponentsizeunderat-
tacksin LZ

removal of thesesix nodes,thereis a gapof 19%. Thegapbetweenreachabilityandconnectivity
increasesas the network startsto breakup—afterdroppingthe 12th most connectednodesthe
largestcomponentconsistsof only 20% of the nodesin the topology, while previously it was
thoughtthatit still consistsof 50%of thenodes,aswe canseefrom theresultsfor theundirected
graph.
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Figure 5.8: Reachability under attacks in
OR1
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Figure5.9: Largestcomponentsizeunderat-
tacksin OR1

Figs.5.8 and5.9 give similar results,namely, that the Internetis muchmoresusceptibleto
deliberateattacksthanpreviously thought. While the overall reachabilitydropsat the samerate
asthe connectivity, it canbe seenfrom Fig. 5.9 that the first nodethat wasdroppedwasa large
AS with a lot of customers,that lost reachabilityto therestof thenetwork. After theeighthmost
connectednodeswereremoved,thesizeof thelargestcomponentis lessthan50%thesizeof the
network, while in thecaseof theundirectedgraphit contains69%of thenodes.We seeherethat
afterattackingonly the8th mostconnectednodes,the Internet’s largestcomponentcontainsless
than50%of thenodes.
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Figure 5.10: Reachabilityunder attacksin
OR2
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Figure 5.11: Largestcomponentsize under
attacksin OR2
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Figure 5.12: Reachabilityunder attacksin
UM
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Figure 5.13: Largestcomponentsize under
attacksin UM

Figs.5.10,5.11,5.125.13representthe resiliency of highly connectedtopologies(OR2and
UM), in which mostnodescanbereachedthroughseveralAS paths.Therefore,we expectedthat
the resiliency of thedirectedAS graphwould resembletheoneof theundirectedgraph. Indeed,
the reachability K is almostthe samefor both topologieswhen the five most connectednodes
aredropped,sincealternatepathsaretaken. Thesizeof the largestcomponentis alsoquitesim-
ilar for both the directedandundirectedgraphs,althoughfor the UM topology (Fig. 5.13) the
gapbetweenthe componentsizesreachesalmost7% after the removal of only 5 nodes. In all
cases,thegapbetweenthedirectedandundirectedgraphsincreasesafter the tenmostconnected
nodesareremoved. After theremoval of 28 nodesthegapin largestcomponentsizeis over 15%
(Figs. 5.10,5.13). After removing the 50 mostconnectednodes,for the highly connectedOR2
topology, thenetwork disintegratedto thepointwherethelargestcomponentholdsonly 4%of the
nodes. In the unconnectedcase,the componentholdsmorethan42% of the nodes,an orderof
magnitudedifference.

In summary, the resilienceof the Internet,undercurrentpolicy constraints,to deliberateat-
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tacksagainstthe top most connectedASs is much lower thanpreviously found. On all partial
views we obtained,the largestcomponentdroppedto lessthan50%thesizeof thenetwork after
theremoval of only thetenmostconnectednodes.Thenetwork disintegratedcompletelyafterthe
removal of thetop30 ASs(0.2%of thenumberof ASs).

5.5.2 Resiliencyto RandomFailur esof Nodes
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Figure5.14: Reachabilityunderrandomfail-
uresin LZ
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Figure 5.15: Largestcomponentsize under
randomfailuresin LZ

We checked the resiliency of the Internetto randomfailuresby a randomremoval of 100
nodesat a time,until morethan95%of thenodeswereremoved.

Figs.5.14and5.15show thecomparableresiliency of theInternetto randomfailuresfor the
LZ topology. As previously found, the Internetis not susceptibleto suchrandomfailures,and
both K and KkQ do not fall below 0.8 even after the removal of 1000nodes.The network starts
to breakdown only after theremoval of morethan2000randomnodes.theInternetdisintegrates
only aftertheremoval of almost95%of thenodes.Thedifferencebetweenthetwo graphmodels,
thedirected(policy-constrained)AS graph,andtheundirectedgraph,is small.However, wefound
that the gap is larger for the sparseviews than for the views richer in connectivity, whereit is
negligible. This result is somewhatsurprising,indicatingthat the Internetmaintainsreachability
of almostthesamedegreeasits connectivity, underrandomfailureof nodes.

Dueto thehighdegreeof thenodesin thecore,andthefactthatthesenodesarerarein ascale
freedistribution, thestatisticalprobability that they will beremovedin a randomfailurescenario
is low. However, it couldbeexpectedthattheremoval of smallandmediumsizednodeswill effect
thereachabilityof thesmallerASsandthereforethesizeof thelargestconnectedcomponent.The
surprisingresults,indicatingthatthereachabilityis verycloseto thepossiblelimit, theundirected
connectivity, prove differently. Theseresultsmay indicatethat most ASs usemultihoming to
severalproviders,andthusarelesssusceptibleto theserandomfailures.
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5.6 Conclusions

We examinetheresiliency of theInternetto deliberateattackandrandomfailuresat theAS level,
giventhatroutingpathsconformwith thepolicy imposedby BGP. We compareour findingswith
previousfindingsthatdid notconsidertheseconstraints,andevaluatedreachabilityasconnectivity.
We suggestanefficient algorithmthatdeterminesreachabilityin suchAS graphs,anddiscussand
suggestmetricsfor measuringtheresiliency.

Our resultsshow that the Internetis muchmoresusceptibleto deliberateattacksthanprevi-
ously found,andthat reachability, aswell asthesizeof the largestcomponent,drop to lessthan
half aftertheremoval of the25 mostconnectednodes—lessthan0.2%of thenodes.TheInternet
alsodisintegratesmuchfasterthanpreviously found,underanattackthattargetsthetop0.5%ASs.
WealsofoundthattheInternetis ratherresilientto randomfailures,andits reachabilityis surpris-
ingly closeto thegraphconnectivity without policy constraints.Theseresultscanbeattributedto
thatroutingin theInternetis mainly throughits coreof highly connectedASs.

Our initial resultson theeffect of backuplinks suggeststhat they do not improve resiliency
of the Internetby much. Thedecreasein theaddedresiliency of thepartial views over theyears
suggestthatASstendtodayto rely moreonmultihoming,andthusarelesssusceptibleto a failure
of oneof their providers. We believe that further researchto modelbackupconnectivities at the
AS level is important.
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