DYNAMIC OFFLOADING INFRASTRUCTURE FOR
PROGRAMMABLE DEVICES

A Thesis Submitted in fulfillment
of the requirements for the degree of
Master of Science

by
Maxim Grabarnik

Supervised by
Prof. Danny Dolev

School of Engineering and Computer Science
The Hebrew University of Jerusalem
Jerusalem, Israel

November 2007

Acknowledgments

First, I would like to deeply thank my advisor Prof. Danny Dolev, for giving me opportu-

nity to participate in fascinating research.

Special thanks go to Yaron Weinsberg, my co-advisor, for his efforts and support. I really
enjoyed working together. I thank Yaron for being a huge inspiration source, for carefully
reviewing my drafts and providing precious advice and helping to improve this thesis with

his original ideas and insights.

Next, I thank Dr. Tal Anker who’s ideas, advices and enthusiasm about this work helped

to shape it.

Special thanks to my parents Irina and Alexander Grabarnik, for constantly boosting my

moral.

Last but not least, I would like to thank my wife Ola for her patience during my studies.

Abstract

Traditionally, embedded systems, and computer peripherals in particular, serve very spe-
cific roles. They perform tasks statically hard-coded by a manufacturer lacking the ability
to be configured dynamically with different functionalities.

Today, modern peripherals have substantial memory and computational resources.
These resources could be partly utilized by user level applications if these devices would
have supported dynamic offloading capabilities. Thus allowing applications to improve
their performance and reduce their burden on the host machine.

Dynamic configuration has several inherent limitations. First, the linking process with
a target device is tightly coupled with the device’s code structure (e.g., exported methods)
or runtime environment (such as virtual machines). Secondly, most offloaded components
have restricted flexibility; and last, the devices may have heavy resource requirement for
linking and loading.

This research describes a generic dynamic offloading framework allowing efficient de-
ployment of arbitrary executable code into an embedded environment. It has very relaxed
requirements from the target device CPU-wise and memory-wise. This framework has
been deployed in the HYDRA framework [WDWAa] to facilitate its offloading aspects.
The dynamic offloading framework has been implemented and evaluated for a network
device on top of a Network Interface Card Operating System (N1COS [WADKO06]), which

was developed as a part of this research.

Table of Contents

Acknowledgments i
Abstract iii
1 Introduction 1
1.1 Offloading Overview, 1
1.2 HYDRAOvVerview it 3
1.3 Dynamic Offloading Framework 4
1.4 Framework Requirements 4
2 Related Work 6
2.1 Special OSs and OS Specific Object Loader 6
2.2 Graphical Processing Units, 6
2.3 JavaAppletsandJavaMEo o000 7
2.4 Mpyrinet Clusters with VM based NICs 8
2.5 Active Networks L L 8
2.6 Microsoft’s COM/DCOM Framework 8
2.7 Object Storage Disk (OSD) 9
2.8 Spine 10
2.9 FarGoand FarGo-DA 11

2.10 TCP Offload Engines (TOE) 11

vi

Table of Contents

3 Dynamic Offloading

6 Dynamic Offloading Prototype

3.1 Motivation.

3.2 Design Considerations

Hydra Overview

4.1 Offcode
4.1.1 Offcode Creation
4.1.2 Offcode Invocation
42 Channels
4.2.1 Channel Creation
4.3 Offload Layout Programming
4.4 Offcode Manifesto
4.5 Software Architecture

Approaching Dynamic Offloading
5.1 NIC Architecture
5.2 Ni1cOs Motivation
5.3 NicOs Hardcore
5.3.1 Tasks & Scheduling
5.3.2 Memory Management & Data Structures
5.3.3 Filtering & Classification
5.3.4 Networking
5.3.5 Embedded Application Instrumentation

6.1 Prototype pre-Requisites and Tools
6.1.1 Binutils and Compiler
6.1.2 Standard Linux Utils
6.1.3 In-house Tools

6.2 Dynamic Offloading Protocol

Table of Contents vii
6.3 Integrated Offloading Prototype 39
6.3.1 Offloading Protocol Implementation 39

6.3.2 Channel and Library APT 41

6.3.3 Preparing an OFFCODE for Offloading 43

6.3.4 Offloading & Activation 44

6.3.5 NICOFFCODELoader 45

7 Evaluation 48
7.1 OFFCODE preparation performance 49
7.2 Offloading performance 50

8 Conclusions and Future work 52
Bibliography 54

Chapter 1

Introduction

1.1 Offloading Overview

Many computer peripherals are software driven. They are in fact programmable devices
with some memory and CPU, programmed to achieve goals set by designer usually, but
not necessarily, inspired by device category: network controllers send and receive packets,

disk controllers read and write blocks of data, etc.

Programmable peripherals usually execute some kind of control software, however
there are examples when richer software stacks are being embedded into devices. One of
the most famous probably are TCP Offload Engines (TOEs) [Cur04] that have been built
into Network Interface Cards (NICs) firmware. This is a classic example of “host func-
tionality” being statically offloaded into peripheral in order to achieve better performance,
lower latency, decreasing host CPU utilization.

There are other attempts to offload pieces of functionality, traditionally performed by
host, into some peripheral. Quite a few such attempts were made around distributed com-

munication algorithms, particularly in clusters networks environment. Examples: fast

2 Offloading Overview

barrier using programmable NICs [BPS01], speeding up broadcast/multicast destribu-
tion [BPDS00], message passing interface (MPI) with rich set of performance enhance-
ments achieved by teaching NIC about MPI [ZKWO02]. There were also similar attempts
in more consumer oriented areas like multimedia applications that were speed up using
intelligent peripherals [FMOB98a].

All mentioned above are examples of static offloading. Where an optimization is hard-
coded into peripheral’s firmware in order to achieve the highest possible performance gain.
While such approaches have proved successful in improving performance, they suffer from
few drawbacks. First and immediate one is that making such an optimization is a com-
plex task accompanied by severe potential consequences of erroneous code, thus requiring
embedded system experts. Second, hard-coding features into the peripheral firmware is
inflexible. Each offloaded optimization usually specifically designed for a particular appli-
cation. But resources available on peripherals are very scarce, hence only limited number
of those may be compiled into the firmware at a given time.

Dynamic offloading tries to address flexibility and development complexity issues
while preserving the benefits of the static one. To make this possible peripheral’s soft-
ware is being designed in a way allowing future extensibility. Several design choice were
practiced. One of them is Virtual Machine based firmware. It was used in Myrinet clus-
ters [WJPRO4] providing grounds for optimizing several MPI primitives. Another one is
basing the firmware on an operating system (OS) specially tailored for run-time config-
urability (usually an academic one). Both approaches improves application optimization
range to some extent, yet they don’t come for free. Virtual machines trade off perfor-
mance for configurability and OSs tend to have rather complicated loaders with not negli-
gible footprint [BMWO3]. And also those design choices may lay pretty far from industry
common practices.

Present systems deploying dynamic offloading didn’t get very far from static offloading

HYDRA Overview 3

ones. They target narrow class of application rather then a specific application. However,
system aiming to gain a practical use of dynamic offloading is very inflexible in peripheral
choice and setup configuration options.

There were times when peripheral devices provided minimum functionality leaving
the rest to host. However this is no longer the case. Technology trends in digital design
have followed an exponential increase in the number of transistors on an integrated circuit.
This ongoing trend of decreasing cost and increasing density of transistors motivates hard-
ware and embedded system designers to use programmable solutions in their products.
The proliferation of programmable peripheral devices for personal computers open new
possibilities for academic research that will influence system designs in the near future.
Programmability is a key feature that enables application-specific extensions to improve
performance and offer new features. Increasing transistor density and decreasing cost pro-
vide excess computational power in devices such as disk controllers, network interface
cards, video cards and more. Such designs are cheaper and more flexible than custom
ASIC solutions. Performance capabilities of programmable products, and microproces-
sors in particular, will extend well up into the range of applications that formerly required

DSPs or custom hardware designs.

1.2 HYDRA Overview

HYDRA [WDWADb, WDWAa, Y. 07] proposes a novel offloading framework, that enables
utilization of various peripheral devices. The motivation for such a frmaeowrk becomes
clearer as peripheral devices become powerfull and programmable.

In every modern PC there is a wealth of unused computing resources. The NIC has a
CPU; the disk controller is programmable; some high-end graphics adapters are already

more powerful than host CPUs.

4 Framework Requirements

The HYDRA framework enables an application developer to design the offloading as-
pects of the application by specifying an “offloading layout”, which is enforced by the
runtime during application deployment. It defines a model where applications execute co-
operatively and concurrently in host processors and in device peripherals. In this model,
applications can offload specific tasks to devices to improve the overall application’s per-
formance. The framework also provides the necessary abstractions, programming con-

structs and development tools for developing such applications.

1.3 Dynamic Offloading Framework

This research introduces a general framework that supports dynamic offloading. The
framework is used as a building block in HYDRA’s offloading framework. The purpose
of this research is to enable an efficient and transparent deployment of components into
embedded devices. This research provides HYDRA with the offloading mechanisms that

are used for offloading application’s code to programmable peripheral devices.

1.4 Framework Requirements

e Genericity — The proposed dynamic offloading framework should be general enough

to accommodate any programmable peripheral.

e Modularity — Providing a modular framework that can be easily modified according
to a specific peripheral is a major design requirement. This research brings an ob-
ject oriented methodology into heterogeneous embedded environments by defining
host centric protocol for an individual task offloading. The protocol is device (and

interconnect) independent and could be easily adopted by vast variety of embedded

Framework Requirements 5

peripherals. This approach provides easy extensibility for programmable devices

limiting required developer knowledge.

e Ease of Use — To be able to implement offloadable modules, a developer will
merely need to know public device’s APIs (similar to using dynamic link libraries).
Providing compatible APIs for different devices, will speed up development time
and will enable code reusability, e.g., will enable to offload the same binary module

into several devices. This option isn’t available using current tools.

All the above raise natural desire for a generic offloading framework. HYDRAframework
will enable application developers to choose how to subdivide their programs, and make
it easy to alter the components at runtime to adapt to different hardware. The offloading

framework will perform the actual offloading of specific modules to their target devices.

Chapter 2

Related Work

Most of today’s work focuses at extension to a specific peripheral device and usually target
narrow class of potential applications. This section summarizes offloading attempts along

with techniques to create portable executable content.

2.1 Special OSs and OS Specific Object Loader

Stefan Beyer, Ken Mayes and Brian Warboys at University of Manchester experimented
with Dynamic Configuration of Embedded Operating Systems [BMWO03]. They focused
on modifying OS behavior by means of exchanging process managers. In order to achieve
it they used special purpose operating system and full fledged binary loaded. They also

used FTP like network module repository.

2.2 Graphical Processing Units

Modern computer graphics hardware contain extremely powerful graphics processing units

(GPU). These GPUs are designed to perform a limited number of operations on very large

Java Applets and JavaME 7

amounts of data. They typically have more than one processing pipeline working in paral-
lel with each other. Some of them provide methods for host applications to offload matrix
manipulations like vertex shaders, which are been triggered on the GPU during appro-
priate stage of graphics pipeline. Microsoft DirectX provide a common API mechanism
for applications to offload incorporated shaders into GPU as a part of application flow.
Shaders are compiled by a specific compiler provided by GPU vendor (like CUDA com-
piler of NVIDIA). The shaders compiler actually creates a specific target opcodes, which
are executed on the device. Most of the job is performed on the host.

However lack of compatibility between various GPU vendors make a reuse virtually
impossible. Even when shaders are available in source codes it can be compiled only by

target device compiler.

2.3 Java Applets and JavaME

Java applets on the other hand do hop. They’re loaded into a remote client once requested
and executed on this remote target. However, Java applet is executed by virtual machine
(VM) running on the target client , which links the applet at load time. VM analyzes it
prior to execution and provides all needed references (stitches it against types and objects
in VM’s runtime). So, applets require no pre-transfer-to-target preparation due to their
interpreted nature, nor applets care about capabilities of a specific physical host they run
on, due to their execution environment being in fact virtual machine.

Java Platform, Micro Edition (Java ME) provides a robust, flexible environment for
applications running on mobile and other embedded devices like mobile phones, personal
digital assistants (PDAs), TV set-top boxes and printers. Java ME includes flexible user
interfaces, robust security, built-in network protocols, and support for networked and of-

fline applications that can be downloaded dynamically. Applications based on Java ME

8 Microsoft’s COM/DCOM Framework

are portable across many devices, yet leverage each device’s native capabilities.

However virtual machine introduces inevitable application slowdown.

2.4 Myrinet Clusters with VM based NICs

NIC-Based Offload of Dynamic User-Defined Modules for Myrinet Clusters [WJPR04]
presents NIC-based Virtual Machine that allows users to dynamically add and remove
code modules from the NIC. The code is added by the user in source form and compiled
into an intermediate format, which is later interpreted by a special purpose virtual machine
embedded in the NIC firmware. Though virtual machine was used, offloaded code achieve
reasonable performance because the VM was specifically tuned for a specific sort of tasks.

This project was motivated by narrow class of distributed application and target only

Myrinet NICs.

2.5 Active Networks

Active networks allow individual user, or groups of users, to inject customized programs
into the nodes of the network. “Active” architectures enable a massive increase in the
complexity and customization of the computation that is performed within the network,

e.g., that is interposed between the communicating end points.

2.6 Microsoft’s COM/DCOM Framework

COM is a framework for integrating components. This framework supports interoperabil-
ity and reusability of distributed objects by allowing developers to build systems by assem-

bling reusable components from different vendors, which communicate via COM. DCOM

Object Storage Disk (OSD) 9

takes that notion one step further as it allows an application to be built from many COM ob-
jects that reside in different machines communicating over network. Using COM/DCOM
objects one can built a modular application, which can be distributed between several
physical hosts. So, some application modules need to communicate with others residing
elsewhere. But the objects themselves do not travel across those domains. So, such an
application could not deploy itself on remote targets.

Java applet and COM/DCOM objects are well known technics to create portable ex-
ecutable contents. We’ll compare them to Dynamic Offloading in order to better explore

fine details of its nature.

2.7 Object Storage Disk (OSD)

OSD development started in the Parallel Data Lab at Carnegie Mellon University originally
under the direction of Garth Gibson [Ruw, RG97, RGF98, Uni92]. OSD is a protocol that
defines higher-level methods of communicating with the creation, writing, reading and
deleting of data objects on disk. OSD is a level higher than a block-level access method
but one level below a file-level access method. It is a technology intended to help make
existing and future data storage protocols more effective in areas that include: storage
management, security, data sharing, scalability and device functionality.

Since the OSD has processing power, it can be further extended. Recently, Huston et
al. described a system called Diamond [HSW™'04]. Unlike traditional architectures for
exhaustive search in databases, where all of the data must be shipped from the disk to the
host computer, the Diamond architecture employs early discard. Early discard is the idea
of rejecting irrelevant data as early in the pipeline as possible. By exploiting active storage
devices, one can eliminate a large fraction of the data before it is sent over the interconnect

to the host. Diamond applications can install filters at the active disk for eliminating data.

10 Spine

This work uses offloading of hard coded type of functionality in order to optimize
narrow class of database applications. However, no actual offloading was implemented.
Active storage was simulated by a regular PC and has been extended to provide SQL

filtering as an internal OSD component.

2.8 Spine

Spine [FMOB98b] developed by Marc E. Fiuczynski (http://www.cs.princeton.edu/ mef/)
now also at Princeton based on Spin [BSP*95]. They enable dynamic installation of device
extensions, which are methods written in Modula-3. They implement a virtual machine
(VM) on a NIC, which is their major focus. Each handler is identified by a number. The
host or a peer can send an “Active Message” with an handler ID that will be executed by
the extension. There is no concept of a “task” or a standalone application (or server) in the
card. The internal interfaces are given as methods that create active messages, so a handler

can call another one by sending it a message.

All extension invocations are executed as a result of an event (a message arrival). There
is no programming model for building the applications. The application needs to create
a specific extension (in a specific language - Modula 3), install it and “talk” with it using

active messages (from the host).

However, neither a way to specify functional dependencies between extensions, nor a

method to define which extensions get offloaded exist.

FarGo and FarGo-DA 11

2.9 FarGo and FarGo-DA

Although not dealing with offloading, FarGo [HBSG99a, HBSG99b, Hol98, HBSG99d]
and FarGo-DA [WBS02, HBSG99c] propose a programming model that enables a devel-
oper to program relocation and disconnection semantics in a separate phase during the
application development cycle. The basic assumption for their work is that the application
is fully comprised of a set of components that are tagged by a specific interface (called:
Complet). The components are hosted in a virtual machine and can migrate to remote VM
using marshaling and unmarshaling mechanisms (much like in the RPC [Sri95, BN84],

RMI [Sun98, rmi99], CORBA [Sie98], DCOM [BK98] or WebService [Org] models).

2.10 TCP Offload Engines (TOE)

For some applications, the network stack’s capabilities provided by the host OS can con-
sume a significant amount of CPU cycles as well as memory bandwidth. This can create
a bottleneck for applications that have significant networking traffic and are either limited
by the amount of CPU cycles available to the application, or by the amount of available
main memory bandwidth. To increase the capacity of these applications, either faster
CPU/memory architectures need to be deployed or protocol off-load mechanisms need to
be examined.

Protocol stack overhead can directly affect the performance of server applications that
are constrained by CPU or memory bandwidth. For example, database networking stacks
can consume as much as one third of the total CPU utilization. If that consumption was
reduced to 5%, then additional CPU resources would be available to the database applica-
tions (the database application would run 42% faster).

While TOE technology [Cur04] have continued to gain popularity since 2000, TOE

12 TCP Offload Engines (TOE)

has been less-than-successful from a deployment standpoint. There are only few THVs!
shipping TOE chips and NICs in volume. Most TOE IHVs have chosen to follow an all-
inclusive approach for TCP/IP offload, including offload of connection-setup, data path
offload, and support for ancillary protocols such as DHCP, ARP, ICMP, and IGMP. In

general, IHVs are shipping TCP/IP offload as a parallel protocol stack.

I'Short for Independent Hardware Vendor, a hardware-manufacturing company that specializes in a spe-
cific type of hardware device and not a complete computer system.

Chapter 3

Dynamic Offloading

Common peripheral devices usually provide only the necessary functionality to meet ex-
pectations of a particular class they implement, or optionally they may have a finite set of
extra functionality. Yet programmable, they have rather limited resources to meet price ex-
pectations. We will define dynamic offloading as a process of extending device’s function-
ality by injecting executable module(s) into a device during its operational cycle without

interrupting it.

3.1 Motivation

Similar to Dynamic Link Libraries (DLLs), dynamic offloading provides the benefit of
reusing piece of logic by several applications requiring this particular functionality. It
also allows a particular application to better decouple from a particular peripheral device
supporting its ’bizarre’ needs and equally utilize any device of similar kind supporting

downloading framework [WDWAb, WDWAa].

14 Design Considerations

I/O consuming applications can utilize different portions of peripherals in an unfore-
seen, application specific manner. Using Dynamic Offloading, application could benefit
greatly adapting peripheral to its specific need. Leveraging the proximity between the
computational task and the data on, which it operates may boost the system’s performance
and reduce the load on the host processor and memory subsystem. Offloading to several
devices at once adds a new dimension to our ability to handle information close to its
source with limited involvement of the central CPUs. In particular, expensive memory bus
crossings are eliminated.

One more similarity between Dynamic Offloading and Dynamic Link Libraries [GLDW87]
is the necessity to (re)link modules prior to offloading them. Dynamic library is loaded
once and then every application depending on it is relinked to the statically placed DLL
image. In dynamic offloading scenarios core embedded application plays the “load-once”
role, while every extension module is being linked against it. Functional relationship be-
tween application and library is very similar except that DLLs usually aren’t self sufficient
while embedded applications are.

However, comparing to DLLs, Dynamic Offloading has a new dimension of complexity

introduced by the fact that:

1. peripherals has different (from host) and non-uniform execution environment(s),

memory map etc.

2. binary data need to be transported to a remote device.

3.2 Design Considerations

In order to design Dynamic Offloading mechanism we need first to understand better the

environment, which it should operate in. There are two participants: the host and the

Design Considerations 15

peripheral. Responsibilities between those two along offloading might vary. We have

considered different approaches to design Dynamic Offloading:

e The simple solution would be to hand over the OFFCODE to the target device and
require that each device implement binary loader for a particular executable format
used by the device. However, in general, memory and CPU resources in such devices

are scarce. And this naive solution is quite expensive in terms of device resources.

e On the other extreme, device can be totally unaware of any offloading. Thus host
will take all the burden of device dynamic configuration providing it with a complete
firmware image each time. This approach imposes no device requirements how-
ever most of the devices wouldn’t be able to preserve their runtime contexts. So,
eventually hurting the desired dynamicity of system reconfiguration (or Dynamic

Offloading).

e The middle ground is to define minimum requirement for device to be capable of
truly dynamic offloading, leaving the rest for the host. Thus, keeping the impact on
device resources as small as possible, while being able to inject functionality into

operating device without disturbing its normal operation.

We proceed with the third approach as it doesn’t require any special properties from
the devices and in the same time allows to design generic, device independent offloading

protocol. We’ll refer it as target-light approach.

Chapter 4

Hydra Overview

This section provides a short overview of the HYDRA framework. For brevity, we only
present the basic abstractions provided by the framework. The interested reader is advised

toread [Y. 07].

4.1 Offcode

An offcode defines the minimal unit for offloading. Offcodes are provided as source code,
which needs to be compiled to the target device, or as a pre-compiled binary. An offcode
is further described by Offcode Description File (ODF) that uses XML to describe the

offloading layout constraints and the target device hardware and software requirements.

An offcode can implement multiple interfaces, each of which contains a set of methods
that perform some behavior. Each interface is uniquely identified by a Globally Unique
Identifier (GUID). An OA-application communicates with an offcode using an abstraction

called a Channel. An offcode object file implements only one offcode, and it has a GUID

Offcode 17

that is unique across all offcodes. All offcodes implement a common interface that is used

by the runtime to instantiate the offcode and to obtain a specific offcode’s interface.

4.1.1 Offcode Creation

Offcodes are created by an OA application by calling the runtime CreateOffcode API.
The runtime generates and uses an offloading layout graph to offload the OA-applications’
offcodes. Section 4.4 details the mechanism used for the mapping of offcodes to their
respective devices. Once the offcode is constructed at the target device, it is initialized and
executed by the HYDRA runtime. Offcode initialization is performed in two phases. First,
the Initialize method is called and the offcode acquires its local resources. Since peer off-
codes may have not been offloaded yet, the offcode can access local resources only. Once
all the related offcodes have been offloaded, the StartOffcode method is called. At this
point inter-offcode communication is facilitated. Once an offcode has been explicitly cre-
ated, a set of attributes can be applied to it. HYDRA provides an API to get and set offcode
attributes. There are several attributes already defined under, e.g. OBSOLETE_TIME and

OFFLOAD_PRIORITY. The latter can be used to affect the offloading sequence.

4.1.2 Offcode Invocation

HYDRA provides two ways to invoke an offcode: transparently and manually. Achieving
syntactic transparency for offcode invocation requires the use of some “proxy” element
that has a similar interface as the target offcode. When a user creates an offcode, a proxy
object is loaded into user-space. All interface methods return a Call object that contains the
relevant method information including the serialized input parameters. Once a Call object

is obtained, it can be sent to a target device (or several devices) by using a connected

18 Channels

channel. The manual invocation scheme consists of manually creating the Call object, and

using a custom encoder to marshal arguments and invoke the channels’ methods.

4.2 Channels

Offcodes are connected to each other and to the host application by communication chan-
nels. Channels are bidirectional pathways that can be connected between two endpoints,
or connectionless when only attached to one endpoint.

The runtime assigns a default connectionless channel, called the Out-Of-Band Channel
(OOB-channel) for every OA-application and offcode. The OOB-channel is identified by
a single endpoint used to communicate with the offcode without the need to construct a
connected channel, such as for initialization and control traffic that is not performance crit-
ical. The OOB-channel is the default communication mechanism between peer offcodes
and between offcodes and OA-applications. The OOB-channel is usually used to notify

the offcode regarding management events and availability of other channels.

4.2.1 Channel Creation

The OOB-channel can be used for simple data transfer between the application and off-
codes and among offcodes. For high performance communication, a specialized channel
that is tailored to the needs of the application and the offcode can be created. Enabling
a specialized channel is performed in two steps. First, the channel creator determines the
channel characteristics and creates its own endpoint of the channel. Second, the creator
attaches an offcode to the channel. This action implicitly constructs the second endpoint
at the target device, and notifies the offcode about the newly available channel. Once the

channel is connected, the channel’s API can be used for communication. The channel

Offload Layout Programming 19

API contains typical operations of read, write and poll. The channel API also supports
registration of a dispatch handler that is invoked each time the channel has a new request.

Creating a channel involves configuring the channel type, synchronization require-
ments and buffer management policy. A channel can be of type Unicast, that can only
interconnect two offcodes, or Multicast, that can interconnect more than two offcodes. A
channel can be either unreliable or reliable, where the latter type is careful not to drop
messages even though buffer descriptors are not available. Note that a multicast channel
can utilize hardware features, if available, to send a single request to multiple recipients

simultaneously.

4.3 Offload Layout Programming

The offloading layout is usually statically defined or set during deployment. The reasoning
behind this is to minimize the overhead concerned with the offloading operations. We
envision the offcodes as specialized components performing one task on a specific device.
The overhead imposed by enabling migration of offcodes between devices is superfluous if
this feature is rarely used. We intend in the future to support the rare migration of offcodes
between target devices and the host kernel when required. Channel constraints are used
to direct the placement of offcodes when multiple offcodes are required to support an
application. The collection of channel constraints and their related semantics are defined
below.

Link Constraint: The Link constraint is denoted as o, 2% B. This is the default basic
channel constraint from o to B, which actually posess no constraints: o and 3 may or may
not be mutually offloaded (to the same or different target device).

Pull Constraint: The Pull constraint is denoted as o ;gl B. This reference is used

to ensure that both offcodes will be offloaded to the same target device. This definition

20 Offcode Manifesto

implies several additional constraints. First, neither o nor 3 can be offloaded separately.
) 11) .. .
Second, o can be a target of a Pull reference, i.e., 0 L o making Pull transitive - offloading

d will offload o, and hence f3.

Gang Constraint: Gang constraint is denoted as o s B. This constraint is used to
ensure that both offcodes will be offloaded to their target devices, respectively. Gang
constraint is also transitive and the only difference from Pull is that the offload target can

be a set of devices instead of a single device.

An OA-Application can also influence layout by setting the offload priority for each
offcode that it directly requires. Once a reference priority is defined, it is inherited by sub-

sequent offcodes required by the top-level offcode until a Link reference is encountered.

4.4 Offcode Manifesto

An offcode manifesto is the mean by which an offcode defines its requirements from a
target device and peer offcodes. The manifesto is realized in an Offcode Description File
(ODF). An ODF contains three parts: The first part describes the structure of the offcode’s
package, containing the binary code and other general properties. The second part defines
the target device’s hardware. The last part of the ODF concerns the software environment.
The offcode declares the interfaces used in its implementation that should be defined in the
target device’s execution environment. Currently, all required interfaces must be defined
by a GUID (much like offcodes themselves). The basic runtime interfaces defined by

HYDRA are available to all offcodes without an explicit interface requirement.

Software Architecture 21

4.5 Software Architecture

The HYDRA runtime is comprised of several components as shown in Figure 4.1. It is
accessed through an offloading access layer that consists of a user-level library linked to
each OA-Application, and a kernel-level set of generic services.

The kernel layer consists of several functional blocks. The System Call Manage-
ment and Offloading API blocks implement the various APIs defined in the program-
ming model. The Channel Management unit manages the channels by interacting with the
Channel Executive. This module handles channel creation by using a particular Channel
Provider. These providers are target-specific and provided as an extended driver for each
programmable device. A channel provider creates various specialized channel types to the
device and provides a cost metric regarding the “price” for communicating with the device
through a specific channel, in terms of latency and throughput. The executive uses this
capability information to decide on the best provider for a specific offcode. The Resource
Management unit keeps track of all active offcodes and related resources. Resources are
managed hierarchically to allow for robust clean-up of child resources in the case of a
failing parent object. The Memory Management module exports memory services such as
user memory pinning that is used by zero-copy channels. The Layout Management unit
performs layout related functionalities such as analyzing the offloading layout graph. This
unit receives the offloading layout graph as input and produces the mapping between off-
codes and target devices. The module can be easily extended to support future offloading
constraints.

We have extended HYDRA with the following offloading capabilities:

e User Level Library — OA-Applications are linked with libDynOffload.so shared
library. The library interacts with the kernel runtime Offloading APIs in order to

facilitate the dynamic offloading of application specific OFFCODEs. The library is

22 Software Architecture

also responsible for the compilation and linkage process, which is required in order

to adapt a specific OFFCODEto a target device;

e Offloading APIs — This module intercats with the channel provider for the specific
target device in order to execute the dynamic offloading protocol stages (See 6.2)

against the device’s loader OFFCODE;

e Loader — Each device has a light weight component that interacts with the host level
library. The loader performs the required actions relating to memory allocation and

OFFCODE deployment.

The red compoennets in Figure 4.1 mark the dynamic offloading framework’s specific

COl’l’lpOl’lel’ltS.
User
libDynOffload.so j----
i |
Kernel Sys Call| Offloading Channel | Memory | Layout | Resource
Mgmt API Mgmt Mgmt Mgmt | Mgmt
! Runtime AP

Channel Executive
Channel Providers ‘ Local ‘ Remote‘

[chj [TCP/H} [iSCSI] [RDMA]

,,,

!
Device L

Offcode -
@ Offcode L oader Device OS

Offloading Runtime
Extensions

Figure 4.1: System Architecture

When application decide to offload a particular OFFCODE to a device, it calls user

space library implementing offloading protocol described in Section 6.2. The library uses

Software Architecture 23

offloading APIs of HYDRA kernel runtime to communicate with the target device and pass
the OFFCODE to it. HYDRA kernel runtime is responsible for establishing and handling
OOB Channel with the device and exchange data with it upon library request. On the
device side there is a Loader. It’s a slave part of the protocol, which performs actions

required by host.

Chapter 5

Approaching Dynamic Offloading

We have chosen a programmable network interface card (NIC) with open source firmware
to be our experimental periphery device. We have designed a NIC Operating System
called N1COSs that facilitates the evaluation of HYDRA applications [WDWAb, WDWAa,
WADKO6]). In this chapter we describe N1COS and its architecture, provide rationale for

designing NICOS and outline its main features.

5.1 NIC Architecture

Our target device is a programmable NIC based on Tigon2 chipset. The Tigon pro-
grammable Ethernet controller is used in a family of 3Com’s Gigabit NICs (for example,
3Com 3C985B-SX). The Tigon controller supports a PCI host interface and a full-duplex
Gigabit Ethernet interface. The Tigon has two 88 MHz MIPS R4000-based processors,
which share access to external SRAM. Each processor has a one-line (64-byte) instruc-
tion cache to capture spatial locality for instructions from the SRAM. In the Tigon, each

processor also has a private on-chip scratch pad memory, which serves as a low-latency

NIC Architecture 25

software-managed cache. Hardware DMA and MAC controllers enable the firmware to

transfer data to and from the system’s main memory and the network, respectively.

Scratch Scratch
Pad — | CPUA CPUB [Pad
f f Memory External
Memory Bus l’—V
Y Bus RAM
v v Arbiter
Read Write
DMA DMA
T T
{ D
N2
PCI MAC
Interface

+ * The Tigon Chipset

PCI Full-Duplex
Gigabit Ethernet

Figure 5.1: Tigon Controller Block Diagram

The Tigon controller uses an event-loop approach instead of an interrupt driven logic.
The motivation is to increase the NIC’s runtime performance by reducing the overhead
imposed by interrupting the host’s CPU each time a packet arrives or a DMA request is
ready. Furthermore, on a single processor the need for synchronization and its associated

overhead is eliminated.

26 N1CcOS Hardcore

5.2 NI1cOS Motivation

Developing NIC specific tasks can be a tedious task that involves hooking the existing
NIC’s firmware. Having a NIC level operating system may ease this task and facilitate the
integration of application specific extensions at the NIC. The user extensions are realized
in the form of NICOS tasks. NICOS also enable a generic interface for applications hosting

through a well defined set of APIs.

5.3 NI1cOS Hardcore

This section presents the NIC operating system in a nutshell by introducing N1ICOSS$ main
functional blocks and services they expose (henceforth, NICOS services). We start by de-
scribing NICOS general OSs responsibilities : tasks and scheduling and related APIs (e.g.
create/destroy a task etc.), memory management and time service. Then we’ll describe
class specific services : the NICOS networking and the NICOS filtering APIs. There also
instrumentation APIs that are mostly intended for debugging purposes.

Using a combination of standard tools for performance benchmarking, like Chariot and
VTune, and proprietary device side profilers, we performed comparative analysis of native
FW vs. N1CcOSs based FW. It showed that NICOS introduces no performance impact rela-
tively to base firmware. Moreover, it allows several typical network applications to gain a

significant performance improvement (more details here [WDWAb, WDWAa, WADKO06]).

5.3.1 Tasks & Scheduling

Original Tigon chipset has MIPS R4000-based event driven processor (rather then inter-
ruptible). Signals from various HW blocks are gathered into event register, which must

be polled by SW in order to service HW events. For that purpose Tigon CPU has two

NI1CcOS Hardcore 27

dedicated instructions , “pri & joff”, for fast retrieval of highest asserted bit index and
jump table operation. Hence, Tigon original firmware was driven by dispatch loop calling
to event handlers functions for servicing HW requests. NICOS converted all those func-
tions into high priority tasks preserving the same functionality but gaining flexibility and

extendability introduced by operating system mechanisms.

N1cOs task is an independent thread having its own CPU context. We implemented a
classic setjmp/longjmp pair for saving/restoring CPU context within Task Control Block
(TCB) for proper task switching. Each task has it’s own name, priority, entry function
and stack of controllable size (specified during task creation). Also during task creation
an optional destructor routine could be specified. It is being called (if present) after task’s

entry function returns. All those task properties are stored in TCB along with CPU context.

N1cOs provides several task management APIs that enable a developer to create/destroy
tasks and to control their life-cycle state. The API enables a developer to create, yield, put
asleep, suspend, resume and kill a task. Tigon chipset has hardware timer, which was used
by NI1CcOS to implement timers queue system for registering and processing time based

events. On top of it NICOS provides sleep(usecs) service and genuine periodic tasks.

Although periodic tasks can be implemented by a developer on top of a sleep API, we
added an explicit facility for periodic tasks so the OS is completely aware of them since
their creation. Such a design allows the OS to minimize the ready-to-running! latency.
Providing the timeliness guarantees required by NICOS has been a major challenge due to
the non-preemptive architecture of these NICs.

As already mentioned, NICOS utilize a non-preemptive scheduling due to non-interruptible
nature of Tigon CPU. Thus having cooperative multi-tasking manifested by voluntary CPU

release via yield, sleep or task termination. NICOS scheduling infrastructure designed in

IThe time from the moment task become ready-to-run till it starts execution.

28 N1CcOS Hardcore

a way that the routine for choosing next-task-to-run can be easily replaced. Setting fertile
ground for experimenting with different scheduling algorithms [WADKO6].

NIcOSs default scheduler is a static priority one with 32 priority levels. There are
several ready task queues (per-priority). Each queue holds tasks of the same priority.
There is one additional queue that holds blocked tasks. Tasks become blocked as a result
to yield, sleep, or suspend calls. The scheduler always executes the highest priority task

that is ready to run.

Task related API

e nicosTask_Create - Allocates stack and task control block (TCB), initializes the TCB

and releases this task into ready queue.

e nicosTask _Kill - This routine causes a specified task to cease to exist and deallocates

its stack and TCB.
e nicosTask_Yield - Triggers rescheduling.
e nicosTask_Self - Returns task ID of the caller.

e nicosTask_Suspend - Suspends the task specified by id from further execution by
placing it in the suspended state. This state is additive to any other blocked state that
the task may already be in. The task will not execute again until another task issues
the nicosTask_Resume directive for this task and any other blocked state has been

removed.

e nicosTask_Resume - This directive removes the task specified by id from the sus-

pended state.

o nicosTask_Exit - Ends caller task.

NI1CcOS Hardcore 29

Time based Services

e nicosTask_CreatePeriodic - Similar to create, but instead of releasing the task, cre-

ates periodic timer with specified period parameter.

e nicosTask_Sleep - Suspends the task and creates a timer, which allows the task to

resume after specified time interval has elapsed.

5.3.2 Memory Management & Data Structures

NI1cOs has to allocate memory each time a task, queue or packet is created. The nicos_malloc
and nicos_free functions are used for this purpose. NICOS default dynamic memory allo-
cation algorithm is based on the “boundary tag method” described in [PRW95], which is
suitable for most applications. Implementing a “generic” memory allocation mechanism
is problematic: It takes up valuable code space, it is not thread safe and it is not determin-
istic (the amount of time taken to execute the function will differ from call to call). Since
different realtime systems may have very different memory management requirements, a
single memory allocation algorithm will probably won’t be appropriate.

N1cOSs memory allocation APIs can also enable a developer to choose the farget of the
allocated memory. Memory consuming applications can allocate memory at the host. The
memory is transparently accessed using DMA. This scheme is also suitable for developing
OS bypass protocols, which removes the kernel from the critical path and hence reduced
the end-to-end latency.

There are also APIs for pools and lists management. Pools and lists can be created
from any chunk of consecutive memory whether allocated dynamically or a static array.
Pool API allows to initialized provided chunk to be a block pool (number of objects of

same type). Then objects can be allocated from that pool or be released back into it. Lists

30 N1cOs Hardcore

management APIs allowing to create and manage general linked lists, FIFO queues, stacks

and sorted lists.

Memory APIs

e nicos_malloc - allocates memory chunk of specified size.

e nicos_calloc - allocates memory chunk of specified size and set its value to zero.

e nicos_free - releases memory chunk into dynamic memory pool.

e nicos_memset - initializes memory area specified by pointer and size with given

value.

Pool APIs

e POOL_T - macro for pool type declaration using specified type for poll members.

e NICOS_POOL_ALLOC - macro for allocating pool entry.

e NICOS_POOL_FREE - macro for releasing block to the pool.

List APIs

e LIST_ NODE_T - macro for list node type declaration with specified data type.

e nicosList_Add - adds item to the head of the list

e nicosList_InsertSorted - inserts item into the list according to specified comparator

function.

e nicosList_Pop - removes item from the head of the list.

NI1CcOS Hardcore 31

e nicosList_Top - returns item pointed by the head of the list.
e nicosList_Bottom - return item pointed by the tail of the list.
e nicosList_Remove - removes specified item from the list.

e nicosList_Size - returns number of items in the list.

e nicosList_IsEmpty - returns true if no item in the list.

5.3.3 Filtering & Classification

When deciding which functionality is needed to be offloaded to the NIC, we looked for
common building blocks in todays networking applications. We have found that the ability
to inspect packets and to classify them according to specific header fields is such a build-
ing block. For instance, the classification capability is usefull for firewall applications,
applying QoS for certain traffic classes, statistics gathering, etc. Therefore we enhanced
the N1COS services with a packet filtering (classification) capability, and the optional in-
vocation of a user installed callback per packet match. In NICOS, a filter is a first class
object - it can be introspected, modified and created at runtime.

The N1COS filtering mechanism is comprised of two phases. In the first phase a packet
is matched against a given filter. Once a match is found, a user callback is executed. The
callback can decide to drop the packet or operate on it (e.g. modify it, take some statistics
measurements, etc).

N1cOs filtering services enable the user to group several filters into a named group. A
named filter group can have an aggregated operation on the matched packet. L.e., in case
there is a match on ALL filters in the group, the corresponding group callback is invoked.

The “Ping Drop” task (Program 1), which drops all ICMP packets, demonstrates the
ease of use of the N1COSs filtering API.

32 N1CcOS Hardcore

Program 1 Installing “Ping Drop” Filters

void registerPingDropFilters (void) {

/* we would like to match ICMP packets */

valueMask([0] = ICMP_PROTOCOL;

bitMask[0] = 0x1; // match 1 byte

ptrvValueMask = valueMask;

/* start matching at ICMP_PROTOCOL_BYTE */

pattern_filter.startIndex =ICMP_PROTOCOL_BYTE;

pattern_filter.length = 1;

pattern_filter.bitMask = bitMask;

pattern_filter.numValues = 1;

pattern_filter.valueMask = &ptrValueMask;

/* create the filter */

pingDropFilter.filter_type = STATIC_PATTERN_FILTER;

pingDropFilter.pattern_filter = g&pattern_filter;

/* add the filter to the Tx flow */

nicosFilter_ Add(&nicosTxFilters, &pingDropFilter,DROP,NULL,
GENERAL_PURPOSE_FILTERS_GROUP, &pingFilterTxId);

/* also add the filter to the Rx flow */

nicosFilter_Add(&nicosRxFilters, &pingDropFilter,DROP,NULL,
GENERAL_PURPOSE_FILTERS_GROUP, &épingFilterRxId); }

N1cOs Hardcore 33

Filtering/Classification API

e nicosFilter Add - registers provided pre-built filter into the specified filter group
e nicosFilter_DeRegister - removes specified filter

e nicosFilter_GroupEnable - makes certain filter group enabled. All filter belong to it

will be matched against every packet.

e nicosFilter_GroupDisable - excludes all filters belonging to the specified group from

matching until further notice.

5.3.4 Networking

NIcOs is designed to be an operating system for network class devices. Therefore, it

provides method for sending and receiving data packets.

Transmit service

Ni1cOs provides an API function for transmitting raw packets. The payload is provided
by application writer must have all of the desired protocol headers. User also can provide
different priorities for packet to be transmitted. NICOS transmit API supports synchronous
and asynchronous calls. The asynchronous is non blocking. When using the synchronous
mode, the execution is blocked until frame transmission is completed. Upon completion,
the provided callback is called.

NIcOs has extended transmit path with packet priority queues. All transmit packets
could be classified, prioritized or filtered using filtering & classification API 5.3.3. How-
ever, no extra data copy was introduced. The priority system implementation is scalable,

and can be easily adjusted to any number of priority levels in the system.

34 N1cOs Hardcore

Receive service

Receiving a packet is currently done only via filter registration 5.3.3.

Transmit API

e nicosTx_SendData - schedules specified data buffer for sending.

5.3.5 Embedded Application Instrumentation

N1cOs provide mechanism for application instrumentation. This mechanism accumulates
trace messages in a circular buffer. Host periodically drains this buffer and directs those
messages into system debug stream. This mechanism supports several levels of verbosity
allowing to get messages on errors, warnings, informatic events or even FW flow progress.
Trace messages from an arbitrary defined piece of code can be bundled into a trace mod-
ule. Instrumentation mechanism allows to control verbosity level per each trace module
separately. NICOS has several predefined trace modules for convenient way to instrument

any kernel block or service.

Trace API

e nicos_trace - places parameterized string into trace buffer.

Chapter 6

Dynamic Offloading Prototype

In this chapter we define generic offloading protocol using “target-light” approach de-
scribed in Section 3.2. We also describe prototype protocol implementation for network
interface card that has NicOs [WDWAb, WDWAa, WADKO06] OS based firmware ex-

tended with HYDRA runtime. Description of used tool chains is included.

6.1 Prototype pre-Requisites and Tools

6.1.1 Binutils and Compiler

We used GNU gcc cross-compiler and binutils [tig] to build NIC’s firmware. We used the
same tools throughout prototype implementation for OFFCODE creation and processing.

All tools we used for prototype have being part of original Tigon firmware’s tool chain.
e gcc - C cross-compiler

e Id - linker. combines a number of object and archive files, relocates their data and

ties up symbol references.

36 Prototype pre-Requisites and Tools

e nm - lists the symbols from object files

e objcopy - copies the contents of an object file to another. It should be able to copy

a fully linked file between any two formats.

e readelf - displays information about one or more ELF format object files.

6.1.2 Standard Linux Utils

We used GNU gcc cross-compiler and binutils [tig] to build NIC’s firmware. We used the

same tools throughout prototype implementation for OFFCODE creation and processing.

e grep - searches input for patterns

e sed - stream editor that can be used to perform basic text transformations on an input

stream

6.1.3 In-house Tools

We used GNU gcc cross-compiler and binutils [tig] to build NIC’s firmware. We used the

same tools throughout prototype implementation for OFFCODE creation and processing.

e get sizes - perl script that uses readelf to calculate effective size needed for ELF

sections : text, data, rodata.

o allocate_offcode - C application that calls HYDRA Offloading API to allocate mem-

ory on device.

e download offcode - C application that calls another HYDRA Offloading APIs to

download OFFCODE to the device and activate its entry routine.

Dynamic Offloading Protocol 37

6.2 Dynamic Offloading Protocol

We have considered different approaches for dynamic loading problem, as were presented
at Section 3.2 and the rarget-light approach was chosen. Using this approach target’s
role in the offloading procedure is being as little as possible while host does most of the
processing. In this section we finally define the protocol following those principles.
There are several things to be done in order to deploy binary object (OFFCODE from

now on) on a running target:
e Memory must be allocated on the target to hold the OFFCODE
e OFFCODE need to be prepared to execute from the location it’s about to be placed
e OFFCODES code and data need to be transported to the target
e Optionally, OFFCODE activation/initialization may be triggered.

We divide those actions between host and device following chosen rarget-light ap-
proach. Device must know to allocate memory and accept the binary data, while host
is responsible for all the rest. E.g. parse binary format, calculate effective size, prepare
OFFCODE etc.

Figure 6.1 presents the message transfers that occur in loading a single OFFCODE . In
the sake of generality, we intentionally did not include OFFCODE activation/initialization
in the protocol flow as explicit message handshake (only mentioned it on the side). This
action is optional and rather a by-product of specific system design choice then a protocol
stage. We’ll show an example of such decision while describing our prototype implemen-
tation.

Once the host-based loader calculates the OFFCODES size, it asks the device’s loader to

allocate memory for it. The runtime loader allocates the memory and returns the device’s

38 Dynamic Offloading Protocol

., Host NIC
N ~
7 i
v 8
L (All
S3 0cOffcoq
=
=
: -
~N— eSS
ST | peetY
SN
o
=
= < Instaliof g
= COde(v()id* blob) =
22 53
’4 (¢
2O g
- D -~
e 2
22 =
3. Status =
O g
[¢7)

Figure 6.1: OFFCODE Dynamic Loading Flow

memory address to the host. The host dynamically generates a linker file (described in
details later) adjusted by the returned base address and links the OFFCODE object. It then
transfers the linked OFFCODES sections to the target device where it is placed and executed.
All the above interactions make use of the OOB channels that are created for the host and
target HYDRA runtimes. As a proof of concept, we have created such a loader for our

programmable network card 5.1.

The proposed protocol requires no direct target access to peripheral. Thus introducing
no restriction on peripheral’s interconnect. Due to the fact that all communication is so-

licited by the host, interrupt capabilities aren’t required from peripheral and polling based

Integrated Offloading Prototype 39

solution are possible as well.

6.3 Integrated Offloading Prototype

In the previous sections we described generic offloading protocol. In this section we
present prototype implementation of the protocol for a specific target device. Both host and
device parts of the protocol have been prototyped. Our target device is a programmable
NIC based on the Tigon2 chipset. We have extended original NIC’s firmware with N1COS

and integrated the HYDRA runtime into it.

6.3.1 Offloading Protocol Implementation

In our prototype we went on explicit OFFCODE activation. So, here are 4 sequential stages

to be performed:

e OFFCODE size retrieval and NIC memory allocation
e OFFCODE target specific linking
e OFFCODE sections retrieval and actual offloading

o OFFCODE activation

In order to focus on the offloading itself, our offloading application is a perl script that
implements protocol’s high-level logic. I.e. performs each of the stages described above.
It uses target specific binutils (see Subsection 6.1.1) and library API to communicate with
target through O-O-B Channel (see Subsection 6.3.2)

Figure 6.2 provides the full version of the protocol script implementation. The script
is invoked with two parameters, OFFCODE object file base name and its activation routine

name. Lines 6-7 extracts those parameters.

40

Integrated Offloading Prototype

g s W N

(o))

10
11

12
13
14
15

16

#!/usr/bin/perl

if (S#ARGV != 1) {
print STDERR "Usage: $0 <ofcode_binary> <init_func>
exit 1;

}

Sofcode = shift; $init_func = shift;
Sofcode_obj = Sofcode . ".o"; Sofcode_h = "ofcode.h";

$size = ‘get_sizes --linux -ptigon2 ofcode.bin0‘;
Saddr = ‘allocate_ofcode eth2 $size‘;

‘sed -1 -e "s/\\.\\s=\\s0x4000\\; /\\. = $addr\\;/’ alteon.x‘;
‘SNICOS_TOOLS/bin/ld -nostdlib -T alteon.x -o ofcode.bin Sofcode_obj‘;

‘SNICOS_TOOLS/bin/genfw --linux -ptigon2 ofcode.bin S$ofcode_h"';
‘../tools/build_env2.9.5/bin/nm ofcode.bin | sort > ofcode.map‘;

if (‘grep $init_func ofcode.map' =" /0* ([\dabcdef]+)\s\w\s (\w+)/)
{ S$launch_addr = hex($1); }

‘download_ofcode eth2 $launch_addr?;

Figure 6.2: Perl script offloading implementation

Stage 1 begins with determining OFFCODE binary content size (line 8) using get_sizes

perl script, which merely extracts code and data sizes (text, data, rodata, bss and sbss

sections) using readelf binutil and summates them. First stage is accomplished by call-

ing

library API (line 9) that asks device OFFCODE loader to allocate required amount of

memory and returns its initial address.

Stage 2 is accomplished using linker scripts (see Subsection 6.3.3) that instructs linker

how to build output image. There is a base linker script (named alteon.x) that is been

updated with base address for OFFCODE placement (line 10). On line 11 linker is been

invoked and provided with linker script and OFFCODE object file. Its output is ELF exe-

cutable image file containing ready-for-download OFFCODE . Important to say that though

there are dependencies between core firmware and the OFFCODE core firmware image is

Integrated Offloading Prototype 41

not required for the link stage nor any other stages of the prototype.

Stages 3 and 4 are undertaken by single library API call on line 16. But there are
several preparations to be done first. Line 12 invoke genfw utility provided with target
firmware build environment. It extracts code and data sections’ binary content from ELF
binary. genfw is a perl script that uses readelf binutil for sections extraction. Lines 13-
15 create OFFCODE post-linkage map and retrieve from there activation routine address.
Library API call on line 16 uses this address along with genfw products to offload and

activate the OFFCODE .

6.3.2 Channel and Library API

Our prototype implementation uses default O-O-B Channel provided by HYDRA for sup-
ported device. We deliberately avoided specialized Channel with device side zero-copy

and single DMA transaction per download request.

This is suboptimal design choice for given device. On the other hand it allows us to
model behavior and draw conclusions for wider family of devices including those having
no master access capabilities and/or using packet based interconnects like USB, SDIO,

etc.

We defined a specific format for data passed down the O-O-B Channel by the offload-
ing library, which is interpreted by device’s OFFCODE Loader. There are 3 types of actions
host can request from device: memory allocation, binary content download and function

execution. Figure 6.3 provides the exact format of those actions.

Due to the fact that our top most application is a perl script and it’s been interpreted
rather then compiled, for cleaner prototype implementation we packaged user space of-

floading API in two stand alone executables instead of link library (see Figure 6.2). They

42 Integrated Offloading Prototype

typedef struct _OFFL_ACTION {

U32 action;
union {
struct {
U32 dest_addr;
U32 len;
} binary_chunk;
struct {
U32 size;
U32 reserved;
} mem_alloc;
struct {

U32 init_func;
U32 reserved;
} launch;
} descr;
U32 datal[0];
} OFFL_ACTION, *POFFL_ACTION;

Figure 6.3: Action header format

can be packaged in a link library with no functional change. Description of those executa-

bles immediately follows:

e allocate offcode - uses provided figure to assemble single Action of mem_alloc type
and send it through the O-O-B Channel. Then it reads the channel to get from NIC

start address of allocated space.

o download offcode - performs another 2 stages. Downloads the linked OFFCODE
to the NIC using one or more Actions of binary_chunk type. Then it sends another
Action of launch type assembled using provided activation function address. See

Subsection 6.3.4 for details.

Integrated Offloading Prototype 43

6.3.3 Preparing an OFFCODE for Offloading

As we already mentioned OFFCODE linkage in our experiment was done by host. Proto-
type offloading procedure received all OFFCODES as a pre-compiled object files along with
names of their activation/initialization routines.

Following issues need to be addressed by host to get an OFFCODE prepared for dy-

namic offloading:

e Resolve external dependencies - OFFCODE is not a stand alone application. It’s
allowed to use NICOS API, which is provided by core NIC firmware. In general
case OFFCODE is a target application that may use static public APIs provided by

target.

e Relocate the binary code - executable sections need to be properly placed and text’s
content need to be adjusted with correct data/rodata/globals location. Only after

allocating memory on NIC final OFFCODES binary section locations are computable.

The linkage is performed by regular GNU binutils cross linker [BU]. Same one that’s
used during build of target core firmware.

To achieve those 2 goals, linker is supplied with a special linker script [Lan] instruct-
ing the linker where to place sections and providing symbols definition for all potential
OFFCODE external dependencies. The only piece of information not known in advance is
the start address of where the OFFCODE will be placed in target address space.

Our prototype has linker script template (See Figure 6.4), which in general case can be
provided by embedded target vendor. First in the template appear all NICOS public APIs
(with their target addresses) exported by the device for OFFCODEs. Then start address
placeholder followed by section placement instruction (Refer to [Lan] for details).

The only thing to accomplish during the preparation stage is to replace default value

44 Integrated Offloading Prototype

2

. = 0x4000;” in the template appearing under ~7Text Start Point” comment with a valid
address and use the resulting script for linking an OFFCODE. The outcome of the script

guided linkage is a ready-to-be-offloaded ELF binary.

6.3.4 Offloading & Activation

Both offloading and activation are done by download offcode as already mentioned in
subsection 6.3.2. We use genfw utility provided with target firmware build environment
that converts ELF binary to C header file with constant arrays containing the sections’
binary content. genfw is a perl script that uses readelf tool from binutils [BU] for sections
extraction (line 12 on Figure 6.2). Last line (16) of protocol implementation executes
download offcode which uses sections’ contents extracted by genfw and target address

provided as parameter.

First, sections are iterated in the same order they appear in the linker script (See Fig-
ure 6.4) and a download procedure is performed on each. At this stage Offcode memory
location on target is already known along with sections sizes, so start address of each sec-
tion is easily computed. Download procedure iterates on sections’ binary data, wraps it
with Action header and passes them through O-O-B Channel to the NIC. Each Action is
equipped with an address for data it contains to make NIC Loader’s job easier (see format

at Figure 6.3).

As we mentioned in Subsection 6.3.2 our implementation also models packet based
interconnect. So, we imply an arbitrary upper boundary of 1.5K on data size to be passed to
device in one channel transaction. So, sections can be larger then a single Action payload.
After offloading is done, another Action is built and sent to the NIC passing the OFFCODES

init function address supplied to download_offcode as a command line parameter.

Integrated Offloading Prototype 45

6.3.5 NIC OFFCODE Loader

We have implemented a simple OFFCODE loader task on NIC. It has only two functions :
Loaderlnit and ActionParser. LoaderlInit registers a NICOSfilter to be able to catch Actions
arriving from Channel.

ActionParser is called when offloading Action is recognized by filter match on data
going down the O-O-B Channel. Then it parses its header and perform one of the three

predefined operations (see full source at Figure 6.5):

1. Memory Allocation — allocates consecutive memory of size specified in the Action

and passes the address via channel back to host.

2. BLOB Copy — copy specified number of bytes from Action payload to the address

specified in Action header.

3. Function Execution — jumps to an address specified inside Action

Due to the fact that Actions bringing binary data also provide an address where to place
it, NIC OFFCODE loader is very simple and requires no book keeping or state accumula-

tion.

46

Integrated Offloading Prototype

OUTPUT_FORMAT ("elf32-bigmips", "elf32-bigmips

OUTPUT_ARCH (mips) ENTRY (_start)

SECTIONS {
/* NICOS & library symbols definition*/
.= 0;

/* NICOS Task API */
nicosTask_Create = 0x192dc;
nicosTask_CreatePeriodic = 0x17e08;
nicosTask_Kill = 0x18150;
nicosTask_Yield = 0x193a0;
nicosTask_Sleep = 0x18680;
nicosTask_Suspend = 0x18a84;
nicosTask_Resume = 0x18cébc;

/* NICOS Filter API */
nicosFilter Add = 0x19af0;
nicosFilter_DeRegister = 0x19d98;
nicosTx_SendData = 0xb440;

/* NICOS Memory API */
nicos_malloc = 0xlaa78;
nicos_free = (0xlaelc;
nicos_alloc_packet = 0xlaf40;

/* NICOS Trace API */
nicos_trace = 0x1953c;

/* NICOS global data structs */
NicosScheduler = 0x25310;
nicosTxFilters 0x1ef80;
0x22930;

nicosRxFilters

/* Text Start point */
. = 0x4000;

_ftext = . ;

.text c { *(.text) } =0
.rodata : { *(.rodata) }
. = ALIGN (4);

.data : { *(.data) }
_edata = .;

.sbss : { *(.sbss) *(.scommon) }
.bss

{

* (.dynbss)

*(.bss)

* (COMMON)

}

_end = .;

elf32-littlemips")

Figure 6.4: Linker script for OFFCODE proper placement and relocation

Integrated Offloading Prototype

47

void actionParser (PACKET* pBlob,Call* pcall) ({
U32 addr = 0;
PACTION_T pAction = (PACTION_T)pBlob->data;
NICOS_TRACEL (TEST, INFO, _ FUNCTION__, pBlob->length);

switch (pAction->action) {

case OFCODE_ACTION_ALLOCATE:
NICOS_TRACEOQ (TEST, INFO, "Ofcode mem_alloc");
NICOS_TRACEL (TEST, INFO, "size:", pAction->descr.mem_alloc.size);
addr = (U32)nicos_malloc (pAction->descr.mem_alloc.size);
*(pcall->out_buffer) = addr;
nicos_call_finish(pcall);
break;

case OFCODE_ACTION_CHUNK:
NICOS_TRACE3 (TEST, INFO, "len & addr" ,
pAction->descr.binary_chunk.len,
pAction->descr.binary_chunk.dest_addr);

bcopy ((U32*)pAction->data,
(U32*)pAction->descr.binary_chunk.dest_addr,
pAction->descr.binary_chunk.len);

break;

case OFCODE_ACTION_LAUNCH:
{
OFCODE_LAUNCH_FUNC init_func = NULL;
NICOS_TRACEOQ (TEST, INFO, "Offcode launch");
NICOS_TRACEL (TEST, INFO, "init:", pAction->descr.launch.init_func);

init_func = (OFCODE_LAUNCH_FUNC)pAction->descr.launch.init_func;
init_func();
break;

default:
NICOS_TRACEL (TEST, WARN, "Loader: wrong action", pAction->action);

NICOS_TRACEO (TEST, INFO, "<<" __ FUNCTION__);

Figure 6.5: NIC Loader

Chapter 7

Evaluation

The goal of the experiment was to establish feasibility of dynamic target loading by a
general framework rather then per-target proprietary solution and its operational aptness
for offload-aware applications deployment. In order to establish that, we measured per-
formance of different aspects of dynamic target offloading prototype implementation and

compared it with an equivalent user-level host application.

We measured temporal and spacial overhead of offloading infrastructure on both NIC
and host. Those measurements are restricted to the “target-light” loading approach (de-
scribed in Section 3.2). Measurements were done on dual 450Mhz Pentium CPU machine
running Fedora Core 4 Linux OS. In order to emphasize the generality of the approach, all
OFFCODEs we used in the experiment were provided as a pre-compiled object files, while

the protocol implementation uses no additional knowledge about their nature.

We would like to start from justifying the name we used for chosen offloading ap-
proach : “target-light” . Hence, first metric we present is embedded loader footprint.
Experimental loader we built requires only 372 bytes of target memory. In our prototype

we tried to cover richer functionality to make stronger point. Depends on implementation

OFFCODE preparation performance 49

design choices Loader footprint can be much smaller. (If for instance OFFCODES initial-
ization/activation routine will be placed at the beginning of the designated memory space

and called right after download.)

7.1 OFFCODE preparation performance

It’s not unreasonable to assume that peripherals would not expose arbitrary large sets of
external APIs. Based on that assumption, applications having potential to be offloaded and
executed on some target device will have finite small number of external symbols in corre-
sponding binaries. We performed all measurements on ELF binary objects with 5 external
symbols and various code segment size. Due to the nature of offloading implementation
total object’s binary data size is a crucial parameter rather then particular section size. So
the mentioned ELF objects above had sections other then code of size zero.

We measured OFFCODE linkage time and compare it to equivalent host procedure.
We compare it to the case when host executes OFFCODE equivalent task implementation
packaged in a DLL. In such a case host loads and executes ELF object of properties similar
to OFFCODE: We simulated host activity by explicit call for 1d linker, linking OFFCODE
with NIC’s core firmware and measured linkage execution time. In this experiment also
objects’ data distribution between sections isn’t important because the only difference be-
tween two linkage technics is whether additional object of fixed size need to be parsed to
resolve external dependencies. OFFCODE script driven linkage expected to be faster then
DLL because all external dependencies are provided by the script (See Subsection 6.3.3).
Thus requiring parsing of no additional ELFs.

Figure 7.1 shows that reality matches the expectations. OFFCODE linkage (script
driven) is faster by a constant margin then DLL linkage, while both link methods have

similar growth tendency as a function of OFFCODE size.

50 Offloading performance

Linkage time comparision
0.026 T T T T T T T T
—+H8— host DLL
—H&— target offcode

0.025

0.024

0.023 - N

0.022 - i

Time (Milliseconds)

0.021 N

0.02 N

0.019 ! I I I I ! i I L N
128b 256b 512b 1k 2k 4k 8k 16k 32k 64k

Offcode size

Figure 7.1: Offcode linkage performance

7.2 Offloading performance

Beside the linkage we also measured the total time spend on offloading and activation. It
takes at least 3 Actions to allocate, offload and activate a particular Offcode. It could be
more then 3 because OFFCODE can be larger then single Action maximum data size we
imposed for packet based interconnect modeling. Due to the fact that Actions are created
in user space library, each causes trap to kernel and a context switch. For that reason within

offloading measurement we also registered time on target between Actions arrivals.

Offloading performance 51

Table 7.1: Offload performance

Ofcode size | ActionFrame count | Total time | Total handling time | Avg. interarrival
32b 3 55,449 89 27,680
64b 3 54,676 92 27,292
128b 3 83,707 79 41,814
256b 3 65,939 98 32,921
512b 3 39,782 108 19,837
1k 3 56,430 128 28,151
2k 4 200,437 184 66,751
4k 5 133,058 281 33,194
8k 8 153,415 494 21,846
16k 14 426,019 909 32,701
32k 25 1,051,045 1,745 43,721
64k 47 1,113,196 3,392 24,126
Ofcode size - size of text section. Other sections are of 0 size.

ActionFrames count - total number of ActionFrames sent by channel during offload and activation
Total handling time* - time spent by NIC on handling an Action and performing required actions
Total time* - time taken by the WHOLE offloading and activation process
Avg. interarrival - mean time between each 2 Actions arrivals to NIC during the process

* time units are microseconds in all time related columns

Measurement Methodology: During Offloading and activation measurement (allocate_offcode
and download offcode calls) time stamps was gathered both on the host and on the NIC.
NIC time stamping allowed very accurate inter-Action time measurement. Host and NIC
approaches showed virtually the same numbers validating our results.

Figure 7.1 shows all time measurements results including total offloading procedure
performance. We see that starting from 2K Offcode size time is roughly a linear function
of size. More accurate to say is that time is affected most by number of ActionFrames
used in the process.

Major use case of offloading is application deployment. For those purposes even a
naive approach used in this consciously suboptimal prove-of-concept experiment is suffi-

cient.

Chapter 8

Conclusions and Future work

In this thesis we have designed generic offloading protocol suitable for wide variety of
devices. We claim that chosen approach makes very moderate demand from device ven-
dors yet provides very powerful opportunity for device extensibility and reuse. As a proof
of concept we implemented prototype on selected device and measured its performance.
Based on those measurements we conclude that OFFCODE preparation is comparable to
one of dynamic link library. And even naive implementation of transporting the OFFCODE
to the target device is suitable for application deployment. While for bus master devices
(like PCI/PCIe) proper use of Host—Target DMA can improve OFFCODE transfer perfor-

mance by roughly 3-4 orders of magnitude.

In our experiment NIC dynamically allocated one consecutive memory range that host
all binary content (text, data, etc.). There is a need to define extended protocol for require-
ment/capabilities handshake between host and target that will provide support for scattered
memory. For instance some target may have different banks of memory for instruction and
data, which raise the need to deal with several memory ranges. Second motivation is target

with some degree of memory fragmentation that have the needed amount of free memory

Conclusions and Future work 53

but not a consecutive range. (Separate memory banks example can be treated as a subcase
of the second one). Different approach can be used in fragmented memory case. Host can
be notified of target’s available memory map and host will use advanced link technics (yet
to be developed) to fit the OFFCODE in.

OFFCODE Authentication wasn’t mentioned at all in this research though security mat-
ters are especially important in this field. Malicious OFFCODEs have much greater negative
potential due to direct access to HW then user space modules those OFFCODEs replace.
Need to be developed efficient yet strong technique to verify OFFCODE authenticity online
with minimal performance impact guaranteeing targets from malicious code execution.

Architecture independent OFFCODE representation - there is a natural desire to de-
ploy same functionality on devices of different makings. It can’t be achieved if OFFCODE
repository contain objects pre-compiled for a specific target. On the other hand it’s un-
reasonable to require all OFFCODEs to be provided in source code. Also, in our prototype
we worked with single device and used the complete tool chain to prepare OFFCODE for
offloading. It’s quite wasteful space-wise, because OFFCODE preparation uses small por-
tion of linker capabilities. Situation gets worth if there are several HYDRA enabled devices
with different CPU architectures need to be supported. This can be especially critical for
Ultra Mobile Devices (or Mobile Internet Devices), which have less resources.

Definition of architecture independent OFFCODE representation along with designing
extensible light linker with per CPU architecture plug-ins could solve both issues above,

also providing great deal of scalability.

Bibliography

[BK98]

[BMWO03]

[BN84]

[BPDSO00]

[BPSO1]

N. Brown and C. Kindel. Distributed Component Object Model Protocol
— DCOM/1.0. Internet Draft, January 1998. Available at http://www.
microsoft.com/oledev/olecom/draft-brown-dcom-vl-spec-02.

txt.

S. Beyer, K. Mayes, and B. Warboys. Dynamic configuration of embedded

operating systems, 2003.

A. Birell and B. Nelson. Implementing remote procedure calls. ACM Trans-

actions on Computer Systems, 2(1):39-59, February 1984.

D. Buntinas, D. K. Panda, J. Duato, and P. Sadayappan. Broadcast/multicast

over myrinet using NIC-assisted multidestination messages, 2000.

D. Buntinas, D. K. Panda, and P. Sadayappan. Performance benefits of NIC-
based barrier on Myrinet/GM. In Proceedings of the Workshop on Com-
munication Architecture for Clusters (CAC) held in conjunction with IPDPS

'01, April 2001.

 http://www.microsoft.com/oledev/olecom/ draft-brown-dcom-v1-spec-02.txt
 http://www.microsoft.com/oledev/olecom/ draft-brown-dcom-v1-spec-02.txt
 http://www.microsoft.com/oledev/olecom/ draft-brown-dcom-v1-spec-02.txt

Bibliography 55

[BSPT95]

[BU]

[Cur04]

[FMOB98a]

[FMOB98b]

[GLDWS7]

[HBSG99a]

B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fiuczynski,
D. Becker, C. Chambers, and S. Eggers. Extensibility safety and perfor-
mance in the spin operating system. In SOSP ’95: Proceedings of the fif-
teenth ACM symposium on Operating systems principles, pages 267-283,
New York, NY, USA, 1995. ACM Press.

GNU Binary Utils. Available at site: http://www.gnu.org/software/

binutils/.

A. Currid. TCP offload to the rescue. Queue, 2(3):58-65, 2004.

M. Fiuczynski, R. Martin, T. Owa, and B. Bershad. On using intelligent

network interface cards to support multimedia applications, 1998.

M. E. Fiuczynski, R. P. Martin, T. Owa, and B. N. Bershad. Spine: a safe
programmable and integrated network environment. In EW 8: Proceedings
of the 8th ACM SIGOPS European workshop on Support for composing dis-
tributed applications, pages 7-12, New York, NY, USA, 1998. ACM Press.

R. A. Gingell, M. Lee, X. T. Dang, and M. S. Weeks. Shared libraries in
sunOS. Proceedings of the USENIX 1987 Summer Conference, pages 131—
145, 1987.

O. Holder, 1. Ben-Shaul, and H. Gazit. Dynamic layout of distributed ap-
plications in FarGo. In Proceedings of the 21st International Conference on
Software Engineering (ICSE’99), pages 403—411, Los Angeles, CA, May
1999.

http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/

56

Bibliography

[HBSG99b]

[HBSG99c]

[HBSG99d]

[Hol98]

[HSWT04]

[Lan]

[Org]

O. Holder, 1. Ben-Shaul, and H. Gazit. Dynamic layout of distributed appli-
cations in FarGo. In ICSE ’99: Proceedings of the 21st international con-
ference on Software engineering, pages 163—173, Los Alamitos, CA, USA,
1999. IEEE Computer Society Press.

O. Holder, 1. Ben-Shaul, and H. Gazit. Dynamic layout of distributed ap-
plications in fargo. In ICSE ’99: Proceedings of the 21st international con-
ference on Software engineering, pages 163—173, Los Alamitos, CA, USA,
1999. IEEE Computer Society Press.

O. Holder, I. Ben-Shaul, and H. Gazit. System support for dynamic lay-
out of distributed applications. In Proceedings of the 19" International
Conference on Distributed Computing Systems (ICDCS’99), pages 163—173,
Austin, TX, May 1999.

O. Holder. The design of the FARGO system. Technical Report EE Pub No.

1171, Technion — Israel Institute of Technology, February 1998.

L. Huston, R. Sukthankar, R. Wickremesinghe, M. Satyanarayanan, G. R.
Ganger, E. Riedel, and A. Ailamaki. Diamond: A storage architecture for

early discard in interactive search. In Proceedings of Usenix File and Storage

Technologies (FAST), April 2004.

GNU Linker Command Language. Available at site: http://www.math.

utah.edu/docs/info/1d_3.html.

World Wide Web Organization. Web services activity. Available at: http:

//www.w3.0rg/2002/ws/.

http://www.math.utah.edu/docs/info/ld_3.html
http://www.math.utah.edu/docs/info/ld_3.html
http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/

Bibliography 57

[PRWO5]

[RGI7]

[RGF98]

[rmi99]

[Ruw]

[Sie98]

[Sri95]

[Sun98]

[tig]

[Uni92]

M. Neely D. Boles P. R. Wilson, M. S. Johnstone. Dynamic storage allo-

cation: A survey and critical review. In Proc. Int. Workshop on Memory

Management, Kinross Scotland (UK), 1995.

E. Riedel and G. Gibson. Active disks - remote execution for network-

attached storage, 1997.

E. Riedel, G. A. Gibson, and C. Faloutsos. Active storage for large-scale
data mining and multimedia. In Proc. 24th Int. Conf. Very Large Data Bases,

VLDB, pages 62—73, 24-27 1998.

Sun Microsystems Inc. Java Remote Method Invocation Security Extension

(draft), 1999. Available at: http://java.sun.com/products/jdk/rmi/.

T. M. Ruwart. OSD: A tutorial on object storage devices.

J. Siegel. OMG overview: CORBA and the OMA in enterprise computing.
Commun. ACM, 41(10):37-43, 1998.

R. Srinivasan. RPC: Remote Procedure Call protocol specification version

2, 1995.

Sun Microsystems, Inc. Java Remote Method Invocation (RMI) Specifica-
tion, October 1998. Available at http://java.sun.com/products/jdk/

1.2/docs/guide/rmi/spec/rmiTOC.doc.html.

Alteon Tigon tools. Available at: http://www.osc.edu/~pw/tigon/,.

C. University. School of computer science, 1992.

http://java.sun.com/products/jdk/rmi/
 http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/ rmiTOC.doc.html
 http://java.sun.com/products/jdk/1.2/docs/guide/rmi/spec/ rmiTOC.doc.html
http://www.osc.edu/~pw/tigon/

58

Bibliography

[WADKO06] Y. Weinsberg, T. Anker, D. Dolev, and S. Kirkpatrick. On a NIC’s operat-

[WBS02]

[WDWAa]

[WDWADb]

[WIPRO4]

[Y. 07]

[ZKWO02]

ing system, schedulers and high-performance networking applications. In

HPCC-06, 2006.

Y. Weinsberg and I. Ben-Shaul. A programming model and system sup-
port for disconnected-aware applications on resource-constrained devices.
In ICSE °02: Proceedings of the 24th International Conference on Software

Engineering, pages 374-384, New York, NY, USA, 2002. ACM Press.

Y. Weinsberg, D. Dolev, P. Wyckoff, and T. Anker. Accelerating dis-
tributed computing applications using a network offloading framework. In

IPDPS’07.

Y. Weinsberg, D. Dolev, P. Wyckoff, and T. Anker. Hydra: A novel frame-

work for making high-performance computing offload capable. In LCN’06.

A. Wagner, Hyun-Wook Jin, D.K. Panda, and R. Riesen. Nic-based offload
of dynamic user-defined modules for myrinet clusters. cluster, 0:205-214,

2004.

Y. Weinsberg. An Operating System Specification for Dynamic Code Of-
floading to Programmable Devices. PhD thesis, 2007. Supervisor-Prof.
Danny Dolev.

Q. Zhang, C. Keppitiyagama, and A. Wagner. Supporting mpi collective

communication on network processors. cluster, 00:75, 2002.

	Acknowledgments
	Abstract
	Introduction
	Offloading Overview
	Hydra Overview
	Dynamic Offloading Framework
	Framework Requirements

	Related Work
	Special OSs and OS Specific Object Loader
	Graphical Processing Units
	Java Applets and JavaME
	Myrinet Clusters with VM based NICs
	Active Networks
	Microsoft's COM/DCOM Framework
	Object Storage Disk (OSD)
	Spine
	FarGo and FarGo-DA
	TCP Offload Engines (TOE)

	Dynamic Offloading
	Motivation
	Design Considerations

	Hydra Overview
	Offcode
	Offcode Creation
	Offcode Invocation

	Channels
	Channel Creation

	Offload Layout Programming
	Offcode Manifesto
	Software Architecture

	Approaching Dynamic Offloading
	NIC Architecture
	NicOs Motivation
	NicOs Hardcore
	Tasks & Scheduling
	Memory Management & Data Structures
	Filtering & Classification
	Networking
	Embedded Application Instrumentation

	Dynamic Offloading Prototype
	Prototype pre-Requisites and Tools
	Binutils and Compiler
	Standard Linux Utils
	In-house Tools

	Dynamic Offloading Protocol
	Integrated Offloading Prototype
	 Offloading Protocol Implementation
	Channel and Library API
	Preparing an Offcode for Offloading
	Offloading & Activation
	NIC Offcode Loader

	Evaluation
	Offcode preparation performance
	Offloading performance

	Conclusions and Future work
	Bibliography

