
Optimizing Total Order Protocols for State

Machine Replication

Thesis for the degree of

DOCTOR of PHILOSOPHY

by

Ilya Shnayderman

submitted to the senate of

The Hebrew University of Jerusalem

December 2006

This work was carried out under the supervision of Prof.

Danny Dolev

Acknowledgements

I would like to thank my family for their constant understanding and support, which was not always

easy. My deep gratitude goes to my advisor professor Danny Dolev for his precise though unobtrusive

guidance, to Tal Anker for his constant readiness to share knowledge and cooperate. And of course, I am

grateful to all the members of our Transis/Danss lab, who managed to create just the right atmosphere

for creative and e�cient work. I would like to thank my Swiss colleagues Peter Urban and Andre Shipper

for fruitful cooperation.

Contents

1 Introduction 1

1.1 Problem Description . 3

1.1.1 Model . 3

1.1.2 Uniform Total Order - with Early Delivery . 3

1.2 Solution Highlights and Thesis Layout . 4

1.3 Related Work . 6

1.3.1 Total Order . 7

1.3.2 Congestion Control . 8

1.3.3 Group Membership . 10

I Optimizing Total Order for LAN 11

2 Impact of Failure Detectors 13

2.1 System model . 15

2.2 Algorithms . 15

2.2.1 Chandra-Toueg uniform total order algorithm . 16

2.2.2 Fixed sequencer uniform total order algorithm . 17

2.2.3 Group membership algorithm . 18

2.2.4 Expected performance . 19

2.3 Context of our performance study . 19

2.3.1 Performance measures . 19

2.3.2 Scenarios . 20

2.4 Simulation models . 22

2.4.1 Modeling the execution environment . 22

vi

2.4.2 Modeling failure detectors . 23

2.5 Results . 24

2.6 Discussion . 28

3 Wire-Speed Total Order 31

3.1 Contribution . 32

3.2 Model and Environment . 32

3.3 Problem De�nition . 33

3.4 Implementation . 33

3.4.1 Providing UTO . 35

3.4.2 Optimizations for Achieving High Performance . 36

3.4.2.1 Packet Aggregation Algorithm . 36

3.4.2.2 Jumbo frames . 36

3.4.3 Multicast Implementation Issues . 37

3.5 Fault-Tolerance . 38

3.6 Performance . 39

3.6.1 Theoretical bounds . 40

3.6.1.1 All-to-all Con�gurations . 41

3.6.1.2 Disjoint Groups of Senders and Receivers 42

3.6.2 Tradeo�s of Latency vs. Throughput . 43

3.6.2.1 All-to-all Con�guration . 43

3.6.2.2 Large Packet Sizes . 44

3.6.2.3 Packet aggregation . 45

3.6.3 Comparisons with previous works . 46

3.7 Scalability . 48

II Toward E�cient Total Order in WAN 51

4 TCP-Friendly Many-to-Many End-to-End Congestion Control 53

4.1 Environment . 55

4.1.1 Xpand . 55

4.1.1.1 Application Layer Multicast . 55

4.1.2 RON Testbed Environment . 56

4.2 Xpand Flow/Congestion Control Mechanism Design . 56

4.2.1 Design Decisions . 57

4.3 The Congestion Control Mechanism Description . 58

4.3.1 RTT Estimation by Senders' Delegate . 59

4.3.2 Receiver Loss Rate Estimation . 60

4.3.3 Multiple Senders in LAN . 62

4.3.3.1 Determining local senders' rate demands 62

4.3.4 Implementation Details . 63

4.4 Performance Results . 63

4.4.1 Rate Restriction . 64

4.4.2 Rate Adaptation to Membership Changes . 66

4.4.3 Fairness Among Senders in a LAN . 67

4.4.4 TCP-friendliness . 67

4.5 Conclusions and Future Work . 68

5 Ad Hoc Membership for Scalable Applications 69

5.1 Xpand Membership Service Model . 71

5.1.1 Implementation Issues . 71

5.2 The Environment Model . 73

5.2.1 Network Event Noti�cation Service (NS) . 73

5.3 Xpand's Ad Hoc Membership Algorithm . 74

5.4 Implementation and Performance Results . 80

5.5 Conclusions . 82

6 Evaluating Total Order Algorithms in WAN 85

6.1 Algorithms under Comparison . 85

6.2 Methodology . 86

6.2.1 Clock Skews . 87

6.2.2 Implementation and Optimization of the Algorithms 87

6.3 Performance Results . 88

6.4 Conclusions and Future Work . 91

Bibliography 93

Abstract

Message delivery order is a fundamental service in distributed middleware tools. Total order (TO) is

a basic message delivery order guarantee and has been acknowledged as a powerful building block for

supporting consistency and fault-tolerance in distributed applications. TO is typically used in replicated

objects and database applications. Although the applicability of TO appears to be wide enough, it is

rarely used for other kinds of distributed applications. This is due to a number of reasons, the main

reason being, as we believe, the perception that using TO seriously limits the performance of the system

and seriously increases message delivery latency. The goal of our study was to prove that there are

implementations of TO where those disadvantages are minimized without compromising the advantages

of TO. We developed simple and e�cient protocols providing TO, implemented them and evaluated their

performance.

Total order in LAN. Many distributed algorithms rely on Failure Detectors (FD). FDs are used by a

process in distributed systems to monitor another process(es), and are able to detect a process failure and

notify other process(es) about it. Unfortunately, failure detectors sometimes yield incorrect information.

In this thesis the impact of inaccuracy of FD on distributed middleware performance is studied.

In order to overcome negative impact of inaccuracy of FD, we propose a approach that allows ordering

messages at high rates without rely on FD. Due to an optimization introduced into a known method for

proving TO, we developed a novel architecture that is signi�cantly more e�cient at high load rates. The

feasibility of the architecture has been proved by implementation that used only on-the-shelf hardware.

The performance of the system was evaluated, and the experiments showed that this architecture enables

to order more than million messages per second.

x

i

Towards total order in WAN. Distributed applications usually exploit UDP protocol. Among the

advantages of this protocol, there is support of multicast message propagation and immediate message

delivery. The major disadvantage of this protocol is that it lacks built-in congestion control (CC).

CC in WAN is very important, as the network resources are shared by multiple users. In this work,

an implementation of TCP-friendly CC for distributed applications is presented and its performance

evaluated.

Link failures in WAN do not always separate the processes into two or more disjoint sets. In order to

solve this problem, we propose a novel method that allows establishing connections between clusters of

processes without a need to agree on the membership among all the processes. This method is based on

the hierarchal approach. We proved this approach to be feasible, and performed an initial performance

evaluation of our implementation.

In order to develop an e�cient algorithm for TO in WAN, we studied the performance of two TO

algorithms. The study showed that if no message is lost, the running times of the algorithms correspond

to the theoretical running time. At the same time, it was observed that message losses signi�cantly

increased the latency of TO. We showed that a negative impact of message losses on the symmetrical

algorithm was higher than on the centralized one.

Chapter 1

Introduction

In this thesis, some challenges facing modern distributed systems are analyzed and a few novel solutions

aimed at overcoming those challenges are presented and evaluated. Nowadays, the amount of network

services is constantly increasing. Those services have not only to support a large number of users but

also to provide timely response to users worldwide. Since no single computer is able to provide such

service, many network services rely on distributed systems that may be of di�erent sizes, from a few

computers connected to one Local Area Network to tens of thousands computers (e.g. Google) located in

di�erent countries. Creating distributed applications is highly complicated, as developers have to handle

failure/disconnection of the computers without causing inconveniences to the user.

To solve this problem, distributed middleware is used, which simpli�es the task, as the developer

does not have to handle each possible failure scenario. Typically, a middleware tool allows to send and

to receive messages over the network. One of the goals of the middleware is to deliver messages in a

consistent way, despite the fact that the network may be not reliable. The middleware semantics usually

guarantee that a message is delivered either to all the processes or to none of them. However, it is

sometimes impossible to deliver a message due to a loss of connectivity. In this case, the middleware

noti�es the distributed system which responds appropriately.

Typically, a distributed system consists of processes that are running instances of distributed applica-

tions. Each instance can send and receive messages and to process them when received. The processing

of a message can lead to sending other messages, as well as to changing the state of the application

1

CHAPTER 1. INTRODUCTION 2

instance. In order to provide meaningful service, the application keeps its instances synchronized. In

order to keep the states of di�erent instances consistent, the middleware tool is required to enforce an

order on message delivery.

Message delivery order is a major service in distributed middleware tools. For more than two decades,

extensive research has been conducted to de�ne useful delivery guarantees and to develop e�cient algo-

rithms providing these guarantees. Total order (TO) is one of the basic message delivery order guarantees

and has been acknowledged as a powerful building block for supporting consistency and fault-tolerance

in distributed applications. By way of example, we may consider a server S that processes requests of

the database. In order to make database service fault-tolerant, it is possible to replicate server S. In case

S fails, one of the replicas (instances) picks up its functionality and starts responding to the database

requests. Thus, TO allows to apply transactions to di�erent instances in exactly the same order, which

ensures that all the instances keep their state consistent.

A signi�cant e�ort has been made to develop pro�cient algorithms supporting e�cient semantics

(guarantees) of total order. This e�ort is re�ected in numerous publications. Extensive analysis and

classi�cation of the algorithms providing total order can be found in [40]. Although initially the above-

described middleware was developed mostly by research bodies, the software industry quickly recognized

the e�ciency and practical value of total order. Total order is now used by leading software companies

such as IBM, Sun and Microsoft [57, 71].

Total order is typically used in replicated objects and database applications. Although the potential

applicability of total order appears to be wider [33, 87], it is rarely used for other kinds of distributed

applications. This is due to a number of reasons, the main reason being, as we believe, the perception

that using TO seriously limits the performance of the system and signi�cantly increases message delivery

latency. The goal of our study was to prove that there are implementations of TO where those disad-

vantages are minimized without compromising the advantages of TO. We developed simple and e�cient

protocols providing TO, implemented them and evaluated their performance.

CHAPTER 1. INTRODUCTION 3

1.1 Problem Description

1.1.1 Model

The goal of the present study is to optimize total ordering of messages in distributed systems. We assume

the message-passing environment in distributed systems to be asynchronous, which means that processes

communicate solely by exchanging messages and there is no bound on message delivery time. Processes

may fail by crashing and later recover or not. Processes may any time voluntarily choose leaving or

re-joining. Communication links may fail and recover.

1.1.2 Uniform Total Order - with Early Delivery

Total order is a semantics that insures that messages sent to a set of processes are delivered by all these

processes in the same order, thus enabling fault-tolerance. Most algorithms attempt to guarantee the

order required by a replicated database application, namely, Uniform Total Order (UTO) de�ned in

[102] by the following primitives:

• UTO1 - Uniform Agreement : If a process (correct or not) has U − delivered(m), then every

correct process eventually U − delivers(m).

• UTO2 - Termination : If a correct process U − broadcast(m), then every correct process even-

tually U − delivers(m).

• UTO3 - Uniform Total Order : Let m1 and m2 be two U−broadcast messages. It is important

to note that m1 < m2 if and only if a process (correct or not) U − delivers m1 before m2. Total

order ensures that the relation �<� is acyclic.

• UTO4 - Integrity : For any message m, every correct process U − delivers(m) at most once,

and only if m was previously U − broadcasted.

UTO enables processes to perform an easier recovery from faults, by ensuring that even faulty process

does not U − deliver a message out of order. It is important to note that UTO does not keep FIFO.

A new approach to usage of total order called "Optimistic" has been introduced recently. This

approach, which in fact is UTO with Early Delivery, allows to reduce the latency of database transactions

by guessing the �nal order of the transactions on the earlier stages of the protocol. After the order of a

CHAPTER 1. INTRODUCTION 4

transaction is guessed, the transaction is executed by the database. However, the transaction results are

committed to the database only if the order of the transactions was guessed correctly. Otherwise, the

transaction is aborted.

Our approach to optimization of UTO with early delivery stems from a number of acknowledged

problems that are currently unsolved and which limit a wider implementation of UTO:

• TO protocols and semantics are highly complicated

• In Local Area Network (LAN), using TO limits signi�cantly the performance of the system and

increases message delivery latency.

• In Wide Area Network (WAN), implementation of TO faces problems of frequent message losses,

congestion control and appropriate membership.

The aim of our study is to analyze the root causes of these problems and suggest ways to solving

them.

1.2 Solution Highlights and Thesis Layout

The thesis is separated into two parts. The �rst part is dedicated to optimizing total order in LAN,

while the second part describes essential building blocks needed in order to develop e�cient total order

algorithm in WAN and presents an evaluation of recently introduced total order algorithms for WAN.

Implementing TO often faces problems caused by Failure Detectors (FD), since distributed mid-

dleware usually relies on FD. FDs are used by a process in distributed systems to monitor another

process(es), and are able to detect a process failure and notify other process(es) about it. Unfortunately,

failure detectors sometimes provide incorrect information [31] e.g. when a correct process is erroneously

suspected as a failed one. Another drawback is timing: if the monitored process fails, FD may not be

able to provide the corresponding information instantly, due to the delay in message propagation over

the network. Developers of distributed middleware are well aware of these drawbacks of FD, and the

protocols currently used are able to cope with the problem. This, however, comes for a price, as the delay

in discovering a failed process or an error in suspecting a correct process may slowdown the performance.

In Chapter 2, the impact of Failure Detectors (FD) on distributed middleware performance is studied.

CHAPTER 1. INTRODUCTION 5

Most of the protocols for implementing total order incorporate failure detectors, thus making the

algorithm performance dependent on the accuracy of FD. To reduce this dependence, it is possible to

improve FD, as discussed in [11]. Another way is to use an algorithm for total order that does not

include FD. Such an algorithm was developed by Pedone et al. [82]. This algorithm is based on random

consensus proposed by Rabin in [84]. However, the idea suggested in [82] has a drawback, since at high

load the performance drops drastically. From �rst sight, this algorithm is not better than that based

on the FD, as the accuracy of FD usually also depends on the network utilization. In Chapter 3 we

propose a novel solution that improves the idea proposed [82] by allowing to order messages at high

rates. This solution based on on-the-shelf hardware has been implemented and its performance evaluated

in the present work. The experiments showed that it is possible to order more than million messages per

second.

In Chapters 2 and 3, the performance of total order protocols was studied in LAN. However, many

of modern distributed systems are required to operate in WAN. WAN introduces new challenges to

distributed systems. One of the challenges is frequent message losses. Many network applications use

TCP protocol in order to overcome the message losses. However, TCP protocol supports only one

message order, FIFO. Moreover, TCP can not be used for sending messages to multiple destinations

(multicast). For this reason, many distributed applications prefer using a more �exible protocol, UDP.

The drawback of this protocol is that it lacks built-in congestion control (CC). Congestion control in

WAN is very important, as the network resources are shared by multiple users. As it was stated earlier, a

great amount of network tra�c is composed from TCP �ows. This requires that distributed applications

be able to compete with TCP communication on the network resources in a fair way. In Chapter 4,

an implementation of TCP-friendly congestion control for distributed applications is presented and its

performance evaluated.

When processes communicate over WAN, they can experience not only considerable amount of mes-

sage losses, but also a temporal link failure. This link failure may disconnect the process from other

processes. In traditional group communication systems, this situation is considered as a partition. Link

failures in WAN do not always separate the processes into two or more disjoint sets1. In this case, it is

di�cult to agree on a stable membership. In order to solve this problem, we propose in Chapter 5 a novel

method that allows to establish connections between clusters of processes, without a need to agree on the

1If at least one process belongs to di�erent sets they should be the same.

CHAPTER 1. INTRODUCTION 6

membership among all the processes. This method is based on the hierarchal approach. In Chapter 5

we showed that this approach is feasible, and performed an initial performance evaluation of our imple-

mentation. The proposed solution can be extended to implement virtual synchrony [63]. Otherwise, it

is di�cult to agree on a stable membership. In order to solve this problem, we propose in Chapter 5

a novel method that allows to establish connections between clusters of processes, without a need to

agree on the membership among all the processes. This method is based on the hierarchal approach. In

Chapter 5 we showed that this approach is feasible, and performed an initial performance evaluation of

our implementation. The proposed solution can be extended to implement virtual synchrony [63].

In Chapter 6 we studied the performance of two total order algorithms [102] and [92] which had been

designed specially for WAN. The study showed that if no message was lost, the running times of the

algorithms correspond to the theoretical running time. At the same time, it was observed that message

losses signi�cantly increased the latency of total order. In Chapter 6 we showed that the negative impact

of the message losses on the symmetrical algorithm was higher than on the centralized one.

In this thesis, we studied issues that have impact on the performance of total order algorithms. The

simulations were run both in LAN and in WAN. In Chapter 2, we showed that when run in LAN,

inaccuracy of Failure Detectors may cause degradation of total order algorithm performance. We also

showed that, when messages are sent at higher rates, the inaccuracy of Failure Detectors increases. To

minimize this drawback, we proposed in Chapter 3 an approach which does not use Failure Detectors,

and showed that its performance does not degrade signi�cantly when network utilization increases. We

presented in Chapter 4 an implementation and an evaluation of TCP-friendly congestion control. In

Chapter 5 we propose a novel hierarchical approach to membership that takes into account speci�c Wide

Area Network type of failures when processes A and B may be connected to process C, but are not able

to exchange messages. In Chapter 6 we showed that message losses in WAN are a signi�cant factor in

total order algorithms for WAN.

1.3 Related Work

We relate our work to the following research areas:

1. Performance evaluation of total order algorithms

CHAPTER 1. INTRODUCTION 7

2. Congestion Control

3. Group Membership

1.3.1 Total Order

There are a number of works which deal with the problem of total ordering of messages in a distributed

system. A comprehensive survey of this �eld, covering various approaches and models, can be found

in [40]. The authors cover tens of papers that describe di�erent implementation of total order algorithms.

Usually, when an algorithm is proposed, its performance is evaluated using simple metrics like time

complexity (number of communication steps) and message complexity (number of messages). This,

however, renders little information on the real performance of those algorithms. There are a few papers

that provide a more detailed performance analysis of total order algorithms: [38] and [39] analyze four

di�erent algorithms using discrete event simulation; [95] uses a contention-aware metric to analytically

compare the performance of four algorithms; [36, 35] analyze total order protocols for wireless networks,

deriving assumption coverage and other performance-related metrics. However, all these papers analyze

the algorithms only in failure-free runs, which gives just a partial understanding of their quantitative

behavior.

Other papers analyze agreement protocols, taking into account various failure scenarios: [44] presents

an approach for probabilistic veri�cation of a synchronous round-based consensus protocol; [85] ana-

lyzes a Byzantine total order protocol; [68] evaluates the performability of a group-oriented multicast

protocol;[91] compares the impact of di�erent implementations of failure detectors on a consensus algo-

rithm (simulation study); [37] analyzes the latency of the Chandra-Toueg consensus algorithm. Similar

to the approach used as in Chapter 2, [37] models failure detectors using the quality of service (QoS)

introduced by Chen et al. [31].

There are a number of works implementing total order relying on hardware. In [32], an interesting

approach to achieving total order with no message loss was presented. The authors introduced bu�er

reservation at intermediate network bridges and hosts. The networking equipment connecting the senders

and receivers was arranged in a spanning tree. The reservation was made on the paths in the spanning tree

so that no message loss could occur. The ordering itself was performed using Lamport timestamps [65].

The paper assumed a di�erent network and presents only simulation results, which makes it hard to

CHAPTER 1. INTRODUCTION 8

perform any comparisons. An implementation of a total ordering algorithm in hardware was proposed

in [61]. This work o�oads the ordering mechanism into the NIC and uses CSMA/CD network as a

virtual sequencer. The authors assume that a single collision domain connects all the participating

processes. Using special software and hardware, the algorithm prevents processes that missed a message

from broadcasting new messages, thus converting the network into a virtual sequencer. In our opinion,

the use of a single collision domain is the main drawback of this approach, as it is known that collisions

may signi�cantly reduce the performance of system.

Another work that deals with total ordering and hardware is presented in [18]. In this work, a totally

ordered multicast which preserves QoS guarantees is achieved. It is assumed that the network allows

bandwidth reservation speci�ed by average transmission rate and the maximum burst. The algorithm

suggested in the paper preserves the latency and the bandwidth reserved for the application.

The new approach called �Optimistic Atomic Broadcast� was �rst presented in [81]. This approach

allows to reduce database transactions latency by starting transactions earlier based on guessing the

total order before it is �nally established.

1.3.2 Congestion Control

Congestion control and �ow control have attracted a lot of research in computer networking. There

are numerous approaches to introducing congestion control mechanisms for multicast applications. A

comprehensive survey on current unicast and multicast congestion control approaches can be found in

[106].

In our study, we focus on a single-rate multicast congestion control in which the slowest receiver limits

the transmission rate. The major alternative approach uses layered multicast scheme ([26, 70, 103]). Our

choice of a single rate is accounted for by the fact that group communication framework requires that all

receivers be synchronized. The proposed approach could be extended to multi-layer multicast by using

the proposed technique on the rate of each layer.

Several papers propose congestion control schemes for systems with a large number of receivers.

In such environment, it is impossible to handle feedback from each sender due to the ACK explosion

problem. It is necessary to estimate the receiving capability of the slowest receiver. There are two

main approaches used to avoid the ACK explosion problem, the �rst identifying the slowest receiver and

CHAPTER 1. INTRODUCTION 9

referring to it only, and the second enforcing a hierarchy on the receivers.

PGMCC and TFMCC use the �rst approach, whose main disadvantage comes from the fact that

the "worst" receiver may change rapidly, while performing a switch-over among di�erent slow receivers

might be slow and extremely di�cult ([41, 62]).

The second approach is more suitable for GCS, as group membership is maintained and available

for group members. Xpand uses an external group membership service to receive group membership

noti�cation ([6]). MTCP ([86]), being a one-to-many scheme, creates a multi-level tree hierarchy on

receivers. Obviously, a multi-level hierarchy is natural to one-to-many approach. Xpand, which is

designed for many-to-many communication, uses a two-level hierarchy, which is a more natural approach

for multi-cluster systems. Other protocols like RMTP ([79]) and TMTP ([108]) are one-to-many, taking

advantage of the hierarchy, and are not speci�cally designed to be TCP-friendly. RMTP deploys end-to-

end congestion control, whereas TMTP implements �ow control only.

Multicast communication typically consumes more resources from the network than unicast, since

multicast tra�c usually traverses through more links, thus a protocol designed for bulk data transfer over

multicast in WAN must exhibit TCP-friendliness. TEAR ([88]) and MTCP ([86]) use a window-based

technique to provide a TCP-friendly congestion control mechanism. The authors report promising results,

however, the model is not easily extensible to many-to-many multicast applications due to scalability

problems.

An alternative approach to the window-based mechanism implemented in TEAR and in MTCP is the

equation-based one. This approach uses a stochastic TCP model ([77]) which represents a throughput

of a TCP sender as a function of packet loss rate and of round trip time. TFRC (RFC 3448 ([54]), see

also the paper [47]) has been recently recognized and standardized by IETF as a sound approach to

TCP-friendliness for unicast tra�c. The congestion control mechanism deployed in Xpand was based on

this approach.

Only few group communications systems have an end-to-end congestion control mechanism. As to

�ow control mechanisms for group communication, they have been widely employed (a comprehensive

analysis of �ow control mechanisms for LAN GCSs can be found in [72])

A system that is comparable to our system is Spread ([4]). Spread uses an overlay network, in

which each overlay link behaves in a TCP-friendly manner. In addition, Spread implements an advanced

end-to-end �ow control mechanism based on a cost-bene�t approach([3]).

CHAPTER 1. INTRODUCTION 10

1.3.3 Group Membership

The authors of Congress [6] and Maestro [24] were the �rst to observe that separating maintenance of

membership from a group multicast will better enhance scalability of fault-tolerant distributed applica-

tions. This separation was later adopted by researchers who addressed the WAN environment ([63, 7, 93]).

InterGroup [21] presents another WAN approach to address scalability.

Several research projects sought to relax the semantics of the middleware for distributed applications

([4, 56, 24, 93, 83, 42, 101, 48, 53]). Our work takes advantage of both approaches, in order to �nd a

better balance between e�ciency, scalability and guaranteed semantics.

Recently, new implementations [109, 89] of reliable multicast have appeared, whose protocols use

peer-to-peer overlay systems. Those systems scale for large group, while members are not required to

keep group membership information, which might be critical for some applications.

Part I

Optimizing Total Order for LAN

11

12

Chapter 2

Impact of Failure Detectors∗

Middleware tools use a variety of building blocks like consensus, total order etc. Protocols that guarantee

those building blocks have been extensively studied in various system models, and many protocols solving

these problems have been published [19, 40], o�ering di�erent levels of guarantees. However, these

protocols have mostly been analyzed from the point of view of their safety and liveness properties, while

little has been done to analyze their performance. In addition, most papers focus on analyzing failure-free

runs, thus neglecting the performance aspects of failure handling. In our view, this limited understanding

of performance aspects, both in failure-free scenarios and scenarios including failure handling, is an

obstacle to adopting such protocols in practice.

Failure detectors impact The goal of this chapter is to study the impact of failure detectors, in par-

ticular their inaccuracy, on Uniform Total Order algorithms. Two algorithms providing Uniform Total

Order were chosen. The �rst one is based directly on failure detectors, the other one on a group mem-

bership service. Both services provide processes with estimates concerning the set of crashed processes in

the system.1 The main di�erence between those two approaches is that failure detectors provide incon-

sistent information about failures, whereas group membership service provides consistent information.

It is important to note that group membership service also depends on failure detectors.

∗This chapter is based on a paper by P. Urban, I. Shnayderman and A. Schiper [98].
1Besides masking failures, a group membership service has other uses. This issue is discussed in Section 2.6.

13

CHAPTER 2. IMPACT OF FAILURE DETECTORS 14

The two algorithms. The algorithm using unreliable failure detectors (FD) is the Chandra-Toueg

total order algorithm [28], which can tolerate f < n/2 crash failures and requires a failure detector ♦S.

As an algorithm using group membership, we chose one that implements total order with a mechanism

close to the FD-based algorithm, i.e., a sequencer-based algorithm (which also tolerates f < n/2 crash

failures). Both algorithms were optimized for (1) failure and suspicion-free runs (rather than runs with

failures and suspicions), (2) minimizing latency under low load (rather than minimizing the number of

messages), and (3) tolerating high load (rather than minimizing latency at moderate load).

We chose these algorithms because they are well-known and easily comparable, o�ering the same

guarantees within the same model. Moreover, they behave similarly in cases when neither failures nor

failure suspicions occur (in fact, they generate the same exchange of messages given the same arrival

pattern). This allows us to focus the analysis on the di�erences and similarities concerning handling

failures and suspicions.

Methodology for performance studies. The two algorithms were evaluated using simulation. We

modeled message exchange by taking into account contention on the Local Area Network and the

hosts [95]. We modeled failure detectors (including the ones underlying group membership) in an abstract

way, using the quality of service (QoS) metrics proposed by Chen et al. [31]. Our performance metric

for uniform total order is called latency, de�ned as the time that elapses between sending a message

m and its earliest delivery of m. We studied the uniform total order algorithms in several benchmark

scenarios, including scenarios with failures and suspicions, by evaluating the steady state latency in (1)

runs with neither crashes nor suspicions, (2) runs with crashes and (3) runs with no crashes in which

correct processes are wrongly suspected to have crashed, as well as (4) the transient latency after a crash.

We believe that our methodology can be generalized to analyze other fault-tolerant algorithms. This

makes the results of the comparison a basis for the proposed methodology.

The results. The analysis shows that the two algorithms have the same performance in runs with

neither crashes nor suspicions. At the same time, the group membership-based algorithm has an advan-

tage in terms of performance and resiliency that remain in force for a long time after crashes occur. In

other scenarios involving wrong suspicions of correct processes and the transient behavior after crashes,

the failure- detector-based algorithm o�ers better performance. The results clearly indicate that the im-

CHAPTER 2. IMPACT OF FAILURE DETECTORS 15

pact of inaccuracy of failure detectors on both algorithms is high. The results we obtained have several

implications concerning the design of fault-tolerant distributed systems.

2.1 System model

In this study, we used asynchronous message passing system model, similar to the one described in 1.1.1.

In addition, we assumed that channels are reliable, which is easily achieved in practice by retransmitting

lost messages. We considered only those processes that failed by crashing and, therefore, do not send any

further messages. Process crashes are rare, processes fail independently from one another, and process

recovery is slow, since both the time between crashes and the time to repair are much greater than the

latency of total order.

Similar to almost all the fault-tolerant algorithms described in the literature, the total order algo-

rithms considered in this chapter use some form of crash detection. We call the parts of the algorithms

that implement crash detectionfailure detectors. A failure detector maintains a list of processes it suspects

to have crashed. Mistakes are possible, namely, it might suspect correct processes to fail and it might not

suspect crashed processes immediately. To make sure that the total order algorithms terminate, we need

some assumptions regarding the behavior of the failure detectors [27]. Both algorithms require ♦Sfailure

detectors. In other words, this requires strong completeness (eventually every process that crashes is

permanently suspected by every correct process) and weak accuracy (some correct processes are never

suspected). These requirements are rather weak and can usually be ful�lled in real systems by tuning

implementation parameters of the failure detectors [96].

It should be noted that whereas we assume that process crashes are rare, (wrong) failure suspicions

may occur frequently, depending on the tuning of the failure detectors.

2.2 Algorithms

This section introduces the two total order algorithms and the group membership algorithm (a more

detailed description can be found in [99]). The analysis of the expected performance of the two total

order algorithms follows.

CHAPTER 2. IMPACT OF FAILURE DETECTORS 16

2.2.1 Chandra-Toueg uniform total order algorithm

The Chandra-Toueg uniform total order algorithm uses failure detectors directly [28]. We refer to it as

the FD total order algorithm, or simply as the FD algorithm. A process executes U-broadcast by sending

a message to all the processes. 2 When a process receives such a message, it bu�ers it until the delivery

order is decided. In order to agree on delivery order, consensus is used. The delivery order is decided by

a sequence of consensus numbered 1, 2,

The initial value and the decision of each consensus is a set of message identi�ers. Suppose msg(k) be

the set of message IDs decided by consensus #k. The messages denoted by msg(k) are U-delivered before

the messages denoted by msg(k + 1), and the messages denoted by msg(k) are U-delivered according to

a deterministic function, e.g., according to the order of their IDs.

Chandra-Toueg ♦S consensus algorithm. To solve the consensus, we use the Chandra-Toueg ♦S

algorithm [28]. The algorithm can tolerate f < n/2 crash failures. It is based on the rotating coordinator

paradigm: each process executes a sequence of asynchronous rounds (i.e., not all processes necessarily

execute the same round at a given time t), and in each round a process takes the role of coordinator (pi

is coordinator for rounds kn + i). The role of the coordinator is to impose a decision value on all the

processes. If it succeeds, the consensus algorithm terminates. It may fail if some processes suspect the

coordinator to have crashed, regardless whether the coordinator really crashed or not. In this case, a

new round is started. We skip the details of the execution which are not relevant for our analysis

Example run of the FD algorithm. Figure 2.1 illustrates execution of the FD total order algorithm

in which one single message m is U-broadcast and neither crashes nor is suspected to do so At �rst,

m is sent to all the processes. Upon receipt, the consensus algorithm starts. The coordinator sends its

proposal to all other processes. Each process acknowledges this message. Upon receiving ACKs from

the majority of processes (including itself), the coordinator makes up its own proposal and sends the

decision (using reliable broadcast) to all other processes. The other processes decide upon receiving the

decision message.

2This message is sent using reliable broadcast. We use an e�cient algorithm inspired by [50] that uses only one broadcast
message in most cases; see [99] for more details.

CHAPTER 2. IMPACT OF FAILURE DETECTORS 17

consensus

proposal ack

decision

coordinator / sequencer

p5

p4

p3

p2

p1
t

U-deliver(m)U-broadcast(m)

m

seqnum deliver

non-uniform GM alg. uniform GM alg.

FD alg.

m

ack

Figure 2.1: Example run of the total order algorithm. Labels on the top/bottom refer to the FD/GM
algorithm, respectively.

2.2.2 Fixed sequencer uniform total order algorithm

The second uniform total order algorithm is based on a �xed sequencer [23]. It uses a group membership

service for recon�guration in case of a crash. We shall refer to it as GM total order algorithm, or simply

as the GM algorithm. We describe here the uniform version of the algorithm.

In GM algorithm, one of the processes takes the role of a sequencer. When a process U-broadcasts a

message m, it �rst broadcasts it to the sequencer. Upon reception, the sequencer (1) assigns a sequence

number to m, and (2) broadcasts the sequence number to all processes. When the non-sequencer processes

have received m and its sequence number, they send an acknowledgment to the sequencer.3 The sequencer

waits for ACKs from the majority of processes, then delivers m and sends a message indicating that m

can be U-delivered. The other processes U-deliver m when they receive this message. The execution is

shown in Fig. 2.1. It should be noted that the messages denoted seqnum, ack and deliver can carry several

sequence numbers, which is essential for achieving good performance under high load. It is important that

the FD algorithm has a similar �aggregation� mechanism, i.e. one execution of the consensus algorithm

can decide on the delivery order of several messages.

When the sequencer crashes, processes need to agree on the new sequencer. This is why we need

a group membership service which provides a consistent view of the group to all its members, i.e., a

list of the processes which have not crashed (informally speaking). The sequencer is the �rst process in

the current view. The group membership algorithm described below can tolerate f < n/2 crash failures

(more in some runs) and requires a failure detector ♦S.
3Figure 2.1 shows that the acknowledgments and subsequent messages are not needed in the non-uniform version of the

algorithm. This issue is considered later in the chapter.

CHAPTER 2. IMPACT OF FAILURE DETECTORS 18

2.2.3 Group membership algorithm

A group membership service [34] maintains the view of a group, i.e. the list of correct processes of

the group. The current view4 might change because processes in the group might crash or exclude

themselves, while processes outside the group might join. The group membership service guarantees

that processes see the same sequence of views (except for processes which are excluded from the group

that miss all views after their exclusion until they join again). In addition to maintaining the view, our

group membership service ensures View Synchrony and Same View Delivery : correct and not suspected

processes deliver the same set of messages in each view, and all deliveries of a message m take place in

the same view.

Our group membership algorithm [69] uses failure detectors to start view changes, and relies on

consensus to agree on the next view. This is done as follows. A process that suspects another process

starts a view change by sending a �view change� message to all the members of the current view. As soon

as a process learns about a view change, it sends its unstable messages5 to all the processes. When a

process has received the unstable messages from all the processes it does not suspect, say P , it computes

the union U of the unstable messages received, and starts consensus with the pair (P,U) as its initial

value. Let (P ′, U ′) be the decision of the consensus. Once a process decides, it delivers all messages

from U ′ not yet delivered, and installs P ′ as the next view. The protocol for joins and explicit leaves is

practically the same.

State transfer. When a process joins a group, its state needs to be synchronized with the other

members of the group. The exact meaning of �state� and �synchronizing� is application- dependent. We

only need to de�ne these terms in a limited context. In our study, the only processes that ever join are

correct processes which have been wrongly excluded from the group. Consequently, the state of such a

process p is mostly up-to-date. For this reason, it is feasible to update the state of p in the following

way: when p rejoins, it asks some process for the messages it has missed since it was excluded. Process

p delivers these messages, and then starts to participate in the view it has joined. It should be noted

that the procedure works only because our total order algorithm is uniform. In case of a non-uniform

total order, the excluded process might have delivered messages never seen by the others, thus having

4There is only one current view, since we consider in this chapter a non-partitionable or primary partition group
membership service.

5Message m is stable for process p when p knows that m has been received by all other processes in the current view.

CHAPTER 2. IMPACT OF FAILURE DETECTORS 19

an inconsistent state, which means that state transfer would be more complicated.

2.2.4 Expected performance

We now discuss, from a qualitative point of view, the expected relative performance of the two total

order algorithms (FD algorithm and GM algorithm).

Figure 2.1 shows executions with neither crashes nor suspicions. In terms of the pattern of message

exchanges, the two algorithms are identical, only the content of messages di�er. Therefore, we expect

the same performance from the two algorithms in failure-free and suspicion-free runs.

We investigated how the algorithms slow down when a process crashes. There are two major di�er-

ences. The �rst di�erence is that GM algorithm reacts to the crash of every process, while FD algorithm

reacts only to the crash of p1, which is the �rst coordinator. The second di�erence is that GM algorithm

takes longer time to restart delivering total order messages after a crash. This is true even if we compare

GM algorithm to the case which is the worst one for FD algorithm, i.e., when the �rst coordinator

p1 fails. FD algorithm needs to execute Round 2 of the consensus algorithm. This additional cost is

comparable to the cost of an execution with no crashes (3 communication steps, 1 multicast and about

2n unicast messages). On the other hand, GM algorithm initiates an expensive view change (5 commu-

nication steps, about n multicast and n unicast messages). Hence, we expect that if the failure detectors

in both algorithms detect the crash at the same time , FD algorithm performs better. However, when

GM algorithm establishes the new membership and reaches steady-state, its latency is a bit lower than

that of FD algorithm, as it can deliver messages after collecting lower number of acknowledgments.

Next we consider the case when a correct process is wrongly suspected. The algorithms react to a

wrong suspicion in the same way as they react to a real crash. Therefore, we expect that if the failure

detectors generate wrong suspicions at the same rate, FD algorithm will su�er less performance penalty.

2.3 Context of our performance study

2.3.1 Performance measures

Our main performance measure is the latency of total order. Latency L is de�ned for a single total order

message m as follows. Suppose U-broadcast(m) occurs at time t0, and U-deliver(m) on pi at time ti,

CHAPTER 2. IMPACT OF FAILURE DETECTORS 20

for each i = 1, . . . , n. Then latency is de�ned as the time elapsed until the �rst U-delivery of m, i.e.,

L
def= (mini=1,...,n ti)− t0. In our study, we compute the mean for L over multiple messages and several

executions.

This performance metric is e�cient in practice. By way of example, we can consider a service

replicated for fault tolerance using active replication [90]. Clients of this service send their requests to

the server replicas using total order. Once a request is delivered, the server's replica processes the client

request, and sends back a reply. The client waits for the �rst reply, and discards the other ones identical

to the �rst one. If we assume that the time to service a request is the same on all replicas, and the time

to send the response from a server to the client is the same for all servers, then the �rst response received

by the client is the response sent by the server to which the request was delivered �rst. Thus, there is a

direct link between the response time of the replicated server and the latency L.

Latency is always measured under a certain workload. We chose simple workloads: (1) all destination

processes send total order messages at the same constant rate and (2) the U-broadcast events come from

a Poisson stochastic process. We call the overall rate of total order messages throughput, denoted by T .

In general, we determine how the latency L depends on the throughput T .

2.3.2 Scenarios

We evaluate the latency of the total order algorithms in various scenarios. Below, the scenarios are

described in detail, mentioning the parameters that in�uence latency in the scenario. The parameters

that in�uence latency in all the scenarios are the algorithm (A), the number of processes (n) and the

throughput (T).

Steady state of the system. We measure latency after it stabilizes (a su�ciently long time after

the start of the system or after a crash). We distinguish three scenarios, based on whether crashes and

wrong suspicions (failure detectors suspecting correct processes) occur:

• normal-steady: Neither crashes nor wrong suspicions in the experiment.

• crash-steady: One or several crashes occur before the experiment. Besides A, T and n, an

additional parameter is the set of crashed processes. As we assume that the crashes happened a

long time ago, all failure detectors in the system permanently suspect all crashed processes at this

CHAPTER 2. IMPACT OF FAILURE DETECTORS 21

point. No wrong suspicions occur.

• suspicion-steady: No crashes, but failure detectors generate wrong suspicions, which causes the

algorithms to take extra steps and thus increases the latency. Besides A, T and n, additional

parameters include the frequency at which wrong suspicions occur and how long they last. These

parameters are discussed in detail in Section 2.4.2.

It would be meaningful to combine the crash-steady and suspicion-steady scenarios in order to have

both crashes and wrong suspicions. However, this case is beyond the scope of the chapter, , since we

wanted to observe the e�ects of crashes and wrong suspicions independently.

Transient state after a crash. In this scenario, we force a crash after the system reached a steady

state. After the crash, we can expect a halt or a signi�cant slowdown of the system for a short period.

Here, we de�ne latency so that it re�ects the latency of executions that are a�ected by the crash and

thus happen around the moment of the crash. Also, we must take into account that not all crashes a�ect

the system in the same way. Below, we consider the worst case , when the crash that slows down the

system most. Our de�nition is the following:

• crash-transient: Process p crashes at time t (neither crashes nor wrong suspicions occur, except

for this crash). We have process q (p 6= q) execute U-broadcast(m) at t. Let L(p, q) be the

mean latency of m, averaged over a lot of executions. Then Lcrash
def
= maxp,q∈P L(p, q), i.e., we

consider the crash that a�ects the latency most. In this scenario, we have one additional parameter,

describing how fast the failure detectors detect the crash (discussed in Section 2.4.2).

We could combine the crash-transient scenario with the crash-steady and suspicion-steady scenarios,

to include other crashes and/or wrong suspicions. These cases were not considered, , since we wanted

to independently observe the e�ects of (i) the recent crash, (ii) old crashes and (iii) wrong suspicions .

Another reason is that we expect the e�ect of wrong suspicions on latency to be secondary in comparison

to the e�ect of the recent crash, as wrong suspicions usually happen on a larger timescale.

CHAPTER 2. IMPACT OF FAILURE DETECTORS 22

2.4 Simulation models

Our approach to performance evaluation is simulation, which allowed for more general results in com-

parison to those feasible to obtain with measurements in a real system , since we can use a parameter in

our network model to simulate a variety of di�erent environments. We used the Neko prototyping and

simulation framework [97] to conduct our experiments.

2.4.1 Modeling the execution environment

The transmission of messages was modeled in the following way. We use the model of [95], inspired by

simple models of Ethernet networks [94]. The key point in the model is that it accounts for resource

contention. This point is important, as resource contention is often a limiting factor for the performance

of distributed algorithms. Both a host and the network itself can be a bottleneck. These two kinds of

resources appear in the model (see Fig. 2.2): the network resource (shared among all processes) represents

the transmission medium, and the CPU resources (one per process) represent the processing performed

by the network controllers and the layers of the networking stack, during the emission and the reception

of a message (the cost of running the algorithm is negligible). A message m transmitted for process

pi to process pj uses the resources (i) CPUi, (ii) network, and (iii) CPUj , in this order. Message m is

put in a waiting queue before each stage if the corresponding resource is busy. The time spent on the

network resource is our time unit. The time spent on each CPU resource is λ time units; the underlying

assumption is that sending and receiving a message has a roughly equal cost.

The λ parameter (0 ≤ λ) shows the relative speed of processing a message on a host compared

to transmitting it over the network. Di�erent values model di�erent networking environments. We

conducted experiments with a variety of settings for λ.

se
nd

in
g

ho
st

m

receive

re
ce

iv
in

g
ho

st

Network (1 time unit)

7

6

5

CPU
(λ time units)

j

Process p jsend

4
3

2

1

CPU
(λ time units)

i

Process p i

Figure 2.2: Transmission of a message in our network model.

CHAPTER 2. IMPACT OF FAILURE DETECTORS 23

Crashes are modeled as follows. If a process pi crashes at time t, no messages can pass between pi

and CPUi after t. However, the messages on CPUi and the attached queues are still sent, even after time

t. In real systems, this corresponds to a (software) crash of the application process (operating system

process), rather than to a (hardware) crash of the host or a kernel panic. We chose to model software

crashes because they are more frequent in most systems [51].

2.4.2 Modeling failure detectors

One approach to modeling a failure detector is to use a speci�c failure detection algorithm and model

all its messages. However, this approach would restrict the generality of our study, as another choice for

the algorithm would likely give di�erent results. Also, it is not justi�ed to model the failure detector in

so much detail, while other components of the system, e.g. the execution environment, are modeled in

much less detail. We built a more abstract model instead, using the notion of quality of service (QoS)

of failure detectors introduced in [31]. The authors consider the failure detector at a process q that

monitors another process p, and identify the following three primary QoS metrics (see Fig. 2.3):

trust

suspect suspect

trust

FD at q

TM

TMR

t
mistake duration

mistake recurrence time

up
p t

Figure 2.3: Quality of service metrics for failure detectors. Process q monitors process p.

Detection time TD: The time that elapses from p's crash to the time when q starts suspecting p

permanently.

Mistake recurrence time TMR: The time between two consecutive mistakes (q wrongly suspecting

p), given that p did not crash.

Mistake duration TM : The time it takes a failure detector component to correct a mistake, i.e., to

trust p again (given that p did not crash).

Not all of these metrics are equally important in each of our scenarios (see Section 2.3.2). In Scenario

normal-steady, the metrics are not relevant. The same holds for Scenario crash-steady, because we

observe the system for a su�ciently long time after all crashes, long enough to have all failure detectors

to suspect the crashed processes permanently.

CHAPTER 2. IMPACT OF FAILURE DETECTORS 24

In Scenario suspicion-steady no crash occurs, hence the latency of total order only depends on TMR

and TM . In Scenario crash-transient no wrong suspicions occur, hence TD is the relevant metric.

In [31], the QoS metrics are random variables, de�ned on a pair of processes. In our system, where n

processes monitor each other, we thus have n(n−1) failure detectors in the sense of [31], each characterized

with three random variables. In order to have an executable model for the failure detectors, we have to

de�ne (1) how these random variables depend on each other and (2) how the distribution of each random

variable can be characterized. To keep our model simple, we assume that all failure detector modules

are independent and the tuples of their random variables are identically distributed. Moreover, we do

not need to model how TMR and TM depend on TD, as the two former parameters. are only relevant in

Scenario suspicion-steady, whereas TD is only relevant in Scenario crash-transient. In our experiments,

we considered various settings for TD, as well as various settings for combinations of TMR and TM . As

for the distributions of the metrics, we took the simplest possible choices: TD is a constant, and both

TMR and TM are exponentially distributed with (di�erent) constant parameters.

It should be stressed that these modeling choices do not completely re�ect the complex reality, since

suspicions from di�erent failure detectors are probably correlated. However, our work presents a new

methodology in studying impact of failure detectors on distributed algorithms and can serve a starting

point for the future research. We are not aware of any previous work we could build on (apart from [31]

that makes similar assumptions.

2.5 Results

We now present the results for all the four scenarios. Due to lack of space, we only present the results

obtained with λ = 1 in this chapter. In current LANs, the time spent on the CPU is higher than the

time spent on the wire, and thus λ > 1. Results for such values of λ are presented in [99].

Most graphs show latency vs. throughput. For easier understanding, we set the time unit of the

network simulation model to 1 ms. The 95% con�dence interval is shown for each point of the graph.

The two algorithms were executed with 3 and 7 processes, to tolerate 1 and 3 crashes, respectively.

Normal-steady scenario (Fig. 2.4). In this scenario, the two algorithms have the same performance.

Each curve thus shows the latency of both algorithms (as we remember, the represented throughput shows

CHAPTER 2. IMPACT OF FAILURE DETECTORS 25

the number of generated U-broadcasts per second).

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800

m
in

 la
te

nc
y

[m
s]

throughput [1/s]

n = 3
n = 7

Figure 2.4: Latency vs. throughput in the normal-steady scenario.

Crash-steady scenario (Fig. 2.5). For both algorithms, the latency decreases as more processes

crash. This is due to the fact that the crashed processes do not load the network with messages.

GM algorithm has an additional feature that improves performance: the sequencer waits for fewer

acknowledgements as the group size decreases with the crashes. By comparison, the coordinator in the

FD algorithm always waits for the same number of acknowledgments. This explains why GM algorithm

shows slightly better performance at the same number of crashes.

For GM algorithm, it does not matter which process(es) crash. For FD algorithm, the crash of the

coordinator of Round 1 gives a worse performance than the crash of another process. However, the

performance penalty when the coordinator crashes is easily avoided: (1) each process tags its consensus

proposal with its own identi�er and (2) upon decision, each process re-numbers all processes so that the

process with the identi�er in the decision becomes the coordinator of Round 1 in subsequent consensus

executions. In this way, crashed processes will eventually stop being coordinators, hence the steady-state

latency is the same, no matter which process(es) we forced to crash. Moreover, the optimization incurs

at no cost. Hence, Fig. 2.5 shows the latency in runs in which non-coordinator processes crash.

It should be also emphasized that GM algorithm has higher resiliency in the long term if crashes

occur, as the group size decreases with the crashes. E.g., with n = 7 and 3 crashes, GM algorithm can

still tolerate one crash after excluding the crashed processes, whereas FD algorithm can tolerate none.

CHAPTER 2. IMPACT OF FAILURE DETECTORS 26

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800

m
in

 la
te

nc
y

[m
s]

throughput [1/s]

n = 3

FD and GM, no crash
FD, 1 crash
GM, 1 crash

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600 700 800

m
in

 la
te

nc
y

[m
s]

throughput [1/s]

n = 7

FD and GM, no crash
FD, 1 crash
GM, 1 crash

FD, 2 crashes
GM, 2 crashes
FD, 3 crashes
GM, 3 crashes

Figure 2.5: Latency vs. throughput in the crash-steady scenario. The legend lists the curves from the
top to the bottom.

Suspicion-steady scenario (Fig. 2.6, 2.7). The occurrences of wrong suspicions are quanti�ed with

the TMR and TM QoS metrics of the failure detectors. As this scenario involves crashes, we expect

the mistake duration TM to be short. In our �rst set of results (Fig. 2.6) we hence set TM to 0, and

the latency is shown as a function of TMR. We have four graphs: the left column shows results with 3

processes, the right column those with 7; the top row shows results at a low load (10 s−1) and the bottom

row at a moderate load (300 s−1); as we saw earlier in Fig. 2.4, the algorithms can take a throughput of

about 700 s−1 in the absence of suspicions.

The results show that both algorithms are sensitive to wrong suspicions. It is also evident that GM

algorithm is much more sensitive to suspicions: even at n = 3 and T = 10 s−1, it only works if TMR ≥ 50

ms, whereas t FD algorithm still works at TMR = 10 ms; the latency of the two algorithms is only equal

at TMR ≥ 5000 ms.

In the second set of results (Fig. 2.7) TMR is �xed and TM is on the x axis. We chose TMR such that

the latency of the two algorithms is close but not equal at TM = 0: (i) TMR = 1000 ms for n = 3 and

T = 10 s−1; (ii) TMR = 10000 ms for n = 7 and T = 10 s−1 and for n = 3 and T = 300 s−1; and (iii)

TMR = 100000 ms for n = 7 and T = 300 s−1.

The results show that GM and FD algorithms are sensitive to the mistake duration TM as well, and

not just to the mistake recurrence time TMR, while again GM algorithm is much more sensitive.

Crash-transient scenario (Fig. 2.8). In this scenario, we only present the latency after the crash of

the coordinator and the sequencer, respectively, as this is the case resulting in the highest transient latency

CHAPTER 2. IMPACT OF FAILURE DETECTORS 27

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

m
in

 la
te

nc
y

[m
s]

mistake recurrence time TMR [ms]

n = 3, throughput = 10 1/s

FD
GM

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

m
in

 la
te

nc
y

[m
s]

mistake recurrence time TMR [ms]

n = 7, throughput = 10 1/s

FD
GM

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

m
in

 la
te

nc
y

[m
s]

mistake recurrence time TMR [ms]

n = 3, throughput = 300 1/s

FD
GM

0

20

40

60

80

100

1 10 100 1000 10000 100000 1e+06

m
in

 la
te

nc
y

[m
s]

mistake recurrence time TMR [ms]

n = 7, throughput = 300 1/s

FD
GM

Figure 2.6: Latency vs. TMR in the suspicion-steady scenario, with TM = 0.

and is, in fact, and the most interesting comparison If another process is crashed, the GM algorithm

performs roughly the same as when a view change occurs. In contrast, FD algorithm outperforms GM

algorithm, as it performs slightly better than in the normal-steady scenario (Fig. 2.4), as fewer messages

are generated, just like in the crash-steady scenario (Fig. 2.5).

Figure 2.8 shows the latency overhead, i.e., the latency minus the detection time TD, rather than the

latency. Graphs showing the latency overhead are more illustrative; as can be seen, the latency is always

greater than the detection time TD in this scenario, as no total order can terminate until the crash of

the coordinator/sequencer is detected. The latency overhead of both algorithms is shown for n = 3 (left)

and n = 7 (right) and a variety of values for TD.

The results show that (1) both algorithms perform rather well, i.e. the latency overhead of both

algorithms is only a few times higher than the latency in the normal-steady scenario; see Fig. 2.4) and

that (2) FD algorithm outperforms GM algorithm in this scenario.

CHAPTER 2. IMPACT OF FAILURE DETECTORS 28

0

20

40

60

80

100

120

140

160

180

200

1 10 100 1000

m
in

 la
te

nc
y

[m
s]

mistake duration TM [ms]

n = 3, throughput = 10 1/s, TMR = 1000 ms

FD
GM

0

50

100

150

200

250

1 10 100 1000

m
in

 la
te

nc
y

[m
s]

mistake duration TM [ms]

n = 7, throughput = 10 1/s, TMR = 10000 ms

FD
GM

0

5

10

15

20

25

30

35

40

45

50

1 10 100 1000

m
in

 la
te

nc
y

[m
s]

mistake duration TM [ms]

n = 3, throughput = 300 1/s, TMR = 10000 ms

FD
GM

0

5

10

15

20

25

30

35

40

45

50

1 10 100 1000

m
in

 la
te

nc
y

[m
s]

mistake duration TM [ms]

n = 7, throughput = 300 1/s, TMR = 100000 ms

FD
GM

Figure 2.7: Latency vs. TM in the suspicion-steady scenario, with TMR �xed.

2.6 Discussion

We investigated two uniform total order algorithms designed for the same system model: an asynchronous

system (with a minimal extension to allow us to have live solutions to the total order problem) and

f < n/2 process crashes (the highest f that our system model allows). We found that in the absence of

crashes and suspicions, the two algorithms have the same performance. However, a long time after any

crashes, the group membership-based algorithm (GM) performs slightly better and has better resilience.

In the scenario involving wrong suspicions of correct processes and the one describing the transient

behavior after crashes, the failure-detector-based algorithm(FD) outperformed the GM-based algorithm.

The di�erence in performance is much greater when correct processes are wrongly suspected.

Combined use of failure detectors and group membership. Based on our results, we advocate a

combined use of the two approaches [29]. Failure detectors should be used to make failure handling more

responsive (in case of a crash) and more robust (tolerating wrong suspicions). A di�erent failure detector,

CHAPTER 2. IMPACT OF FAILURE DETECTORS 29

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

m
in

 la
te

nc
y

-
T

D
 [m

s]

throughput [1/s]

after crash of p1, n = 3

GM algorithm

FD algorithm

TD = 0 ms
TD = 10 ms

TD = 100 ms

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600 700

m
in

 la
te

nc
y

-
T

D
 [m

s]

throughput [1/s]

after crash of p1, n = 7

GM algorithm

FD algorithm

TD = 0 ms
TD = 10 ms

TD = 100 ms

Figure 2.8: Latency overhead vs. throughput in the crash-transient scenario.

making fewer mistakes at the expense of slower crash detection should be used in group membership

service, to provide the long-term performance and resiliency bene�ts after a crash. A combined use is

also desirable because the failure detector approach is only concerned with failure handling, whereas a

group membership service has a lot of essential features besides failure handling: processes can be taken

o�ine gracefully, new processes can join the group, and crashed processes can recover and join the group.

Also, group membership can be used to garbage-collect messages in bu�ers when a crash occurs [29].

Generality of our results. We chose total order algorithms with a centralized communication scheme

where one process coordinates the others. The algorithms are practical, since in the absence of crashes

and suspicions, they are optimized both to have small latency under low load and to work under high

load as well , because messages needed to establish delivery order are aggregated.

Methodology for performance studies. In this chapter, we proposed a methodology for perfor-

mance studies of fault-tolerant distributed algorithms. Its main characteristics are the following.

1. We de�ne:

• repeatable benchmarks, i.e., scenarios specifying the workload

• the occurrence of crashes and suspicions

• and the performance measures of interest;

2. We include various scenarios with crashes and suspicions into the benchmarks

CHAPTER 2. IMPACT OF FAILURE DETECTORS 30

3. We describe failure detectors using quality of service (QoS) metrics

The methodology allowed us to compare the two algorithms easily, as only a small number of parameters

are involved. Currently, the methodology is de�ned only for total order algorithms, but it is our intention

to extend it to analyze other fault tolerant algorithms.

Chapter 3

Wire-Speed Total Order∗

In Chapter 2, we have shown that inaccuracy of failure detectors have a signi�cant impact on Total

Order (TO) algorithms. However, it is possible to provide TO without relying on failure detectors as

it was demonstrated in [82]. The results presented by the authors show that at a low throughput the

latency of the algorithm is low, although the algorithm latency grows signi�cantly when the throughput

is increased. In this chapter, we propose a novel mechanism that allows to implement Wire-Speed TO

while keeping the latency low.

In order to achieve those results, we chose a recent technological trend that implies introducing

hardware elements into distributed systems. Implementing parts of a distributed system in hardware

immediately imposes performance requirements on its software parts. An example of a system that

combines hardware and software elements is a high-capacity Storage Area Network, combining a cluster

of PC's, Disk Controllers and interconnected switches that can bene�t from high-speed TO. The rationale

for using TO in this combined system is elaborated on in greater detail in [11, 52].

This chapter shows how message ordering can be guaranteed in a distributed setting, along with a

signi�cant increase in the number of �transactions� produced and processed. The proposed architecture

uses o�-the-shelf technology with minor software adaptations. One of the most popular approaches to

achieve TO implies using a sequencer that assigns order to all messages invoked. This scheme, however,

is limited by the capability of the sequencer to order messages, e.g., by CPU power.

The goal of the methodology presented in this chapter is to achieve a hardware-based sequencer while

∗This chapter is based on a paper by T. Anker, D.Dolev, G. Greenman and I. Shnayderman [9].

31

CHAPTER 3. WIRE-SPEED TOTAL ORDER 32

using standard o�-the-shelf network components. The speci�c architecture proposed uses two commodity

Ethernet switches. The switches are edge devices that support legacy-layer-2 features, 802.1q VLANs

and inter VLAN routing, which are connected via a Gigabit Ethernet link and a cluster of dual-homed

PCs (two NICs per PC) that are connected to both switches. One of the switches functions as the virtual

sequencer for the cluster. Since the commodity switch supports wirespeed on its Gigabit link, we can

achieve a near wirespeed tra�c of a totally ordered stream of messages.

Below, the architecture, its assumptions and the adjustments made to the PC are described. The

performance results proved e�cient, as a near wire-speed tra�c of totally ordered messages has been

achieved. The proposed architecture can be adjusted to various high-speed networks, among them In�ni-

Band [17] and Fiber-Channel [16], which currently do not support multicast with ordering guarantees.

In addition, our approach includes a highly e�cient optimistic delivery technique which can be utilized

in various environments, e.g. replicated databases, as shown in [64].

3.1 Contribution

The following contributions have been made as a result of the study:

• A new cost-e�ective approach that uses only o�-the-shelf hardware products is proposed . The

approach is not limited to CSMA/CD networks and can be applied to other networks as well.

• The approach has been implemented and evaluated within a real network.

• We managed to remove signi�cant overhead from middleware that implements active state machine

replication. It is known that replication usually provides good performance for read requests, but

incurs a signi�cant overhead on write requests [25]. We reduced the message latency and increased

the throughput of the system that can now perform ordering of more than a million messages per

second.

3.2 Model and Environment

The model used in the study is the same asynchronous message-passing model that was presented in 1.1.1.

In addition, we assume that the distributed setting is composed of a set of computing elements processes

CHAPTER 3. WIRE-SPEED TOTAL ORDER 33

are (PCs, CPU based controllers, etc.) residing on a LAN connected by switches. The computing

elements, referred to as processes, can be either transaction initiators (senders), or receivers, or both.

The processes are connected via full-duplex links through commodity switches. We assume that

the switches support IGMP snooping [67]. Support of tra�c shaping is not mandatory, but is highly

recommended. In addition, the switches can optionally support jumbo frames, IP-multicast routing and

VLANs.

The communication links are reliable, with a minimal chance of packet loss. The main source of

packet loss is a bu�er over�ow rather than a link error. In section 3.5, the fault tolerance issues are

discussed . Our assumption is that the participating group of processes is already known. Dynamic

group technology can be used to deal with changes in group membership, although this case is not

considered in this chapter.

3.3 Problem De�nition

The main goal of the study is to provide e�cient mechanism for total ordering of messages. Most

algorithms attempt to guarantee the order required by a replicated database application, namely, Uniform

Total Order (UTO) de�ned in 1.1.2. Our system guarantees not only UTO, but also FIFO for each

process.

• FIFO Order : If m1 was sent before m2 by the same process, then each process delivers m1 before

m2.

Before a UTO is agreed on, a Preliminary Order (PO) is �proposed� by each of the processes. If the

PO is identical for all correct (non-faulty) processes, it is called TO. PO and TO should be later either

con�rmed or changed by the UTO

3.4 Implementation

As noted above, our implementation of Total Ordering follows the methodology based on a sequencer-

based ordering. However, we implement this sequencer using o�-the-shelf hardware which is comprised

of two Ethernet switches and two Network Interface Cards (NICs) per node. For the simplicity of

CHAPTER 3. WIRE-SPEED TOTAL ORDER 34

presentation, we assume that all the processes are directly connected to the two switches. However,

our algorithm can work in an arbitrary network topology, as long as the topology maintains a simple

constraint, namely, that all the paths between the set of NICs for transmission (TX) and the set of NICs

for reception (RX) share (intersect in) at least one link (see Section 3.7 for scalability discussion).

We assume that all the network components preserve FIFO order of messages. This implies that,

once a packet gets queued in some device, it will be transmitted according to its FIFO order in the

queue. It is noteworthy that if QoS is not enabled on a switch, the switch technology ensures that all the

frames are received on a network interface of the switch and egress via the same arbitrary outgoing link,

are transmitted in the order they had arrived; i.e., they preserve the FIFO property. We veri�ed this

assumption and found that most switches indeed comply with it, the reason being that the performance

of TCP depends on it. Similarly to TCP, our algorithm makes use of this feature in order to improve

performance, even though this feature is not required for the algorithm's correctness.

In our implementation, multicast is used in order to e�ciently send messages to the processes group.

Our goal is to have all these messages received in the same order by the set of processes that desire

to get them (the receivers group). To achieve this, we dedicate a single link between the two switches

for the multicast tra�c �ows. Figure 3.1 shows the general network con�guration of both the network

(the switches) and the attached nodes. The methodology of the network ensures that all the processes

transmit frames via a single NIC (TX NIC connected to the �left� switch in the �gure) and receive

multicast tra�c only via the other NIC (RX NIC connected to the �right� switch in the �gure). This

ensures that received multicast tra�c traverses the link between the switches. Since all multicast tra�c

traverses a single link, all the tra�c is transmitted to the processes in the same order via the second

switch. As the switches and the links preserve the FIFO order, this in turn implies that all the messages

are received in the same order by all the processes.

In a general network setting, there is a chance, albeit a small one, that a message omission may occur

due to an error on the link or a bu�er over�ow (e.g. in the NIC, OS or in the switch). In a collision-free

environment (like full-duplex switched environment), a link error is very rare. In addition, bu�er over�ow

can be controlled using a �ow control mechanism. Thus, the hardware mechanism enhanced with the

proposed �ow control (described in the next section), ensures, with high probability, the same order for

all received messages. Ways to handle message omission when faults occur are discussed in Section 3.5.

CHAPTER 3. WIRE-SPEED TOTAL ORDER 35

Data

Rx
 Data

Switch A

Host 1

Host 5

Host 2

Host 3

Host 4

Rx
 ACKs

R
x

A
C
K
s

T
x

D
a
t
a

ACKs

Switch B

Tx
ACKs

Receivers Group

Senders Group

Figure 3.1: Architecture

3.4.1 Providing UTO

The preliminary ordering of the hardware con�guration is not enough to ensure UTO because messages

may get lost or processes may fail. To address this issue, our protocol uses a simple positive acknowl-

edgment (ACK) scheme (similar to the TCP/IP protocol) to ensure that the PO is identical at all the

receivers. Each receiver process U-delivers (see Section 3.3) a message to the application only after it

has collected ACKs from each receiver process in the system. In order to reduce the number of circulat-

ing auxiliary control messages within the system, the ACKs are aggregated according to a con�gurable

threshold parameter. If the system settings are such that each sender node is also a receiver, the ACK

messages can be piggybacked on regular data messages.

For the sake of reliability, the sender process needs to hold messages for some period of time. This

implies that sender processes need to collect ACK messages, even though they do not deliver messages to

the application. The ACK messages are used by a �ow control mechanism (termed as local �ow control

in [72]) in order to maintain the transmission window. Each sender process is allowed to send the next

data message only if the number of messages which were originated locally and are still unacknowledged

by all the receiver processes is less than a de�ned threshold value (the transmission window size). Since

the ACKs are aggregated, the number of messages that could be sent each time may vary.

In order to increase the performance when most of the application messages are signi�cantly smaller

In [11] more e�cient schemes to collect ACKs are considered

CHAPTER 3. WIRE-SPEED TOTAL ORDER 36

than network Maximum Transmission Unit (MTU), a variation of a Nagle algorithm [75] was used as

described in section 3.4.2.1. In order to increase the performance for small messages, a variation of a

Nagle algorithm [75] is used as described in Section 3.4.2.1. Since the main source of message losses is the

bu�er over�ow, careful tuning of the �ow control mechanism combined with ACKs aggregation can reduce

the risk of losing messages. For our particular con�gurations, we identi�ed the appropriate combination

of the window size and the number of aggregated ACKs to achieve maximum throughput. The speci�c

implementation of the �ow control mechanism presented in this chapter allows overall performance to

converge with the receiving limit of the PCI bus.

3.4.2 Optimizations for Achieving High Performance

Various applications may be characterized by di�erent message sizes and packet generation rates. For

example, one application may be in a SAN environment in which it is reasonable to assume that the tra�c

can be characterized by a very large number of small messages (where the messages carry meta-data,

i.e. a lock request). Another application can be a �Computer Supported Cooperative Work� (CSCW)

CAD/CAM, in which data messages may be large. In view of these modern applications, the need to

achieve high performance is obvious. Below, a description is presented of the mechanisms and techniques

we have implemented and measured in order to reach that goal.

3.4.2.1 Packet Aggregation Algorithm

It was stated by [49] that at high loads, message packing is the most in�uential factor for total ordering

protocols. We use an approach similar to that in the Nagle algorithm [75], in order to cope with a

large number of small packets. Only the messages whose transmission is deferred by �ow control are

aggregated in bu�ers. The most reasonable size of each bu�er is the size of an MTU. When the �ow

control mechanism shifts the sliding window by n messages, up to n �large� messages will be sent.

3.4.2.2 Jumbo frames

The standard frame size in Gigabit Ethernet is ∼1512 bytes. The size of the jumbo frame is ∼9000

bytes. Numerous studies show MTU size has an impact on the overall performance, such as [30], which

reports increased performance when jumbo frames are exploited. The main reasons for the performance

CHAPTER 3. WIRE-SPEED TOTAL ORDER 37

improvement include:

• lower number of interrupts (when moving the same amount of data) and

• less meta-data overhead (headers).

In order to fully bene�t from the use of jumbo frames, all components of the system should be con�gured

to support it; otherwise, fragmentation occurs. Since we control all the components in the proposed

system, we con�gured all the network components to prevent fragmentation of the messages and thus

avoided the problem . Performance results prove that jumbo frames allow to obtain better throughput.

For example, in the con�guration of two senders and three receivers, we achieved a maximum throughput

of 722Mb/s.

3.4.3 Multicast Implementation Issues

As mentioned above, every process is dual-homed, i.e. is connected to the network with two NICs. In the

IP multicast architecture, a packet accepted on some interface must be received on the same interface

from which the process sends unicast tra�c towards the source of the multicast packet. This condition

is called the Reverse-Path-Forwarding (RPF) test, which is performed in order to detect and overcome

transient multicast routing loops in the Internet. However, this poses a problem for our network settings,

since we intend to receive the multicast tra�c from the RX NIC while we are transmitting it from the

TX NIC. There are several options for overcoming this di�culty, including:

• disabling the RPF test on the particular process;

• ensuring that the source address of the multicast packets has the same subnet portion as the NIC

on which it is received (i.e., the RX NIC in our case).

We used the second approach and modi�ed the RX �ow in the NIC driver, so that it spoofs the

source IP address of the packet. Another issue related to the usage of IP multicast in our settings is that

self-delivery of multicast packet is usually done via internal loopback. Packets that are sent by the local

host and are supposed to be received by it, are usually delivered immediately by the operating system.

We disabled this feature, so that ALL delivered packets are received via the RX NIC and thus all the

packets pass through the same delivery process which ensures that TO is maintained.

CHAPTER 3. WIRE-SPEED TOTAL ORDER 38

Figure 3.2: Network with 3 switches

3.5 Fault-Tolerance

Faults may occur at various levels of packet handling and can be caused by di�erent events: a switch

failure, a physical link disconnection, a failure of a process and a crash of a process running the process.

All these failures can be identi�ed by failure detectors (FD). In Chapter 2, it was shown that inaccuracy

of FD can lead to signi�cant drop in the performance.

An interesting approach that does not rely on FD was presented by Pedone et al. [82]. The authors

de�ne a weak ordering oracle as an oracle that orders messages that are broadcast, but is allowed to make

mistakes (i.e., the broadcast messages might be lost or delivered out of order). The paper shows that TO

broadcast can be achieved using a weak ordering oracle. The approach is based on the algorithm proposed

in [20]. In [82], another algorithm is also proposed that solves TO broadcast in two communication steps,

assuming f < n
3 . This algorithm is based on the randomized consensus algorithm proposed in [84]. It

should be noted that this solution requires collecting ACKs only from n − f processes. Our virtual

sequencer may serve as the weak ordering oracle for the algorithm proposed by Pedone et al. [82]. This

approach allows our architecture to tolerate losses. It is also noteworthy that in our implementation,

losses that have occurred before the message reached switch B (recall 3.1), can be easily overcome by

retransmission of the message by its originator. The impact of such loss on the system performance of

such loss is not signi�cant, as is showed at [52].

In our architecture one can easily recognize a single point of failure: if one of the switches or the

CHAPTER 3. WIRE-SPEED TOTAL ORDER 39

Figure 3.3: State after failure of link between switch A and switch B

link between them fails, the system stops. In order to solve the problem, we propose to increase the

number of switches, to connect them in a mesh network and to enable each pair of switches to serve as

the virtual sequencer. The spanning-tree protocol (STP) [58] is used to prevent loops. A dedicated IP

multicast group is associated with each virtual sequencer. This solution allows building a system with

f+2 switches, where f is the maximum number of tolerated switch/link failures. Figure 3.2 demonstrates

a network that is able to tolerate failure of a switch or of a link between switches. Figure 3.3 shows the

state of the network, after a failure of the link between switches A and B.

3.6 Performance

This section presents the results of the experiments performed to evaluate the above-described architec-

ture. The following con�guration was used:

1. Five end hosts: Pentium-III/550MHz, with 256 Mb of RAM and 32 bit 33 MHz PCI bus. Each

machine was equipped also with two Intel R©Pro/1000MT Gigabit Desktop Network Adapters. The

machines ran Debian GNU/Linux 2.4.25.

2. Switches: Two Dell PowerConnect 6024 switches, populated with Gigabit Ethernet interfaces.

These switches are �store and forward� switches (i.e., a packet is transmitted on an egress port only

after it is fully received).

CHAPTER 3. WIRE-SPEED TOTAL ORDER 40

The experiments were run on an isolated cluster of machines. For each sample point on the graphs

below and for each value presented in the tables, the corresponding experiment was repeated over 40

times with about 1 million messages at each repetition. We present the average values with con�dence

intervals of 95%. Unless otherwise was speci�ed, the packet size in the experiments was about 1500

bytes (we also experimented with small packets and with jumbo frames). The throughput was computed

at the receiver side as packet size×average number of delivered packets
test time . In order to simulate an application,

we generated a number of messages at every con�gurable time interval. However, in most Operating

Systems, and in particular in Linux 2.4, the accuracy of the timing system calls is not su�cient to induce

the maximal load on the system. We therefore implemented a tra�c generation scheme that sends as

many messages as possible after each received ACK. Since the ACKs were aggregated, the size of the

opened �ow control window varied each time.

3.6.1 Theoretical bounds

It is important to observe that, regardless of the algorithm used to achieve the TO of messages, there

are other system factors that limit the overall ordering performance. One of the bottlenecks that we

encountered resulted from the PCI bus performance. In [104] it is shown that the throughput achieved

by PCI bus in the direction from the memory to the NIC is about 892Mb/s for packets of 1512 bytes

size and about 1 Gb/s for jumbo frames. However, a serious downfall in the PCI bus performance

was detected in the opposite direction, when transferring the data from the NIC to the memory. The

throughput of 665Mb/s only for packets of 1512 bytes size and 923Mb/s for jumbo frames was achieved.

Thus, the throughput allowed by PCI bus imposed an upper bound on the performance of a receiver

process in our experiments. There are various studies on PCI bus performance, e.g. [73], which suggest

several benchmarks and techniques for tuning. It will be shown later in the chapter that our solution

approximates the theoretical and experimental upper bounds of PCI bus. In future work, we plan to

evaluate our architecture over PCI Express whose throughput is higher and thus is to yield signi�cantly

better performance.

We �rst discuss the best throughput results obtained for each con�guration. The latency obtained

per result is presented as well. Two types of con�gurations were used: those where all the processes were

both senders and receivers (all-to-all con�gurations), and those in which the sets of senders and receivers

CHAPTER 3. WIRE-SPEED TOTAL ORDER 41

processes Throughput PO Latency UTO Latency
Number Mb/s ms ms

3 310.5 (0.08) 4.2 (0.03) 6.5 (0.03)
4 344.4 (0.04) 4.4 (0.02) 6.8 (0.02)
5 362.5 (0.09) 4.1 (0.02) 6.7 (0.02)

Table 3.1: Throughput and Latency for all-to-all con�guration

were disjoint. It is important to note that for some con�gurations, such as the all-to-all con�guration and

those with jumbo-frames, we utilized the tra�c shaping feature of the switching device, namely the one

that is connected to the TX NICs. This ensured that no loss caused by the PCI bus limitations occurred

on a node. The value serving to limit the tra�c was selected by measuring the maximum achievable

throughput for each setting. The main bene�t of using tra�c shaping is the limit it imposes on tra�c

bursts that were found to be the major cause of packet drops in our experiments.

3.6.1.1 All-to-all Con�gurations

Results for all-to-all con�gurations and con�gurations with dedicated senders are discussed separately,

since when a process serves as both a sender and a receiver, the CPU and PCI bus utilization patterns

di�er, and the node is overloaded.

Table 3.1 presents throughput and latency measurements for all-to-all con�gurations, along with

the corresponding con�dence intervals (shown in parentheses). The processes generate tra�c at the

maximum rate bound by the �ow control mechanism. Two di�erent latency values are presented: PO

Latency and UTO Latency. PO Latency is de�ned as the time that elapses between transmission of

message by a sender and its delivery by the network back to the sender. UTO Latency is de�ned as the

time that elapsed between a message transmission by a sender and the time the sender receives ACKs

for this message from every receiver.

The number of the processes that participated in this experiment increases from 3 to 5. As presented

in Table 3.1, the achieved throughput increases with the number of participating processes. This is

accounted for by the PCI bus behavior (See Section 3.6.1). Since each node both sends and receives

data, the load on the PCI is high, and the limitation is the boundary on the total throughput that can

go through the PCI bus. As the number of processes grows, the amount of data each individual process

CHAPTER 3. WIRE-SPEED TOTAL ORDER 42

Receivers
Senders 1 2 3 4

1 512.7 (0.47) 493.0 (0.17) 477.0 (0.34) 467.1 (0.40)
2 512.5 (0.27) 491.7 (0.67) 475.7 (0.33)
3 510.0 (0.55) 489.6 (0.41)
4 509.2 (0.30)

Table 3.2: Throughput (Mb/s) for di�erent con�gurations
Receivers

Senders 1 2 3 4
1 2.3 (0.003) 3.1 (0.035) 3.2 (0.045) 3.1 (0.012)
2 2.5 (0.002) 3.1 (0.025) 3.4 (0.040)
3 3.2 (0.004) 3.6 (0.041)
4 4.9 (0.003)

Table 3.3: UTO Latency (ms) for di�erent con�gurations

can send decreases. When a process sends less data, the PCI bus enables it to receive more data. The

nonlinearity of the increase in throughput in this experiment can be attributed to the above mentioned

property of the PCI bus, where the throughput of transferring data from memory to NIC is higher than

in the opposite direction.

3.6.1.2 Disjoint Groups of Senders and Receivers

Table 3.2 presents the performance results of throughput measurements for disjoint sets of processes.

We used from two to �ve processes for various combinations of groups of senders and receivers. The

maximum throughput of ∼512.7Mb/s was achieved. In the trivial con�guration of a single sender and a

single receiver, the result is close to the rate achieved by TCP and UDP benchmarks in a point-to-point

con�guration, where the throughput reaches 475Mb/s and 505Mb/s, respectively. The lowest result was

registered for a single sender and four receivers, the achieved throughput of 467Mb/s not falling far from

the best throughput.

For a �xed number of receivers, varying the number of senders yields nearly the same throughput

results. For a �xed number of senders, increasing the number of receivers decreases the throughput. The

reason is that a sender has to collect a larger number of ACKs generated by a larger number of receivers.

It is noteworthy that the �ow control mechanism opens the transmission window only after a locally

CHAPTER 3. WIRE-SPEED TOTAL ORDER 43

originated message is acknowledged by all the receiver processes. Possible solutions to this problem are

discussed in Section 3.7.

Table 3.3 presents the results of UTO latency measurements at the receiver's side. As can be seen,

in case of a �xed number of senders, increasing the number of receivers increases the latency. The

explanation is similar to that for the throughput measurement experiments, and it is the need to collect

ACKs from all the receivers. Increasing the number of senders while the number of receivers is �xed

causes an increase in the UTO Latency. Our hypothesis is that this happens due to an increase in the

queues both at the switches and at the hosts.

As was mentioned above, in case a process either sends or receives packets, the utilization of the PCI

bus and other system components is di�erent from the case when a process acts as both a sender and a

receiver. For this reason, the results presented in this section cannot be compared with those described

above.

3.6.2 Tradeo�s of Latency vs. Throughput

In this section, we discuss the impact of an increased load on latency. In order to study the tradeo�

of Latency vs. Throughput, a tra�c generation scheme di�erent from that in the previous experiments

was used. In contrast with the previous scheme when the application sent as much as the �ow control

allowed, this scheme was implemented by a benchmark application that generated a con�gurable amount

of data.

3.6.2.1 All-to-all Con�guration

In this section, all-to-all con�guration is considered. Figure 3.4 shows the latencies for the 5-process

con�guration. Obviously, the UTO latency is always larger than the PO latency. One can see an

increase in the latencies when the throughput achieves the 50Mb/s value, i.e. a point from which small

transient packet backlogs were created, and then a slight increase until the throughput approaches about

250Mb/s. After this point, the latencies start increasing. The PO latency reaches the value of about

1ms and UTO of about 3ms for throughput of about 330Mb/s.

We also measured the Application UTO Latency, which is the time interval from the point when the

application sent a message until it can be �UTO delivered�. One can see that when throughput increases,

CHAPTER 3. WIRE-SPEED TOTAL ORDER 44

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8

9

10

Throughput (Mb/s)

La
te

nc
y

(m
s)

PO Latency
UTO Latency
Application UTO Latency

Figure 3.4: Latency vs. Throughput (all-to-all con�guration)

the Application UTO Latency increases too. This happens because the Linux 2.4 kernel allows events to

be scheduled with a minimal granularity of 10ms . Thus, in order to generate a considerable load, the

benchmark application has to generate an excess number of packets every 10ms. Packets that are not

allowed to be sent by the �ow control mechanism are stored in a local bu�er data structure. When ACKs

arrive, the �ow control mechanism enables sending some more packets previously stored for transmission.

Packets that cannot be immediately sent increase the Application UTO Latency.

3.6.2.2 Large Packet Sizes

Figure 3.5 shows how increasing the application packet size, along with increasing the MTU size, a�ects

the Application UTO Latency. In this experiment, we used disjoint groups of two senders and three

receivers. We compared results achieved for jumbo frames with those obtained for regular Ethernet

frames of MTU size. As expected, in case of jumbo frames, a larger throughput can be achieved, mainly

due to the signi�cantly reduced amount of PCI transactions.

When throughput increases, the Application UTO Latency increases, too, the reasons being the same

as for the �all-to-all con�guration�. One can see that at lower throughput values, the jumbo frames show

higher latency. This can be attributed to the fact that when the system is relatively free, the high

transmission latency of jumbo frames dominates; in other words, the time for putting a jumbo frame

The latest versions of Linux support 1ms granularity

CHAPTER 3. WIRE-SPEED TOTAL ORDER 45

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

10

Throughput (Mb/s)

A
pp

lic
at

io
n

U
T

O
 L

at
en

cy
 (

m
s)

MTU=1512
MTU=9000 (Jumbo Frames)

Figure 3.5: Latency vs. Throughput for di�erent MTU sizes

on the wire is larger. As the load on the system increases, the overhead of the PCI bus and packet

processing becomes the dominating factor, and using jumbo frames helps to reduce this overhead and

thus to achieve the UTO faster.

3.6.2.3 Packet aggregation

The experiment evaluated the e�ect of using the packet aggregation algorithm described in 3.4.2.1.

Figure 3.6 shows the performance of the system with small packets, the payload size being about 64

bytes. Two accumulating packet sizes were used, Ethernet MTU of 1500B and jumbo frame size of

9000B. In addition, the same tests were conducted without packet aggregation. Since the throughput

without packet aggregation is considerably smaller, in the same �gure the area corresponding to the

throughput values between 0 and 40Mb/s is shown. One can see that the maximum throughput without

packet aggregation is about 50Mb/s. On the other hand, using an accumulating size of 1500B increased

the maximum throughput up to 400Mb/s. With accumulating size of jumbo frames, the throughput

climbed as high as 630Mb/s, which is about one million small packets per second.

Comparing corresponding curves in Figures 3.5 and 3.6, one can see that packet aggregating causes

a higher latency and a lower maximum achievable throughput. It could be explained by the amount of

CPU resources spent on aggregating the messages.

CHAPTER 3. WIRE-SPEED TOTAL ORDER 46

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

7

8

9

10

Throughput (Mb/s)

A
pp

lic
at

io
n

U
T

O
 L

at
en

cy
 (

m
s)

Without message packing
MTU = 1512
MTU = 9000

0 20 40

0.5

1

1.5

2

2.5

Figure 3.6: Packet aggregation (the low throughput area is extended)

3.6.3 Comparisons with previous works

There are only few papers that evaluate performance of TO algorithms over real networks. The rapid

advancement of networking technology in recent years often makes the comparison irrelevant. For exam-

ple, [49] presented performance evaluations of several TO algorithms. However, the measurements were

carried out on a shared 10 Mb/s Ethernet network, which is 100 times slower than Gigabit Ethernet

which is widely deployed today.

In the experiment described below, we compared the performance of our system with results of an

algorithm based on weak ordering oracles ([82], described in Section 3.5), and of an algorithm based on

failure detectors [27]. When carrying out the measurements for the comparative experiment, we tried to

provide similar settings. All links were con�gured to 100Mb/s rate, the message size was 100 bytes, no

message packing was used and the aggregation of ACKs limit was set to 3. The experiments in [82] were

performed at 4 processes for weak ordering oracles and at 3 processes for the algorithm based on failure

detectors. In our experiments, we used 4 processes. Since the main parameters of the experiments under

comparison coincide, while there might be di�erences in equipment and implementation environments,

it is likely that the approximation is su�cient.

As the comparison presented in [82] shows, the maximum throughput for both algorithms was 250

messages per second. The latency of the weak ordering oracle algorithm increased from about 2.5s for

CHAPTER 3. WIRE-SPEED TOTAL ORDER 47

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Throughput (messages/s)

La
te

nc
y

(m
s)

PTO
UTO

Figure 3.7: Number of ordered messages/s in 100Mb/s network.

the throughput of 50 messages/sec up to about 10ms for the throughput of 250 messages/sec. The per-

formance of the algorithm based on failure detectors depends largely upon the timeout set for heartbeat

messages. For large timeout of about 100ms, the latency was within the range of 1.5-2ms, and for small

timeout (2ms) the latency was within the range of 8-10ms.

Figure 3.7 presents the results of our experiments in 100Mb/s network and shows that the throughput

of about 1000 messages/sec was achieved. The throughput of 300 messages/sec induces the PO latency

of about 0.7ms, and the UTO latency was within the range of 1.7-2.2ms. The 95%-con�dence interval

was also computed and found practically negligible, as one can see in the graphs. It is important to note

that while for low throughput our results do not di�er signi�cantly from those achieved by Pedone et

al. [82], for a high throughput we reach lower latency. The reason is that in our system, the order is not

disrupted even if a message m is lost, as losses happen mostly in switch A (see Figure 3.1). So, if m is

missed by a process, there is a high probability that m is lost by all the processes, and PO order remains

the same among all the processes. When m's sender discovers that m is lost, it retransmits m promptly.

Another question is whether the propagation time of a message in our two-switch topology is much

higher than that in a one-switch topology. Theoretically, the propagation time in a Gigabit network

over a single link is 1500∗8
109 =0.012ms, the speed of signal transmission over the cable is negligible, and

the maximum processing time in the switch that we used is not more than 0.021ms. We performed two

experimental measurements of propagation time. In the �rst experiment, the ping utility was used to

CHAPTER 3. WIRE-SPEED TOTAL ORDER 48

measure the latency of 1500-size packet, and 0.05ms propagation time was obtained in both topologies.

In the second experiment, we used application level ping based on UDP protocol, as opposed to the

original ping utility which works on kernel level. In the application level ping, we registered 0.12ms

latency in both topologies. The results show that packet processing time (∼0.1ms) is much higher

than message propagation time (∼0.012ms). We can conclude, therefore, that the two-switch topology,

without signi�cantly increasing the latency, allows to predict message order with much higher probability!

3.7 Scalability

The performance evaluation presented above was carried out only for up to �ve processes. This evaluation

proves that the architecture can be useful in small storage systems. The scalability issues addressed in

this section show that the architecture is also applicable for systems consisting of dozens of processes.

The measurements showed that increasing the number of receivers decreases the throughput. The

reason is that a sender has to collect a larger number of ACKs generated by a larger number of receivers.

There are a few ways to make a system scalable in number of receivers. In [82], an algorithm was

proposed that reduces the number of ACKs required to deliver a message. This approach can be further

improved by using recently introduced NICs [43] which have an embedded CPU that enables to o�oad

some of the tasks currently running on the host CPU. Our system can o�oad to those NICs the tasks

of sending, collecting and bookkeeping ACK messages.

Our measurements showed only a small degradation of throughput (about 0.5% per sender) when

the number of senders increases. Implementing an e�cient �ow control for big number of senders is a

more serious challenge. In future work, we are going to explore hardware �ow control [60]. The main

idea is to slow down switch B (see Figure 3.1) when the number of free bu�ers in a receiver (R) is below

a threshold. As a result, switch B starts accumulating messages. In order to prevent switch B from

dropping message, R also requires that the senders slowdown as well.

The number of ports in the switches is an important parameter that may limit the system's scalability.

The simplest way to expand the two-switch network is to use trees of switches. Figure 3.8 shows an

example of such expanded topology. Each sender is connected to an intermediate switch which is in turn

connected to switch A. Also, each receiver is connected to switch B via an intermediate switch. If a

process belongs to both groups, i.e. the senders and the receivers, it is connected to the two intermediate

CHAPTER 3. WIRE-SPEED TOTAL ORDER 49

ACKs

R

 x

A

 C

 K

 s

D

a
t

a

Data

ACKs

D
a
t
a

Data

Data
Data

R

x

A

C

K

s

ACKs
 ACKs

Receive

Switch

Tree

Send

Switch

Tree

...
 ...

Senders Group
 Receivers Group

Host
 Host
 Host

Switch A
 Switch B

D
a
t
a

Figure 3.8: Expanded topology

switches which are connected to switches A and B, respectively. In this topology, the link between

switches A and B continues to serve as the virtual sequencer. The path traversed by each message is

longer, but, as shown above, the propagation time is very short.

Another important issue related to the scalability problem is the ability to support multiple groups.

The most naive solution is to use only one group and to implement multiple group support on the

application level. However, this solution is not always the optimum one, as we force each process to

receive all the tra�c. In future work, we intend to investigate another approach in which an IP Multicast

address is associated with each group. Since modern switches support IGMP, a message will be delivered

only to hosts that are members of this group. Considering possible bottlenecks in this solution, we see

that the link from switch B to a host is not a bottleneck, as the host may stay away from participating

in all the groups.

If the link between the switches is near saturation, one can use the new 10 Gb/s standard which is

supposed to be soon available, for uplinks connecting the two switches. Another option that has already

been implemented to increase throughput between two network components is trunk [59]. We assume

that switches can be con�gured to associate a link in trunk with a destination IP address. In addition, it

is possible to support more groups by using more switches connected in the way described in Section 3.5.

It is noteworthy that all total ordering protocols are not able to order messages at a rate that is close

to the link bandwidth. Thus, if the link between the switches is used only for ordering, it will not be

saturated, and will not turn into a bottleneck but rather will remain an e�cient ordering tool.

CHAPTER 3. WIRE-SPEED TOTAL ORDER 50

Part II

Toward E�cient Total Order in WAN

51

52

Chapter 4

TCP-Friendly Many-to-Many

End-to-End Congestion Control∗

Congestion control is a fundamental building block that enables WAN-deployable applications to function

in the Internet environment. Many applications of this kind involve a group of processes that are to

collaborate by communicating via multicast. There are several middleware implementations that o�er

group communication services with a variety of di�erent semantics ([4, 5, 34, 55, 74, 100]). In the current

chapter, we address the issue of TCP-friendly congestion control mechanism for group communication

middleware. The importance of having a TCP-friendly mechanism stems from the necessity for an

application to co-exist in the Internet with a variety of concurrent TCP sessions generated by other

applications.

The speci�c group communication middleware that we focus on is Xpand see 4.1.1 and [8] Wide Area

Network (WAN) Group Communication System (GCS). However, our results are applicable, with some

adaptation, to other middleware systems as well. The main objective of the Xpand design is to address

the needs of a wide spectrum of collaborative WAN applications without compromising the semantics

of traditional GCSs, namely, group abstraction, group membership monitoring and reliable multicast.

The services we exploited in order to add congestion control to Xpand were group membership and the

ability to detect message losses which are inherent to any reliable multicast scheme.

∗This chapter is based on a paper by T. Anker, D.Dolev, I. Shnayderman and I. Sukhov [15].

53

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 54

Xpand and similar group communication systems typically use UDP for all their communication

needs, which allows them to bene�t from the native IP multicast infrastructure for message delivery.

For this reason, Xpand lacks the TCP built-in congestion and �ow control mechanisms, which may

lead to unfair bandwidth share, unstable transmission rate or even severe network congestion in WAN

environment. Moreover, using TCP congestion control mechanism over UDP would neither scale nor

provide the optimal results in a GCS.

In order to overcome these drawbacks in our study, a congestion control mechanism was added

to Xpand, based on the �TCP-friendly rate control protocol (TFRC)� [47], with modi�cations that

extend it to a many-to-many framework and to general message tra�c, without focusing on multi-

media applications only. TFRC is an equation-based unicast congestion control mechanism in which

the equation derived from a model of TCP long-term throughput ([78]) is used to limit the sender's

transmission rate. We have extended the TFRC equation-based approach from unicast to many-to-many

message exchange, where every member can be either a sender, or a receiver, or both.

A recent paper ([107]) that addresses a similar problem focuses on directly expanding TFRC to deal

with multicast. The main di�erence between the two mechanisms is in the method used to determine

the slowest receiver in a scalable manner. TFMCC uses the original randomized feedback cancelation

scheme, while in Xpand we take the advantage of the built-in hierarchy, thus using a more natural

approach to achieve scalability in multi-cluster based system. This approach enables building a simpler

feedback mechanism without feedback separation, as well as a simpler round-trip time estimation.

In Xpand, the feedback is aggregated based on the built-in hierarchical structure, and a sender is

explicitly provided with an acceptable transmission rate from each remote receiving LAN.

Xpand was implemented and tested over the WAN environment described in [105]. Xpand not only

utilizes a congestion control mechanism, but also contains a built-in �ow control mechanism that follows

the standard techniques described in the literature ([2, 45, 46]). The relationships between Xpand's

components and its environment are shown in Fig. 4.1. The congestion control mechanism is integrated

within Xpand's core module.

The measurements performed in this study validated the implemented congestion control mechanism.

The results showed that our extended TFRC model is applicable to WAN, as well as to many-to-many

communication patterns. The resulting behavior is TCP-friendly, and fairness is achieved among multiple

senders sharing resources.

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 55

Network & Transport

(UDP, TCP, IPmcast)

Core

Session

Service

Membership

Services

Xpand

Application

Delegate
Regular Member

Network Event

Notification

Service

Xpand

Session

Service

Membership

Services

Core

Network Event

Notification

Service

Network & Transport

(UDP, TCP, IPmcast)

Figure 4.1: Xpand's layer structure

4.1 Environment

4.1.1 Xpand

The Xpand group communication system is a middleware for distributed many-to-many applications and

is fully described in [8]. Here we present only the essence of the system and the relevant assumptions.

Processes participating in Xpand are grouped into clusters, so that all members of each cluster belong to

the same LAN. The clusters are spread over WAN. We distinguish between two types of processes: regular

and delegate. Regular processes run the user's application. In each LAN, the delegate is a designated

daemon that serves as a representative of its LAN to all the other Xpand clusters. Although a LAN

delegate is replicated for fault-tolerance purposes, only a single delegate is active at each particular

moment. This delegate is called an active delegate. All the other LAN delegates, called backup delegates,

serve as warm backups of the active delegate. In the context of this thesis, we refer only to a single

delegate per LAN and ignore the issue of replacing a failed delegate. The relationship between Xpand's

components and its environment is shown in Fig. 4.1.

4.1.1.1 Application Layer Multicast

Xpand's reliable multicast service relies on the availability of a many-to-many communication substrate.

The network service that supports many-to-many communication in IP networks is IP multicast. There

is a limitation on using IP multicast, since it is only partially deployed in various networks, which creates

isolated regions supporting IP multicast.

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 56

RON33

RON45

RON35 RON2

RON0

Zikit1

Ottawa

Chicago

Berkeley Salt Lake City

Cambridge(MA)

Jerusalem

Figure 4.2: ALM Layout

In order to overcome this di�culty and to �bridge� regions supporting IP multicast, Xpand introduces

a layer called Application Layer Multicast (ALM), which is used only as an interim solution. This layer

constructs a message distribution tree incorporating delegate nodes, each node being chosen from a region

that supports a native multicast. The tree construction is performed automatically and is beyond the

scope of this study (see Chapter 5 and [8]).

4.1.2 RON Testbed Environment

In our WAN experiments, we used the Netbed's RON ([105]) wide-area nodes. The tests involved 6 sites,

5 located in North America and one in Jerusalem, Israel. The nodes are Celeron/733 or PentiumIII/1.1G

machines running FreeBSD 4.7 / Linux 2.4 operating systems, connected via commodity Internet and

Internet2. The links have diverse bandwidths, delays and packet loss rates (see Section 4.3.4). Since

there is no IP multicast among RON machines, Xpand builds an ALM network over the nodes. The

ALM tree created for our speci�c set of RON nodes is described in Fig. 4.2.

4.2 Xpand Flow/Congestion Control Mechanism Design

The design of Xpand congestion/�ow control mechanisms takes advantage of Xpand's hierarchical struc-

ture. In Xpand, both senders and receivers from each LAN are represented by the LAN's delegate. We

designed many-to-many single-rate mechanism that is TCP-friendly, in which the delegates of the senders

cooperate with the delegates of the receivers in order to adjust the message �ow to be TCP-friendly.

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 57

To introduce the congestion control mechanism into Xpand, some parameters characterizing the

network are measured by the delegates and used by the senders in order to adjust their transmission

rate in accordance with the network conditions. In [54], a message �ow is de�ned to be TCP-friendly

if under the same conditions its sending rate is within a factor of two of the sending rate of TCP �ow.

To achieve that, Xpand must be able to estimate the appropriate TCP rate. To reach that goal, we use

Eq. 4.1 from [78] characterizing TCP steady state throughput as a function of packet loss rate, estimated

round trip time and TCP retransmission timeout:

TT CP ≈
s

RTT
q

2bp
3 + RTO min

„
1,

q
27bp

8

«
p (1 + 32p2)

, (4.1)

where T is the desired transmission rate in bits/sec; s is the average packet size in bits; RTT is

the estimated round trip time in seconds; p ∈ [0, 1] is the loss event rate; RTO = 4RTT is the TCP

retransmission timeout value in seconds recommended in [54], and b = 2 is the number of packets

acknowledged by a single TCP acknowledgement.

In order to use this equation, we designed mechanisms for RTT estimation and for loss rate mea-

surement. These parameters are to be continuously calculated and translated into an acceptable rate for

each receiving delegate.

While TCP is unicast, our model calls for many sending processes and several sending delegates.

The congestion control mechanism is used to allocate an aggregate transmission rate for each LAN and,

within it, to estimate each local sender application transmission rate. Afterwards, each sending delegate

is to fairly distribute the aggregate rate among its local senders.

4.2.1 Design Decisions

Xpand design distributes the load of calculating the congestion parameters between senders' delegate

and receivers' delegates. Each calculation is performed at the optimum location, as detailed below.

RTT Estimation: performed by the sender's delegate for each <remote delegate, group> pair. The

RTT estimation does not require synchronized clocks.

Loss Rate Estimation: Since in most cases there are many more receivers than senders, it is logical

to distribute the loss rate calculations among the receivers. The hierarchical structure requires that the

calculation be done at the delegates. It appears reasonable to calculate the loss rate at the receivers'

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 58

delegates which have more accurate information on message losses. The loss rate is estimated for a

<receiver delegate, sender delegate, group> tuple.

Loss rate calculations require RTT estimation, which is performed by senders' delegate and passed to

receivers' delegates. As a result, a receiver's delegate gets RTT calculated half RTT earlier, which may

slow down the responsiveness of the scheme. This inaccuracy is smoothed by using the weighed RTT

average.

We assume that RTT and the calculated loss rate are uniform for all receivers belonging to the same

group within the same LAN. This is a safe assumption since message loss and RTT in LAN are negligible,

compared to those in WAN.

Local sender's detection. The senders' delegate needs to identify potential senders in its LAN, as

well as their sending rate demand.

Local sender's rate allocation. The senders' delegate their needs to distribute the aggregate trans-

mission rate among its local senders. We use the �Max-Min fairness� ([22]) criteria to allocate the rates.

Local sender's tra�c shaping. We use a token-bucket-like mechanism in order to enable the sender

to conform to the assigned rate.

�Slow start� mechanism. We incorporate a slow start mechanism into the local sender's rate limit

mechanism, so that it would be TCP-friendly even prior to a loss event.

Single LAN group. The congestion control mechanism is able to deal with a special case when all

group members reside on the same LAN. Due to the lack of space, we do not present this aspect in detail.

Issues with Multicast Delivery Tree: There are several ways to build a multicast distribution tree

in the Internet environment, using di�erent multicast routing protocols. As we assume that multicast

trees might be di�erent for di�erent groups, we measure RTT and loss rate for each group.

4.3 The Congestion Control Mechanism Description

In this section, the general algorithm �ow is presented, followed by a detailed description of each step.

While the mechanism is designed for many-to-many framework, the algorithm is presented from a single

source LAN perspective and for a single group (G). The source LAN delegate (SD) communicates with

the delegates (RD) of LANs that contain receivers for the given group. Every delegate implements the

Congestion control among multiple groups is achieved implicitly.

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 59

same mechanism and thus imposes congestion control over all the senders and the receivers. At the same

time, Xpand message �ows are friendly to TCP �ows that use the same links.

The basic steps of the algorithm are as follows:

1. RTT s are computed at the senders' delegate per receiver's delegate and per multicast group and

afterwards passed to the receiver's delegate;

2. Loss rate is measured at every receiver's delegate per sending delegate and group <SD, RD, G>.

In these measurements, the receiver's delegate uses the RTT estimation obtained from SD;

3. The acceptable receiving rate is calculated by RDs using the measured loss rate and the RTT. RD

sends its acceptable rate to the corresponding SD;

4. SD obtains the acceptable (restricting) rates reported by all remote delegates and chooses the

minimal value to be the aggregate transmission rate for the senders belonging to the group within

its LAN;

5. SD adjusts the local senders' transmission rate according to the aggregate transmission rate.

4.3.1 RTT Estimation by Senders' Delegate

For a given group G, RTT is measured by SD for every LAN that contains members of G. Intra-LAN

delays are negligible in WAN environment. We assume that all the messages �owing from the sending

LAN to each receiving LAN (targeted for the same group) traverse the same route. We assume that the

control tra�c from RD to SD also takes a steady route, which may be di�erent from SD to RD route.

As a consequence, all G senders within SD LAN have actually the same RTT to RD. Thus, for each

group we actually measure RTT s from SD to RD. The algorithm is straightforward, as can be seen in

Fig. 4.3.

Note: RTT is not updated using retransmitted messages, as the original and the retransmitted

messages have the same sequence number. This scheme allows RTT variations to change the transmission

rate within approximately one round trip time, which is important for the scheme responsiveness.

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 60

The RTT Calculation:

A sender multicasts packet P to the entire group G;

Upon receiving P, SD records P `s arrival time Tout;

/* Tout is an approximation of the sending time */

Upon receiving P, RD records P 's arrival time Tarr;

RD sends ACK for P to SD at time Tack containing ∆ = Tack − Tarr;

Upon receiving the ACK for P at time Tnow, SD calculates RTT = (Tnow − Tout)−∆;

Figure 4.3: RTT estimation at the sender's delegate

4.3.2 Receiver Loss Rate Estimation

Loss rate is measured by a receiver's delegate (RD). Regular receivers do not participate in loss mea-

surements. RD may receive multiple �ows from the same sending LAN for a group. All such �ows are

aggregated and considered to be a single meta-�ow. This is done to improve the statistics of message

loss rate and to address scalability issues.

A packet loss in our implementation is detected when the sequence number of a received message

within a speci�c �ow is out of the order. Since we assume packets to traverse the same multicast (unicast)

delivery path, packet reordering is infrequent and has no signi�cant in�uence on the overall picture.

The model in [78] requires that two loss events be separated by at least RTT seconds to be statistically

independent. A loss event starts on a packet loss and continues RTT seconds after it. To determine

whether a lost packet should start a new loss event or be considered as a part of a current loss event, we

compare the approximated time stamp of a lost packet with the time associated to the beginning of the

last lost event. To approximate the time stamp of a lost packet, we use the suggested interpolation to

infer its nominal �arrival time� (see [47, 54] for details). In the calculation that follows, we ignore packets

that arrive or are lost within RTT seconds of the time associated to the lost packet that started the loss

event.

In order to compute the loss rate, we need to count the number of packets contiguously received

between loss events. If a loss event is determined to have started at time T1 and the next loss event

started at time T2, the number of packets between the loss events is the total number of packets in all n

In TFRC ([47, 54]) the term �inter-loss interval� is used, de�ned as the interval from the beginning of a loss event until
the beginning of the next loss event.

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 61

�ows that have arrived within period [T1 + RTT, T2).

The Xpand approach matches the model presented in [78], whereas the original speci�cation ([47, 54])

also counts packets that arrive within the �rst RTT seconds of a loss event, thus underestimating the

actual loss rate.

To calculate the loss rate p, we �rst calculate Imean, i.e. the average number of packets received

between loss events. This is done by calculating the moving average over the past average Ipast and the

most recent estimation (with a quotient 0.5).

Imean =
1
2
Ipast +

1
2
Isample , (4.2)

where Isample is the number of packets that have arrived since the end of the last loss event. At the

beginning of a new loss event Imean becomes Ipast. Equation 4.2 presents the average number of packets

once a new event takes place. Immediately after a loss event, the value of Isample is smaller than Ipast,

which results in an inaccurate value of Imean. To deal with this undesirable e�ect, we do not update

Imean until either a new loss event arrives, or Isample ≥ Ipast.

The quotient is chosen to provide responsiveness, on the one hand, and to �lter out samples that

are too far from the average value due to inaccuracy of measurements, on the other hand. One of the

original goals of [47, 54] was to achieve congestion control that is TCP-friendly, while allowing tra�c rate

that is smoother than that of TCP. This property is important for various applications, e.g. multimedia.

Since for GCS the smoothness is not an important property, we used a simpler equation (Eq. 4.2) that

produces a TCP-friendly rate change response, though not that smooth.

RD computes the loss rate (p = 1/Imean). Using this value and the RTT, RD calculates the acceptable

receiving rate (Eq. 4.1) and sends it to SD.

SD computes the updated aggregate rate by taking the minimum over all the acceptable receiving

rates obtained from the relevant RDs. It then divides this rate among its local senders and noti�es them

about their new sending rate (See Section 4.3.3). Each local sender uses a token-bucket-like mechanism

in order to shape its tra�c to comply with its sending rate.

The two-way communication between SD and its local sender regarding sending rate allocation is conducted via a
reliable channel and is beyond the scope of this thesis.

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 62

4.3.3 Multiple Senders in LAN

As was noted above, we determine the transmission rate per group, as we assume the possibility of

di�erent multicast distribution trees for di�erent groups. Given an aggregate transmission rate for a

particular group, there is a problem of dividing the aggregate group transmission rate among multiple

senders residing on the same LAN. This is the task of the senders' delegate to distribute the transmission

rate among local regular senders. The delegate uses a �Max-Min fairness� ([22]) criteria to ensure a fair

rate allocation.

4.3.3.1 Determining local senders' rate demands

We describe here a scheme that enables SD to learn its local senders' demands for transmission rates to

be used as an input to the fair rate allocation scheme.

The demand evaluation scheme is to be responsive enough to avoid under-utilization of the resource

(transmission rate), e.g. in case when one sender receives a rate higher than it actually needs, whereas

the other one receives a rate lower than it needs.

Application transmission rate may change more frequently than the aggregate rate, since the latter is

computed infrequently and is smoothed, as opposed to the bursty tra�c pattern of an individual sending

application.

Thus, SD must sample its local senders' demands much more frequently than it receives aggregate

rate updates. Each time a new vector of senders' demands is collected, the delegate recomputes the

sending rate allocation.

Each a local sender determines its application demand by measuring the rate at which Xpand's sending

window �lls up and gets drained. To avoid unnecessary �uctuations when evaluating a transmission

demand, the sender uses weighed �history� of its window's occupancy. To provide fast responsiveness,

the weight of the �history� must be lower than that of more recent values.

When the window is full, the local sender cannot measure its application's transmission demand, as

the application is blocked. In this case, a special approach is taken to estimate transmission rate demand.

There is no point requesting a larger rate from SD if the last requested rate has not been complied with.

Since SD uses the Max-Min fairness criteria, increasing the requested rate will not increase the allocated

The sender can explicitly ask its delegate to send an update if its local application transmission rate demands drastic
changes

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 63

rate. If the delegate complies with the last rate request and the window is still full, the sender doubles

its requested rate demand. This process continues until the window opens up.

When a new sender starts transmitting, it is always permitted to start sending at some prede�ned

initial rate. The delegate recognizes the presence of the new sender and takes it into account by recal-

culating the sending rate allocation.

4.3.4 Implementation Details

Xpand has a complementary built-in �ow control mechanism, which is used as long as no congestion

is detected over the WAN. Once congestion is detected, the above described TCP-friendly congestion

control mechanism takes over. If no remote receiver exists, i.e. all the members reside within a single

LAN, the TCP-like window congestion avoidance mechanism is used.

We also use a slow-start mechanism for some speci�c cases, e.g. if no remote members exist and a

new sender starts its transmission. Another case is when no remote receiver has detected any loss event,

thus the acceptable receiving rate that is sent to the SD is in�nite. Obviously, when a loss is detected,

the sending rate is immediately updated.

4.4 Performance Results

The congestion control was tested in multi-continent (WAN) setting of RON testbed Network. The

tests included six sites: Zikit1 (Jerusalem), RON0 (Boston), RON2 (Salt Lake City), RON33 (Ottawa),

RON35 (Berkeley), RON45 (Chicago). All measurements were carried out within the same time-window

every day. The time-window was chosen to be early morning time in the North America, which is mid-

day in Israel. As there is no IP multicast connectivity among these sites, a propriety Application Layer

Multicast mechanism was used ([8]). The obtained message distribution tree is presented in Fig. 4.2.

RON33 was selected to be the tree root by the algorithm used in the dynamic ALM tree construction.

In tables 4.1, 4.2 and 4.3, the columns represent senders and the rows represent receivers. These

numbers were collected during the �rst test (see below).

Table 4.1 presents the median round trip time (RTT) among the sites as it was measured by the

senders. The messages from the sender to the receiver were sent along the ALM tree, and the ACKs

were sent back to the sender via unicast.

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 64

Table 4.1: Round trip time (RTT) (ms)

Site Zikit1 RON0 RON2 RON33 RON35 RON45
Zikit1 170.92 282.15 205.25 277.99 213.99
RON0 170.62 120.18 51.67 122.20 62.82
RON2 260.60 91.95 57.65 77.15 57.87
RON33 236.30 50.00 85.70 85.59 26.68
RON35 299.13 121.32 96.58 76.23 59.80
RON45 242.47 62.29 58.75 25.27 59.64

Table 4.2: Loss rate (%)

Site Zikit1 RON0 RON2 RON33 RON35 RON45
Zikit1 0.00 0.00 2.90 0.00 7.63 2.33
RON0 0.33 0.00 3.42 0.00 7.40 2.47
RON2 4.20 2.87 0.00 3.39 6.35 1.96
RON33 0.33 0.00 3.31 0.00 7.84 2.67
RON35 4.80 3.26 3.34 4.36 0.00 1.50
RON45 1.15 0.82 0.71 0.63 4.85 0.00

Table 4.2 presents the median loss ratio as calculated by the receivers. One can notice that loss ratio

increases along the ALM paths, as the number of ALM overlay links increases.

Table 4.3 presents the theoretical rate calculated by Eq. 4.1. There are some blank cells in the table,

since no message was lost on the corresponding links due to the fact that the rate was limited by another

receiver.

In the following sections, we present performance measurements of the congestion control mecha-

nism within Xpand system. The measurements validate the congestion control mechanism, its TCP-

friendliness and its applicability to multicast in WAN.

4.4.1 Rate Restriction

In the �rst test, six members join the same group G. Each member in turn sends messages to G for 60

seconds, at the rate allowed by the congestion control mechanism. Zikit1 measures data arrival rate for

each sender (including itself). Figure 4.4 presents the received rate measured by Zikit1 for each sender.

Table 4.3: TCP-friendly rate (Mb/s)

Site Zikit1 RON0 RON2 RON33 RON35 RON45
Zikit1 0.16 0.07 0.24
RON0 0.96 0.33 0.16 0.80
RON2 0.13 0.49 0.69 0.30 1.02
RON33 0.69 0.48 0.22 1.79
RON35 0.10 0.34 0.42 0.43 1.17
RON45 0.34 1.60 1.84 4.58 0.50

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 65

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

RON33

RON45

RON0

RON35

RON2

Zikit1

Time (sec)

R
at

e
(M

b/
s)

Transmission Rate (3−second average)

Figure 4.4: Sequential sending

95 100 105 110 115 120 125 130 135 140
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time (sec)

R
at

e
(M

b/
s)

Received by Zikit1

Zikit1 Transmission Rate
Rate Restriction by RON2
Rate Restriction by RON35

(a) Zikit1 is limited by RON2 and RON35

95 100 105 110 115 120 125 130 135 140
0

0.1

0.2

Time (sec)

Reported by RON35

R
at

e
(M

b/
s)

Reported Rate

95 100 105 110 115 120 125 130 135 140
0

10

20

Lo
ss

 E
ve

nt
 R

at
e

(%
)

Loss Event Rate

(b) Reported rate vs. loss rate

Figure 4.5: Rate limitation factors

In order to evaluate the congestion control mechanism, we examined the performance of Zikit1. The

variation in its rate is caused by the changes in rate forced by the slowest receiver.

Figure 4.5(a) shows the slowest receiver limiting Zikit1 sending rate. It is clear that the sending rate

is limited by the rate reported by the slowest receiver. We present only the two slowest receivers that

a�ect the sending rate, since other receivers reported a much higher receiving rate.

Figure 4.5(b) presents the loss rate and the reported rate calculated by RON35 for Zikit1 messages

over the same time period. One can see that the dominating factor in the rate reported by the receiver

is the loss rate, since the RTT remains relatively stable during this period.

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 66

0 50 100 150 200 250 300 350
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

←RON35 joins

←RON35 leaves

←Zikit1 joins

←Zikit1 leaves

Time (sec)

R
at

e
(M

b/
s)

RON45 Transmission Rate (3−second average)

Figure 4.6: Responsiveness to membership changes

150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

←Zikit2 starts ←Zikit2 stops

←Zikit3 starts

←Zikit3 stops

Time (sec)

R
at

e
(M

b/
s)

Aggregate Transmission Rate (3−second average)

Aggregate Transmission Rate
Restricted Rate

150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

Time (sec)

R
at

e
(M

b/
s)

Zikit1−3 Transmission Rate (3−second average)

Zikit1
Zikit2
Zikit3

Figure 4.7: Aggregation of multiple senders and fairness

4.4.2 Rate Adaptation to Membership Changes

In this test, all RON machines except RON35 and Zikit1 were members of group G. The application

running at RON45 sent as much tra�c as it was allowed by other delegates. In Fig. 4.6 we see that when

RON35 joins G, the sending rate of RON45 drops. Afterwards, when Zikit1 joins G, the rate again drops

signi�cantly. 60 seconds later, when Zikit1 leaves G, the rate increases and then increases again when

RON35 leaves G.

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 67

50 150 250 350 450 550 650 750
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

R
at

e
(M

b/
s)

Xpand
TCP
Xpand’s mean
TCP’s mean

Figure 4.8: TCP-friendliness

4.4.3 Fairness Among Senders in a LAN

In Fig. 4.7(a) we see aggregate rates generated by Zikit1, Zikit2 and Zikit3 while all RON computers

receive the messages (Zikit[1-3] all residing in the same LAN at the Hebrew University of Jerusalem).

Zikit1 sends messages through the entire duration of the test, while Zikit2 and Zikit3 send messages for

a shorter period (180 seconds and 60 seconds respectively). The graph also presents the rate by which

Zikit's LAN was limited by the other delegates. One can see that the in�uence of the reported rate,

which in turn depends on the loss rate, is much higher than the impact of the number of senders.

In Fig. 4.7(b), we present the achieved sending rate of three senders sharing the same aggregate

transmission rate during the test. The results clearly show that Max-Min fairness is achieved. The

measured results were averaged over 3-second intervals. For clarity, we chose a relatively large average

interval to be shown in Fig. 4.7(b), while the results were similar on smaller scales.

4.4.4 TCP-friendliness

Figure 4.8 presents the TCP-friendliness test results. In this test, we ran six cycles by the same scenario:

every cycle started with a 60-second Xpand session followed by a 60-second TCP and Xpand joint session.

In this test, only Zikit1 and RON35 were the group members. Both Xpand and TCP messages were

sent by Zikit1. The achieved rate was averaged over a 3-second interval. The average rate over the

periods when both �ows shared the network resources, are also presented in the �gure.

CHAPTER 4. TCP-FRIENDLY MANY-TO-MANY END-TO-END CONGESTION CONTROL 68

In all the cycles, the performance of Zikit1 showed that the bandwidth limited by our congestion

control mechanism is comparable to that of TCP and, therefore, the message �ow is TCP-friendly.

4.5 Conclusions and Future Work

Our study has proved that it is possible to create a many-to-many congestion control mechanism that is

TCP-friendly and provides a built-in fairness among senders that share resources.

Future research needs to focus on improving the results, in particular, the responsiveness of the mech-

anism to message losses and group membership changes. In our current implementation, retransmissions

were not considered to be a part of the sending rate, though a conservative approach was taken. We

intend to �nd an appropriate way to incorporate retransmissions in the congestion control mechanism

while allowing for heterogeneous (unicast and multicast) retransmission schemes.

Chapter 5

Ad Hoc Membership for Scalable

Applications∗

There are two major widely used approaches toward building distributed data-based applications and

replicating objects. The �rst approach, known as Group Communication Systems (GCSs) [1], presents

powerful building blocks for supporting consistency and fault-tolerance in distributed applications, whereas

the Paxos [66] approach focuses on ordering actions among a group of servers. Implementing either of

the approaches causes the system's performance to degrade signi�cantly as group size and message

transmission volume increase. These performance problems become more severe in wide-area network

environments where message latency is often high and unpredictable. Only few implementations specif-

ically address WAN environment, e.g., Spread [4], InterGroup [21] and Xpand [8]).

In this chapter, we present an ad hoc membership algorithm that is implemented in Xpand [8]. The

membership services o�ered by Xpand are designed to be �exible. On the one hand, they can be used

for maintaining a group of participants and potential participants of a group, by means of applications

that do not need strong semantics.. On the other hand, while focusing on e�ciency, these services allow

to consistently provide stronger semantics for applications that require it.

The e�ciency of the ad hoc membership is due to the separation it implies between message �ow,

∗This chapter is based on a paper by T. Anker, D.Dolev and I. Shnayderman [13].
For instance, these applications may not want to block or perform roll back actions per change in the system as GCS

or Paxos require.

69

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 70

membership algorithms, and failure detection (Network Event Noti�cation Service). Moreover, two

separate reliable message dissemination services are used, one for control messages and the other for

application messages.. This enables to remove reliability maintenance overhead from the critical path of

delay-sensitive applications.

Within the ad hoc approach, the membership noti�cations serve only as approximations of the current

group membership, without being synchronized with message stream. Continuous message reliability is

guaranteed only among those group members that remain permanently alive and interconnected. This

approach allows handling any number of simultaneous join/leave events concurrently, without waiting

for the network or the group of members to stabilize. The traditional membership approaches require a

certain time period of stability in order to consent on a new membership. As a result, they tend to limit

the adoption of joining processes during periods of instability. The ad hoc approach provides stability

of message �ow against on-going membership changes, which is more suitable for large groups and for

wide area networks where the probability of instability periods increases. The scalability of Xpand is

accounted for by both its hierarchical architecture and the ad hoc membership approach.

The development of the ad hoc membership approach faces three challenges, interrelated to one

another. (1) The architectural issue: selecting a channel preferable for a certain message- the more

reliable �sequential� channel (a slow one), or the less reliable concurrent channel where a loss of some

messages does not slow down the delivery of other messages. (2) The algorithmic issue: the dual channel

architecture increases the asynchrony among various blocks that provide membership service and, as a

result, produce con�icting race conditions that need to be controlled. (3) The design issue: designing a

system that takes advantage of the ad-hoc membership, while still maintaining the ability to provide a

stronger semantics for applications that require it.

The ad hoc approach best suits the requirements of collaborative networking applications, fault-

tolerant applications that require weaker synchronization among a set of servers, one- to-many push

applications (e.g., stock market monitoring) and the like. In Section 5.1.1, we present several examples

of such applications.

It is possible to obtain the properties of an ad hoc membership using other WAN toolkits, like

combining Spread [4] and PBcast [56], though the challenge remains of providing the properties we look

for in an e�cient and robust way. Moreover, Spread and similar toolkits assume a prede�ned global

set of servers, whereas Xpand [8] does not require any pervious knowledge of the potential set of group

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 71

members.

The ad hoc membership is fully implemented within the Xpand middleware. Section 5.4 presents

performance results of the implementation showing that membership changes have a negligible e�ect on

the existing message �ows.

5.1 Xpand Membership Service Model

Xpand membership algorithm is optimized to ensure the following properties:

Smooth-Join: A new member joins the group without a�ecting the current message �ow in the group;

Fast-Join: Once a joiner is registered in its LAN, it can start emitting messages to the group;

Dynamic Membership: Allows processes to dynamically join and leave the group in a WAN setting.

Xpand membership algorithm achieves these three properties without compromising the following

basic message delivery services of Xpand:

FIFO order: Any receiver that starts receiving messages from a given source will get all emitted

messages in FIFO order from the moment it joins the message �ow;

Gap-Free: Two processes that remain connected during consecutive membership changes continue to

receive each other's messages without any gap in the message stream.

The above-listed membership services combined with Xpand's reliable multicast service can be used

as a dynamic and reliable point-to-multipoint service layer, on top of which stronger semantic services

can be built. For instance, a virtual synchrony layer can be implemented as an extension of the ad hoc

membership service Moshe [63]. Another example is Paxos, which can be implemented on top of our ad

hoc service by having the leader communicating to existing majorities via the ad hoc services to carry

out the three phases of Paxos [66].

5.1.1 Implementation Issues

In order to enable maintaining of large groups of clients, Xpand is implemented using a two-level hier-

archical architecture. Each LAN is represented by a delegate that coordinates the protocol activities of

this LAN within the WAN group.

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 72

In the current implementation, we assume that the number of LANs with processes that emit messages

to the group is of the order of several dozens. The number of processes per LAN is assumed to be of

the order of a couple of hundreds. These limitations are imposed due to the need for maintaining state

information per sender and per receiver. We can further improve the implementation by enabling a client

to join either as a receiver-only, a sender-only, or as a full member (i.e. both as a sender and a receiver).

Such an approach enables to increase the number of processes, while keeping a reasonable amount of state

information. To increase scalability, the architecture is used for aggregation. A delegate can represent a

collection of senders in its LAN, and the senders should not necessarily be explicit members of the WAN

group. They will forward their messages to the delegate which will emit them to the WAN group.

We expect the above improvements to enable the ad hoc system to handle tens of thousands of clients.

The protocol is presented in this chapter as a collection of state machines within various processes.

The actual implementation of the protocol closely followed the state machines. This method enabled us

to easily detect protocol and implementation bugs that emerge in unforeseen transitions. We found out

that by adding history (log) within every state machine we were able to drastically shorten the debugging

time.

The ad hoc approach best suits the requirements of collaborative networking applications where the

importance of service timeliness prevails over message reliability, and the consistency requirements are

weaker than those of replicated database. For example, multimedia conferencing and distance learning

applications bene�t from the ad hoc GCS services in workspace sharing and parties coordination [33, 87].

Another example is a loosely coupled set of servers. For example, in the fault-tolerant video-on-

demand service by Anker et al. [12], a GCS based on the ad hoc membership service can be used for

video server fault-tolerance and QoS negotiation. The e�ciency of handling membership changes by

means of our protocol allows for smooth client hand-o�s with smaller video-frame bu�ers at the client.

Yet another application is a case when multiple servers emit information to a loosely coupled set

of clients. Each client wishes to receive the stream as soon as possible. For example, in stock market

monitoring, application messages are generated at several centers located all over the world. The access

to the information is critical, but there is no justi�cation for blocking the stream of messages during

network changes. In an on-going audio conference, a newcomer can bene�t from Xpand in the sense

The e�ect of not using a virtual synchrony in this VoD implementation is that the client's machine may receive, in
transient situations, duplications of video frames.

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 73

that Xpand will deliver a reliable multicast service from every session participant to the newcomer (and

vice versa) right after the establishment of the corresponding new connections, without a�ecting the

previously established connections.

5.2 The Environment Model

We assume that the message-passing environment is asynchronous, the processes communicate solely

by exchanging messages, and there is no bound on message delivery time. Processes fail by crashing

and may later recover, or may voluntarily choose joining or leaving. Communication links may fail and

recover.

Xpand exploits the following underlying services:

• A network event noti�cation service (Section 5.2.1), through which Xpand learns about the status

of processes and links;

• An integral reliable FIFO communication layer within the network event noti�cation service. It is

assumed that noti�cation events and messages delivered via this service are causally consistent;

• A reliable point-to-point service for control messages of the protocol;

• A simple reliable point-to-multipoint service in a LAN for control messages of the protocol.

The reliability of the above transport services implies that messages sent via them are eventually

received, or the recipient will eventually be suspected by the network noti�cation service. For e�ciency

reasons, all the reliable transport services are used only for control messages (i.e. for protocol messages,

but not for user application messages).

5.2.1 Network Event Noti�cation Service (NS)

Clients use the noti�cation service to request joining or leaving the groups, or to get updated information

regarding the group. The noti�cation service accumulates and disseminates failure detection information

along with information about these requests. The service is provided to clients by an interface that

consists of the following basic functions:

This mechanism is not a substitute for the general services of Xpand, but rather a simple mechanism focused on
guaranteeing reliability over a small number of messages exchanged among protocol participants in a single LAN.

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 74

NS_join(G) is a request by a client to make it a member of group G;

NS_leave(G) is a request to be removed from the membership of G;

NS_resolve(G) is a request to receive the current membership list (in a Resolve_Reply message/event)

as it is re�ected by the noti�cation service;

NS_sendmsg(data, destination) is a request to reliably send a message (data) to a set of receivers

(destination) via the noti�cation service.

Clients of the noti�cation service receive noti�cations via process events that indicate the type of the

event and the data associated with it. The event associated with the reception of a message via NS (a

message that was sent using the NS_sendmsg function) is called NS Recvmsg.

The noti�cation service contains a failure detector module. Since we assume an asynchronous en-

vironment, the noti�cation service is bound to be unreliable in some runs [28], which means it may

wrongly suspect correct processes. Since we deal with a service that can be implemented in an asyn-

chronous environment, we do not require the noti�cation service be accurate. However, we assume that

the noti�cation service is always complete [28]. The overall liveness of Xpand does not depend on the

noti�cation service providing consistent sets, since it communicates with any connected set of clients.

Congress [6] ful�lls the requirements of the noti�cation service. Other group communication membership

services (cf. Spread [4]) can also provide similar noti�cation service.

For the sake of simplicity, the membership algorithm is described in this chapter in the context of a

single invocation of a process, which means that it may join and leave only once. In practice, an instance

identi�er per process distinguishes among di�erent incarnations of the same process. The relationships

between Xpand's components and its environment are shown in Figure 4.1.

5.3 Xpand's Ad Hoc Membership Algorithm

Xpand's membership algorithm deals with �views� of a group G. The view at p (meaning the view

currently available to a speci�c process p's) is the current list of connected and alive members of G, as

perceived by p. The maintenance of the view of G within p is based on an initial Resolve_Reply event

received by p from NS. p updates its view by applying the information received in NS noti�cations, such

as processes' joining or leaving.

Before describing the membership algorithm, we focus on the goals it aims to achieve. The algorithm

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 75

GSM

LSM
 LSM
 LSM
...

MSM

MSM

MSM

MSM

MSM

MSM

MSM

MSM

MSM
MSM

Pj

MSM

MSM

MSM

MSM

MSM

Events to be handled

Figure 5.1: State Machine Flow

should allow a new member pi to join as fast as possible, while maintaining the following properties:

• pi will start receiving messages from any active member (sender) pj as soon as possible (given that

the sender is alive and transmitting messages).

• For each sender pj , a new member pi will receive messages sent by pj in the same order they were

sent by pi (i.e., FIFO order will be maintained).

• Once pi receives a message from a speci�c member, which remains alive, and will receive .within

the same network partition as pi, pi, all the messages sent by that member from this message on

without any gaps. The only situation in which gaps are allowed in the received message stream is

when the source is declared disconnected by NS.

The �rst property is obtained if a new joining member is noti�ed of the sequence number of the

following message from any sending member without any unjusti�ed delay. In order to guarantee the other

two properties, there is no need for a global synchronization on sequence numbers that are distributed

to any new member with respect to a speci�c member pj . This means, for example, that if any two new

members p1 and p2 are joining simultaneously, a sending member pj can announce a sequence number

SeqN to p1 and, after a short time interval, announce SeqN +k to p2, in case it had managed to transmit

k messages during this interval of time.

The asynchrony makes it impossible to describe the protocol in the traditional manner. The protocol

can be viewed as an embedded set of state machines executed at the regular member and at the delegate.

The top state machine is the group state machine (GSM). That state machine invokes multiple LAN state

machine (LSM), one per LAN that contain members in the current view. The LAN state machine invokes

member state machines (MSM), one per each member that is listed in the view and is residing within

that speci�c LAN. Figure 5.1 presents the general �ow of control among the di�erent state machines.

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 76

Message

Type

From
 To
 Message role

Force_Join

Regular

member

Delegate
 Causes Delegate to join a group

Start_Sync

Regular

member

Delegate

Causes Delegate to reply with information about

group members

Sync_Reply
 Delegate

Regular

member

Delegate's reply to the Sync_Reply (contains a list

of members message sequence numbers as

currently known to Delegate)

View_Id
 Delegate
 Delegate

Causes Receiver to reply with information about

its
local
members

Cut_Reply
 Delegate

Delegate /

Regular

member

Delegate's reply to the View_Id / Cut_Request

messages (contains a list of
 the requested

members message sequence numbers as

currently known to Delegate)

Cut_Request

Regular

member

Delegate

Causes Delegate to reply with

information about specific group members

Figure 5.2: Protocol messages

The GSM receives events and forwards them to the appropriate LAN state machines, from which the

events are applied to the corresponding MSMs. The events are handled concurrently by the relevant

state machines.

For brevity, we included the details of only some of the state machines. We have chosen to present

the group state machine of a regular member and the LAN state machine of a delegate. For the sake

of simplicity, we removed the issue of handling of various timeouts from our presentation of the state

machines.

The membership algorithm uses the set of messages described in Figure 5.2. All the messages in

the �gure are messages sent by either delegates or regular members. These messages are sent via the

transport services (Section 5.2).

The ad hoc membership algorithm handles the joining/leaving event, as well as network partitions

and network merges. The state machines respond to external events received from NS, as well as to

control messages sent by other members of the group (via the corresponding state machines).

The simpli�ed pseudo code of a regular member joining is shown in Figure 5.3. The code covers the

state machine shown in Figure 5.5 and portions of other two state machines related to this speci�c case

(see GSM-delegate and MSM-delegate in [14]). A regular joining member p1 is noti�ed about a new

member p2 in the group by receiving either a NS Join message or a Sync_Reply/Cut_Reply message

(sent by its own delegate). In either case, p1 initiates a new member state machine for p2. In the

former case, the MSM goes directly to �active� state, in which messages sent by p2 will be processed.

The related states and state transitions in Figure 5.5 are indicated.
E.g., the NS_Join in the code is actually part of the GSM of the delegate.

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 77

Invoke NS_join(G) (piggyback next data message SeqN);

label wait for RR:

(1) wait for NS Resolve_Reply msg (RR);

(1->2) if RR includes local delegate {

(1->2) NS_sendmsg(Start_Sync of G, local delegate);

(2) wait for a Sync_Reply message;

allow the user application to send data messages

to G;

(2->3) for each LAN listed in the Sync_Reply message

invoke the corresponding LSM;

(2->3) for each new LSM

invoke the corresponding MSM;

(2->3) for each new MSM {

extract sender message SeqN;

init sender data structure

}

}

otherwise {

(1->5) build Force_Join message m for G;

(1->5) NS_sendmsg(m, local delegate);

(5) wait for local delegate to join G;

(5->1) issue a NS_resolve(G);

(1) goto wait for RR

}

Figure 5.3: Highlights of Join Operation at Regular Member.

In the latter case, the NS noti�cation regarding the joining of p2 has not arrived yet. Thus, the MSM

goes into �semi-active�. In this state, p1 waits for the proper NS Join message concerning p2. When

the NS Join message arrives, the MSM shifts into �active� state. This complication is caused by the

asynchrony resulting from the separation of the membership algorithm within Xpand and the external

NS mechanism.

To limit some of the potential race conditions, the Start_Sync message is sent via NS. This ensures

that by the time a delegate receives this message via NS, it has already received and processed all the

previous NS messages, especially those received by the regular member at the moment of sending this

request. This doesn't cover the multi-join case that is created when several members join at once, some

of them not yet having delegates in the group. In a more complicated case, we may face a situation

when members are in the group, but their remote delegates are not, or a situation when the Sync_Reply

doesn't include all the necessary information about them. The regular LSM (in [14]) copes with those

situations. LSM essentially needs to identify the case and to wait for its resolution, while allowing the

sender to begin sending its information. While waiting for the delegate of a LAN to join the group,

By the causality assumption of the reliable FIFO comm. layer within the NS.

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 78

label init-group:

A Force_Join for group G is received from a local member

NS_join(G);

wait for NS Resolve_Reply msg (RR);

split RR into separate LAN lists;

for each LAN list in RR {

invoke LAN state machine (Figure 5.6);

if remote delegate is NOT listed in the RR

wait for remote delegate to join G;

label peer sync:

(1->2) NS_sendmsg(View_Id msg, remote delegate);

(2) wait for Cut_Reply msg corresponding to View_Id msg;

(2->3) for each member listed in the Cut_Reply msg {

invoke the corresponding MSM and within it:

extract member message SeqN;

init member data structure;

};

(3) put LSM into �active� state

} /* for each LAN in the group... */

Figure 5.4: Highlights of First Join Operation at Delegate.

the member can process further NS messages for LANs on which it has the full information. Other NS

messages need to be bu�ered and processed after the delegate joins and integrates within the group.

As regards the delegate part, a delegate joins a new group when its �rst local member joins it and

�forces� the delegate to join also, by sending a Force_Join message. Upon receiving such a message, the

delegate invokes a GSM for the relevant group. Upon receiving the resolve reply, the GSM invokes a set

of LSMs which, in turn, invokes a set of MSMs per LSM. The delegate GSM and MSM appear in [14].

Below we discuss the delegate LSM (LAN State Machine).

Figure 5.4 shows the simpli�ed pseudo-code of the delegate, executed upon receiving a Force_Join.

The code covers the state machine in Figure 5.6 and portions of the other two state machines related to

this speci�c case (see MSM and GSM of delegate in [14]). The Force_Join message causes the delegate

to join a speci�c group. When the delegate joins the group and receives the resolve reply through NS, it

needs to spawn LAN state machines per LAN which is represented in that resolve reply message. While

the delegate is waiting for the resolve reply message, it may receive View_Id messages or Start_Sync

Full information here means acquiring message sequence numbers for each known member in the remote LAN.
The related states and state transitions in Figure 5.6 are indicated.
E.g., the NS_Join in the code is actually a part of the GSM of the delegate.

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 79

issue NS_resolve(G)

G is

Active
 Sync_Reply for G

 was received

1) Invoke state machine for each LAN in

the Sync_Reply

2) Activate member via LAN state

machine

3) Process all corresponding buffered NS

messages

Resolve received

with local delegate

inside

Wait

for

resolve

reply

Resolve received

w/o local delegate inside

Wait for

join of

delegate

Wait for

Sync_

Reply

Join of the delegate received

P
i
 Leaves G

NS_sendmsg(Start_Sync,

local delegate)

NS memb

notification received

Ignore NS

notifications

except
join of

delegate
 NS memb

notification received

NS memb

notification received

Buffer NS

 message

NS_senmsg(Force_Join,

local delegae)

Initial/

Final

P
i
 Joins G

Discard all notifications

4

5

3

1

2

Figure 5.5: Group State Machine at Regular Member

Dispose members in

disconnected LAN

Initial/

Final
 NS_sendmsg(view_id,

remote delegate)

NS Join(remote delegate)

Network partition/

Delegate leaves

NS Join(Regular

member)

Buffering of join

message

Wait for

cut- reply

NS memb

notification

Buffer NS memb

notification

Cut Reply Received

(with expected <view id> in it)

Active

1) Invoke member state

machines

2) Process corresponding

buffered NS notifications

3) propagate Cut Reply to

local members

Network partition/

Delegate leaves

Dispose members in

disconnected LAN

1

2

3

Figure 5.6: LAN State Machine at Delegate

messages via NS. Those messages will be bu�ered and processed later when the resolve reply is received.

When the delegate is already a member of a group and is noti�ed about a new member of its own

LAN (via an NS Join noti�cation), it takes the new member message SeqN that is listed in NS Join

noti�cation and initializes the new member data structure.

A di�erent case occurs when a remote member joins the group while its own delegate is not a member

yet. In this case, the local delegate waits for the remote delegate to join via the NS. Once the remote

delegate has joined, the local delegate performs the protocol in Figure 5.4 starting from peer sync label.

In the above description, we have dealt only with a common case from the overall protocol. A

careful use of the NS channel enables us to cope with some of consistency problems. The full protocol

is a combination of all the state machines being executed concurrently while responding to the arriving

events. Due to the lack of space, we are not considering all the particular issues. The description of the

state machines here and in [14] enables to identify some of those issues.

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 80

5.4 Implementation and Performance Results

To test the e�ciency of the ad hoc membership algorithm and its implementation, we conducted several

tests to measure the e�ect of membership changes on ongoing message �ow. Speci�cally, we investigated

its fast_join and smooth_join (Section 5.1) properties.

The ad hoc algorithm was tested in multi-continent (WAN) setting. The tests included three sites:

The Hebrew University of Jerusalem in Israel (HUJI), the Massachusetts Institute of Technology (MIT)

and the National Taiwan University (NTU). We had estimated the round trip times and the loss per-

centage between these sites, in order to have the characteristics of the network interconnecting them.

The round trip times measured between MIT and HUJI and between MIT and NTU were both about

230ms. The round trip time between HUJI and NTU was about 390ms. The loss percentage was not as

persistent as that of the round trip times, varying from 1 percent to 20 percent.

In all the three sites, the machines used were PC computers running the Linux operating system. As

there is no IP multicast connectivity among these sites, a propriety Application Layer Multicast (ALM)

mechanism was used [8]. The obtained message distribution tree is presented in Figure 5.7(a). HUJI

was selected to be the tree root by the algorithm used in the dynamic ALM tree construction. In all the

tests, the senders emitted a message every 100ms.

Fast_Join

In the �rst test, we measured the time it takes a new joiner to start receiving messages from active

sources, the participants being 4 senders at HUJI (S1-S4) and one sender at NTU (S5). There were two

joiners, one at MIT and one at HUJI (S6). Both joined the group during the test and started sending

messages right after joining the group.

The graph in Figure 5.8(a) shows that once the joiner at MIT (which recorded the events) receives the

proper event noti�cation (Sync_Reply message), it begins receiving messages from all current senders

within a short time (23ms). It takes the joiner longer time to begin receiving from the other joiner. This

extra time is a result of the di�erence between the arrival of the Resolve_Reply noti�cations between

MIT and HUJI.

To evaluate the impact of our results, it should be mentioned that in a similar scenario Moshe [63],

the minimal time should be at least one and a half round trip, which amounts to at least 600ms.

In some cases, a higher loss percentage was observed when the interval between the ping (ICMP) messages was less
then 100ms.

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 81

HUJI

MIT

ALM branch

NTU

ALM branch

(a) Application Layer Multicast tree topology

0 2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200

Time (seconds)

A
cc

um
ul

at
ed

 n
um

be
r

of
 r

ec
ei

ve
d

pa
ck

et
s

Before
During ongoing membership changes
After
Expected

(b) Continuous test

Figure 5.7: The Basic Layout

Smooth_Join

In this test, we measured the impact that a set of joiners might have on the ongoing message �ow.

The sender was at HUJI, the receiver at MIT, and during the test, 4 processes joined at HUJI and

one at NTU. Later on, all the joiners left . The tests show that the impact on the message �ow was

negligible 5.8(b). Messages were still received every 100ms.

In the virtual synchrony implemented by Keidar et. al [63], the message �ow needs to be stopped

for at least one round-trip time (in the best possible scenario). In our speci�c setting, it should have

taken at least 390ms.

Continuous behavior

The third test measured the behavior of the ad hoc membership implementation over a long period

of time, during which the loss rate was rather high. In this test, the sender was located at HUJI, the

receiver at MIT, while the process at NTU and the processes at HUJI joined and left repeatedly. The

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 82

NS Resolve

Sync Reply

Msg from S1 (HUJI)

Msg from S2 (HUJI)

Event

Msg from S5 (NTU)

Msg from S6 (HUJI)

Msg from S3 (HUJI)

Msg from S4 (HUJI)

T+68

Time

(milliseconds)

T=0

T+50

T+60

T+60

T+73

T+253

T+68

(a) First message receiving time

0

0.5

1

1.5

2

2.5

3

3.5

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500

N
um

be
r

of
 M

es
sa

ge
s

R
ec

ei
ve

d

Time (miliseconds)

View 1

View 2

View 3

View 4

View 5

(b) Simultaneous join impact

Figure 5.8: Impact of membership changes.

tests show that the behavior of the system, both during the periods with no membership changes and the

periods with such changes, is almost identical 5.7(b), which demonstrates the e�ciency of the algorithm.

Discussion

All the tests described above proved that the ad hoc approach enables processes to join the group

promptly, with minimal impact on the ongoing message �ow. We observed that applications that do not

need strong characteristics will face the minimal impact. Applications that require stronger semantics

will still need to wait for full synchronization, as found by Keidar et. al [63].

5.5 Conclusions

The focus of this chapter is to address the needs of a class of distributed applications that require high

bandwidth, reliability and scalability, while not requiring the strong semantics of current distributed

middleware solutions. Since current middleware cannot scale well when it is required to guarantee the

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 83

strong semantics, there is a need to identify a better tradeo� between the semantics and the e�ciency.

The ad hoc membership algorithm that we have developed and implemented presents such a tradeo�.

The performance results prove that our approach is feasible and can scale well.

The implementation shows that it is possible to integrate an external membership service with a

hierarchical system for message distribution. We believe that other systems with hierarchical architecture

and/or external membership service can may apply similar techniques to their algorithms. A reliable

multicast based on forward error correction is a simple one-to-many application. However, the rest of

the applications listed in Section 5.1.1 need better reliability and coordination than our approach o�ers.

Future research is intended to provide better characterization of these classes.

CHAPTER 5. AD HOC MEMBERSHIP FOR SCALABLE APPLICATIONS 84

Chapter 6

Evaluating Total Order Algorithms in

WAN∗

Agreed message delivery is an important service in distributed systems, especially when dealing with

fault-tolerant applications. This chapter focuses on factors in�uencing protocols that provide global order

in Wide Area Networks. Performance evaluation in real network conditions was conducted in order to

compare two recently published algorithms. We studied the algorithms' latency in a steady state case in

a real network and discovered that two factors, namely, a loss rate and variations in message propagation

time, have a signi�cant impact on the algorithms' performance.

6.1 Algorithms under Comparison

When comparing ordering algorithms, it is important to consider the guarantees that each algorithm

provides. We start by presenting the order required by a replicated database application, namely, Uniform

Total Order (UTO). A formal de�nition of a UTO broadcast guarantee can be found in 1.1.2. In essence,

it provides the same message delivery order for all the processes, including the faulty ones.

Before a UTO is agreed on, a Preliminary Order (PO) is �proposed� by each of the processes. If the

PO is identical for all correct (non-faulty) processes, it is called Total Order (TO). PO and TO should

∗This chapter is based on a paper by T. Anker, D.Dolev, G. Greenman and I.Shnayderman [10].
We do not consider Byzantine Failures in this work.

85

CHAPTER 6. EVALUATING TOTAL ORDER ALGORITHMS IN WAN 86

be either con�rmed or changed by the UTO at a later stage. The algorithm presented in [102] (Hybrid

Algorithm) provides both TO and UTO, while the algorithm presented in [92] (Optimistic Algorithm)

provides PO (which the authors call Optimistic Order) and TO. Although no protocol is proposed for

UTO, it could easily be built atop TO by collecting acknowledgments from the majority of the processes

that have delivered messages in TO. The most important di�erence between Optimistic Order and TO

is that in the latter the order may be changed i� a process is suspected to have failed, while Optimistic

Order may be changed even if no process has been suspected. Below we discuss the protocols used by

these algorithms in order to achieve the above ordering services.

In Optimistic Algorithm, a process is selected to serve as the Sequencer. For every message it receives,

the Sequencer gives a TO number and noti�es all the processes about the message order. The Optimistic

Order is achieved by predicting (with a high probability) the time when the message is received by the

Sequencer.

In Hybrid Algorithm, each process is marked as either passive or active, according to the location of

the process in the network and its message sending rate. Active processes act as sequencers for passive

ones. Lamport symmetric protocol [65] is used to achieve TO in the set of active processes. In order

to compare a sequencer-based approach with a symmetric approach, we chose the topology and process

sending rates so that all the participating processes were marked as active ones. The latency of Lamport

symmetric protocol [65] can be improved by using local clocks, as was shown in [102].

6.2 Methodology

This section describes the methodology used for the evaluation of the ordering algorithms.

It is important to note that throughout the experiments we did not consider processes suspicions/failures.

Although these are important factors, they should be studied in a separate work, since the current study

focuses on the steady state case. However, message losses do occur in the steady state and may have

signi�cant impact on the algorithms' performance [76]. In order to achieve TO/UTO guarantee, lost

messages must be re-acquired. Xpand [8] guarantees reliability by retransmitting lost messages, thus

providing an appropriate framework for this study.

In the experiments, we used nodes from the RON project ([105]). The tests involved 6 sites, 5 residing

in North America and one in Jerusalem, Israel. While the number of sites is relatively small, Xpand's

CHAPTER 6. EVALUATING TOTAL ORDER ALGORITHMS IN WAN 87

hierarchical structure and its support for multiple groups allow to extend the algorithms to large-scale

systems. The nodes themselves were Celeron/733 or PentiumIII/1.1G machines running FreeBSD/Linux

operating system, connected via commodity Internet and Internet2. The links had diverse delays and

various packet loss rates.

We used Xpand to collect information about the network characteristics. Each host generated a new

data packet every 10ms. Although data packets were sent by UDP protocol, the rate was limited by

Xpand's TCP-friendly congestion control mechanism (see Chapter 4). Each node listed the time when

a packet was received from the network. The ordering algorithms were evaluated by emulating their

protocols behavior on the message logs.

6.2.1 Clock Skews

In order to estimate the ordering algorithm latency, we needed a good evaluation of the clock di�erences

among all the participating processes. This was achieved using the mechanism described in [76]. The

assumption made in calculating the clock di�erences was that message Round Trip Time (RTT) in a

WAN was stable and rarely changed. The RTT was also assumed to be symmetric. Although these

assumptions may not hold for a general case, they were applicable in our experiments. Time drift may

be another concern when evaluating time di�erences. In our experiments, the logs were collected over a

relatively short interval (several minutes' span), thus making time drift between the clocks negligible.

6.2.2 Implementation and Optimization of the Algorithms

This section describes essential implementation and optimization details. In order to emulate the ordering

protocols, we assumed that control information can be piggybacked on data messages. This technique did

not introduce any additional delay into the ordering protocols latency, as data messages were generated

at a high rate.

Optimistic Algorithm relies on delay calculations. In order to emulate this algorithm, we used the

logs to estimate the delays, and then emulated the protocol running on the logs using the estimated

delay. High message sending rate and small variation in message propagation time may cause Optimistic

Order to wrongly predict TO (on messages received in the same time window). To improve the TO

prediction, Optimistic Algorithm batches messages [92]. For the same purpose, we used message-sending

CHAPTER 6. EVALUATING TOTAL ORDER ALGORITHMS IN WAN 88

0 100 200 300 400 500 600 700
0

10

20

30

40

50

60

70

80

90

100

Latency (ms)

D
el

iv
er

ed
 M

es
sa

ge
s

(%
)

Optimistic Order
Optimistic TO
Hybrid TO
Optimistic UTO
Hybrid UTO

Figure 6.1: Comparing the Algorithms

time.

Some applications may require messages to be delivered in the same order they have been sent

(FIFO). Since this is not part of the UTO de�nition, our implementation of Optimistic Algorithm does

not provide FIFO, in order to achieve improved latency.

Since we achieved clock synchronization, in Hybrid Algorithm (See 6.2.1) we could put a timestamp

on messages and use it to achieve TO.

In order to reduce the impact of message losses, we duplicated previous acknowledgments on each data

message. This is feasible since (1) the size of an acknowledgment is very small and (2) an acknowledgment

on message m also acknowledges messages preceding m.

6.3 Performance Results

The logs were collected in multi-continent (WAN) setting of RON Testbed Network. The experiment

included six sites: Zikit1 (Jerusalem), RON0 (Boston), RON2 (Salt Lake City), RON33 (Ottawa), RON35

(Berkeley), RON45 (Chicago).

As there is no IP multicast connectivity among these sites, a proprietary application layer multicast

(ALM) mechanism was used (see Section 4.1.1.1 and [8]). The obtained message distribution tree is the

same as in Chapter 4.

CHAPTER 6. EVALUATING TOTAL ORDER ALGORITHMS IN WAN 89

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

x 10
4

0

100

200

300

400

500

600

700

800

900

Time (ms)

La
te

nc
y

(m
s)

Optimistic TO
Hybrid TO
Zikit1 Losses

Figure 6.2: Impact of Losses

The maximum One-way Trip Time (OTT) registered between RON2 and Zikit1 was 330ms. It is

worth noting that in some links, a signi�cant percentage of messages experienced substantial delays.

Also, we noticed that loss rate varied signi�cantly over di�erent links (the worst link experienced the

average of 3.6% loss rate).

In order to compare the algorithms, we studied the latencies. For Optimistic Algorithm, we measured

the time between message sending and its delivery by all the processes (message latency) in Optimistic

Order, TO and UTO. For Hybrid Algorithm, we measured the latencies of TO and UTO. For some

messages, very high latencies were observed due to loss bursts. Therefore, the average values are not

representative, and we chose to use Cumulative Distribution Function (CDF) (Figure 6.1). Here, the X

axis presents latencies, while the Y axis shows the percentage of messages delivered by speci�c time.

As can be seen from the data represented in the graph, the behavior of the curves changes approxi-

mately at the 60% level. Below this point, the latencies are similar to those expected. A message m is

deliverable in Optimistic TO only after m's TO number has been received from the Sequencer. Hybrid

TO delivers m when a subsequent message from each process is received. Therefore, Hybrid TO imposed

a shorter delay on m, as the sending rate was high during the experiment. Optimistic Order latency is

better than that of Hybrid TO, since it waits only for a precomputed delay to deliver m and does not

require reception of any additional message.

CHAPTER 6. EVALUATING TOTAL ORDER ALGORITHMS IN WAN 90

In the upper part of the graph, the pattern of the curves changes drastically. Optimistic Order curve

converges with that of Optimistic TO. It means that Optimistic Order was predicted wrongly, hence,

m's Optimistic Order delivery time was substituted by Optimistic TO delivery time. The decrease in

Optimistic TO slope indicates an increase in the number of messages delivered with a high latency. This

increase is even more signi�cant in Hybrid TO.

As we found out, this slowdown of TO algorithms was caused by message losses. The graph in

Figure 6.2 shows the latencies measured by Zikit1 for its own messages. Only a short time interval

is presented (time is measured from the start of the experiment) in order to make the graph more

comprehensible. It is evident that message losses have signi�cant in�uence on the latency. It is worth

noting that the impact on Hybrid TO is higher than on Optimistic TO. In order to deliver message m,

the Lamport Algorithm (used in Hybrid TO) requires that a message with a timestamp higher than

m be received from every process, while keeping the FIFO order. To understand why losses increase

the Optimistic TO latency, we need to consider message completion mechanism in Xpand [8]. This

mechanism causes a lost message m to be retransmitted point-to-point, and consequently, the Sequencer

receives m much quicker than Zikit1 and then sends its TO number to all the nodes. This causes Zikit1

to postpone the delivery of the messages following m, until m is recovered.

In Figure 6.3 the reasons for Optimistic Order delivery slowdown are shown. A replicated database

may only bene�t from correctly �guessed� Optimistic Order. In case of a wrong guess, hereafter referred to

as miss, Optimistic TO delivery time is to be used. If TO is not equal to Optimistic Order, the replicated

database has to perform a rollback. We assumed that this rollback may be performed immediately after

TO is received. Optimistic Order latency measured by Zikit1 for its own messages is shown in Figure 6.3.

The percentage of misses varied from 11% measured by RON0 to 43% measured by RON35 for

Optimistic Order. It is noteworthy that once an application learns that Optimistic Order is incorrect, it

has to perform the rollback for all the messages received starting from the missing message. The peaks in

the graph correspond to the �rst miss. Afterwards, Optimistic Order latency decreases for each following

message, due to the reduction of the time interval from the moment when a message was sent till it is

TO-delivered.

Although the numbers of misses might seem very high, it is not of great signi�cant, as they largely

The misses were not registered by Hybrid Algorithm as no failures happened.
Our model considers all messages sent to a single group as potentially con�icting transactions [64].

CHAPTER 6. EVALUATING TOTAL ORDER ALGORITHMS IN WAN 91

4.5 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5

x 10
4

0

100

200

300

400

500

600

700

800

900

Time (ms)

La
te

nc
y

(m
s)

Optimistic Order
Optimistic TO
Zikit1 Losses
Atypical OTT Experienced by Zikit1
Atypical OTT Experienced by the Sequencer

Figure 6.3: Impact of OTT Variations

depend on the rollback model and message sending rate. However, it is important to understand the

reasons that caused those misses. As can be seen in Figure 6.3, those misses are not evenly distributed

over time, but occur in bursts. Those bursts are instigated by either message losses or high (atypical)

OTT's experienced by Zikit1 as well as the Sequencer. Such OTT's, in turn, may be caused both by the

message completion protocol and by the network. To study the network links' characteristics, we used

ping utility and found out that RTTs of some messages were signi�cantly higher than the average RTT

on the same link. On some links, the number of atypical RTT's was as high as 2%.

6.4 Conclusions and Future Work

The study focused on factors that have considerable impact on the Total Order algorithms' latency in

a WAN. The algorithms under study were found to be vulnerable to message losses and to variations

in message propagation time which are inherent in a WAN environment. Hence, while developing a

distributed algorithm for a WAN, it is essential to consider the impact of those factors on the performance.

We also found that the message completion mechanism in Xpand instigates misses in Optimistic Order

and should be modi�ed.

Another important observation is that the loss rate of a link does not vary considerably. This fact

was also mentioned in [80]. We believe that an e�cient protocol in WAN is to combine the usage of

CHAPTER 6. EVALUATING TOTAL ORDER ALGORITHMS IN WAN 92

unreliable channels built over lossy links with reliable channels over lossless links.

In order to further improve the performance of the studied algorithms, some optimizations are to be

carried out, that require from a process to measure loss rate on its links. In case when a receiver �nds

out that the loss rate of incoming messages is too high, it is to stop delivering messages in Optimistic

Order. In the other case, when a sender �nds out that its messages are frequently lost by other processes

Hybrid Algorithm is to mark the sender as passive. (See section 6.1.) Optimistic Algorithm is to use a

similar approach. As an alternative Forward Error Correction code can be used to minimize the impact

of message losses.

The study strategy is comprehensive enough to be extended to cover various network topologies,

sending rates and other total order algorithms.

The set of collected logs re�ecting the real network conditions, as well as the simulator designed for

this study, allow an algorithm developer to evaluate the performance. The logs and the simulation code

are located at www.cs.huji.ac.il/labs/danss/TO_logs.html.

Bibliography

[1] ACM. Communications of the ACM 39(4), special issue on Group Communications Systems, April
1996.

[2] M. Allman, V. Paxson, W. Stevens. TCP Congestion Control. RFC 2581, April 1999. Internet
Engineering Task Force, Network Working Group.

[3] Y. Amir, B. Awerbuch, C. Danilov, J. Stanton. Global Flow Control for Wide Area Overlay
Networks: A Cost-Bene�t Approach. OPENARCH-2002, strony 155�166, Czerw. 2002.

[4] Y. Amir, C. Danilov, J. Stanton. A Low Latency, Loss Tolerant Architecture and Protocol for
Wide Area Group Communication. Proceedings of ICDSN'2000, 2000.

[5] Y. Amir, D. Dolev, S. Kramer, D. Malki. Transis: A Communication Sub-System for High Avail-
ability. 22nd Annual International Symposium on Fault-Tolerant Computing, strony 76�84, July
1992.

[6] T. Anker, D. Breitgand, D. Dolev, Z. Levy. Congress: Connection-oriented group-address resolution
service. SPIE, 1997.

[7] T. Anker, G. Chockler, D. Dolev, I. Keidar. Scalable group membership services for novel appli-
cations. M. Mavronicolas, M. Merritt, N. Shavit, redaktorzy, Networks in Distributed Computing
(DIMACS workshop), wolumen 45 serii DIMACS, strony 23�42. American Mathematical Society,
1998.

[8] T. Anker, G. Chockler, I. Shnayderman, D. Dolev. The Design and Performance of Xpand: A
Group Communication System for Wide Area Networks. Raport instytutowy 2001-56, Institute
of Computer Science, The Hebrew University of Jerusalem, Jerusalem, Israel, August 2001. URL:
http://leibniz.cs.huji.ac.il/research/, See also the previous version TR2000-31.

[9] T. Anker, D. Dolev, G. Greenman, I. Shnayderman. Wire-speed total order. IPDPS'06.

[10] T. Anker, D. Dolev, G. Greenman, I. Shnayderman. Evaluating total order algorithms in wan.
2003.

[11] T. Anker, D. Dolev, G. Greenman, I. Shnayderman. Wire-speed total order. Technical report,
January 2006.

[12] T. Anker, D. Dolev, I. Keidar. Fault Tolerant Video-On-Demand Services. Proceedings of the 19th
International Conference on Distributed Computing Systems, (ICDCS'99), June 1999.

[13] T. Anker, D. Dolev, I. Shnayderman. Ad Hoc Membership for Scalable Applications. 16th Intl.
Conference on Distributed Computing Systems, Oct. 2002.

93

BIBLIOGRAPHY 94

[14] T. Anker, D. Dolev, I. Shnayderman. Ad Hoc Membership for Scalable Applications. Raport insty-
tutowy 2002-21, Institute of Computer Science, The Hebrew University of Jerusalem, Jerusalem,
Israel, April 2002.

[15] T. Anker, D. Dolev, I. Shnayderman, I. Sukhov. TCP-Friendly Many-to-Many End-to-End Con-
gestion Control. Proc. 22st IEEE Symposium on Reliable Distributed Systems. IEEE CS, October
2003.

[16] ANSI. Fibre Channel Physical and Signaling Interface (FC-PH). X3.230-1994.

[17] I. T. Association. In�niBand Architecture Speci�cation. Release 1.2.

[18] Z. Bar-Joseph, I. Keidar, T. Anker, N. Lynch. Qos preserving totally ordered multicast. Proc.
5th International Conference On Principles Of Distributed Systems (OPODIS), strony 143�162,
December 2000.

[19] M. Barborak, M. Malek, A. Dahbura. The consensus problem in distributed computing. ACM
Comput. Surv., 25(2):171�220, Czerw. 1993.

[20] M. Ben-Or. Another advantage of free choice:completely asynchronous agreement protocols. Annual
ACM Symposium on Principles of Distributed Computing, strony 27�30, 1983.

[21] K. Berket, D. A. Agarwal, P. M. Melliar-Smith, L. E. Moser. Overview of the intergroup protocols.
International Conference on Computational Science (1), strony 316�325, 2001.

[22] D. P. Bertsekas, R. G. Gallager. Data Networks. Prentice-Hall, 1992.

[23] K. Birman, A. Schiper, P. Stephenson. Lightweight causal and atomic group multicast. ACM
Trans. Comput. Syst., 9(3):272�314, 1991.

[24] K. P. Birman, R. Friedman, M. Hayden, I. Rhee. Middleware support for distributed multi-
media and collaborative computing. Proceedings of the Multimedia Computing and Networking
(MMCN'98), 1998.

[25] R. Burns. Data Management in a Distributed File System for Storage Area Networks. Praca
doktorska, March 2000. University of California, Santa Cruz.

[26] J. Byers, M. Frumin, G. Horn, M. Luby, M. Mitzenmacher, A. Roetter, W. Shaver. FLID-DL: Con-
gestion Control for Layered Multicast. Second Int'l Workshop on Networked Group Communication
(NGC 2000), November 2000.

[27] T. D. Chandra, V. Hadzilacos, S. Toueg. The weakest failure detector for solving consensus.
M. Herlihy, redaktor, Proceedings of the 11th Annual ACM Symposium on Principles of Distributed
Computing (PODC'92), strony 147�158, Vancouver, BC, Canada, 1992. ACM Press.

[28] T. D. Chandra, S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of
the ACM, 43(2):225�267, 1996.

[29] B. Charron-Bost, X. Defago, A. Schiper. Broadcasting messages in fault-tolerant distributed sys-
tems: The bene�t of handling input-triggered and output-triggered suspicions di�erently. SRDS
'02: Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems (SRDS'02), strona
244, Washington, DC, USA, 2002. IEEE Computer Society.

[30] J. Chase, A. Gallatin, K. Yocum. End system optimizations for high-speed TCP. IEEE Commu-
nications Magazine, 39(4):68�74, 2001.

BIBLIOGRAPHY 95

[31] W. Chen, S. Toueg, M. K. Aguilera. On the quality of service of failure detectors. Proceedings of
the International Conference on Dependable Systems and Networks (DSN 2000), New York, 2000.
IEEE Computer Society Press.

[32] X. Chen, L. E. Moser, P. M. Melliar-Smith. Reservation-based totally ordered multicasting. Proc.
16st Intl. Conf. on Distributed Computing Systems (ICDCS-16). IEEE CS, May 1996.

[33] G. Chockler, N. Huleihel, I. Keidar, D. Dolev. Multimedia Multicast Transport Service for Group-
ware. TINA Conference on the Convergence of Telecommunications and Distributed Computing
Technologies, September 1996. Full version available as Technical Report CS96-3, The Hebrew
University, Jerusalem, Israel.

[34] G. V. Chockler, I. Keidar, R. Vitenberg. Group communication speci�cations: a comprehensive
study. ACM Comput. Surv., 33(4):427�469, 2001.

[35] A. Coccoli, A. Bondavalli, F. Giandomenico. Analysis and estimation of the quality of service of
group communication protocols, 2001.

[36] A. Coccoli, S. Schemmer, F. Di Giandomenico, M. Mock, A. Bondavalli. Analysis of group com-
munication protocols to assess quality of service properties. HASE00 - 5th IEEE High Assurance
System Engineering Symposium, strony 247�256, Albuquerque, NM, USA, 2000.

[37] A. Coccoli, P. Urban, A. Bondavalli, A. Schiper. Performance analysis of a consensus algorithm
combining stochastic activity networks and measurements, 2002.

[38] F. Cristian, R. de Beijer, S. Mishra. A performance comparison of asynchronous atomic broadcast
protocols. Distributed Systems Engineering, 1(4):177�201, Czerw. 1994.

[39] F. Cristian, S. Mishra, G. Alvarez. High-performance asynchronous atomic broadcast, 1997.

[40] X. Defago, A. Schiper, P. Urban. Total order broadcast and multicast algorithms: Taxonomy and
survey. ACM Computing Surveys, 36(4):372�421, December 2004.

[41] D. DeLucia, K. Obraczka. Multicast feedback suppression using representatives. INFOCOM (2),
strony 463�470, 1997.

[42] D. Dolev, D. Malki. The Transis Approach to High Availability Cluster Communication. Commu-
nications of the ACM, 39(4), April 1996.

[43] S. Donnelly. High Precision Timing in Passive Measurements of Data Networks. Praca doktorska,
June 2002. University of Waikato, New Zeland.

[44] H. S. Duggal, M. Cukier, W. H. Sanders. Probabilistic veri�cation of a synchronous round-based
consensus protocol. Symposium on Reliable Distributed Systems, strony 165�174, 1997.

[45] S. Floyd. Congestion Control Principles. RFC 2914, September 2000. Internet Engineering Task
Force, Network Working Group.

[46] S. Floyd, K. Fall. Promoting the use of end-to-end congestion control in the Internet. IEEE/ACM
Transactions on Networking, 7(4):458�472, 1999.

[47] S. Floyd, M. Handley, J. Padhye, J. Widmer. Equation-based congestion control for unicast appli-
cations. SIGCOMM 2000, strony 43�56, Stockholm, Sweden, August 2000.

[48] R. Friedman, R. van Renesse. Strong and weak virtual synchrony in Horus. Proceedings of the
15th IEEE Symposium on Reliable Distributed Systems, (SRDS'96), October 1996.

BIBLIOGRAPHY 96

[49] R. Friedman, R. van Renesse. Packing messages as a tool for boosting the performance of total
ordering protocols. HPDC, strony 233�242, 1997.

[50] S. Frolund, F. Pedone. Revisiting reliable broadcast. Raport instytutowy HPL-2001-192, 2001.

[51] J. Gray. Why do computers stop and what can be done about it. Proceedings of the 5th Symposium
on Reliablity in Distributed Software and Database systems, Sty. 1986.

[52] G. Greenman. Msc. thesis: High speed total order for san infrastructure, June 2005. The Hebrew
University of Jerusalem, http://www.cs.huji.ac.il/labs/danss/.

[53] K. Guo, L. Rodrigues. Dynamic Light-Weight Groups. Proceedings of the 17th International
Conference on Distributed Computing Systems, (ICDCS'97), May 1997.

[54] M. Handley. TCP Friendly Rate Control (TFRC): Protocol Speci�cation. RFC 3448, January
2003. Internet Engineering Task Force, Network Working Group.

[55] M. Hayden. The Ensemble System. Phd thesis, Cornell University, Computer Science, 1998.

[56] M. Hayden, K. Birman. Probabilistic Broadcast. TR 96-1606, dept. of Computer Science, Cornell
University, Jan 1996.

[57] IBM. RS/6000 SP High Availability Infrastructure. SG24-4838, available online at:
http://www.redbooks.ibm.com/abstracts/sg244838.html.

[58] IEEE. 802.1s Multiple Spanning Tree Standard. IEEE standard.

[59] IEEE. 802.3ad Link Aggregation Standard. IEEE standard.

[60] IEEE. 802.3x Flow Control Standard. IEEE standard.

[61] P. Jalote. E�cient ordered broadcasting in reliable csma/cd networks. Proc. 18st Intl. Conf. on
Distributed Computing Systems (ICDCS-18). IEEE CS, May 1998.

[62] S. K. Kasera, G. Hjálmtýsson, D. F. Towsley, J. F. Kurose. Scalable reliable multicast using
multiple multicast channels. IEEE/ACM Transactions on Networking, 8(3):294�310, 2000.

[63] I. Keidar, J. Sussman, K. Marzullo, D. Dolev. Moshe: A group membership service for wans. ACM
Trans. Comput. Syst., 20(3):191�238, 2002.

[64] B. Kemme, F. Pedone, G. Alonso, A. Schiper. Processing transactions over optimistic atomic
broadcast protocols. Proceedings of 19th International Conference on Distributed Computing Sys-
tems (ICDCS'99), 1999.

[65] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558�565, 1978.

[66] L. Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133�169,
1998.

[67] M. Christensen, K. Kimball, F. Solensky. Considerations for IGMP and MLD Snooping Switches.
IETF draft, February 2005.

[68] L. M. Malhis, W. H. Sanders, R. D. Schlichting. Numerical evaluation of a group-oriented multicast
protocol using stochastic activity networks. PNPM '95: Proceedings of the Sixth International
Workshop on Petri Nets and Performance Models, strona 63, Washington, DC, USA, 1995. IEEE
Computer Society.

BIBLIOGRAPHY 97

[69] C. P. Malloth, A. Schiper. View synchronous communication in large scale distributed systems.
Proceedings of the 2nd Open Workshop of the ESPRIT project BROADCAST, Grenoble, France,
Lip. 1995.

[70] S. McCanne, V. Jacobson, M. Vetterli. Receiver-driven layered multicast. ACM SIGCOMM,
wolumen 26,4, strony 117�130, New York, Sier. 1996. ACM Press.

[71] Mircosof. Microsoft Wolfpack.

[72] S. Mishra, L. Wu. An evaluation of �ow control in group communication. IEEE/ACM Transactions
on Networking (TON), 6(5):571�587, 1998.

[73] L. Moll, M. Shand. Systems performance measurement on PCI pamette. K. L. Pocek, J. Arnold,
redaktorzy, IEEE Symposium on FPGAs for Custom Computing Machines, strony 125�133, Los
Alamitos, CA, 1997. IEEE Computer Society Press.

[74] L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, C. A. Lingley-Papadopoulos.
Totem: A Fault-Tolerant Multicast Group Communication System. Communications of the ACM,
39(4), April 1996.

[75] J. Nagle. Congestion Control in TCP/IP Internetworks. RFC 896, January 1984.

[76] O.Bakr, I. Keidar. Evaluating the running time of a communication round over the internet. 21th
Annual ACM Symposium on Principles of Distributed Computing (PODC), strony 243�252, 2002.

[77] J. Padhye, V. Firoiu, D. Towsley, J. Krusoe. Modeling TCP throughput: A simple model and its
empirical validation. ACM SIGCOMM '98 conference on Applications, technologies, architectures,
and protocols for computer communication, strony 303�314, Vancouver, CA, 1998.

[78] J. Padhye, V. Firoiu, D. F. Towsley, J. F. Kurose. Modeling TCP Reno performance: a simple
model and its empirical validation. IEEE/ACM Transactions on Networking, 8(2):133�145, April
2000.

[79] S. Paul, K. Sabnani, J. Lin, S. Bhattacharyya. Reliable multicast transport protocol (RMTP).
IEEE Journal on Selected Areas in Communications, April 1997.

[80] V. E. Paxson. Measurements and Analysis of End-to-End Internet Dynamics. Praca doktorska,
University of California, Lawrence Berkeley National Laboratory, April 1997.

[81] F. Pedone, A. Schiper. Optimistic atomic broadcast. Proceedings of the 12th International Sym-
posium on Distributed Computing, strony 318�332. Springer-Verlag, 1998.

[82] F. Pedone, A. Schiper, P. Urban, D. Cavin. Solving agreement problems with weak ordering ora-
cles. EDCC-4: Proceedings of the 4th European Dependable Computing Conference on Dependable
Computing, strony 44�61. Springer-Verlag, 2002.

[83] D. Powell. Delta-4: A Generic Architecture for Dependable Distributed Computing. Springer-
Verlag, 1991.

[84] M. Rabin. Randomized byzantine generals. 24th Annual ACM Symposium on Foundations of
Computer Science, strony 403�409, 1983.

[85] H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, W. H. Sanders. Quantifying the cost of pro-
viding intrusion tolerance in group communication systems. DSN '02: Proceedings of the 2002
International Conference on Dependable Systems and Networks, strony 229�238, Washington, DC,
USA, 2002. IEEE Computer Society.

BIBLIOGRAPHY 98

[86] I. Rhee, N. Ballaguru, G. N. Rouskas. MTCP: Scalable TCP-like congestion control for reliable
multicast. INFOCOM. IEEE, Mar. 1999.

[87] I. Rhee, S. Cheung, P. Hutto, V. Sunderam. Group Communication Support for Distributed Mul-
timedia and CSCW Systems. 17th Intl. Conference on Distributed Computing Systems, May 1997.
Also available as technical report of Dept. of Mathematics Computer Science, Emory University,
Atlanta, GA 30322.

[88] I. Rhee, V. Ozdemir, Y. Yi. Tear: Tcp emulation at receivers � �ow control for multimedia
streaming, 2000.

[89] A. I. T. Rowstron, A.-M. Kermarrec, M. Castro, P. Druschel. SCRIBE: The design of a large-scale
event noti�cation infrastructure. Networked Group Communication, strony 30�43, 2001.

[90] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: a tutorial.
ACM Comput. Surv., 22(4):299�319, Gru. 1990.

[91] N. Sergent, X. Défago, A. Schiper. Impact of a failure detection mechanism on the perfor-
mance of consensus. PRDC '01: Proceedings of the 2001 Paci�c Rim International Symposium on
Dependable Computing, strona 137, Washington, DC, USA, 2001. IEEE Computer Society.

[92] A. Sousa, J. Pereira, F. Moura, R. Oliveira. Optimistic total order in wide area networks. Proc.
21st IEEE Symposium on Reliable Distributed Systems, strony 190�199. IEEE CS, October 2002.

[93] J. B. Sussman, I. Keidar, K. Marzullo. Optimistic virtual synchrony. Symposium on Reliability in
Distributed Software, strony 42�51, 2000.

[94] K. Tindell, A. Burns, A. J. Wellings. Analysis of hard real-time communications. 9(2):147�171,
Wrze. 1995.

[95] P. Urbán, X. Défago, A. Schiper. Contention-aware metrics for distributed algorithms: Comparison
of atomic broadcast algorithms. Proc. 9th IEEE Int'l Conf. on Computer Communications and
Networks (IC3N 2000), Paz. 2000.

[96] P. Urbán, X. Défago, A. Schiper. Chasing the FLP impossibility result in a LAN or how robust
can a fault tolerant server be? Proc. 20th IEEE Symp. on Reliable Distributed Systems (SRDS),
strony 190�193, New Orleans, LA, USA, October 2001.

[97] P. Urbán, X. Défago, A. Schiper. Neko: A single environment to simulate and prototype distributed
algorithms. Journal of Information Science and Engineering, 18(6):981�997, November 2002.

[98] P. Urban, I. Shnayderman, A. Schiper. Comparison of failure detectors and group membership:
Performance study of two atomic broadcast algorithms. 2003.

[99] P. Urbán, I. Shnayderman, A. Schiper. Comparison of failure detectors and group membership:
Performance study of two atomic broadcast algorithms (extended version). Raport instytutowy
IC/2003/15, École Polytechnique Fédérale de Lausanne, Switzerland, April 2003.

[100] R. van Renesse, K. P. Birman, S. Ma�eis. Horus: A Flexible Group Communication System.
Communications of the ACM, 39(4), April 1996.

[101] R. van Renesse, T. M. Hickey, K. P. Birman. Design and Performance of Horus: A Lightweight
Group Communications System. TR 94-1442, dept. of Computer Science, Cornell University,
August 1994.

BIBLIOGRAPHY 99

[102] P. Vicente, L. Rodrigues. An indulgent uniform total order algorithm with optimistic delivery.
Proc. 21st IEEE Symposium on Reliable Distributed Systems. IEEE CS, October 2002.

[103] L. Vicisano, L. Rizzo, J. Crowcroft. TCP-like congestion control for layered multicast data transfer.
INFOCOM (3), strony 996�1003, 1998.

[104] W. Wadge. Achieving gigabit performance on programmable ethernet network interface cards.
2001. http://www.cs.um.edu.mt/ ssrg/wthesis.pdf.

[105] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad, M. Newbold, M. Hibler, C. Barb,
A. Joglekar. An integrated experimental environment for distributed systems and networks. Proc.
of the Fifth Symposium on Operating Systems Design and Implementation, strony 255�270, Boston,
MA, Gru. 2002. USENIX Association. url: www.emulab.net.

[106] J. Widmer, R. Denda, M. Mauve. A survey on TCP-friendly congestion control. IEEE Network,
15(3):28�37, 2001.

[107] J. Widmer, M. Handley. Extending Equation-Based congestion control to multicast applications.
strony 275�286.

[108] R. Yavatkar, J. Gri�oen, M. Sudan. A reliable dissemination protocol for interactive collaborative
applications. ACM Multimedia, strony 333�344, 1995.

[109] S. Zhuang, B. Zhao, A. Joseph, R. Katz, J. Kubiatowicz. Bayeux: An architecture for scalable and
fault-tolerant widearea data dissemination, 2001.

