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Abstract

The performance of many middleware distributed systems may be limited by the number of
transactions they are able to support per unit of time. In order to achieve fault tolerance and
to boost system performance, active state machine replication is frequently used. It employs
total ordering service to keep the state of replicas synchronized. In this work we present an
architecture that enables drastic increase in the number of ordered transactions in a cluster,
using off-the-shelf network equipment. Performance supporting nearly one million ordered

transactions per second was achieved, which substantiates our claim.
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Chapter 1

Introduction

1.1 Motivation

The main focus of distributed computing has traditionally been the design that enables dis-
tributed software systems to achieve a common goal. Since most of participating components
in a distributed system are software modules, it was naturally to assume that the number
of “transactions” a distributed system could generate and handle was limited mainly by the
CPU resources.

A recent technological trend is the introduction of hardware elements in distributed
systems. Implementation of parts of a distributed system in hardware immediately imposes
performance requirements on the software parts of the system. An example of a system that
combines hardware and software elements is a high capacity Storage Area Network. Such
a system combines a cluster of PC’s, Disk Controllers and switches that inter-connect and
can benefit from high-speed total order.

This work shows how message ordering can be guaranteed in a distributed setting, along
with a ten-fold increase in the number of “transactions” produced and processed. The
proposed architecture uses off-the-shelf technology with minor software adaptations.

Message ordering is a fundamental building block in distributed systems. “Total Order”
is one of the basic message delivery order guarantees, allowing distributed applications to
use the state-machine replication model to achieve fault tolerance and data replication.
Extensive analysis of algorithms providing total ordering of messages can be found in [1].
One of the most popular approaches to achieve total order of messages is by using a sequencer
that assigns order to all messages invoked. This scheme, however, is limited by the capability
of the sequencer to order messages, e.g., CPU power. The goal of the methodology presented
in this work is to achieve a hardware-based sequencer while using standard off-the-shelf
network components. The specific architecture proposed uses two commodity Ethernet
switches. The switches are edge devices that support legacy layer 2 features, 802.1qg VLANSs
and inter VLAN routing, which are connected via a Gigabit Ethernet link and a cluster
of dual homed PCs (two NICs per PC) that are connected to both switches. One of the



switches functions as the wvirtual sequencer for the cluster. Since the commodity switch
supports wirespeed on its Gigabit link, we can achieve near wirespeed traffic of a totally
ordered stream of messages.

In this work, we elaborate on the specific architecture, its assumptions, and the ad-
justments made to the software of the PCs. The performance results presented show near
wirespeed traffic of totally ordered messages is now a reality. Part of our approach is a
highly efficient optimistic delivery technique which can be utilized in various environments

such as replicated databases, as shown in [2].

1.2 Overview of the SAN technology

Storage Area Network (SAN) is the major area where message ordering is a considerable
bottleneck. We start the discussion by presenting a short overview of SAN and several
popular SAN architectures.

A SAN is a storage solution, designed to provide enormous amounts of mass storage to
an enterprise, along with high speed, reliability, scalability and additional advanced services.
There exist various ways to access storage. The most simple one is the embedded (or directly
attached) storage, when the storage devices are connected directly to a server. Another
solution is network attached storage (NAS), when the storage devices are attached directly
to a LAN. While these technologies can meet the requirements of a small environment, they
have several drawbacks for larger systems. The disadvantage of the first one is the difficulty
to achieve scalability and reliability. The disadvantage of NAS is that the storage related
traffic can degrade the overall performance of a LAN. For a client to access data, it should
first access a server, which will send a request to a storage device. The reply from the storage
device (along with the data itself) will be sent back to the server, which in turn will reply
to the client. In SAN, the storage is placed behind the servers using a separate network.
Figure 1 shows the basic SAN topology, which can be built from the off-the-shelf components.
The servers are connected to the storage devices using a combination of hubs and switches.
There are multiple paths among servers and disks in order to avoid single point of failure.
The limitations of distance and number of ports can be overcame by cascading the network
devices (hubs and switches). The most common communication protocols used in SAN are
Fibre Channel and Ethernet, although systems utilizing InfiniBand start to emerge. The
standard data transfer protocols, such as SCSI can be extended for SAN, there are standards
for SCSI over Fiber Channel (FCP) and over Ethernet (iSCSI).

In order to take the most of the potential suggested by the SAN approach, more complex
systems can be built. An example of such system is Storage Tank [3], which is a SAN-based
distributed file system and storage control system. It provides data sharing, centralization
of the management functions (backup, restore, snapshot, allocation), reliability and I/O
performance comparable to local file systems. In addition, it provides virtualization layer,

i.e. logical storage devices, when one such device can span over several physical devices. The
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architecture of Storage Tank is presented at Figure 2. The clients are the data consumers.
The servers (on the right) are responsible for managing file system meta-data, such as file
attributes, security information and data state locks. In addition, the servers provide load
balancing and fail-over processing. There are two logical networks in the system. The first
one is the control network, used for the communication between clients and the meta-data
servers, it is a general purpose IP network. The second one is a high-speed SAN, used
only for data transfer. One can note that in this system the data and meta-data are stored
separately, the meta-data are never accessed directly by a client and should be accessible to
all meta-servers.

There are a lot of challenges when designing such system, a few of them are listed next:

e An effective and scalable way to manage data locks should be found. The situation of

failure or isolation of a client holding a lock should be considered;

e Efficient caching scheme for such distributed environment should be implemented. In

addition to caching the data itself, the meta-data (such as locks) could be cached as
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Figure 2: Storage Tank Architecture

e An efficient way to authenticate clients should be suggested.
ularly difficult in the environment described above, since clients can access storage

devices directly and the computation power of the storage devices is relatively low;

This problem is partic-

e Another question is how to implement the system administration tasks (including

backup and snapshot) without degrading the performance;

The architectures shown above are not the only way to implement SAN. In the following

section yet another solution will be presented and an application that emerged as a result

of a real problem encountered during development of a SAN device will be discussed.

1.3 Special SAN Implementation Review

One of the popular SAN architectures, shown at Figure 3, consists of powerful clients,
such as mainframes, connected to storage devices (disks) via the network. Special switches

implement the connection between clients and disks. Those switches, called SAN fabric,

implement standard protocols for communication with storage devices. The protocols allow
simultaneous disc access to the same block via different paths. One of the purposes for such
redundant connectivity is to provide fault-tolerance and achieve better performance. The

standard installation uses more than one switch in parallel to avoid a single point of failure.
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There is a need for a middleware that allows, on the one hand, to enhance the SAN with
advanced services, and, on the other hand, to support the old legacy protocols and to be
transparent for both the mainframes and the disks. An example of such advanced service is
a snapshot!. A common practice is to replace the SAN fabric with a cluster of PCs, thus
implementing SAN services in software. Each PC in the cluster is equipped with a number
of Host Based Adapters (HBA).

In order to avoid a single point of failure, each storage device (e.g., disk, RAID, JBOD)
is connected to at least two PCs in the cluster. To implement the snapshot service, the
PCs use a replicated state. For each block on the disks, the state can be copied, uncopied
or locked. When a snapshot is started, all the blocks are marked as uncopied, and a room
for a copy of each block is allocated on the disks. When a write request arrives at a PC, it
checks the state of the block, and if it is uncopied the PC issues a “copy-on-write” command
to the disk controller. So that two PCs will not send “copy-on-write” for the same block,
the block state should be synchronized. An effective way of synchronization is to enforce
an order on the requests that will guarantee that no two “copy-on-write” commands for the
same block are executed simultaneously. Each PC sends a lock request when it is required
to write on uncopied block. When a node receives lock request to a uncopied block b, the

node changes the state of b to locked. The sender of the lock request also performs “copy-on-

LA snapshot is an instantaneous global picture of a system.
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write” command. When the execution of the command is completed, the node sends unlock
request. Fach PC keeps the state of each block locally, and the state is updated only when
the requests are delivered in the final order. The state changes according to the following

state machine:

lock unlock snapshot

uncopied —  locked — copied — uncopied

However, total order by itself does not provide a solution, since a PC could crash during
sending the “copy-on-write” command, making it impossible to distinguish between the cases
when the block was/was not copied and overwritten. In order to overcome this difficulty,
journal file system implemented by the disks can be used. When a node fails, it is possible

to use the journal on the disk to know the last operation.

12



Chapter 2
Functional Specification

2.1 Model and Environment

The distributed setting is composed of a set of computing elements (PCs, CPU based con-
trollers, etc.) residing on a LAN connected by switches. The computing elements, referred
to as nodes, can either be transaction initiators (senders), or receivers, or both.

The nodes are connected via full-duplex links through commodity switches. We assume
that the switches support IGMP snooping [4]. Support of traffic shaping is not mandatory,
but is highly recommended. In addition, the switches can optionally support jumbo frames,
IP-multicast routing and VLANs.

The communication links are reliable, with a minimum chance of packet loss. The main
source of packet loss is buffer overflow rather than a link error. In Section 3.4.2, we discuss
the fault tolerance issues. We assume that the participating group of nodes is already known.
Dynamic group technology can be used to deal with changes in group membership, although

this case is not considered in this work.

2.2 Problem Definition

The main goal of our study is to provide an efficient mechanism for total ordering of messages.
The target is to drastically increase the number of messages that can be invoked and handled
concurrently.

When comparing ordering algorithms, it is important to consider the guarantees provided
by each algorithm. Most algorithms attempt to guarantee the order required by a replicated
database application, namely, Uniform Total Order (UTO). We present here the formal
definition which appears in [5].

UTO is defined by the following primitives :

e UTO1 - Uniform Agreement : If a process (correct or not) has UTO-delivered(m),

then every correct process eventually UTO — delivers(m).

13



e UTO2 - Termination : If a correct process sends m, then every correct process

eventually delivers m according to UTO.

e UTO3 - Uniform Total Order : Let m; and my be two sent messages. It is
important to note that m; < my if and only if a node (correct or not) delivers m; before

my. Total order ensures that the relation “<” is acyclic.

e UTO4 - Integrity : For any message m, every correct process delivers m at most

once, and only if m was previously broadcasted.

In addition to the above definition, our system guarantees FIFO for each process.

e FIFO Order : If m; was sent before my by the same process, then each process

delivers m; before m,.

Before a UTO is agreed on, a Preliminary Order (PO) is “proposed” by each of the
processes. If the PO is identical for all correct (non-faulty) processes, it is called Total
Order (TO). PO and TO should either be confirmed or changed by the UTO later.

14



Chapter 3

Implementation

As noted above, our implementation of Total Ordering follows the philosophy behind a
sequencer-based ordering. However, we implement this sequencer using off-the-shelf hard-
ware which is comprised of two Ethernet switches and two Network Interface Cards (NICs)
per node. For simplicity of presentation, we assume that all the nodes are directly connected
to the two switches. However, our algorithm can work in an arbitrary network topology as
long as the topology maintains a simple constraint: all the paths between the set of NICs
for TX and the set of NICs for RX share (intersect in) at least one link (see Section 4.7 for
scalability discussion).

We assume that all the network components preserve FIFO order of messages. This
implies that, once a packet gets queued in some device, it will be transmitted according
to its FIFO order in the queue. It is noteworthy that if QoS is not enabled on a switch,
the switch technology ensures that all frames, received on a network interface of the switch
and egressing via the same arbitrary outgoing link, are transmitted in the order they had
arrived; i.e., they preserve the FIFO property. We verified this assumption and found that
most switches indeed comply with it, the reason being that the performance of TCP depends
on it. Similarly to TCP, our algorithm makes use of this feature for performance optimization
but does not require it for the algorithm correctness.

In our implementation, multicast is used in order to efficiently send messages to the
nodes’ group. Our goal is to cause all these messages to be received in the same order by the
set of nodes that desire to get them (the receivers group). To achieve this, we dedicated a
single link between the two switches on which the multicast traffic flows. Figure 4 shows the
general network configuration of both the network (the switches) and the attached nodes.
The methodology of the network is such that all the nodes transmit frames via a single NIC
(TX NIC connected to the “left” switch in the figure) and receive multicast traffic only via
the other NIC (RX NIC connected to the “right” switch in the figure). This ensures that
received multicast traffic traverses the link between the switches. Since all multicast traffic
traverses a single link, this ensures that all traffic is transmitted to the nodes in the same

order via the second switch. As the switches and the links preserve the FIFO order, this in
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turn implies that all the messages are received in the same order by all the nodes.

In a general network setting, there is a chance, albeit a small one, that a message omission
may occur due to an error on the link or a buffer overflow (e.g. in the NIC, OS or in the
switch). In a collision-free environment (like full-duplex switched environment), a link error
is very rare. In addition, buffer overflow can be controlled using a flow control mechanism.
Thus, the hardware mechanism enhanced with the proposed flow control (described in the
next section), ensures, with high probability, the same order for all received messages. Ways

to handle message omission when faults occur are discussed in Section 3.4.2.

3.1 Providing UTO

The preliminary ordering of the hardware configuration is not enough to ensure UTO because
messages may get lost or nodes may fail. To address this issue, our protocol uses a simple
positive acknowledgment (ACK) scheme for ensuring that the PO is identical at all the
receivers. Each receiver node UTO-delivers a message to the application only after it has
collected ACKs from each receiver node in the system. In order to reduce the number of
circulating auxiliary control messages in the system, the ACKs are aggregated according to
a configurable threshold parameter. If the system settings are such that each sender node
is also a receiver, the ACK messages can be piggybacked on regular data messages.

For the sake of reliability, the sender node needs to hold messages for some period of time.
This implies that sender nodes need to collect ACK messages, even though they do not de-
liver messages to the application. The ACK messages are used by a flow control mechanism
(termed as local flow control in [6]) in order to maintain the transmission window. Each
sender node is allowed to send the next data message only if the number of messages which

were originated locally and are still unacknowledged by all the receiver nodes is less than

16



a defined threshold value (the transmission window size). Since the ACKs are aggregated,
the number of messages that could be sent each time may vary. In order to increase the
performance for small messages, a variation of a Nagle algorithm [7] is used as described in
Section 3.2.1. Since the main source of message losses is buffer overflow, careful tuning of
the flow control mechanism combined with ACKs aggregation can reduce the risk of losing
messages. For our particular configuration, we identified the right combination of window
size and number of aggregated ACKs to achieve maximum throughput. The specific imple-
mentation of the flow control mechanism presented in this work allows overall performance

to converge to the receiving limit of the PCI bus.

3.2 Optimizations for Achieving High Performance

Various applications may be characterized by different message sizes and packet generation
rates. For example, one application may be in a SAN environment in which it is reasonable
to assume that the traffic can be characterized by a very large amount of small messages
(where the messages will carry meta-data, i.e. a lock request). Another application can be
a “Computer Supported Cooperative Work” (CSCW) CAD/CAM in which data messages
may be large. In view of these modern applications, the need to achieve high performance
is obvious. Below a description is presented of the mechanisms and techniques we have

implemented and measured in order to reach that goal.

3.2.1 Packet Aggregation Algorithm

It was stated by [8] that at high loads, the message packing is the most influential factor
for total ordering protocols. We use an approach similar to that in the Nagle algorithm [7],
in order to cope with a large amount of small packets. Only the messages whose transmission
is deferred by flow control are aggregated in buffers. The most reasonable size of each buffer
is the size of an MTU. When the flow control mechanism shifts the sliding window by n

messages, up to n “large” messages will be sent.

3.2.2 Jumbo frames

The standard frame size in Gigabit Ethernet is ~1512 bytes. The size of the jumbo frame
is ~9000 bytes. Numerous studies show there is influence of the MTU size on the overall
performance, such as [9], which reports increased performance for jumbo frames. The main

reasons for the performance improvement include:
e lower number of interrupts (when moving the same amount of data) and
e less meta-data overhead (headers).
In order to fully benefit from the use of jumbo frames, all components of the system should

be configured to support it; otherwise, fragmentation will occur. Since we control all the

17



components in the proposed system, we do not face this problem. Performance results prove
that jumbo frames allow to obtain better throughput. For example, in the configuration of

two senders and three receivers we achieve a maximum throughput of 722Mb/s.

3.3 Multicast Implementation Issues

As mentioned above, every node is dual-homed, i.e. is connected to the network with two
NICs. In the IP multicast architecture, a packet accepted on some interface must be received
on the same interface from which the node sends unicast traffic towards the source of the
multicast packet. This condition is called the Reverse-Path-Forwarding (RPF) test, which is
performed in order to detect and overcome transient multicast routing loops in the Internet.
However, this poses a problem for our network settings, since we intend to receive the
multicast traffic from the RX NIC while we are transmitting it from the TX NIC. There are

several options for overcoming this difficulty, including;:
e disabling the RPF test on the particular node;

e ensuring that the source address of the multicast packets has the same subnet portion
as the NIC on which it is received (i.e., the RX NIC in our case).

We used the second approach and modified the RX flow in the NIC driver, so that it spoofs
the source IP address of the packet. Another issue related to the usage of IP multicast in
our settings is that self-delivery of multicast packet is usually done via internal loopback.
Packets that are sent by the local host and are supposed to be received by it are usually
delivered immediately by the operating system. We disabled this feature, so that ALL
delivered packets are received via the RX NIC and thus all the packets pass through the

same delivery process (so that total order is maintained).

3.4 Fault Tolerance and Failure Detection

Faults may occur at various levels of packet handling. Over the years, a variety of tech-
niques have been proposed for building fault-tolerant systems. The techniques used in our
implementation can currently handle some types of faults. Below, we discuss fault-tolerance

techniques that are applicable to our system.

3.4.1 Failure Detectors

Failures can be caused by different sources: a switch failure, a physical link disconnection,
a failure of a process and a crash of a node running the process. All these failures can be
identified by failure detectors. The easiest event to reveal is a failure of a physical link or of
a switch, which can be detected by the hardware. Network equipment sends a SNMP trap

notifying about the failure and generated by software that operates network components.
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For example, when a switch discovers that a link to its peer is down, it usually sends a
SNMP message to a node. Upon receiving such a message, the node informs all the nodes
about the configuration change.

A process crash failure is detected by the node’s operating system. We propose to
use TCP/IP connections to propagate this information to other nodes, using Congress [10]
implementation. When a process fails, the operating system closes the process’s connections
on its node. The peers of its TCP/IP connections recognize this as an indication of the
process crash and notify other nodes. To enhance the reliability of this mechanism, it is
possible either to reduce the TCP KEEPALIVE timer or to issue heartbeat messages above
the TCP connections, in order to facilitate a faster TCP failure detection. It is important
to note that Congress maintains a tree of TCP/IP connections, but not a full mesh among
the groups of nodes mentioned.

Those failure detector mechanisms, however, are still not robust enough: for instance, a
SNMP trap message can be lost. A more reliable mechanism is an application-level “heart-
beat” which usually works in connectionless mode and monitors the “liveness” of a set of
peers. If the mechanism suspects that a monitored process has failed, e.g., when it does not
send a heartbeat message for a long time, the node’s failure is declared and the other nodes

are notified.

3.4.2 Fault tolerance

Typically, leader-based message ordering systems like Isis [11] suggest how to handle
faults. Our approach is compatible with these systems and can be used as the main module
in their ordering protocols. When a failure is detected, the proposed system returns to a
known software-based ordering scheme that is slower than our protocol. When the system
is stabilized, our ordering scheme can be resumed. Below, we outline the main aspects of
this transition.

For example, Isis implements wvirtual synchrony [12] approach that informally guarantees
that processes moving from view v to a new view V' deliver the same set of messages in v.
A recent work [13] proposes a way to implement virtual synchrony most of the time within
one round. It relies on an existing membership service which delivers two kinds of messages,
i.e. start_membership_change and view. A client-server architecture is suggested where the
membership service is the server and the participating nodes are the clients. The work also
suggests how to merge message dissemination service with the membership service in order
to achieve virtual synchrony. In brief, when the membership service suspects a process,
it sends start_membership_change notifications to all the processes, and they then reliably
exchange information about their state. When the membership service converges to an
agreed membership view, it sends the new view V' to the processes. The group members use
this view v and the state data received from other processes listed in V' in order to decide
which set of messages should be delivered in the previous view v.

An alternative approach is Paxos [14]. Our virtual sequencer may serve as the leader

19



in Paxos. When a process receives message m from the virtual sequencer, it sends the
announce message to all the processes. The announce message contains m’s id and the
corresponding PO number. When a process receives equal announce messages from the
majority of processes, it sends precommit message. When the majority of precommit messages
are collected and all the preceding messages are delivered, the process is able to deliver
message m and send decision message to all processes, which resembles Paxos algorithm [14]!.

A similar approach to the above mentioned protocol was presented by Pedone et al. [15].
The authors define a weak ordering oracle as an oracle that orders messages that are broad-
cast, but is allowed to make mistakes (i.e., the broadcast messages might be delivered out of
order). The paper shows that total-order broadcast can be achieved using a weak ordering
oracle. The approach is based on the algorithm proposed in [16]. In [15] another algorithm
is also proposed that solves total order broadcast in two communication steps, assuming
f < %. This algorithm is based on the randomized consensus algorithm proposed in [17].
It should be noted that this solution requires collecting ACKs only from n— f processes.
Our virtual sequencer may serve as the weak ordering oracle for the algorithm proposed by
Pedone et al. [15].

In our study, we implemented a loss-of-packet failure handling. The proposed algorithm
contains a built-in method for identifying and retransmitting a missing packet by introducing
a leader node whose order takes over when a conflict occurs. It is noteworthy that nodes in
our system do not wait for the leader’s ordering in failure-free scenarios. The leader’s order
is used only when a conflict occurs, thus our implementation follows the approach proposed
in [18].

Another type of failure is a crash of a switch or disconnection of a link between switches.
In order to solve the problem, we propose to increase the number of switches, to connect
them in a mesh network and to enable each pair of switches to serve as virtual sequencer.
The spanning-tree algorithm [19] is used to prevent loops. A dedicated TP multicast group
is associated with each virtual sequencer. This solution allows to build a system with {42

switches, where f is the maximum number of tolerated switch/link failures.

1While in Paxos there is a stage at which the leader collects the ACK messages from the majority of
the processes, in our system it is enough to collect the majority of precommit messages only, since all the

processes send the precommit messages in multicast to all group members.
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Chapter 4
Performance Analysis

4.1 Overview

This section presents the results of the experiments performed to evaluate the architecture.

The following configuration was used:

1. Five end hosts: Pentium-III/550MHz, with 256 Mb of RAM and 32 bit 33 MHz PCI
bus. Each machine was equipped also with two Intel®Pro/1000MT Gigabit Desktop
Network Adapters. The machines ran Debian GNU/Linux 2.4.25.

2. Switches: Two Dell PowerConnect 6024 switches, populated with Gigabit Ethernet
interfaces. These switches are “store and forward” switches (i.e., a packet is transmitted

on an egress port only after it is fully received).

The experiments were run on an isolated cluster of machines. For each sample point
on the graphs below and for each value presented in the tables, the corresponding exper-
iment was repeated over 40 times with about 1 million messages at each repetition. We
present the average values with confidence intervals of 95%. Unless otherwise specified,
the packet size in the experiments was about 1500 bytes (we also experimented with small

packets and with jumbo frames). The throughput was computed at the receiver side as

packet sizexaverage number of delivered packets
test time

number of messages every configurable timeout. However, in most Operating Systems, and

. In order to simulate an application, we generated a

in particular in Linux 2.4, the accuracy of the timing system calls is not sufficient to induce
the maximal load on the system. We therefore implemented a traffic generation scheme
that sends as many messages as possible after each received ACK. Since the ACKs were

aggregated, the size of the opened flow control window varied each time.
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4.2 Theoretical bounds

It is important to observe that, regardless of the algorithm used to achieve the Total Order of
messages, there are other system factors that limit the overall ordering performance. One of
the bottlenecks that we encountered results from the PCI bus performance. In [20] it is shown
that the throughput achieved by PCI bus in the direction from the memory to the NIC is
about 892Mb /s for packets of 1512 bytes size and about 1 Gbit/s for jumbo frames. However,
a serious downfall in the PCI bus performance was detected in the opposite direction, when
transferring the data from the NIC to the memory. The throughput of 665Mb/s only for
packets of 1512 bytes size and 923Mb/s for jumbo frames was achieved. Thus, the throughput
allowed by PCI bus imposed an upper bound on the performance of a receiver node in our
experiments. There are various studies on PCI bus performance, e.g. [21], which suggest
several benchmarks and techniques for tuning. We chose not to focus on this issue, since
the latest PCI bus technology (e.g., PCI-X) achieves much larger throughput. As will be
shown later, we have nearly reached the theoretical and experimental upper bounds of the
PCI bus.

4.3 Overview of Measurements

We first discuss the best throughput results obtained for each configuration. The latency
obtained per result is presented as well. Two types of configurations were used: those
where all the nodes were both senders and receivers (all-to-all configurations), and those in
which the sets of senders and receivers were disjoint. It is important to note that for some
configurations, such as the all-to-all configuration and the experiments with the jumbo-
frames, we utilized the traffic shaping feature of the switching device, namely the one that
is connected to the TX NICs. This ensured that no loss occurred on a node due to the PCI
bus limitations. The main benefit of using traffic shaping is the limit it imposes on traffic
bursts that were the major cause for packet drops in our experiments. Since the purpose of
this series of the experiments was to obtain the best performance achievable, we tuned the
system parameters (i.e., traffic shaping, flow control window size, etc.) for each configuration

on an individual basis.

4.3.1 All-to-all Configurations

Results for all-to-all configurations and configurations with dedicated senders are dis-
cussed separately, since when a node serves as both a sender and a receiver, the CPU and
PCI bus utilization patterns differ and the node is overloaded.

Table 1 presents throughput and latency measurements for all-to-all configurations along
with the corresponding confidence intervals, shown in parentheses. The nodes generate traffic
at the maximum rate bound by the flow control mechanism. Two different latency values are

presented: PO Latency and UTO Latency. PO Latency is defined as the time that elapses
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Nodes | Throughput | PO Latency | UTO Latency
Number Mb/s ms ms
3 310.5 (0.08) 4.2 (0.03) 6.5 (0.03)
4 344.4 (0.04) 4.4 (0.02) 6.8 (0.02)
5 362.5 (0.09) 4.1 (0.02) 6.7 (0.02)

Table 1: Throughput and Latency for all-to-all configuration

between transmission a of message by a sender and its delivery by the network back to the
sender. UTO Latency is defined as the time elapsed between a message transmission by a
sender and the time the sender receives ACKs for this message from every receiver.

The number of the nodes that participated in this experiment increases from 3 to 5. As
presented in Table 1, the achieved throughput increases with the number of participating
nodes. This is accounted for the PCI bus behavior ( See Section 4.2). Since each node both
sends and receives data, the load on the PCI is high, and the limitation is the boundary of
the total throughput that can go through the PCI bus. As the number of nodes grows, the
amount of data each individual node can send decreases. When a node sends less data, the
PCI bus enables it to receive more data. The nonlinearirity of the increase in throughput in
this experiment can be attributed to the above mentioned property of the PCI bus, where
the throughput of transferring data from memory to NIC is higher than in the opposite

direction.

4.3.2 Disjoint Groups of Senders and Receivers

Table 2 presents the performance results of throughput measurements for disjoint sets
of nodes. We used 2-5 nodes for various combinations of groups of senders and receivers.
The maximum throughput of ~512.7Mb/s was achieved. In the trivial configuration of a
single sender and a single receiver, the result is close to the rate achieved by TCP and UDP
benchmarks in a point-to-point configuration, where the throughput reaches 475Mb/s and
505Mb/s, respectively. The lowest result was registered for a single sender and four receivers,
the achieved throughput of 467Mb/s not falling far from the best throughput.

For a fixed number of receivers, varying the number of senders yields nearly the same
throughput results. For a fixed number of senders, increasing the number of receivers de-
creases the throughput. The reason is that a sender has to collect a larger number of ACKs
generated by a larger number of receivers. It is noteworthy that the flow control mechanism
opens the transmission window only after a locally originated message is acknowledged by
all the receiver nodes. Possible solutions to this problem are discussed in Section 4.7.

Table 3 presents the results of UTO latency measurements at the receiver’s side. As can

be seen, in case of a fixed number of senders, increasing the number of receivers increases the
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Receivers

Senders 1 2 3 4
1 512.7 (0.47) | 493.0 (0.17) | 477.0 (0.34) | 467.1 (0.40)
2 512.5 (0.27) | 491.7 (0.67) | 475.7 (0.33)
3 510.0 (0.55) | 489.6 (0.41)
4 509.2 (0.30)

Table 2: Throughput (Mb/s) for different configurations

Receivers
Senders 1 2 3 4
1 2.3 (0.003) | 3.1 (0.035) | 3.2 (0.045) | 3.1(0.012)
2 2.5 (0.002) | 3.1(0.025) | 3.4 (0.040)
3 3.2 (0.004) | 3.6 (0.041)
4 4.9 (0.003)

Table 3: UTO Latency (ms) for different configurations

latency. The explanation is similar to that for the throughput measurement experiments:
the need to collect ACKs from all the receivers. Increasing the number of senders while the
number of receivers is fixed causes an increase in the UTO Latency. Our hypothesis is that
this happens due to an increase in the queues both at the switches and at the hosts.

As was mentioned above, in case a node either sends or receives packets, the utilization
of the PCI bus and other system components is different from the case when a node acts as
both a sender and a receiver. For this reason, the results presented in this section cannot

be compared with those described above.

4.4 Tradeoffs of Latency vs. Throughput

In this section, we discuss the effect of an increased load on latency. In order to study the
tradeoff of Latency vs. Throughput, a traffic generation scheme different from that in the
previous experiments was used. The scheme was implemented by a benchmark application

that generated a configurable amount of data.

4.4.1 All-to-all Configuration

In this section, all-to-all configuration is considered. Figure 5 shows the latencies for the
5-node configuration. Obviously, the UTO latency is always larger than the PO latency.

One can see an increase in the latencies when the throughput achieves the 50Mb/s value,
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Figure 5: Latency vs. Throughput (all-to-all configuration)

i.e. a point from which small transient packet backlogs were created, and then a slight
increase until the throughput approaches about 250Mb/s. After this point, the latencies
start increasing. The PO latency reaches the value of about 1ms and UTO of about 3ms for
throughput of about 330Mb/s.

We also measured the Application UTO Latency, which is the time interval from the
point when the application sent a message until it can be “UTO delivered”. One can see
that when throughput increases, the Application UTO Latency increases too. This happens
because the Linux 2.4 kernel allows events to be scheduled with a minimal granularity of
10ms. Thus, in order to generate a considerable load, the benchmark application has to
generate an excess number of packets every 10ms. Packets that are not allowed to be sent
due to the flow control mechanism are stored in a local buffer data structure. When ACKs
arrive, the flow control mechanism enables sending some more packets previously stored
for transmission. Packets that cannot be immediately sent increase the Application UTO

Latency.

4.4.2 Large Packet Sizes

Figure 6 shows how increasing the application packet size, along with increasing the
MTU size,affects the Application UTO Latency. In this experiment, we used disjoint groups
of two senders and three receivers. We compared results achieved for jumbo frames with
those obtained for regular Ethernet frames of MTU size. As expected, with jumbo frames
larger throughput can be achieved, mainly due to the significantly reduced amount of PCI
transactions.

When throughput increases, the Application UTO Latency increases, too, the reasons
being the same as for the “all-to-all configuration”. One can see that at lower throughput

values, the jumbo frames show higher latency. This can be attributed to the fact that when
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Figure 6: Latency vs. Throughput for different MTU sizes

the system is relatively free, the high transmission latency of jumbo frames dominates; in
other words, the time for putting a jumbo frame on the wire is larger. As the load on the
system increases, the overhead of the PCI bus and packet processing becomes the dominating
factor, and using jumbo frames helps to reduce this overhead and thus to achieve the UTO

faster.

4.4.3 Packet aggregation

The experiment evaluated, the effect of using the packet aggregation algorithm described
in 3.2.1. Figure 7 shows the performance of the system with small packets, the payload size
being about 64 bytes. Two accumulating packet sizes were used, Ethernet MTU of 1500B and
jumbo frame size of 9000B. In addition, the same tests were conducted also without packet
aggregation. Since the throughput without packet aggregation is considerably smaller, in the
same figure the area corresponding to the throughput values between 0 and 40Mb /s is shown.
One can see that the maximum throughput without packet aggregation is about 50Mb/s.
On the other hand, using an accumulating size of 1500B increased the maximum throughput
up to 400Mb/s. With accumulating size of jumbo frames, the throughput climbed as high

as 630Mb/s, which is about one million small packets per second.

4.5 Losses

Table 4 presents the results of the system performance measured in the presence of message
losses. The losses in this experiment were generated artificially, according to the specified
loss probability parameter. One can see that the effect of a message loss is less severe when

it occures on the sender side. The reason is that in this case the message order (PO) is
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Figure T: Packet aggregation (the low throughput area is extended)

the same at the receivers’ side and the receivers need not to rearrange the already received

messages.

4.6 Comparisons with previous works

In the experiment described below, we compared the performance of our system and the
results presented in [15]where the performance of an algorithm based on weak ordering
oracles (described in Section 3.4.2) and of the algorithm based on failure detectors [22]
was analyzed. When carrying out the measurements for the comparative experiment, we
tried to provide similar settings. All links were configured to 100Mb/s rate, the message
size was 100 bytes, no message packing was used and the aggregation of ACKs limit was
set up to 3. The experiments in [15] were performed at 4 nodes for weak ordering oracles
and at 3 nodes for the algorithm based on failure detectors. In our experiments we used
4 nodes. Since the main parameters of the experiments under comparison coincide, while
there might be differences in equipment and implementation environments, it is likely that
the approximation is sufficient.

As the comparison presented in [15] shows, the maximum throughput for both algorithms
was 250 messages per second. The latency of the weak ordering oracle algorithm increased
from about 2.5s for the throughput of 50 messages/sec up to about 10ms for the throughput
of 250 messages/sec. The performance of the algorithm based on failure detectors depends
largely upon the timeout set for heartbeat messages. For large timeout of about 100ms, the
latency was in the range of 1.5-2ms, and for small timeout (2ms) the latency was in the range
of 8-10ms.

Figure 8 presents the results of our experiments and shows that the throughput of about
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Configuration | Loss Probability | Throughput | PO Latency | UTO Latency

Mb/s ms ms
10 54 1.3 13.3
118 4 15.1

All-2-All 2 207 3 8.4

1 251 2.4 9.2

01 327 34 7.1

0 348 2.7 6.4

5 173 1.0 30

2 Senders, 2 283 0.6 11
3 Receivers 1 346 0.9 6.7
0.1 445 1.0 3.2

0 475 1.8 34

10 252 0.6 1.7

2 Senders, 5 319 1.3 2.7
3 Receivers 2 397 1.5 3.0
1 432 1.1 2.9

Only senders 0.1 468 1.4 3.0
lose 0 475 1.8 3.4

Table 4: Influence of message losses on Throughput and Latency

1000 messages/sec was achieved. The throughput of 300 messages/sec induces the PO
latency of about 0.7ms, and the UTOQO latency was in the range of 1.7-2.2ms. The 95%-
confidence interval was also computed and found practically negligible, as one can see in
the graphs. It is important to note that while for low throughput our results do not differ
significantly from those achieved by Pedone et al. [15], for high throughput they are much
higher. The reason is that in our system, order does not break even if a message m is lost,
as losses happen mostly in switch A (see Figure 4). So, if m is missed by a process, there is
a high probability that m is lost by all the processes and PO order remains the same among
all the processes. When m’s sender discovers that m is lost, it retransmits m promptly.
Another question is whether the propagation time of a message in our two-switch topol-

ogy is much higher than in a one-switch topology. Theoretically, the propagation time in a

150048 __
109
the cable is negligible and the maximum processing time in the switch that we used is not

gigabit network over a single link is 0.012ms, the speed of signal transmission over

more than 0.021ms. We performed two experimental measurements of propagation time. In

the first experiment, ping utility was used to measure the latency of 1500-size packet, and

0.05ms propagation time was obtained in both topologies. In the second experiment, we
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Figure 8: Comparisons with previous work.
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Figure 9: Expanded topology

used application level ping based on UDP protocol, as opposed to the original ping utility
which works on kernel level. In the application level ping, we registered 0.12ms latency in
both topologies. The results show that packet processing time (~0.1ms) is much higher than
message propagation time (~0.012ms). We can conclude, therefore, that two-switch topol-
ogy, without significantly increasing the latency, allows to predict message order with much

higher probability!

4.7 Scalability Discussion

The number of ports in the switches is an important parameter setting the size of the system.
The simplest way to expand the two-switch network is to use trees of switches. Figure 9 shows

an example of such expanded topology. Each sender is connected to an intermediate switch
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which is in turn connected to switch A. Also, each receiver is connected to switch B via an
intermediate switch. If a node belongs to both groups, senders and receivers, it is connected
to two intermediate switches which are connected to switches A and B, respectively. In this
topology, the link between switches A and B continues to serve as virtual sequencer. The
path traversed by each message is longer, but, as shown above, the propagation time is very

small.

4.7.1 Ack aggregation

The measurements showed that increasing the number of receivers decreases the through-
put. The reason is that a sender has to collect a larger number of ACKs generated by a
larger number of receivers. There are a few ways to make a system scalable in number of re-
ceivers. In [15], an algorithm was proposed that reduces number of ACKs required to deliver
a message. This approach can be further improved by using recently introduced NICs [23]
which have an embedded CPU that enables to offload some of the tasks currently running
on the host CPU. Our system can offload to those NICs the tasks of sending, collecting and
bookkeeping ACK messages.

Our measurements showed only a small degradation of throughput (about 0.5% per
sender) when the number of senders increases. Implementing efficient flow control for big
number of senders is a more serious challenge. In future work we are going to explore
hardware flow control [24] over each link. The main idea is to slowdown switch B (see
Figure 4), when the number of free buffers in a receiver is below a threshold. As a result,
switch B starts accumulating messages, and when its number of free buffers falls significantly,
it causing switch A to slow down. Switch A may now either drop messages or slowdown the
senders. Our current implementation already knows how to deal with message drops. If a
message was missed by all the receivers, the impact on the throughput is insignificant.

Another important issue related to the scalability problem is the ability to support mul-
tiple groups. The most naive solution is to use only one group and to implement multiple
group support on the application level. However, this solution is not always optimum, as we
force each node to receive all the traffic. In future work, we intend to investigate another ap-
proach in which an IP Multicast address is associated with each group. As modern switches
support IGMP, a message will be delivered only to hosts that are members of this group.
Considering possible bottlenecks in this solution, we see that the link from switch B to a host
is not a bottleneck, as host may stay away from participating in all the groups. However, the
link between the switches may introduce a new bottleneck to the overall system. There are
several solutions to this problem. One is to use the new 10 Gb/s standard which soon will
be available for uplinks connecting two switches. Another solution that has already been
implemented to increase throughput between two network components is trunk [25]. We
assume that switches can be configured to associate a link in trunk with a destination IP
address. In addition, it is possible to support more groups by using more switches connected

as it was described in Section 3.4.2.
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Chapter 5
Summary

5.1 Related Work

There is a multitude of work which deals with the problem of Total Ordering of messages
in a distributed system. A comprehensive survey of this field, covering various approaches
and models can be found in [1]. The authors distinguish ordering strategies based on where
the ordering occurs, i.e. senders, receivers or sequencers. We use the network as a virtual
sequencer, so our algorithm falls into the last category.

As was noted in Section 1.1, the approach called “Optimistic Atomic Broadcast” was first
presented in [26]. In [27] interesting approach to achieving total order with no message loss
was presented. The authors introduced buffer reservation at intermediate network bridges
and hosts. The networking equipment connecting the senders and receivers was arranged
in a spanning tree. The reservation was made on the paths in the spanning tree so that
no message loss could occur. The ordering itself was done using Lamport timestamps [28].
The paper assumed a different network and presents only simulation results, which makes
it hard to perform comparisons.

Another implementation of a Total Ordering algorithm in hardware was proposed in [29].
This work offloads the ordering mechanism into the NIC and uses CSMA/CD network
as a virtual sequencer. The authors assume that single collision domain connects all the
participating nodes. Using a special software and hardware, the algorithm prevents nodes
that missed a message from broadcasting new messages, thus converting the network to a
virtual sequencer. In our opinion, use of single collision domain is the main drawback of this
approach. It is known that collisions may reduce the performance of system significantly.

Another work that deals with Total Ordering and hardware is presented in [30]. In this
work, a totally ordered multicast which preserves QoS guarantees is achieved. It is assumed
that the network allows bandwidth reservation which is specified by average transmission
rate and the maximum burst. The algorithm suggested in the paper preserves that latency

and the bandwidth reserved for the application.
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5.2 Contribution
In this work we made the following contributions:

e We proposed a new cost-effective approach that uses only off-the-shelf hardware prod-
ucts. The approach is not limited to CSMA /CD networks and can be applied to other

networks.
e The approach was implemented and evaluated in a real network.

e We removed significant overhead from middleware that implements active state ma-
chine replication. It is known that replication usually provides good performance for
read requests, but incurs a significant overhead on write requests [3]. We reduced the

latency and increased the throughput of the middleware, providing total order.
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