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Abstract 

Monitoring of the environment is an essential functionality needed in any network 
management system. In order to achieve flexibility and scalability, network monitoring 
facilities are being decentralized. One of the more popular approaches to decentralizing 
is the usage of a multi-tier hierarchical structure, in which monitoring functionality is 
being distributed among the cooperating nodes in the hierarchy. However, the 
advantages of the distributed hierarchical solutions come at the cost of the increasingly 
complex meta-management. Meta-management refers to managing the management 
tools themselves. In other words, the effort required for maintaining a large-scale 
dependable distributed monitoring service may offset the advantages gained from its 
decentralization. 

In this thesis, we study one of the more important aspects of meta-management of 
the distributed hierarchical monitoring services, the high availability. We propose a 
novel Highly Available Monitoring Services Architecture (HAMSA) that improves 
availability and dependability of the monitoring applications. HAMSA provides for 
their guaranteed behavior in an asynchronous network, being subject to the general 
omission failure model. In this model, messages may be delayed, lost, reordered, and 
duplicated by the network, hosts may crash and recover asynchronously, and transient 
network partitions (i.e., the independent isles of connectivity) may be formed due to the 
network errors.  

HAMSA is a general-purpose middleware that simplifies deployment of the 
dependable monitoring applications in a multi-tiered setting. To achieve high 
availability with the strong consistency semantics for the state-full monitoring 
applications, HAMSA implements a novel primary/backup replication protocol that is 
especially well-suited for monitoring. HAMSA uses Group Communication Service 
internally, which is transparent to the clients and the monitored resources. The 
scalability of HAMSA is achieved through keeping the replication groups relatively 
small, and restricting the group communication service usage to the dedicated servers 
that have sufficient resources for utilizing it. HAMSA is a complimentary proposal, and 
does not require universal acceptance to be deployed.  

The contributions of this work are as follows. We present HAMSA, and study the 
main algorithms required to implement it. We describe the implementation details of 
the fully functional prototype of HAMSA, and evaluate its performance theoretically 
and through an actual experimentation. We provide examples of important network 
management applications, in which high availability is important, and demonstrate that 
communication and processing overhead introduced by HAMSA is relatively low. 
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1 Introduction and Motivation 
As the networked systems rapidly grow in size, the management techniques of a traditional 
centralized network become insufficient. Distribution of management applications is 
required. The distribution, however, results in management tools being themselves very 
complex distributed systems prone to various failures that are not simple to handle. 
Numerous important network management applications such as usage-based accounting, 
trend analysis, performance management, fault management, and others, perform 
application-specific network monitoring tasks as part of their activities. 
The primary target of HAMSA is to diminish the down time of the critical monitoring 
services by masking various network and host failures disrupting their normal operation. 
Writing a highly available service is difficult. Therefore, our monitoring middleware takes 
care of generic problems of distributed computing in a failure-prone environment, and 
provides a guaranteed behavior of the monitoring applications requiring a minimal effort 
from their developers.  
In this work we describe the main building blocks of this architecture, and demonstrate its 
power for efficient and reliable monitoring by describing and analyzing the performance of 
monitoring applications implemented using HAMSA. The thesis is organized as follows: In 
Section  1 general background and motivation are provided. We present the HAMSA’s model 
and problem scope in Section  2, an architecture overview in Section  3, and an essence of 
HAMSA algorithms in Section  4. Section  5 contains the HAMSA prototype implementation 
details. Performance evaluation highlights are covered in Section  7, and, finally, the 
discussion on the related work is given in Section  8. 

1.1 Traditional approaches in Network Management 

1.1.1 Two-tier vs. Multi-tier architecture 
Most of the network management solutions prevalent today operate according to the rigid 
client/server architecture. In this architecture, a "thick" client (manager) communicates with 
the per-device "thin" servers (agents) via some common protocol  [11] to retrieve 
management information and to control managed entities. All data processing and decision 
making are taking place at the manager's workstation. Target device agents are usually quite 
primitive and function only as an access to the devices’ local management information. 
Therefore, the management process is, in fact, centralized at the manager's workstation. 
The traditional two-tier approach to network management is being rapidly abandoned. This is 
motivated by the severe scalability and availability limitations of this approach, which is 
essentially centralized  [11]. The fast progress that has been made in mobile code and 
distributed middleware technologies  [8] makes more flexible architectures, such as the 
popular multi-tier one, both technically feasible and attractive also for the management 
applications  [2] and  [3]. 
As shown in Figure 1 among the more prominent problems with this approach are the 
following: 
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• Since the management agents have limited functionality and capabilities, they only 
instrument the access to the management data, while all the computations should be 
performed by the manager. Thus, large volumes of data should be transferred over the 
network, and the traffic overhead can be high. 

• As shown in  [10] reactive (i.e., event-driven) monitoring schemes are far more 
efficient in terms of communication than polling-based ones. However, in standard 
management frameworks, such as SNMP, configuring application-specific threshold-
driven traps is a non-trivial and not always a feasible task. 

• Manager station concentrates all the management data aggregation and processing, 
and therefore, becomes a bottleneck as the size of the managed network increases. 

• Manager station is a single point of failure, which damages general availability of the 
monitoring services. Although for some types of management data disconnected type 
of monitoring operation can be achieved  [11], the disconnected monitoring operation 
is not available in the general case. This type of operation, however, is essential for 
scaling monitoring services, reducing communication overhead, and increasing 
survivability of management services as explained below. 

• The sometimes unavoidable network distance between the management station and 
the network elements makes it very hard to control the elements, due to the inherent 
instability imposed by long control loops. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1: Centristic approach 

Because of these problems, alternative approaches to monitoring architectures, such as the 
more flexible multi-tier one, were pursued:  [15],  [16],  [18],  [19],  [20]. The more important 
among them, as well as their relationship to our proposal are discussed in Section  8. 
A typical multi-tier monitoring application is described in Figure 15. The target agents 
constitute the lowest tier and serve as the source of the management data. The monitoring 
manager applications are dynamically dispatched at the middle tier(s), and therefore 
sometimes are termed mid-level managers. They monitor the target agents (and, possibly, 
communicate with other monitoring components) accumulating and pre-processing the 

Manager

Bridge Bridge
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information collected from them. The end-consumers of this information, the management 
front-ends, constitute the uppermost tier. 
The flexible multi-tier organization of distributed applications offers considerable benefits. 
Note that in the multi-tier architecture, the components residing in a middle tier can partially 
or fully implement some of the processing functionality that was previously residing 
exclusively on the manager side. Thus, using this architecture reduces the traffic overhead, 
shortens the control loops, and extends the management functionality.  In particular, the 
middle-tier components can implement efficient application-specific event-driven monitoring 
schemes.  
Survivability and availability of the network monitoring services are also improved. The 
mid-tier components can operate autonomously of the first-tier managers (see Figure 15). In 
the new scheme, the overall availability of a management application is increased since 
different mid-level components of it may be executed at different network locations, and a 
failure of one of them does not imply the immediate unavailability of the whole service. 
When certain parts of the monitored network become unavailable, e.g., due to a network split, 
the mid-tier monitoring components can continue monitoring in their respective partitions, 
and later merge the results. This is impossible in the centralized two-tier architecture.  
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Distributed approach 

On the down side, the multi-tier client/server applications are much more difficult to control. 
Providing high availability of the mid-tier components in spite of host crashes, network splits 
and merges is especially challenging. For example, since the dependencies usually exist 
among various management applications, as well as among components of the same 
application, even a single failure of a critical component may bring the whole management 
application to a halt, or render it inaccurate.  

1.1.2 Mobile Agents and Management by Delegation 
Further decentralization of network management can be achieved through mobile agents’ 
approach, possibly combined with the management by delegation.  

Bridge Bridge

Top Level Manager

Middle Level
Managers
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In fact, even general purpose distributed mobile agents frameworks require introducing 
sophisticated mechanisms for efficient management, as well as for high availability and 
reliability. Most of the existing frameworks, such as  [13], refer to the agents’ reliability by 
providing simple mechanisms for state backup/recovery that utilize locally available non-
volatile storage, e.g., a file system. 
With regard to the network management, reference  [2] proposes a distributed management 
framework based on the mobile agents’ paradigm. References  [3] and  [4] propose a 
combination of mobile agents and management by delegation approaches. Reference  [5] 
proposes distributed management with mobile agents, while retaining the standard SNMP 
framework. 

1.1.3 Application Servers 
A standard way of creating a multi-tier client/server application is using an application 
server, which supplies the mid-tier run-time execution environment and hides away the 
heterogeneity of the network, providing for smooth integration. Usually the middleware 
offers an abstraction of the object bus, over which the inter-object communication, typically 
termed remote method invocations, are performed.  
In addition, application servers take care of the scalability and reliability of the hosted 
applications. Some of the industry standard application servers, such as EJB  [21], also tackle 
the high-availability issues to some extent. However, to the best of our knowledge, no 
existing application server provides a highly available run-time environment that copes with 
the kind of failures handled in this work. This issue is elaborated in Section  8. 

1.2 HAMSA scope 
In light of the above, it should be noted that the decentralization of management comes at a 
certain price. A distributed management system itself becomes very complex and its behavior 
becomes so convoluted that even a very experienced network manager would have 
difficulties handling it. We call this the meta-management problem. 
Solving the meta-management problem is crucial for the ultimate success of the distributed 
management paradigm. The administrators should be relieved from the highly non-trivial 
issues of deployment and control of the distributed management system in presence of 
various network failures. 
We identify a clear requirement for increasing the availability of the critical monitoring 
components being part of the management applications. Given the complexity of handling 
distributed multi-tier applications in an unpredictable environment prone to various network 
failures, it is both important and challenging to provide a maximally transparent 
infrastructure that allows a manager to deploy the needed monitoring components of the 
middle tier in a highly available manner. This improves the overall failure behavior of the 
management applications, enables more efficient applications (such as event-driven 
monitoring applications), and therefore contributes to better provisioning of network services 
in general. 
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In this work we present our novel Highly Available distributed Management System 
Architecture (HAMSA) and its implementation. HAMSA is an extensible generic platform 
for the development of distributed management applications with guaranteed behavior in 
presence of various network failures. Although the current version of HAMSA is primarily 
oriented towards furnishing the management by delegation approach, it can be generalized to 
accommodate the mobile management agents as well. 
HAMSA supplies efficient system-level solutions for meta-management problems that 
include support for flexible hierarchical mid-level management structure, built-in high 
availability and fault tolerance of the delegated management components, check pointing of 
their activities and load sharing. In order to provide simple, elegant and efficient solutions to 
these problems, HAMSA utilizes group communication  [6], an approach developed for 
facilitating fault tolerant distributed applications, which has matured over the last ten years. 
More explanations about the group communication service can be found in Section  3.4. 
In this work we present an infrastructure that facilitates highly available application-specific 
monitoring components and discuss the management applications, which would greatly 
benefit from exploiting it. Our infrastructure transparently handles complex failure scenarios 
including network partitions and host failures. The deployment of the infrastructure requires 
only minor additions to the application code. 
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2 Model 
In this work we assume general omission model. This model allows both the network and the 
host to loose an unlimited amount of messages. This model captures all benign failures 
including host crashes/recoveries, as well as network splits/merges. More explanations can 
be found in  [14]. 
In this model, messages may be delayed, lost, reordered, and duplicated by the network; 
hosts, monitored devices, and network links may crash and recover independently; and 
network partitions, i.e., the independent isles of connectivity, may be formed due to network 
errors. 
We say that two entities reside in different network partitions, if they cannot communicate. 
We assume network partitions being transient, which means that after some limited time 
period of γ the disconnected entities will get connected again. 

2.1 (k, ∆)-bofo semantics 
One of the common approaches for achieving high availability in a client-server system is the 
primary/backup protocol. In the primary/backup replication a service is provided by a set of 
servers, while only one server acts as a primary at any given time instance. A client initiates 
requests by sending a message to the server that it believes is the current primary. When the 
primary server receives the client's request, it processes it, and sends a response. Let us 
assume, for simplicity, that all client requests are synchronous. This means that the client 
does not initiate a new request until it gets the response to the previous one. Let δ be an upper 
bound on the time that it takes for a server to process a client's request, and for a message to 
travel in a round-trip between the client and the server. Then, if a request was issued at time t, 
and no response is received by the time t + δ, we say that the service outage has occurred at 
time t. If at time t + δ + T client receives a response to its request, we say that the service 
outage interval is T. 
In the primary-backup replication protocol, other servers detect that the current primary 
became unavailable, and elect the new primary using some algorithm. The new primary 
continues providing the service from the last service-specific state that is known to it. To 
allow this, primary should propagate the state changes that it makes as a result of processing 
the client's requests, to other servers. Various primary-backup protocols will differ on such 
issues as when the state changes are propagated, to which other members of the replication 
group, and on the exact sequence of the operations. The common part among all these 
protocols is that at some point the primary notifies other members of the replication group 
about the state change to allow them for transparent take over in case of this primary's failure. 
Reference  [14] defines the following four properties for the primary-backup client/server 
protocol: 

• Pb1: There exists predicate Prmys on the state of each server comprising the 
replication group. At any time, there is at most one server s, whose state satisfies 
Prmys, i.e., there always is just one active replica of a service in the system. 
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• Pb2: Each client i maintains a server identity Desti, such that a service request i 
interacts only with Desti. This property, actually, distinguishes the primary-backup 
replication approach from the active replication, in which the client broadcasts its 
requests to all the servers in the service replication group. This requires the same 
order of processing in order to preserve state consistency of all the servers. 

• Pb3: If a client's request arrives at a server that is not primary as defined in Pb1, this 
request is not processed. 

• Pb4: There exist fixed values k and ∆ such that all service outages can be grouped 
into at most k intervals of length of at most ∆ each. This makes the service to behave 
like a single (k, ∆)-bofo server. This property rules out implementations, in which the 
primary ignores all requests from the clients. This property also implies that only a 
bounded numbe1r of failures can be tolerated by the service during its lifetime. 

For the general omission failure model N. Budhiraja, K. Marzullo, F. B. Schneider, and S. 
Toueg prove in  [14] a lower bound of n > 2 ⋅ f on the degree of replication for preserving the 
consistency of the service state, where f being the maximal number of failures that may occur 
during a given epoch. This condition basically requires a majority of servers being available 
to serve clients’ requests at any moment, unless in the state of service outage, in order to 
ensure a single consistent service state. 
In this work we also utilize the primary-backup approach. However, we show that different 
policies can be preferred for communication between the network monitoring services and 
the monitored devices on one hand, and for communication between the monitoring clients 
and the services on the other hand. In fact, the general service availability can be 
significantly improved in terms of the disconnected operation during the periods of service 
outage from the clients’ perspective, while still preserving the four primary-backup protocol 
properties. More details on the proposed algorithms and policies can be found in Section  4. 

2.2 Problematic scenarios 
In order to better understand the main issues we would have to cope with, if we relaxed the 
bofo properties for a single active replica of a service, let us consider the following service 
replication scenarios in terms of the general omission model. 
Let S denote a network monitoring service responsible for the monitoring of a device D. 
Let the two servers, A and B, comprise the service replication group G. Service S is deployed 
at G, and both servers A and B receive its replica. 
Let the state of the service S be defined as a recursive function Fs from the membership of G, 
in which it has been accumulated and the previous state. The initial state is denoted by ℑ. 
Thus, for example, for the next membership M, the state would be denoted by Fs(M, ℑ). 

1. At the first stage both servers A and B run in the same partition that includes the 
monitored device D. Let the service S start running on A as its primary server. Having 
accumulated some initial state, S requests its replication. At this point the state is 
propagated to B by the primary server A. Therefore the replicated state is denoted 
Fs({A,B}, ℑ).  
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2. Then, due to a network or a host failure, B leaves to a separate partition or simply 
shuts down, while S keeps running on A and eventually updates its state, which is 
based on the information from Fs({A,B}, ℑ). This new state, termed Fs({A}, Fs({A,B}, 
ℑ)), cannot be shared with B since it's unavailable now. 

3. If A fails now and stops working with D (or shuts down) B may come up and try to 
recover the service S in its new partition from the most updated state that B is aware 
of, i.e., Fs({AB}, ℑ) from (1). This is the state that S had accumulated at A prior to the 
B’s failure in (2). As soon as B joins the partition containing D, S that is executing on 
B, starts accumulating a new state, which is unknown to A and is not based on the 
information from Fs({A}, Fs({AB}, ℑ)), but rather solely on the information from 
Fs({AB}, ℑ). The new state is: Fs({B}, Fs({AB}, ℑ)). 

The above development gives raise for at least three possible scenarios that require a special 
handling: 

a. In this scenario the service S completes its work and stops running on the server B 
while the server A is still disconnected. S reports the results of the monitoring task to 
its manager client. Assume B fails or gets disconnected. Shortly afterwards A comes 
up and recovers S from the state Fs({A}, Fs({A,B}, ℑ)), since it is unaware of the fact 
that S has already completed on B. This may perplex the external clients receiving the 
information provided by S. 

b. Another option for B is to recognize the failure of A, while A may simply join a 
different network partition and continue running S in that partition. In such case 
concurrent external events that may occur at different partitions and involve the same 
external party may puzzle the latter. 

c. It is also possible that the servers get split in such way that the target device D can be 
observed from multiple partitions simultaneously, while the servers residing in 
different partitions do not see each other. Therefore when the servers from the 
different network partitions are merged together, it is possible that each of them has 
different states for their respective copies of the same application. Due to concurrency 
these states might contain overlapping information. This raises the following 
question: should these states be merged in some way, or should one state be given 
preference over the other? 

It is worth noticing that the first two cases described in subsections (a) and (b), can be 
considered as a more general one, when two disconnected application’s replicas send an 
output to an external entity in parallel. This is because the work completion (a) can be treated 
as yet another kind of output, as well as the monitoring observation reports described in (b). 
In order to avoid such inconsistencies and preserve the main four properties presented above, 
a straightforward primary/backup approach would suggest ceasing any activity in partitions 
that may potentially violate any of the bofo properties. However, such approach will 
probably cause significant loss of the highly valuable monitoring information, while in fact, 
some of the servers may still have access to the target monitored device and could continue 
monitoring it while even in disconnected mode. 
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Therefore, our goal is to find a more suitable approach for the monitoring services replication. 
The following issues should be handled in order to provide a monitoring service with a 
consistent state for carrying on its task: 

• Obtaining a single consistent service state; 
• Preserving as much of the valuable monitoring data as possible; 
• Not baffling external entities that interact with the network monitoring application by 

an inconsistent behavior. 

2.3 Problem statement 
Having considered the above problematic scenarios we will now define the basic terms and 
properties of the HAMSA’s problem domain.  
We use the Lamport timestamp  [30] notion of time t in our definitions. 

• Monitoring observations consistency: We will use Ms(t, d) to denote a single 
monitoring observation of the monitored device d obtained  by the monitoring service 
S at time t. A monitoring service keeps its observation history that is an ordered, 
possibly infinite, sequence of observations Ms(ti, d), where the value of ti serving as 
the observations’ ordinal index. 
We say that a service’s observation history is consistent, if for any two observations 
Ms(tl, d) and Ms(tm, d) for the same device d:  l < m if and only if tl < tm. 

• External events consistency: We will call any processing entity, e.g., management 
client, interacting with a monitoring service an external entity. The interactions of a 
monitoring service with an external entity are of two types: 

o Input interaction: the service receives information from an external party; 
o Output interaction: the service sends information to an external party; 

Any external event of interaction between the service S and an external party is 
denoted as ei, = Ins(m, p, ti) ∨ Outs(m, p, ti), where i being the ordinal number of the 
component external event, m being a message containing the interaction data, and p 
denoting the external party: the sender in case of the In event, and the destination in 
case of the Out event. It is obvious that the events order can significantly influence 
the service consistency. 
We say that two events ei and ej are in causal relationship: ei ⊰ ej, if the following 
conditions are preserved ( [6] provides more details): 

o If ei, ej∈ Ex, where Ex being the external events history of a specific party x, 
and ex,i ⊰ ex,j, then ti < tj. 

o If ei ∈ Ex and ej ∈ Ey, where Ex and Ey being the external event histories of the 
parties x and y respectively, and ei = Out(m, x, ti) and ej = In(m, y, tj)  for the 
same message m then ti < tj and ei ⊰ ej. 

o If ei ⊰ en and en ⊰ ej, then ei ⊰ ej. 
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We will use the term external events history for an ordered (possibly infinite) 
sequence of external events. We say that an external events history is consistent for a 
specific service, if and only if: 

o The external events history on the service side preserves the causal 
relationship of events; 

o For any external party involved in interactions with the service the order of its 
interactions with the service equals that of the server-side. 

• Network monitoring service consistency must be preserved by HAMSA. We say that 
a service is consistent if and only if: 

o Its monitoring observation history is consistent; 
o Its external events history is consistent. 
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3 Architecture 
HAMSA is a generic flexible architecture that defines the functionality of a highly available 
run-time environment for multi-tier network monitoring services. Multi-tier monitoring 
services usually consist of a front-end client GUI at the uppermost tier; monitoring logic that 
collects and processes management information at the middle tier(s); and finally the 
monitored device agents at the lower tier. This structuring provides for disconnected 
operation, meaning that temporary disconnecting of the first tier from the rest of a monitoring 
service (e.g., due to some failures) does not imply a stoppage of the monitoring activities. 
The higher availability of multi-tier management services is achieved by a transparent 
replication of the services’ run-time environment, while the service itself remains virtually 
unchanged. Since a service implementation is not modified to accommodate to the new 
execution environment, HAMSA may not assume any specific implementation, and should 
guarantee that the service’s original semantics are not inadvertently destroyed due to the 
replication.  
In order to provide this functionality, HAMSA defines a set of generic interfaces, their 
semantics, relationships and methods of interaction for the monitoring services deployed at 
HAMSA. We term such network monitoring services HAMSA-compatible components. We 
use the term components (as done in many other middleware software systems) to describe 
objects that implement a set of the predefined interfaces allowing dynamically to mix and 
match this object with other objects that conform to the same set of interfaces. 
Figure 3 depicts the three-tier structure of HAMSA. Front-end clients from the first tier 
communicate with the monitoring logic executing at the second tier using some object bus 
for remote access. HAMSA can be implemented using different middleware technologies for 
this part of the architecture. Our current implementation uses the standard J2EE technology. 
Clients locate both the HA-MLMs and the monitoring components through JNDI naming and 
directory service, and interact with them using the standard Java RMI protocol  [28]. 
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Figure 3 HAMSA Architecture 
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The run-time environment for the middle tier, i.e., for the components comprising the 
monitoring logic, is provided in full by the HAMSA framework, as described in the 
following sections. 
The following guarantees on the execution of the hosted network monitoring components in 
the middle tier generate the primary added value of HAMSA: 

• Failures of the components are masked from the outside entities. As long as HAMSA 
has sufficient resources for executing the components, components function 
continuously despite host failures and recoveries (i.e., the machine running the 
component), arbitrary asynchronous network splits and merges. 

• In case of network splits, a single instance of each component is executed per 
network partition. 

• The component, whose host machine has failed, is guaranteed to resume operation 
from the last consistent state. We define a state being consistent if no discrepancies 
exist between its content and any component related data known to the outside world, 
e.g., management clients. 

• Component's interactions with the environment may potentially influence the state of 
other components, and/or external entities.  In this case, interactions (messages, 
method invocations) are termed non-idempotent.  Failure, and a subsequent recovery, 
of a component being in the middle of a non-idempotent interaction may violate the 
original interaction semantics. An advantage of HAMSA over other middleware 
architectures is that it preserves the original at-most-once or at-least-once semantic of 
the component interactions in spite of asynchronous network failures. 

These advantages come at a certain price in bandwidth and processing overhead. In Section  7 
we discuss the trade-offs between the extended functionality of HAMSA and this overhead. 
Also the current HAMSA implementation restricts the inter-process communication model to 
asynchronous communication and messaging. This communication model, though, fits well 
into the network monitoring domain. 

3.1 Highly Available Mid-Level Managers (HA-MLMs) 
The run-time environment with the above properties is provided by a set of virtual servers 
termed Highly Available Mid-Level Managers (HA-MLMs). HA-MLMs are logical entities 
that are comprised of one or more physical servers called Mid-Level Managers (MLMs), see 
Figure 3. To its users, every HA-MLM appears as a single logical entity that exposes the 
special HA-MLM Service Interface (see Section  5 for more details). Each MLM in a given 
HA-MLM is capable of exposing the HA-MLM Service Interface, but at any given moment 
only a single primary MLM provides this functionality. 
As Figure 3 shows, MLMs communicate with each other using a Group Communication 
Service (GCS) that provides partitionable membership semantics, virtual synchrony 
execution model, and reliable FIFO message ordering. Section  3.4 provides more details 
regarding the GCS in HAMSA. 
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HAMSA encourages the local deployment of an MLM at the managed device wherever 
feasible, since this will greatly reduce the management traffic overhead and will enable 
simple solutions for complex problems, such as atomic snapshot of the managed device state. 
Network administrators create HA-MLM groups in order to delegate network monitoring 
components to them later. All MLMs in the managed network join a special "all-MLMs" 
HA-MLM group termed HAMSA Enterprise upon the boot process. New HA-MLMs can be 
created through this root HA-MLM interface. 
The HA-MLMs can be organized into a logical hierarchy as shown in Figure 4. The only 
constraint of the HA-MLMs hierarchy is that the MLMs comprising the nominal membership 
of any given HA-MLM must be contained in the membership of the HA-MLMs that are 
higher in the hierarchy. In other words, if MA is the set of MLM members of a HA-MLM A, 
MB is the set of MLM members of HA-MLM B, and A is higher in the hierarchy than B, then 
MB ⊆ MA must be true. 
 
 
 
 
 
 
 
 

Figure 4: HA-MLMs Hierarchy 

3.2 HAMSA-compatible Components 
HAMSA provides a special interface for the HAMSA-compatible components’ dynamic 
delegation. The identity of the HA-MLM, to which the component is being delegated, is part 
of this component’s identity.  
The MLM serving a specific component delegation request is responsible to propagate the 
component’s meta-data, as well as its executable to all members of the HA-MLM through the 
group communication service, see Section  3.4. When all MLMs in the HA-MLM receive a 
copy of a component on their non-volatile storage, the component becomes available for 
serving external clients. 
One of the HA-MLM members is made responsible for running an active replica of the 
newly delegated component according to some predefined policy. Policies for the primary 
MLM election can vary based on specific criteria definition, e.g., a load-balancing algorithm. 
See Section  4.1.6 for more details. 
The primary MLM selected to host the active replica of a component is termed component 
host. In the same network partition there can be only a single component host for any given 
component at any given time. Other MLMs within the same HA-MLM keep dormant replicas 
serving as warm backups for the components, whose host MLM may fail, see Figure 5. This 
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is different from the more common practice of keeping components on a component server, 
and downloading them on demand. HAMSA performs component propagation as above to 
increase their availability. 
The information about the HAMSA monitoring components delegated to a HA-MLM and the 
HA-MLM’s logical hierarchy information comprise the state of this HA-MLM. This state is 
replicated among the HA-MLM members on a per-update basis using the group 
communication service. When membership changes occur in the HA-MLM (i.e., MLMs 
join/leave the HA-MLM group because of failures), members of the group are notified by the 
group communication service, and they run a state exchange protocol (see Section  4.1.4) in 
order for the HA-MLM to resume its regular operation. 
As a result of network partition changes a HA-MLM can be in either majority or minority 
state. This is based on the number of MLM members that are present in the given network 
partition, compared to the total number of the MLMs that belong to the HA-MLM. The set of 
all the MLMs comprising a HA-MLM is the HA-MLM’s nominal membership. In this work 
we use the term minority for any non-majority state. See Section  4 for more details on the 
HA-MLMs behavior in membership changes. 
Since the state of a HA-MLM is replicated among all its members, any HAMSA component 
can be resumed from a consistent point by any other MLM in the HA-MLM that remains 
operational as explained in the following sections. Each time a component is (re-)activated at 
an MLM, it also updates the external naming and directory service in order to renew the 
binding between the component's name and its communication handles. Thus, for the 
network administrator the use of HAMSA creates a reliable environment, in which the 
delegated tasks "simply do not fail", unless a catastrophic failure occurs. 
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Group Communication Toolkit

Active HA-MLM Interface

Passive Component X

Active Component Y

Passive HA-MLM Interface

Active Component X
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Figure 5: HA-MLM Structure 

To render warm backups of the executing components, MLMs transparently replicate the 
state of the components delegated to their HA-MLM. The component state is co-located with 
the component itself in order to achieve high availability. This is another difference between 
HAMSA, and more traditional approaches, in which a dedicated database is used to store the 
state of the components. 
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The state of a component consists of its interaction state and internal state.  Interaction state 
contains all the unprocessed inbound and outbound interactions between this component and 
external entities. It is HAMSA framework’s responsibility to manage the components’ 
interaction states. A component’s internal state consists of arbitrary application-specific 
objects. The internal state objects are managed by the components themselves, while 
HAMSA provides the means for reliable backup and recovery of the state objects with no 
knowledge of their internal semantics. This is done through a dedicated interface that allows 
components for demanding state replication without knowing any details of the replication 
mechanism. Assuming that a state replication is required any time it affects a component’s 
consistency, this, along with the additional properties of the HAMSA algorithms, allows us 
for preserving the desired HAMSA components semantics. 
Components may interact with other entities executing within the same HA-MLM, in 
different HA-MLM, and outside HAMSA, e.g., with the front-ends residing in the first tier, 
and the network elements. 
To provide its guarantees, HAMSA requires that all non-idempotent interactions between the 
HAMSA-compatible components and any external entities are made through HAMSA 
messaging service, as described in the next section. This allows HAMSA for transparent 
replication of the interaction part of the component state. 

3.3 HAMSA Messaging Service 
HAMSA messaging service (HMS) is defined as a generic mechanism providing HA-MLMs’ 
basic messaging services to abstract entities named recipients. HMS uniquely identifies a 
recipient entity by its symbolic name. A recipient name consists of a principal prefix that is 
unique within a specific HA-MLM, and the HA-MLM name. Both HAMSA components and 
external parties are treated by HMS as recipient entities. The recipients that are locally hosted 
by a HA-MLM are termed local for this HA-MLM’s HMS, all other recipients are termed 
remote. 
In order to start getting service from HMS, a recipient entity is supposed to register at HMS 
of some HA-MLM. The registered recipients enjoy the following set of basic messaging 
services: register, deregister, send (including HA-MLM level broadcast), receive, and poll. 
We define two basic types of recipients: synchronous (capable of receiving messages 
synchronously via a callback interface) and asynchronous (responsible to fetch the pending 
messages from HMS by themselves). 
The HA-MLM assigns two types of communication for each component: Mailbox, and Proxy. 
Mailbox is needed for direct sending a message to a component. There is one mailbox per 
HA-MLM with a separate message queue per a recipient served by this HA-MLM. In order 
to support remote method invocations, while using the HAMSA consistency and ordering 
mechanisms transparently, we use the standard Java proxy  [28] approach. Any remote 
invocation between a HAMSA component and any other party is intercepted, and processed 
by the per-component proxy. The proxy creates a message from the method call performed 
on it, and relays it to the HAMSA messaging service in form of a regular external interaction 
message. One restriction of this approach is that HAMSA-compatible component cannot 
support synchronous method invocations with non-void return values. HAMSA 
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communication model requires that if a caller wants to receive information from a 
component it has to supply either a callback interface or to be registered as a recipient at the 
mailbox serving this component. 
Allowing direct interactions of the components with their environment is not always safe if 
we wish to comply with the (k, ∆)-bofo semantics.  HAMSA defines that each component is 
assigned an interaction approver that policies its interactions. In particular, HMS may defer 
interactions with the outside entities depending on the specific state of the HA-MLM. In this 
work we suggest utilizing the majority based interaction approval policy, i.e., a component 
may send/receive data only when it resides in a partition with majority of the HA-MLM 
member servers available in the specific network partition.  
In order for the HAMSA messaging service to be transparent and straightforward for the 
parties that participate in the interactions, they should be unaware of the message handling 
mechanism implementation. For this purpose HMS is responsible to intercept any interaction 
between a HAMSA component and an external party, and to fulfill it only when the 
consistency of such interaction and of the whole system can be guaranteed. 
However, the interactions between the HAMSA-compatible components and the monitored 
network elements are not handled by HMS and, therefore, are not restricted in any way, since 
it is not feasible This is the key feature distinguishing our solution from the existing 
approaches  [14], and the main reason for HAMSA’s being primarily targeted to monitoring, 
and not to other kinds of management activities that may affect the state of the target devices. 
As described above, interactions with the target devices are supposed to be implicitly 
reflected in the component-specific state objects, which get replicated either on demand from 
a component that owns it, or transparently to the component, upon an outgoing interaction 
initiated by the component. 
An important property of HMS is its distinguishing between incoming and outgoing events 
for communication with external parties. When a HAMSA component receives an event 
from external entities, it does not enforce an immediate update of the replicated state among 
the HA-MLM members hosting this component. This is because incoming events do not 
immediately affect the component consistency, as defined in Section  2.3. However, it is not 
the case with the outgoing events. Therefore, upon an external interaction attempted by the 
component itself, the replicated state of the component is synchronized among all the MLMs 
prior to handling the outgoing message. As we explained in Section  2.3 this leads to the 
following key property of HAMSA: 

• A HAMSA component that potentially made its internal state publicly available 
through an interaction with external entity would never return to a more outdated 
state in spite of the errors found in the general omission failure model. 

3.4 Group Communication Service (GCS) 
Group communication service is a message passing service that provides a concept of a 
process group. Each process group is a group of end-points communicating according to the 
many-to-many model and referred to by a single logical name. A message sent to the group is 
delivered according to the same requested order to every member of the group (or to nobody), 
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provided that the member does not crash. A group communication service is usually 
comprised of a membership service and a reliable message ordering service. 
The group membership is a list of group members that are considered connected and active, 
and that the group members agree on. The objective of the membership service is to handle 
various asynchronous events, such as: network partitions and merges, host failure and 
recovery, group members join and leave. The membership service notifies the group 
members about the membership changes, so that any two members that belong to the same 
membership are indeed connected. 
The replication of the components state within a HA-MLM is facilitated by a group 
communication toolkit that is not visible outside HA-MLM (see Figure 3). Such toolkit 
systems usually allow processes for forming groups that can be addressed by a single logical 
name, so that messages can be sent to the group using this name as an address, and all 
operational members of the group receive them. HA-MLMs are realized in HAMSA as 
process groups. 
HAMSA relies on the GCS toolkit to provide the following capabilities: 

• Reliable multicast FIFO delivery of messages. 
• Per-group notification of membership changes either due to network failures, or 

members (i.e., MLMs in the context of HAMSA) voluntarily joining/leaving the 
group. 

• Virtual synchrony model of message delivery, which, simply stated, means that 
members of the group that go together through the same set of membership changes, 
receive the same set of messages. 

• Partitionable membership model, which means that although members of the same 
group can find themselves in different network partitions (due to asynchronous 
network splits), each connected component can continue its operation. And when a 
network merge occurs, the members can resume operation from a consistent point in 
the message stream so that the virtual synchrony model is preserved. 

There are a number of group communication toolkits available that supply this functionality, 
such as  [7]. The HAMSA architecture does not dictate any specific choice of GCS. It is also 
possible that as the middleware technology advances, the GCS with the needed semantics 
will become an integral part of a standard object middleware, therefore removing the need 
for an external GCS. 
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4 HAMSA algorithms 
In order to facilitate higher availability of a management component without changing the 
components themselves, HAMSA has to deal with the failure possibilities, giving raise to 
multiple conflicting states of a component transparently. The primary requirement from 
HAMSA with respect to the failure handling is to conform to the failure model and external 
events semantics expected by the management component that is not aware of being 
replicated. It is also desirable to minimize the loss of the valuable information, when a 
common consistent state is obtained from the multiple states of the component’s replicas. 
HAMSA allows different network partitions to make progress concurrently. It automatically 
handles the consistency maintenance issues arising from the complex failure scenarios. As 
described in Section  2, restarting a component from a warm backup in case of a failure raises 
the following non-trivial problems: 

a. A management component may depend on its state checkpoint. Such components are 
termed history-dependent. When a history-dependent component is recovered at a 
different MLM, this should be done from a consistent point with respect to the 
component’s state and to the interactions with external parties that could have taken 
place prior to the component’s recovery. 

b. It is possible for several replicas of the same component to execute simultaneously. 
On the other hand, external parties treat the component as a single logical entity and 
are unaware of the replication mechanism. Enabling external entities to access 
different replicas of a component inconsistently would severely baffle an external 
party communicating with the component, and would violate the (k, ∆)-bofo server 
semantics, as defined in Section  2.1. 

Concerning the history-dependent components, the design of HAMSA was made along with 
the following guidelines. First, the only thing that a component is aware of is, that in case of 
a failure at its current host, it will be restarted at some other MLM. Second, the component 
should not get involved with the details of its state replication. Third, the only responsibility 
of a history-dependent component is to maintain its state as an arbitrary object or a set of 
objects, and inform the hosting MLM about the changes it makes to its state.  
In case of a history-independent component, it is straightforward to resume it at a different 
location, since this only requires deciding, which MLM should take care of it. This decision 
can be easily achieved thanks to the membership notifications from the GCS received by all 
the HA-MLM members at times of the network and host failures. Having the membership 
notifications provided, there is no need in additional agreement protocol on the MLM’s level, 
since these notifications are already the output of a distributed agreement protocol that is run 
at the GCS level. 
In regard to obtaining a common state out of multiple conflicting states, one should  observe 
that there is actually no way to merge multiple states, due to the possibility of the 
concurrently executing component instances. In this case, some parts of the component 
executions may overlap, and, if consistency is the issue, only one of the conflicting states can 
and should be preferred.  
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We will show that, in fact, we have fairly good means to resolve these conflicts in a 
meaningful way. We would prefer the state of the component instance that has more external 
communication events (completed, or being in progress) with an involved external party. The 
intuition behind this rule is that the more communication with the external party has been 
performed, the more information is in the component’s copy state. What is even more 
important, this rule allows us for satisfying one of the main consistency requirements defined 
in Section  2.3, namely, preserving the execution semantics, as expected by external parties.  

4.1 Algorithms description 
The following sections present the major HAMSA algorithms. These algorithms constitute 
the main logic of the key HAMSA’s mid-tier element, the MLM. HAMSA MLM’s logic is 
event-driven. It is based on two basic event types: 

• Membership change: is an event provided by the group communication service that 
informs about a HA-MLM membership change. Section  4.1.2 presents the HAMSA 
algorithm for handling this type of events. 

• Regular: is either an internal HAMSA event provided through the group 
communication service from some other HAMSA mid-tier entity, or an external 
interaction event issued via remote method invocation by an external party. Section 
 4.1.3 presents the HAMSA’s external events handling algorithm. 

In addition, the HAMSA state exchange, load balancing, and garbage collection algorithms 
are discussed in the following sections. 
For the sake of simplicity we present the HAMSA algorithms assuming that there exists only 
one monitored device. We also assume that the executables of the HAMSA components have 
already been successfully propagated and initialized at all the MLMs in the HA-MLM’s 
nominal membership; and the initial responsibilities for the components execution have been 
assigned among the MLMs.  

4.1.1 HAMSA states 
As described in Section  2.3, HAMSA deals with two main stateful entities: HA-MLM and 
HAMSA component. Table 1 and Table 2 describe the variables comprising these entities’ 
states respectively. We will use these states definitions in the algorithms’ pseudo-code in the 
following sections. 
 

Variable Description 
N Nominal MLMs membership of the HA-MLM 
Components Meta-data of the components that are currently hosted by the HA-MLM 
Mailbox Per-component interaction state, i.e., buffer of pending messages, 
Progress HA-MLM progress reflects the number of external requests resulting in 

a HA-MLM update, see Section  4.1.4 

Table 1: HA-MLM state 

 



 

27

Variable Description 
S Internal component state based on the monitoring observations history 

obtained by the component copy executing on a specific MLM host 
Progress HAMSA Component progress reflects the number of outgoing events 

issues by the specific component, see Section  4.1.4 

Table 2: HAMSA component state 

4.1.2 HA-MLM membership change handling 
A HA-MLM membership change may result in one of the following changes: 

• An MLM in a majority partition of a HA-MLM can move either to (1) a majority 
partition with different configuration or to (2) a minority partition. 

• An MLM in a minority partition of a HA-MLM can moves either to (1) a majority 
partition, or to (2) a minority partition with different configuration. 

In case of a membership change with a merge of partitions containing multiple replicas of the 
same component with different accumulated states, we need to ensure that a single 
component replica is executed with a single consistent component state. This is done through 
the HAMSA state exchange protocol, as explained in Section  4.1.4. 
Figure 6 presents the algorithm used by HAMSA to handle the membership changes. 
Let V and V’ be the previous and the new membership of the handled HA-MLM. These 
variables will also be used in the following sections. 

Figure 6: Membership change handling 

We elaborate the load-balancing policies mentioned in this algorithm in Section  4.1.6. 

 If |V’| <= [|N| / 2] then {   // We moved into a minority partition
  Purge HA-MLM’s Mailbox 
  IneractApproval := false 
 } else      // We moved into a majority partition
  InteractApproval := true 

If not V’ ⊆ V then { 
Perform HA-MLM and components state exchange    // see Section  4.1.4 
For each component and the HA-MLM itself  do { 

Elect the host MLM based on the load balancing policy 
If the local MLM is elected then 

Activate the entity (component/HA-MLM) 
   Else If an entity is active at this MLM then 
    Move the entity into the dormant state 
  } 

} 
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4.1.3 External event handling 
The requirement for external interaction events handling is to obligate all components to 
perform any such interaction only through the special HAMSA messaging service 
mechanism presented in Section  3.3. For the sake of high availability the HAMSA messaging 
mechanism propagates any event to all the available MLMs comprising a specific HA-MLM. 
This mechanism should defer and accumulate any event, either sent by a component or to be 
received by a component, until the consistency conditions are fulfilled. 
We say that the external interactions are permitted, if and only if the majority of the HA-
MLM’s members is present in the specific HA-MLM membership. I.e., any interaction with 
an external application is restricted and will be deferred as long as only half or less than half 
of the MLMs comprising the HA-MLM are present. Once the condition is met, all the 
delayed interactions should be “released” and fulfilled by HAMSA. See the algorithm 
presented in Figure 7 for more details. 

Figure 7: External events handling 

4.1.4 State Exchange 
The HAMSA state exchange protocol specifies the mechanism for obtaining the most 
updated state of a HAMSA entity in case of a HA-MLM membership change. The HAMSA 
state exchange protocol follows the state machine replication approach. It is designed to treat 
both HA-MLMs and HAMSA components as generic stateful objects. Therefore, HAMSA 
utilizes the same protocol for exchanging states of all the HAMSA entities.  
As discussed in Section  4.1.2, one of the main issues that the HAMSA state exchange 
protocol faces is obtaining a single consistent state out of potentially multiple state instances 
coming from different partitions. The straightforward approach is to select a single whole 
state as is from one of the merged partitions. Another option is trying to merge multiple state 
instances into a single state on behalf of the component. Unfortunately, there is no common 
mechanism to merge component-specific state without intervening into the component 
specific internal implementation. Thus, we need to pick the “right” state instance. For this 
purpose we introduce the state progress parameter to indicate how updated a specific state 
instance is.  
In order to ensure the component state consistency it should be replicated on any external 
interaction request. However, since only outgoing interaction can expose component state 

 Let e be the handled event 
 If InteractApproval == false then { 
  Defer e 
  Finish 
 } 
 If e.type is outgoing external interaction 

Replicate the state of the component e.sender to all the HA-MLM members
 Deliver e to e.recipient 
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related data to external entities, the state replication can be omitted in case of incoming 
interactions. We use the number of times a state was replicated, or the number of outgoing 
external interactions, as the key parameter of the HAMSA entity state’s progress, since this is 
the main indicator of a potential state change.  
In fact, we probably might find a more updated state instance in terms of the accumulated 
monitoring information; however, we in such case we would violate the component’s 
consistency.  
In this section we describe the state exchange protocol of a single HA-MLM. However, in 
order to reduce the recovery time overhead in case of a HA-MLM membership change, 
HAMSA allows multiple HA-MLMs for executing their state exchange protocols in parallel 
without interfering each other.  
The HA-MLM state exchange protocol consists of the following two basic phases marked 
with the white color in Figure 8: 

• State advertisement: all the MLMs hosts distribute the state object descriptions on 
behalf of the hosted stateful objects to other HA-MLM members. For each state 
instance, an MLM concludes, which HA-MLM member should be the state object’s 
update source, based on the progress parameter values received from other MLMs; 

• State distribution: every MLM checks, whether it is the update source of some of the 
hosted states instances. If there are such objects, the MLM distributes them to all the 
members of the HA-MLM through the group communication service.  

In order to make the state exchange as efficient as possible our protocol utilizes a single state 
advertisement message containing the progress details of all the state objects taking part in 
the state exchange process. Nevertheless, the distributed state objects are sent in separate 
messages due to their potentially large size. Every message should reach all the MLMs in the 
membership, therefore, each state exchange protocol requires n ⋅ (n + m) messages, where n 
representing the number of state advertisement messages that is equal to the membership size 
of the HA-MLM, and m representing the number of the state distribution messages, which in 
turn is equal to the number of the state objects hosted by the specific HA-MLM. 
The state machine diagram in Figure 8 depicts the main steps of the protocol. 
 
 
 
 
 
 
 
 

Figure 8: HAMSA State Exchange protocol’s state machine 

Init 

State
Advertisements

Processing
State

Distribution

State
Updates

Processing

Finish

- Init 
- State 

advertisement 

All the 
advertisements
received

Distribute 
my states

All the state 
updates received

New 
Membership
change

Init 

State
Advertisements

Processing
State

Distribution

State
Updates

Processing

Finish

- Init 
- State 

advertisement 

All the 
advertisements
received

Distribute 
my states

All the state 
updates received

New 
Membership
change



 

30

Figure 9:  HAMSA state exchange protocol 

 Data structures: 
- StateSource: { sourceName, stateDescriptor } 

State exchange initialization: 
- Objs := ∅ // a set of stateful objects participating in the state exchange
- Fellows := V // a copy of current membership set 
- Fellows.remove(MyMLMName) 
- Add the HA-MLM to Objs 
- Add states of all the components that are  hosted by the HA-MLM to Objs 
- Sources := a map of StateSource objects of size |Objs| 
- For (i = 0; i < |Objs|; i++) do { // init Sources with my MLM for all objs 

Sources.put(MyMLMName, Objs[i].getStateDescriptor()) 
Objs[i].suspend() 

  } 
 State Advertizement: 

- MyDescriptors := ∅ 
- For all entries in Objs do: add Objs[i].StateDescriptor to MyDescriptors 
- Multicast MyDescriptors to the HA-MLM members 

Wait for all available MLMs’ state advertisements until the Fellows set gets empty. 
When a state advertisement message (HisDescriptors) arrives, do { 

- Fellows.remove(HisDescriptors.getMLMName()) 
- For all entries in HisDescriptors: 

If (HisDescriptors[i].progress > MyDescriptor[i].progress) or 
   (HisDescriptors[i].progress == MyDescriptor[i].progress and 
   HisDescriptors.getMLMName() < MyMLMName)) 
 Sources.put(HisDescriptors.getMLMName(),HisDescriptor)

 } 
 State Distribution: 

- For (i = 0; i < |Sources|; i++) 
If Sources[i].getSourceName() == MyMLMName then { 
 Distrubute Objs[i]  // I am the source 

Sources[i].remove() 
} 

Wait for all the state updates. When a state message (HisState) arrives, do { 
- Objs[HisState.getName()].update(HisState) 
- Objs[HisState.getName()].resume() 
- Sources[i].remove() 
- If Sources.isEmpty()  then: Finish
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In case an additional state exchange is required due to a new membership change, while 
another state exchange process is already in progress, the currently executing state exchange 
protocol is immediately reset and restarted. The pseudo-code in Figure 9 describes the 
HAMSA state exchange process in detail. 

4.1.5 Garbage Collection 
HAMSA messaging service propagates any external interaction message to all the HA-MLM 
members upon its arrival. As described in Section  4.1.3, HAMSA delivers these messages to 
their recipients only if the external interactions are permitted. 
For the sake of efficiency HAMSA replicates the component internal states only at outgoing 
external interactions, while the propagated incoming messages are stored in the MLMs 
memory as part of the HA-MLM state. In case of a failure, storing the incoming messages in 
the MLMs’ memory allows for avoiding potential loss of valuable information. This is 
achieved by enabling retransmission of these messages to a recipient component, when it is 
restarted at a different MLM location.  
When an outgoing external interaction is dispatched by a component, the HAMSA policy 
requires replication of the component’s internal state, and therefore, ensures up to date 
consistent synchronization of the dormant replicas. According to the policy we propose, this 
is the most appropriate time for the HAMSA messaging service to perform the garbage 
collection procedure by purging the stored incoming messages. 
Additional policies can be considered, depending on the specific requirements of the message 
delivery service. For example, in case maximum consistency is required, and no message 
losses can be tolerated, it is possible to synchronize the component state on every external 
interaction regardless its direction. More relaxed limited mailbox capacity, watermark-based 
policies can also be considered. 

4.1.6 Load-balancing 
As explained in Section  3.2 HAMSA implements a special policy in order to elect a primary 
MLM for running an active replica of a specific HAMSA component. 
The simplest type of such policy is the preferred location one, which applies, for example, 
for finding the most proximate available MLM for a specific monitored device. This, in fact, 
static scheme also implies implicit enforcement of a load-balancing policy by spreading the 
monitoring tasks load among different MLMs, assuming that the monitored devices are 
spread as well. 
In addition, dynamic load-balancing policies can be applied to the components’ load 
distribution decision. The research of the dynamic load-balancing policies is out of scope of 
the current work. 

4.2 Primary/backup protocol discussion 
It was shown in  [14] that the general omission failure model implies the lower bound of 
n > 2 ⋅ f on the degree of replication in the primary-backup protocols, where n is the number 
of replicas, and f is the number of failures.  



 

32

Now, let us consider HAMSA's algorithms in light of this model. First, we observe that 
concerning the interactions between the external clients and the HAMSA components (and 
among the different components in the second tier), HA-MLMs that host these component 
behave like a (k, ∆)-bofo server with respect to every component. Indeed, for each component 
there is a single primary MLM in the HA-MLM group at any given time, providing the 
component with the communication services. If a majority of MLMs fails in HA-MLM, and 
the interaction approval policy is majority-based, no communication with the component is 
possible. However, in HAMSA this does not imply the service outage. In fact, components 
continue running, and perform monitoring on the target network elements. It is just the 
results of their activity that are temporarily unavailable.  
We relax the single primary server property when it comes to communication between the 
components and their target network elements. In fact, we allow multiple primaries operating 
in different partitions simultaneously, and gathering the monitoring information concerning 
the network elements in their respective partitions, with one primary instance per partition. 
However, to preserve the bofo server semantics to the higher-level clients of these 
components, we allow at most one primary server (the one that executes in the majority 
partition, if exists) to communicate with entities other than the monitored network elements. 
To appreciate HAMSA model, consider a non-replicated monitoring application that 
communicates with some manager at one hand, and with the network elements on the other 
hand. If this application is stateful, then it should be capable of storing its state on the non-
volatile storage each time it considers that the loss of the information gathered thus far is 
undesirable. If such an application fails, it is subsequently re-started. Upon a restart this 
application re-reads its state from the non-volatile storage, and continues its operation from 
the last consistent point that it exposed to the outside world.  In HAMSA, we preserve this 
single object image of the application, but at the same time we shorten the service outage 
time (i.e., the impossibility to continue the monitoring process) by consistently replicating 
the application, so that the monitoring continues even if less than 2 ⋅ f replicas exist in a given 
network partition. 
Thus, in our three-tier architecture, communication between the management clients (the 
uppermost tier entities), and the servers indeed obeys the restrictions imposed by the low 
bound on the primary-backup protocols. We allow the periods of unavailability of the mid-
level entities performing continuous monitoring tasks to the management clients, when such 
communication may compromise a single object behavior of the monitoring component. 
However, for communication of the monitoring components with the target management 
agents (the bottom tier), we relax the demand of  [14], on having a single primary system-
wide at any given time instance, since the read monitoring operations are idempotent. 
We allow multiple primaries to operate simultaneously in non-communicating network 
partitions transparently to the high-level clients who still regard them as a single entity. Upon 
a re-merge of the previously split network, our middleware automatically obtains the most 
updated monitoring state about the disconnected network elements that have been available 
in some network partition, and were unreachable in the others. To the best of our knowledge, 
HAMSA is the only monitoring middleware with such high-availability guarantees, 
specifically designed to address the meta-management challenges of the three-tier monitoring 
architecture. 
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5 Implementation Highlights 

5.1 Overview 
We implemented a full HAMSA prototype and the initial performance results are presented 
in this work.  
The current implementation of HAMSA uses Java programming language  [28] and therefore 
is platform independent. We tested it on Windows 2000/XP and Linux operating systems.  
We use an advanced group communication toolkit called Transis  [7] that provides a virtually 
synchronous execution model  [12] and transparent handling of network partitions and merges, 
as required in Section  3.4. This toolkit allows us for ensuring the fault tolerance of the core 
architecture components. 
We utilize standard J2SE implementation of Java Naming and Directory Service (JNDI) for 
locating HAMSA entities, and Java Remote Method Invocation (RMI)  [28] for accessing the 
HAMSA distributed system by external entities. 
We invested much effort in making HAMSA easy to install, configure, and use. This is 
achieved by the provided Installation and Administration Guides (see the Appendices). In 
addition, HAMSA software is built of independent modules with pluggable internals for 
potential further research, customization and extension, as explained in the following 
sections. 
The HAMSA implementation consists of two main parts: 

• The HAMSA MLM server that implements the core HAMSA logic and provides the 
main functionality of the HA-MLMs mid-tier framework; 

• The administration GUI tool providing a human administrator with a user-friendly 
graphic interface to HAMSA. 

The following sections present the current HAMSA implementation highlights. 

5.2 HAMSA mid-tier framework 

5.2.1 MLM  
HAMSA MLM server provides an execution environment for the hosted HAMSA elements.  
The main element an MLM is responsible for is the logical HA-MLM replication group 
entities. According to the policies described in Section  3.1, an MLM may belong to a number 
of different HA-MLMs. 
MLM is implemented as a server-side daemon that should execute at any host comprising the 
HAMSA framework. 
MLM maintains a set of the HA-MLM groups it belongs to. Each element of this set is an 
instance of the object implementing the HA-MLM functionality, as described in Section 
 5.2.4. Only one MLM becomes the primary for each HA-MLM according to its predefined 
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location policy. The HA-MLM instance hosted by the elected primary MLM becomes active 
and registers itself at the naming and directory service to enable other parties’ access. 
Being an execution environment provider, an MLM is responsible to provide a number of 
services necessary for normal execution of hosted elements, and for those elements to 
conform to the HAMSA semantics, as defined in this work. 
The following sections describe the main services provided by MLM. 

a. Group Communication service 
The group communication service utilized by HAMSA is provided by an underlying 
group communication service toolkit. Specific implementation of the GCS toolkit is out 
of scope of this work. MLMs integrate with the GCS toolkit to provide the group 
communication services to the hosted HAMSA elements. The current implementation 
relies on the Transis GCS toolkit  [7] for reliable group communications services and the 
messages ordering guarantees defined in Section  3.4. 
MLM provide the hosted elements with the following group communication services: 

• HA-MLM membership discovery allows for obtaining a list of the MLMs 
currently comprising the membership of a specific HA-MLM. 

• Listen to HA-MLM membership change events (see Section  4.1) in the HA-MLMs, 
which the MLM belongs to. The MLM receives asynchronous network 
partitioning and merging events from the GCS toolkit, and passes them for 
handling to the relevant HA-MLM. 

• Listen to regular events (see Section  4.1) related to the elements hosted by the 
MLM. Upon a regular event arrival the MLM is also responsible to route the 
received message to the appropriate HA-MLM. 

• Multicast event to entities in both, locally hosted and external HA-MLM groups; 

b. State Persistence service  
MLM provides its hosted elements with a persistent check-pointing mechanism for better 
recovery in case of crashes and/or network partitioning. This mechanism is responsible to 
maintain the state objects of the hosted elements on a non-volatile storage through the 
following services: 

• Commit a state object of a hosted element by writing a copy of the object instance 
onto a non-volatile storage, e.g., a file system. 

• Reload a hosted element’s state object from its non-volatile storage. 
• Decommission a hosted element’s state object that is no more in use. 

c. Naming and Directory service  
As described in Section  3 HAMSA uses a naming and directory service to enable 
locating of the HAMSA entities by an interested party. Similarly to the group 
communication service the actual implementation of the naming and directory service is 
out of the HAMSA’s scope. Since the whole HAMSA prototype was implemented in 
Java, we utilize the standard JNDI  [28] service.  
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Therefore, the MLM server provides its hosted elements with a set of services listed 
below through a straightforward integration with the standard JNDI service 
implementation.  

• (Re-)bind an object instance to its name. 
• Lookup a reference to the currently bound object instance by its name; 
• Unbind the current object binding by its name. 

d. HAMSA Execution Environment Sandbox 
The components executing at a specific MLM server are provided with virtual sandbox 
mechanism that enables isolation of the HAMSA components from each other and from 
the underlying system implementation. 
The current sandbox implementation is very basic. It relies on the standard Java built-in 
mechanisms, such as class loader and security manager. For more details refer to the 
standard Java 2 SDK documentation  [28].  

5.2.2 HAMSA component 
HAMSA compatible component is a standard Java archive (JAR) package containing at least 
one class implementing the component interface specified by HAMSA. A component 
provider must define the main class of the package to be used by HAMSA. A HAMSA 
compatible component is launched by calling its main class’s run method. The components 
are executed in separate threads of the hosting MLM’s Java Virtual Machine (JVM).  
We support a basic component versioning mechanism that can be extended in the future. The 
current implementation ensures that only the most updated component version will be 
executing. 
In order to increase its usability, HAMSA provides a set of easy-to-use tools for adjusting a 
ready application to a HAMSA-compatible component, as well as for developing of new 
HAMSA-compatible network monitoring components. In order to make the development of 
the HAMSA components easier we suggest the following two basic approaches: 

• In case you already have a ready network monitoring application with its own 
complex logic, and it is a regular Java application, you may prefer utilizing the 
automatic HAMSA wrapper utility that will automatically adjust your application to 
be compliant with HAMSA requirements; 

• In case you prefer to enjoy more of the HAMSA features, you can utilize the provided 
basic implementation of HAMSA component. If you use the class extension 
technique to build your monitoring logic on top of the basic component 
implementation, you will save the need to implement the default behavior of HAMSA 
component, such as its naming interface, state maintenance, and basic runtime 
statistics management. 

One can also refer to the provided sample reference component implementation that utilizes 
the HAMSA basic component implementation. 
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5.2.3 HAMSA stateful object and state 
HAMSA provides a generic definition of stateful object. Both HA-MLM and HAMSA 
component are implemented as stateful objects. 
Stateful object is any entity that is interested in keeping its state persistent in form of a set of 
HAMSA state objects that comply to the specified implementation guidelines and interfaces. 
State object is an arbitrary object treated by HAMSA as a “black box”. The only requirement 
for HAMSA compatible state object is to provide its identification and progress. The 
progress parameter is used by the state exchange protocol to identify the most advanced state 
instance.  
One could implement the state progress as any comparable metric, but, in order to meet all 
the HAMSA guarantees, the suggested progress metric, namely the number of outgoing 
external interactions, must be used. Nevertheless, in case weaker guarantees are sufficient for 
a specific component or its specific state object, a different progress metric can be preferred. 
HAMSA identifies the state objects by their name, which must be unique within the scope of 
a specific stateful object. HAMSA maintains the set of multiple state objects belonging to the 
same stateful object in the structure named object state map. A state map contains all the 
state objects of the specific stateful object (0 or more), and provides an access to them by 
their names. 

5.2.4 HA-MLM  
As presented in Section  3.1, HA-MLM is an entity providing generic hosting, replication, 
messaging and execution mechanisms for network monitoring services, i.e., for HAMSA 
components. A HA-MLM entity maintains all the data required to manage the HAMSA’s 
flexible hierarchical framework for execution of HAMSA components.  
HA-MLM entities are hosted by the MLM servers that belong to the membership of the 
specific HA-MLM. For each HA-MLM, a member MLM is elected to serve as the primary 
one similarly to the way the primary MLM is selected for running HAMSA components. The 
chosen MLM is responsible to register the HA-MLM instance at the naming and directory 
service, so that other parties would locate and enjoy this HA-MLM’s. 
HA-MLM’s implementation consists of three layers providing the three main HA-MLM 
roles, namely: (1) group hierarchy manager, (2) messaging service provider, and (3) HAMSA 
components hosting and execution framework. Each one of these layers relies on the 
functionality provided by a lower layer, as described in the following sections. 
In addition, certain parts of the HA-MLM implementation are implemented as easily 
replaceable plug-ins, as shown in Figure 10. For more detailed plug-ins description see 
Section  5.2.5. 

a. HA-MLM group hierarchy management 
The HA-MLM groups have hierarchical tree structure. A user may create a sub-group of 
any HA-MLM node in the tree using one or more MLMs comprising this HA-MLM, as 
explained in Section  3.1. By default there is one general HA-MLM group composed of 
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all the registered MLMs. An MLM is preconfigured to automatically join this group by 
its default name, e.g., “enterprise”, upon initialization. 

 
 
 
 
 
 
 
 
 
 
 

Figure 10: HA-MLM internal structure 

The HA-MLM group hierarchy manager is the lowest layer of the HA-MLM 
implementation. It utilizes the group communication service provided by its MLM server 
for receiving indications of network partitioning resulting in the HA-MLM’s membership 
changes. 
As stated in Section  4.1, a HA-MLM is capable of handling two basic event types: 
membership change and regular. Therefore, our implementation provides two handlers 
responsible for handling of these events that are routed by the MLM to the specific HA-
MLM instance. 
The membership change events handler utilizes the algorithm presented in Section  4.1.2. 
In case a state exchange is required, it also initiates the state exchange process described 
in Section  4.1.4. 
The regular events handler follows the policy defined in Section  4.1.3, and activates an 
appropriate sub-handler responsible for the specific type of handled event. The regular 
events can be either of internal type related to some system activity, or of external type 
containing an external interaction message. The former type’s sub-handlers are provided 
by one of the three HA-MLM layers according to the internal event sub-type, while the 
latter type is handled by the messaging service, as described in the next section. 
The HA-MLM group hierarchy manager serves two basic types of consumers: (1) 
HAMSA administration clients responsible to administer and maintain the HAMSA 
framework, and (2) hosted HAMSA components. These services enable the tree 
hierarchy management. 
The following services are currently provided by this HA-MLM layer: 

• Add/remove sub-group HA-MLM: creates a new HA-MLM under the current one 
in the HA-MLMs hierarchy; 
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• Get parent HA-MLM group: Since the only supported hierarchy structure is the 
tree, there always is only one parent for any given HA-MLM except for the root 
one that is termed enterprise and has no parent node; 

• Get a specific sub-group HA-MLM by its name; 
• Get all sub-group HA-MLMs; 
• Get nominal membership: supplies a list of the MLMs comprising the nominal 

HA-MLM membership; 
• Get currently effective membership: supplies a list of the MLMs comprising the 

HA-MLM membership in the current network partition. It must be a subset of the 
HA-MLM’s nominal membership; 

• Get a historical membership view: for sake of future statistical investigation, an 
HA-MLM also keeps the historical data regarding its past memberships. 

• Get name of the MLM server currently hosting the specified HA-MLM; 
• Get/set the HA-MLM status (active/suspended): a HA-MLM is automatically 

suspended when it resides in a network partition with minority (non-majority) of 
its MLMs available; 

b. Messaging service 
The messaging service is the middle layer of the HA-MLM implementation. On top of 
the group hierarchy management it provides the HA-MLM’s highly available messaging 
functionality.  
The messaging service layer handles the generic recipient entities and provides all the 
messaging-related services they need, as described in Section  3.3. It also maintains a 
mailbox with separate queues of messages for all the recipients. A HA-MLM uses its 
mailbox to store pending messages, in case their immediate delivery is not possible for 
some reason. In case of an outgoing external event the messaging service is responsible 
to initiate the mailbox synchronization and garbage collection process, as explained in 
Section  0. 
In addition, the messaging service layer of HA-MLM is responsible for the following 
activities: 

• Register/deregister recipient: a HAMSA recipient must be registered at one of the 
HA-MLMs in order to enjoy the messaging services. At the registration time a 
recipient is provided with a unique name comprised of the recipient name prefix 
part and the HA-MLM name using the standard URI  [29] email-like notation, e.g., 
aaa@bbb, where aaa being the recipient name prefix, and bbb being the name of 
the HA-MLM the recipient is registered at. In order to incorporate HAMSA into 
more generic framework of networking services in the future, the HAMSA 
specific URI service prefix can be added to the HAMSA recipient name structure, 
e.g., hamsa:aaa@bbb. 

• Send message: a message can either be sent to a specific HAMSA recipient by its 
full name, or broadcasted to all the recipients registered at a specific HA-MLM by 
using the asterisk as a recipient name prefix, e.g., *@bbb. 
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 Message sending is an asynchronous process. Normal return status of the send 
service call only means that the message has been successfully propagated to all 
the HA-MLM members as an outgoing event. It does not guarantee the immediate 
message delivery. 

• Receive message: once called this service blocks until a new message is received 
for the recipient that called it. If the message is already available in the recipient’s 
mailbox queue, it returns immediately. 

• Poll message: similar to receive, but it does not block. Poll returns null in case no 
messages are available for the recipient that called it. 

Figure 11 depicts how a message is communicated to a recipient component. (1), The 
sent message is not delivered to the target component immediately. Instead, (2), it is 
propagated to all MLMs in the HA-MLM using the group communication service. When, 
the message arrives at the group communication service level at all operational MLMs, 
including the propagator, (3), the MLM host routes the message to the relevant HA-MLM 
that puts it into the component’s mailbox queue. Then, (4), the messaging service 
consults the component's interaction approver. If the interaction approver permits the 
interaction, (5), the message is delivered to the active target component. See Section  4.1.3 
for the algorithm’s description. 
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Figure 11: HAMSA Messaging Service 

c. HAMSA components hosting and execution service 
The components hosting, execution, and life-cycle management service is the top layer of 
the HA-MLM implementation. It is the only layer that is aware of the network 
monitoring components existence, and, therefore, provides all the services required for 
the HAMSA components delegation, replication, and execution: 
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• Everyday component lifecycle services, such as sandbox functionality provided 
through the MLM hosting this HA-MLM. 

• Fault tolerance related services, such as components state storage and replication 
management provided through the MLM, state exchange in case of a network 
partitioning. 

• Add/remove component: This is the HA-MLM component delegation/removal 
service. Adding a new component includes its delegation, replication to all the 
HA-MLM members. 

• Start/stop component: An administration client can request a HA-MLM to launch, 
suspend, and resume a specific component. 

• Get components: provides a set of components interfaces for the components that  
are hosted by the  HA-MLM. 

• Get status: indication whether a component is running, suspended, deactivated, 
etc. 

• Get state: allows for obtaining the current component’s state map. 

5.2.5 HAMSA plug-ins 
As shown in Figure 10 the current implementation of HAMSA supplies the following plug-
ins that can be easily replaced for testing of different algorithms with HAMSA framework: 

• Group communication toolkit: is provided through the described above MLM 
interface; 

• Interaction approval policy: is used by the messaging service. It implements the logic 
of the decision whether a specific interaction is approved or not. The current HAMSA 
prototype provides an implementation for the majority-based interaction approval 
policy, as described in Section  3.3; 

• Mailbox synchronization and garbage collection policy: provides the messaging 
service with the functionality described in Section  0. The current HAMSA prototype 
utilizes the synchronization and garbage collection mechanism for purging pending 
messages at every state replication caused by an outgoing external interaction. 

• Load balancing and location assignment policy: assists the components hosting and 
execution service to identify the most appropriate location for a HAMSA 
component’s execution, as explained in Section  4.1.6. 

5.3 HAMSA administration tool  
The HAMSA administration tool is a graphic front-end interface that allows a human 
administrator for performing various HAMSA administration and maintenance tasks. This 
tool is provided as an example of HAMSA framework management client implementation. 
Using the provided APIs it is also possible to develop other management clients. 
Our administration tool was implemented with strong focus on its usability. It has a user-
friendly file explorer-like graphic interface with the HA-MLM hierarchy tree on the left side 
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and the display area providing the information related to the selected HA-MLM on its right 
side, see Figure 12. 
The administration tool enables working with three basic entities: HA-MLM, messenger, and 
HAMSA component. HA-MLM and HAMSA component entities were described earlier. 
Messenger is a graphic representation of the HAMSA messaging service recipient entity. It 
connects to the messaging service of a HA-MLM as its recipient, and allows for sending and 
receiving text messages to any other HAMSA recipient, including other messengers and 
HAMSA components. 
The left-side HA-MLMs tree of the graphic interface enables the navigation through the 
potentially complex HA-MLMs hierarchy. HAMSA enterprise HA-MLM is the root node by 
default. In addition, all the HA-MLM nodes are marked with an appropriate color to indicate 
their current status. 

• Green color means that the HA-MLM is reachable and ready to serve any request. 
• Yellow color means that the HA-MLM is reachable, but can only serve “read” 

requests, since it is suspended, e.g.,  due to the interaction approval policy constraints, 
i.e., the current membership of the HA-MLM does not contain majority of the MLMs. 

• Red color means that the HA-MLM is unreachable. 

 
Figure 12: HAMSA administration tool 

Having selected a reachable HA-MLM in the left-side tree, one can choose any of the 
provided three HA-MLM information views on the right side, namely: (1) the current and the 
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nominal MLMs membership, (2) the HAMSA messengers registered with this HA-MLM, (3) 
the HAMSA components hosted by the HA-MLM. 
The top part of the application contains the menu-driven toolbar that allows for performing 
various actions on the described above entities. And, finally, the bottom part displays the 
HAMSA console that allows for keeping track of possible error, warning and notification 
messages. 
The following functionality is provided through the toolbar menus: 

• File menu: 
o Refresh: resets the connection of the administration tool to the HA-MLMs by 

reconnecting to the root HAMSA enterprise HA-MLM; 
o Exit: closes the application; 

• HA-MLM menu: 
o Add: opens a dialog for the new HA-MLM creation; 
o Remove: removes the selected HA-MLM; 

• Messenger menu: 
o Add: opens a dialog for the new messenger creation. A new window is opened 

for each newly created messenger; 
o Reopen: reopens the window of already existing messenger. Prior to this 

action the messenger must be selected in the Messengers view on the right 
side of the application window. Instead of using this action from the menu, 
one can get the same effect by double-clicking on the selected messenger. 

o Remove: removes the selected messenger; 
• Component menu: 

o Add: opens a dialog for entering the data necessary for the new HAMSA 
component creation. The mandatory fields are: 

 Component name: the specified name may not contain spaces and/or 
special characters. This name will be used as recipient name prefix, 
while the component’s full name will be comprised of the provided 
name and the HA-MLM name. 

 Interaction approval policy: specifies the policy to be used for the 
specific component. 

 Component JAR file: specifies the location of the JAR file containing 
the component logic. 

 Main class name: specifies the name of the class implementing the 
HAMSA component interface. The name should include the full 
package name. 

 HAMSA compliant: if not checked, the administration tool assumes 
that the added component does not implement the HAMSA component 
interface, but rather contains a regular Java application main method. 
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In such case the automatic HAMSA component wrapper is activated to 
wrap the specified application with default HAMSA interface 
implementation. 

In addition one can specify the component’s description and a space separated 
list of arguments that the application main method will be invoked with. The 
latter option is relevant only for non-HAMSA compliant components. 

o Start: in case the selected component has not been started yet, it is initiated 
and started. If the component was suspended, it is resumed. Otherwise, it does 
nothing. 

o Stop: suspends the selected component’s execution. Please notice that both 
start and stop actions implementation rely on the JVM-specific thread 
suspension and resuming implementation. 

o Remove: removes the selected HAMSA component; 
• Help: 

o About: provides some general information about HAMSA. 

5.4 Implementation structure 
The current HAMSA prototype is implemented in Java language, and therefore, its modules 
are grouped into packages according to their functionality. The following list summarizes the 
structure and content of the main HAMSA packages in alphabetical order. We also provide a 
very brief description of the most important classes in these packages. 

5.4.1 Admin package 
This package contains the HAMSA administration tool implementation. AdminGui is the 
main class of this application. 

5.4.2 Component package 
This package contains the HAMSA component related functionality: 

• ComponentIntf specifies the interface an application should implement in order to 
become a HAMSA compatible component; 

• BasicComponentImpl provides the default implementation of the basic HAMSA 
component functionality that can be extended with some application specific logic. 
This module is intended to save developers’ efforts for developing new HAMSA 
components. 

• ComponentState is used internally by HAMSA to maintain the component’s meta-
data, i.e.., the data provided at the component delegation. ComponentState object is 
replicated similarly to other HAMSA state objects as a part of the HA-MLM state. 
ComponentState uses ComponentVersion as its progress metric; 

• ComponentStruct is used internally by HAMSA to maintain the component’s runtime 
data. This structure is kept for active component replicas only; 



 

44

• ComponentVersion implements the component versioning logic; 
• PerHostComponentStatistics maintains the statistical data regarding a component’s 

activation history on different MLM hosts. It is utilized as one of the default state 
objects in the BasicComponentImplemtation’s state map; 

5.4.3 Core package 
The core package contains the core modules of the HAMSA functionality, namely: 

• MLM is an implementation of the MLM server functionality, as described in Section 
 5.2; 

• HamsaEvent is the basic HAMSA event definition; 
• HamsaInteractionApprover is the majority based interaction approval policy 

implementation; 
• Host2GroupIntf specifies the interfaces provided by an MLM to its hosted HA-MLM 

objects. 

5.4.4 Exceptions package 
This package contains the exception classes’ definitions used by HAMSA. 

5.4.5 Group package 
This package implements the group hierarchy management functionality of HA-MLM. It also 
serves as a relay for the messaging service layer implemented in the HamsaMailbox module 
of the messaging package. I.e., for the messaging service we use class composition rather 
than direct inheritance. 

• Group is the main class of this package implementing the core logic of HA-MLM; 
• GroupIntf specifies the HA-MLM’s subset of interfaces that are related to the group 

hierarchy management functionality; 
• GroupState and GroupProgressMetric implement the HA-MLM’s meta-data state 

and its progress metric respectively; 
• GroupStateXchangeProtocol extends the basic StateXchangeProtocol implemented in 

the state package. It provides the HA-MLM group specific functionality required for 
the full state exchange of a HA-MLM; 

5.4.6 HaMLM package 
This package extends the group package’s modules with the messaging service to provide the 
HAMSA components hosting and execution layer of HA-MLM: 

• HaMLM is the main class of this package. It extends the Group class and  implements 
the core components hosting and execution logic of HA-MLM; 
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• HaMLMIntf, HaMLMState and HaMLMStateXchangeProtocol extend the appropriate 
classes of the group package to complete the HA-MLM’s the components related 
functionality; 

5.4.7 Logger package 
This package provides the HAMSA proprietary generic severity-based logging mechanism 
with extensible model of multiple logger agents. 

• Logger implements the main logging logic implemented as a singleton class. It allows 
the logger agents for subscribing to logging events of specific severities. Its main log 
method handles all the logging events and passes them to the relevant subscribed 
logger agents; 

• Severity specifies the set of severity supported by the logging mechanism. The 
currently defined severities are: debug, GUI alert, notification, warning, error, and 
fatal error; 

• LoggerIntf specifies the interface to be implemented by a logger agent; 
• DefaultLogger provides the basic implementation of a logger agent; 
• The rest of the classes in this package provide specific implementations of various 

logger agents, e.g., FileLogger, PrintStreamLogger, etc.; 

5.4.8 Messaging package 
This package contains all the modules involved in the HA-MLM messaging service: 

• MessageServiceIntf defines the API of the HA-MLM messaging service; 
• MessageClientIntf defines the interface that a message service recipient should 

implement; 
• HamsaMailbox implements the HA-MLM’s messaging service layer. It is 

incorporated into the Group module implementation; 
• HamsaMailboxPolicy specifies the mailbox synchronization and garbage collection 

policy; 
• HamsaMessage specifies the basic message entity used by the messaging service. 

This class extends the HamsaEvent one that is defined in the core package; 
• HamsaRecipient implements the recipient specific part of the HamsaMailbox. It 

maintains the recipient’s queue of pending messages; 
• ExternalInteractionMsg extends the HamsaMessage to represent a HAMSA external 

interaction event; 
• Rest of the classes in this package implement various message types that are 

internally used by HAMSA; 
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5.4.9 Plugins package 
This package contains two types of modules: those implementing not HAMSA-specific 
generic functionality, and HAMSA plug-in modules. The latter, such as FileHelper and 
JNDIHelper utilities, generic FIFO queue, alarm and monitor implementations, are used by 
most of the HAMSA modules in all packages, while the usage of the latter was describes in 
Section  5.2.4. 

5.4.10 State package 
This package contains all the modules dealing with the HAMSA state management, 
replication, and exchange. Section  5.2.3 provides more details on the functionality of the 
following modules: 

• StatefulObjIntf and BasicStateFulObjImpl provide the interface and the default 
implementation of the entities that are interested in HAMSA’s state replication 
services,  e.g., HA-MLM and component modules implement this interface; 

• StateHostIntf specifies the interface that a state replication service provider should 
implement. HAMSA MLM module implements this interface; 

• StateMap implements the entity maintaining a set of state objects belonging to the 
same stateful object; 

• StateIntf and State provide the interface and the default implementation for 
component specific state objects; 

• StateDescriptorIntf and StateDesciptor specify the interface and the default 
implementation of the state descriptor that is a parameter provided by the state object 
implementer. It contains the state progress metric. 

• StateXchangeProtocol provides a generic basic implementation of simultaneous state 
exchange process for multiple stateful objects. It follows the algorithm specified in 
Section  4.1.4; 

5.4.11 Transis package 
The Transis package provides the interface to the Transis group communication toolkit. Its 
specification can be found in  [7]. 
 
 
See the Appendices for the additional information on how to use HAMSA 
The following sections provide analysis of the current HAMSA model behavior and 
overheads. 
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6 HAMSA component applications 
In this section we present typical network monitoring applications, demonstrate how one can 
deploy them using HAMSA, and explain the benefits network monitoring applications gain 
from taking the HAMSA approach. 

6.1 Post-mortem failure analysis 
The first network monitoring application is a highly available post-mortem failure analysis 
system. In this application, several MIB scalar variables from each network element are 
being kept in a centralized repository, and when a network failure occurs, the management 
system searches this repository for the relevant variables, whose values may suggest the 
source for the failure (see for example  [22]). 
In a typical two-tier scenario such a system is deployed at a single station, and the MIB 
variables of all network elements are accessed from it. The collected data is kept in the local 
file system. When a failure of a monitored element (or of several elements from the same 
network region) is detected the collected data is searched and the behavior of the relevant 
MIB variables is examined in order to identify the cause of the problem. 
In HAMSA, the centralized polling application and its repository are being handled 
transparently by the middleware. The administrator chooses a set of MLMs by either 
selecting an existing HA-MLM, or defining a new one, and delegates the polling component 
to this HA-MLM. Based on the component placement policy, the controller activates this 
polling component at one of the MLMs, while the replicas are kept for warm backup at other 
MLMs. 

 
Figure 13: All MLMs are put into a single HA-MLM 

If the network splits, the monitoring continues automatically in each network partition where 
at least one MLM of the split HA-MLM is present. The state (e.g., the collected MIB 
variables), is kept locally per replica of the monitoring component in each network partition. 
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When the network re-merges these autonomously collected states become available to the 
administrator. 
One question raised by this example concerns different configuration trade-offs available for 
the monitoring application that uses HAMSA. Consider the typical network configuration 
illustrated in Figure 13. In this scenario, the information arrives at the monitoring station 
from k LANs. If the monitoring is done by centralized polling from the management station, 
and the connectivity to one of the LANs is lost, the monitoring of its elements cannot 
continue. In particular, if the failure is caused by a misconfigured access interface in the 
LAN's access router, the information about the cause of the problem will not be available. 
This is because the connectivity may be lost before the values of the router's MIB variables 
suggesting the cause of the problem are retrieved. 
If however the administrator configures HA-MLM in such a way that there is at least one 
MLM per LAN, the MLM in the disconnected LAN will re-start a separate copy of the 
monitoring as soon as it detects (through the underlying group communication service) that 
there is a network partition, and all variables in the router's MIBs will be polled. 
Once connectivity is re-established (say, through rolling back the configuration) the 
management station will be able to access this information, and the manager will be able to 
identify the source of the problem, (i.e., wrong configuration) and to fix it. 

 
Figure 14: Pair-wise Organization 

This example also demonstrates the importance of proper HA-MLM configuration. The 
administrator may be tempted to have at least one MLM in each LAN, as in our example.  
However, since the state of each monitoring component is distributed by HAMSA to all 
members of the HA-MLM, the communication costs induced by the replication may become 
too high. 
In fact, one may choose to create m separate applications, each having a different HA-MLM 
containing only a pair of MLMs, as described in Figure 14. In this case, the monitoring 
application for each LAN is running separately on the local MLM (according to the distance-
based component placement policy), and thus being unaffected by a possible network 



 

49

partition. If, however, the local MLM itself fails, a copy of the monitoring process for that 
LAN will be initiated automatically by HAMSA on the MLM that is co-located with the 
management station. This configuration also reduces the overall monitoring traffic when 
there are no failures, since in this case the monitoring is done locally and the state of the 
monitoring components is synchronized among the two MLMs only upon the external 
interactions. 
There exists a trade-off between the monitoring overhead traffic, and the overhead traffic 
induced by HAMSA due to replication it performs behind the scene.  The actual amount of 
overhead depends on the total number of MLMs in a HA-MLM, the size of the application 
state in HAMSA, the frequency of external interactions, and the amount of data involved in 
these interactions. 
For example, in the described post-mortem failure analysis application, one can choose to 
have a small state (i.e., the serial number of the last poll), or a very large state (i.e., the actual 
data of the last 10 minutes polling). Clearly, the latter choice allows a faster recovery after a 
failure of a monitoring component, but it generates much more overhead traffic. We study 
these trade-offs in Section  7, and show that the overhead required by HAMSA to provide the 
extra functionality is much smaller than the monitoring costs we saved.  

6.2 Event-driven reactive monitoring 
A more complex monitoring application demonstrating the inter-process communication 
capabilities of HAMSA is an event-driven reactive monitoring network monitoring 
application. In such an application we are required to detect when a function (typically the 
sum) of a number of MIB variables, each belonging to a different network element, exceeds a 
predefined threshold. 
A centralized realization of this application involves a polling station that monitors all 
variables at all network elements, computes the function and sets up an alarm if the value has 
exceeded the threshold. This solution induces both significant traffic overhead and 
computation load at the monitoring station that grow linearly with the number of polled 
elements. 
To address these issues, several algorithms that combine local computation, traps, and a 
centralized monitoring station were proposed in  [10]. However, in order to deploy these 
algorithms the agent should be able to carry on simple computation components and issue 
traps, which are in many cases beyond the ability of the standard SNMP trap framework. 
This is a very good example where the extended functionality of HAMSA can be utilized. 
The global reactive monitoring application is executed in HAMSA in a distributed way. 
Namely, a number of copies of the same monitoring component are launched at several HA-
MLMs. Each HA-MLM is responsible for its own local set of devices. According to the 
algorithm of  [10], if a local threshold event has been detected (in this case the “local” means 
“with respect to the local set of variables”), then the other copies of the monitoring 
component are being notified using HAMSA messaging service. Then according to the 
algorithm, a global poll may be initiated, and, if needed, an alarm is declared. If one of the 
local monitoring processes fails, HA-MLM controller restarts it on another MLM, and the 
system continues functioning. This, of course, comes with a cost of increasing the monitoring 
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traffic, but paying such a cost is definitely better than losing the ability to carry on with the 
critical monitoring component. 

6.3 Usage-based IP billing 
As an additional example, consider the following possible organization of a usage-based IP 
billing application that relies on its own network monitoring components to collect the 
needed information. The structure of this application is shown in Figure 15. In the lowest tier 
of the application there are target agents capable of providing the raw information about their 
respective devices. In the second tier there are three types of monitoring components: flow 
collector, session collector, and flow preprocessor. The flow collector component monitors 
the forwarding devices and obtains the raw data about the IP flows from them directly.  
The session collector component monitors some Authentication, Authorization and 
Accounting server(s), such as RADIUS  [9], collecting the user-session information. The flow 
preprocessor component monitors the flow collector and the session collector in order to 
correlate the users with their flows and reports this pre-processed information to the upper 
tier. The upper tier of the application consists of the billing component that generates the per-
user bills.  
 
 
 
 
 
 
 
 
 
 

Figure 15: Usage-based IP billing application 

Although a failure of any component at the second tier does not imply the immediate 
stoppage of all the application activities, the billing application, as a whole, cannot proceed 
in a regular manner and eventually would halt or become inaccurate if no additional 
measures are taken. For example, if the flow pre-processor component fails then at some 
point the flow collector will run out of the storage space and will be forced either to loose 
valuable information, or to seize its activity. 
In light of the above we identify a clear requirement for increasing the availability of the 
critical monitoring components being part of the management applications. Providing a 
maximally transparent infrastructure that allows a manager to deploy the needed monitoring 
components of the second tier in a highly available manner would improve the overall failure 
behavior of the described applications, and therefore contribute to the better provisioning of 
the network services in general. 
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7 Performance evaluation 

7.1 Trade-off analysis 
In order to understand the trade-off between the communication overhead induced by 
HAMSA, and the possible reduction in monitoring overhead, consider again the scenario 
described in Figure 13, and Figure 14. We want to compare the amount of traffic overhead 
generated by the monitoring application without HAMSA with the overhead induced by 
HAMSA and the underlying group communication service. 
The group communication service is responsible for failure detection that is based on 
periodic broadcasting of short I-am-alive messages. In general, this overhead grows as m2, 
where m being the size of HA-MLM. Optimizations that reduce by factor l, the number of 
LANs, are possible  [23]. However, this is inevitable overhead of failure detection that cannot 
be strictly attributed to HAMSA or group communication, because any application wishing 
to achieve the high availability guarantees of HAMSA on its own would pay these costs 
anyway. The experiments performed in  [23] with the current implementation of Xpand and 
Transis show that group communication scales to 200 hosts dispersed over WAN without 
visible impact on the regular traffic. 
The overhead of HAMSA itself strongly depends on the way we configure HA-MLMs and 
on the size of the application state. In order to investigate the trade-off, assume that the state 
size sent by HAMSA is 150 bytes. This is a reasonable size, when one chooses to use a small 
state (like a measurement sequence number). 
Figure 16 depicts the tradeoff for the two choices of HA-MLM configuration and for 10, and 
20 scalar MIBs variables in each LAN.  We assumed here that due to the SNMP encoding, 
polling of one variable takes about 150 bytes, and thus polling 10 or 20 variables per LAN 
will consume 1500, and 3000 bytes respectively for each LAN. 
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Figure 16: HAMSA and monitoring communication cost as a function of the LANs number 
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Let n be the HA-MLM membership size, and m be the number of hosted monitoring 
component with a single state object per component. Assume we need to update all m 
component states each polling interval. In this case the state replication takes 150 ⋅ n ⋅ m 
bytes. On the other hand, if we use m different HA-MLMs, each of size 2, HAMSA's 
overhead is reduced to 300 ⋅ m. 
One can easily see that even for a very small number of monitored variables the overhead of 
HAMSA is significantly smaller than the monitoring overhead of a traditional application. 
This is a big advantage even without considering the HAMSA's main goals: extended 
functionality and reliability. 
The main mission of HAMSA is increasing the system reliability. However, the high 
reliability comes with the cost of introducing more MLMs. In particular, this implies a higher 
communication overhead. Thus, there is a trade-off between the level of availability and the 
traffic overhead. In order to evaluate this trade-off, we consider the same scenario as above. 
The current host MLM of an active component replica propagates its state to the rest of its 
HA-MLM through multicast. Thus, communication cost of HA-MLM replicating the state is 
linear in the number of group members. However, when we increase the number of MLMs in 
the group, we reduce the probability of a total system failure, since HA-MLM restarts the 
failed process on a different MLM as long as they are available. 
Thus, if we have m MLMs in a HA-MLM, and the independent probability of a single MLM 
failure is p, the probability of the application failure is p = 1 – pm. Since we have only one 
active component per network partition then the communication is s ⋅ (m – 1) per each state 
in the component state, where s being the component state size. To obtain specific numbers, 
let s be 150 bytes, as in our example. Then, in order to get an application failure probability 
of p we pay 150 ⋅ (                 – 1) bytes per change. This cost is plotted in Figure 17, for 
single MLM failure probability of 0.1, 0.01, 0.001, and 0.0001. 
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As one can see, in order to get the often desired “5 nines” reliability, starting from a very 
high error rate of 0.1 on a single machine, 6 MLMs are sufficient. The communication cost 
150 ⋅ (6 – 1) = 750 bytes per state change) becomes much smaller when the reliability of a 
single machine increases. 

7.2 Experiments 
In our experiments we evaluated the following HAMSA capabilities: 

• Messaging throughput: We measured the HAMSA’s overhead in the messaging 
interactions between an external client and a hosted HAMSA component; 

• MLM host recovery overhead as a function of: 
o HA-MLM size; 
o Number of components; 
o Component state size; 

The following sections describe the achieved results. 

7.2.1 Test-bed setup 
In our HAMSA experiments we used the following configuration: 

• Hardware: 
o Servers: Intel PIII 800MHz with 512MB RAM; 
o Network: 100Mbps Ethernet LAN; 

• Software: 
o Java SDK: 1.3.1; 
o OS: Debian Linux 3.0; 
o Group Communication Service toolkit: Transis  [7] utilizing group multicast; 

We used a set of HAMSA components with different state sizes that implemented the “echo” 
messaging functionality, i.e., the components sent an automatic reply to the sender of every 
received message. Our components were implemented based on the provided HAMSA 
component infrastructure that utilized all the HAMSA framework capabilities. In particular, 
the components’ states were replicated and saved to the file based persistent storage at each 
outgoing reply message. 

7.2.2 Messaging throughput 

In this experiment we evaluated the state replication overhead applied by HAMSA in case of 
a simple request-response interaction between a management client and a monitoring 
component that requires state replication. We measured the time passed from the moment a 
client issued a request message till the reply arrival. The main goal of this experiment was to 
see whether the state replication overhead significantly affects the communication throughput.  
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Therefore we executed the same test case with different state replication frequency.  Since 
the state replication in HAMSA takes place only at an outgoing interaction time, we modeled 
a component that ignores a preconfigured number of requests, replying only on every x-th 
message. I.e., the higher the value of the parameter x is, the lower the frequency of the state 
replication is. 

We expected the total overhead to get lower as the number of required replications was 
reduced. In other words, the less we interact with a component, the less we pay in 
synchronization overhead. We used the following values for the replying i.e., replicating state, 
frequency: every 1st, 2nd, 4th, 8th, 16th, 32th, and 64th message, where 1 being the highest 
frequency and 64 being the lowest one. Despite our straightforward and reasonable 
estimation, Figure 18 shows that for the values we used the HAMSA’s state replication 
overhead is minor. 
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Figure 18: Request-response roundtrip time as a function of state replication frequency 

7.2.3 MLM recovery overhead 
This set of experiments intended to evaluate the HAMSA’s overhead in case of network/host 
failures causing HA-MLM membership changes.  
In each test scenario described below we set up a system configuration of two HA-MLMs, 
i.e., we created a dedicated HA-MLM to host the components in addition to the default 
HAMSA Enterprise one. In our experiments we analyzed the behavior of the MLMs in the 
dedicated HA-MLM. We used test components maintaining two internal state objects each. 
These states represented the application internal logic checkpoints and the accumulated 
monitoring data respectively. The former one had a constant size of 1K. We changed the size 
of the latter according to the test case requirements. All the components had the same 
preferred location MLM assignment policy, i.e., all the components always had the same 
primary MLM server. 
We defined a set of major scenarios to test the recovery capabilities of the HAMSA MLMs. 
Each scenario focused on the influence of a specific HA-MLM parameter on the MLM 
recovery overhead. We tested how the following three parameters affect the MLM’s recovery 
overhead in terms of time and number of messages: 
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• Membership size of the HA-MLM: three different sizes: 3, 5, and 7 were tested. In this 
scenario the HA-MLM hosted a single component with two state objects of 1K and 
10K respectively. See Figure 19; 

• Number of hosted components: we used similar components with two state objects of 
1K and 10K each. The number of components varied as follows: 0, 1, 5, 10, 20. See 
Figure 20; 

• State size of the hosted component: The HA-MLM hosted a single component with 
two state objects, one of 1K, the other one with different sizes: 0K (no second state), 
1K, 10K, and 100K. See Figure 21; 

In all the experiments we analyzed the behavior of each one of the MLMs in the replication 
group. Let us consider a HA-MLM H with at least three MLMs. Let A, B, and C be MLMs in 
H. Assume all the MLMs available in the same partition in the beginning. Let us analyze the 
possible scenarios that an MLM is supposed to cope with in case of a membership change. 
1. Let the current partition of H contain all the MLMs except for A; and let B be the current 

components’ primary server.  Then let MLM A join this partition after being either down 
or in some other network partition. Assume A is supposed to become the primary server 
for the components according to their preferred location policy. In this case we measure: 

a. The effort required for A to initialize itself, to synchronize its state objects with 
other MLMs, and to take over the responsibility for running the monitoring 
components; 

b. The effort required for B and C (B is the state update source) to participate in the 
state exchange process, while the responsibility for hosting the active components 
moves to A. 

2. Assume now that A is leaving the common partition due to its host or network link failure. 
Then one of the remaining MLMs (in our scenario it is B) should take over the tasks that 
A was responsible for. In this case we measured: 

a. The effort required for B to take over the activities of A. Please notice that this case 
differs from the case (a) in the previous scenario, since no initialization and state 
exchange is required this time; 

b. The effort required for C to handle the membership change event. No state exchange 
is required in this case according to the algorithm in Section  4.1.4. 
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Figure 19: a) MLM recovery time; b) number of messages as a function of HA-MLM 
membership size 
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Figure 20: a) MLM recovery time; b) number of messages as a function of the hosted 
components number 
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Figure 21: a) MLM recovery time b) number of messages as a function of state size 
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In order to get a better idea regarding the trade-offs between the HAMSA’s benefits and its 
overhead we compared the behavior of HAMSA framework with that of a simple simulation. 
This application simulated a monitoring service maintaining its own persistent state backup 
using the local file system providing very basic reliability semantics with no replication for 
high availability. We used the recovery time overhead of this application as our basic 
measurement unit for the performance evaluation. In the above figures, all three recovery 
time diagrams contain the following four charts: 

• MLM full initialization with taking responsibility for the components from the other, 
already running MLMs, as described in subsection 1a; 

• MLM taking over the responsibility for running components with no initialization or 
state exchange, as described in subsection 2a; 

• MLM taking part in the state exchange only, as described in subsection 1b; 
• MLM handling a membership change event that does not apply a state exchange, as 

described in subsection 2b; 

7.2.4 Discussion 
In the theoretical trade-off analysis of Section  7.1, we assumed that only unicast 
communication is enabled between the MLMs in HA-MLM groups. However, in our 
experimental setup we used a single broadcast domain. The implication of this is that the 
group communication overhead due to failure detection and membership maintenance is 
reduced by the constant factor of n, where n being the size of the HA-MLM group. Similarly, 
the application-specific communication overhead of a HAMSA-based application due to the 
state synchronization is reduced by the same factor. This explains the difference between the 
theoretical estimations and our experiments results. 
In particular, in our first experiment the state replication required a single message to update 
all the HA-MLM members. However, with no support for multicast, the state replication 
message would have been sent to every HA-MLM member separately, which in our case 
would have doubled the number of the state replication messages. 
The measurement results show relatively low throughput for a simple messaging interaction. 
However, first, the presented results include the group communication overhead that does not 
depend on HAMSA, and is crucial for a highly available replication mechanism. Second, 
HAMSA was not designed to serve as a general-purpose messaging bus, but rather was 
focused on providing strict high availability guarantees to the hosted components. 
On the other hand, we showed that HAMSA replication mechanism’s overhead does not 
significantly depend on the amount of replications requested by the hosted components. This 
is an extremely important feature for a replication framework, which, in particular, shows 
that even with unicast only communication in place we would get similar results. 
In the second experiment, we measured the MLM recovery time and the number of 
transmitted messages that were involved the HA-MLM state exchange protocol. As 
explained in Section  4.1.4, this protocol requires sending m ⋅ (m + n) messages per HA-MLM, 
where m being the HA-MLM membership size, and n being the number of the state objects 
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hosted by the specific HA-MLM. In case the multicast communication is available m + n 
messages should be sufficient. 
We can see that the MLM recovery time was affected neither by the HA-MLM membership 
size, nor by the size of the replicated state objects. The membership size only affected the 
number of the state advertisement messages sent in the process of state exchange, which, in 
our case of two HA-MLMs, was minor time-wise, adding just 2m messages to the state 
exchange process (m varied from 3 to 7). However, we could see this overhead in the 
growing number of messages, which still is reasonable, since this is the minimal number of 
messages required by any replication protocol. 
The tested state objects size did not contribute any additional messages, since a state object 
could fit into a single message. The only additional overhead in this case was the longer I/O 
operation of writing the state objects to the file. It seems that for the tested object sizes this 
issue did not become a bottleneck. 
However, the number of hosted components has a significant impact on both the MLM 
recovery time, and the number of messages sent during the state exchange process. Without 
getting into the low level details of the HAMSA’s implementation, we can see that the 
overhead, both time and message-wise, grows linearly with the number of the hosted 
components (notice that in our diagrams the x-axis grows exponentially). This overhead, 
again, can be considered reasonable, since each component requires a dedicated handling for 
its state replication, as well as for the execution by its MLM host in a separate thread. 
The current HAMSA implementation’s main target was to provide a proof of concept for the 
feasibility of our approach. We consider this implementation being a prototype, rather than a 
full-scale mature product. Further code optimization will be required to enhance HAMSA’s 
functionality and to improve its performance. 
In spite of these facts we showed that although HAMSA introduces a significant overhead, 
this overhead is reasonable and not any higher that one might expect from a generic high-
availability and replication framework for network monitoring services. Moreover, we 
demonstrated that HAMSA significantly improves the existing model for the primary/backup 
family of replication protocols, providing an extensive architecture adjusted to the specific 
requirements of the network monitoring applications and their management. 
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8 Related work 
HAMSA combines different architectural and technology elements: 3-tier architecture, 
distributed delegation, high availability with the strong semantics. 
Achieving scalability of the network management through the hierarchical architecture has 
been a common approach for a long time. The quest for more efficient and versatile 
management paradigms has been pursued by many researches over the last few years. 
The multi-tier architecture, and in particular, the three-tier architecture approach for 
monitoring is not new. Starting from the SNMPv2  [11] protocol the multi-tier approach is 
proposed as part of the SNMP family of standards based on the so-called Mid-Level 
Managers (MLMs) as well as the Manager-to-Manager (M2M) communication model. These 
enhancements to the original SNMP framework have a potential to dramatically improve 
scalability of the SNMP-based monitoring.  
Other approaches suggest using mobile agents, active networks, or programmable networks 
for decentralizing and shortening the control  [16],  [19]. Usually, these proposals focus on the 
mechanics of the mobility and extended functionality rather than on the high availability and 
meta-management issues being in the focus of this work. 
Several approaches for integrating the management by delegation approach  [24] into SNMP 
environment have been proposed recently  [25]. With the advent of Java, the delegation is 
easily implemented by exploiting its mobility and security features making Java a preferred 
language for developing delegated programs. 
Novel architectures were proposed in the recent years for highly flexible and adjustable 
multi-tier management frameworks, such as  [26],  [27]. However, they assume a weak failure 
model for their architecture, which cannot satisfy important types of network monitoring 
services as presented in this work. 
Java Management Extension  [17] is an emerging Java standard for representing managed 
objects as Java Beans. JMX Bean is an object that serves as a Java wrapper facade for the 
actually managed object. JMX Beans can co-locate with the objects they represent at the 
agent side, or be deployed in a distributed fashion. In the latter case, JMX Beans need 
distributed object services of the second tier that are currently left unspecified by JMX. 
HAMSA components can be implemented as JMX Beans. 
One of the more mature Java technologies for deploying three-tier Java applications is 
provided by Enterprise Java Beans (EJB)  [21]. EJB defines interfaces for Application Server, 
and Enterprise Java Bean components that execute in the environment of the application 
server managing all the transactions, persistency, security, and naming services for the 
components. 
The problems that HAMSA copes with are very similar to those of the state-full EJB 
clustering. Some of the existing EJB implementations provide fail-over models that allow for 
replication of the beans' states, and support takeover of the failed beans by other servers in 
the cluster  [21]. Most EJB servers perform state-full fail-over by using either in-memory 
replication, or persistent storage to a shared database. These solutions are inappropriate for 
the network monitoring domain, since they rely on the fact that the network remains 
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connected. To the best of our knowledge, there is no current implementation of EJB, or other 
application server technology that provide the high availability of the second-tier components 
execution to the level that allows their comparison with HAMSA. 
And finally it is definitely worth mentioning last but not least, the industry standard network 
management and monitoring tools: OpenView by HP and NetView by IBM. These tools are 
historically most widely used and are considered as very sophisticated applications in the 
network management area. However, we believe that, while providing advanced means for 
flexible distributed management, these tools still do not put enough emphasis on the meta-
management issues, and specifically, the high availability of the management and monitoring 
applications. 
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9 Future Work 
This section suggests some of the possible directions of future HAMSA enhancements. 

9.1 Advanced Load Balancing and QoS within HA-MLM 
It is possible that due to some load considerations, it will become necessary to move a 
HAMSA component among the MLMs within its HA-MLM membership even during the 
components’ normal execution, and not just in case of failures. This is in order to prevent the 
load accumulation on a specific MLM and, thus, the degradation in the quality of service 
(QoS) provided to the management component by its host. 
A management component may be interested in requesting a specific QoS level from its HA-
MLM. In this case we could consider the following approach: At some point a host MLM 
concludes that it is only possible to satisfy the requested QoS by moving the management 
component. Then the MLM would exchange the QoS-related information with other MLMs 
via the group communication service in order to identify the most appropriate new location 
for the management component. 
In this approach, MLMs do not need to monitor each other continuously, but only when the 
real need to re-balance the management components arises. Therefore, the overhead of the 
load balancing is kept reasonably low. 
Additional more advanced load-balancing and QoS policies can be considered. 

9.2 Automatic HA-MLM Construction 
In the current version of HAMSA, a human network administrator specifies the members of a 
HA-MLM group manually. This makes the management systems based on HAMSA very 
flexible and provides the administrator with full control over them. On the other hand, as a 
management system grows and its complexity increases, it becomes time-consuming and 
failure-prone to manage HA-MLM groups manually. Moreover, human managers may not 
always choose the optimal set of MLMs to comprise a HA-MLM group with respect to 
multiple dynamically changing parameters such as network load, resource consumption, load 
sharing, physical location, etc. 
In the future, the work of a HA-MLM group construction could be automated to the possible 
extent. Ideally, an administrator should be capable of specifying a management component 
along with its QoS and high-availability requirements, leaving the low-level work of optimal 
HA-MLM formation to HAMSA, while still having the option to intervene into the 
construction process manually, if necessary. 
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10 Conclusion 
Efficient monitoring of large and dynamic distributed systems becomes challenging. In spite 
of numerous novel technologies and approaches described in brief in this work, they are not 
widely utilized by the management community yet. There are several reasons for this. We 
believe that one of the more fundamental problems with the distributed hierarchical 
management in general is the increased complexity of the meta-management, i.e., 
administrating the management system itself.  
We present a lightweight monitoring middleware called HAMSA that dynamically allows to 
enhance monitoring functionality, and to decentralize it in a reliable and efficient manner. 
This work presents the architectural overview of the middleware, and the possible functional 
and performance trade-offs involved in its deployment. By leveraging a group 
communication middleware our architecture increases availability, modularity, and 
scalability of network monitoring. 
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Appendix A: HAMSA Installation Guide 
This document will guide you how to install HAMSA in just 10 easy steps. 
The HAMSA distribution supplies two basic modules: 

• MLM server: server-side daemon actually providing the core HAMSA functionality. 
You should install an instance of MLM on every server that you want to take part in 
the HAMSA framework. 

• AdminGui: client-side GUI front-end for easy administration of HAMSA. You should 
install an instance of AdminGui on any administration station that will deal with 
HAMSA. 

Prior to the HAMSA installation make sure that you have a full JDK 1.3.1 or higher installed 
on all the machines you want to utilize for the HAMSA framework. If you have already got it 
you can now proceed with the installation as explained below. 

1. Unzip the content of the HAMSA distribution onto your disk. 
2. Decide where you want to install HAMSA, and define a new environment variable   

HAMSA_HOME that specifies the desired deployment location path. 
3. Locate the installation environment setup configuration script: 

- env-setup.bat for Windows OS 
- env-setup.csh for UNIX OS 

4. Update the selected env-setup configuration script as follows: 
a. Mandatory: 

- Windows only: specify the drive letter of the deployment path, e.g. D: 
b. Optional (for advanced users only): 

- Specify the installation type by changing the INSTALLATION_TYPE 
variable's value to either MLM or Admin. This will affect the hamsa.jar's main 
class setting in the manifest file. 

- Specify the deployment path in case you want it to be different from 
HAMSA_HOME. 

- It is recommended to launch the installation process from the very directory, 
where the installation script is located. Otherwise, specify the distribution 
location path. 

- In case you prefer your installation to use a temporary directory other than the 
specified one, you should change the TMP_VOLUME (Windows only) and 
TMP_DIR variables' values. 

- In case you prefer using compilation flags different from the default one, you 
can update the FLAGS variable. 

5. Update the local_config.txt file to be used in the installation. This file should contain 
a non-empty list of the MLM names (one per line). An MLM name typically consists 
of the name of the host where the MLM will be executing and the logical name of the 
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specific MLM. The host name and the logical name are concatenated through the '_' 
character. Please notice that you should use the host name as it is provided by the 
system hostname call. In addition, the host name should only contain the host part of 
the fully qualified dotted notation's host name, i.e., without the domain name. 
Please also notice that the lines starting with the semicolon character are treated as 
comments lines. 

6. Locate the appropriate installation script. You can choose one of the following 
HAMSA installation procedures: 
a. Runtime installation - uses precompiled distribution build (JAR libraries). Launch 

it by running: 
- install.bat for Windows OS 
- install.csh for UNIX OS. It uses standard C-shell. You may need to grant 

execution permissions to this file if missing, in order to be able to run it. Refer 
to the 'chmod' command's manual documentation for more information. 

b. Build installation - allows you for changing the HAMSA code by rebuilding all 
the HAMSA application's JAR libraries. It is currently available for Windows 
installation only. Launch it by running: 
- install-build.bat for Windows OS 

Once completed the build installation performing the runtime installation is no longer 
necessary.  

7. Launch the installation script. As mentioned above it is strongly recommended that 
you do it from the root directory of the distribution, i.e., the very directory where the 
installation script itself is located. 

8. For easier use of HAMSA it is recommended to add the HAMSA bin directory to 
your system path as follows: 

- Windows: %HAMSA_HOME%\bin 
- UNIX: $HAMSA_HOME/bin 

9. Install Transis (see the Transis installation guide for more details). 
10. Refer to the HAMSA Administrator Guide to get HAMSA up and running. 

 
Enjoy HAMSA! 
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Appendix B: HAMSA Administration Guide 
 

This HAMSA distribution supplies two basic modules: 
• MLM server: server-side daemon actually providing the core HAMSA functionality. 

You should have a running MLM daemon instance on every server that you want to 
take part in the HAMSA framework. 

• AdminGui: client-side GUI tool for easy administration of HAMSA. One can decide 
to develop her own administration client using the HAMSA's extensive APIs. 

MLM server 
In order to launch an MLM server daemon you should: 

1. Set up the MLM configuration by updating the config.txt file located in the mlm sub-
directory of the HAMSA_HOME directory. 
Please notice that all the MLMs' configuration files should contain consistent MLM 
daemons section listing the same MLM names for all the participating hosts. 

2. Set up the Transis daemons configuration by updating the Transis configuration file at 
all the hosts comprising your HAMSA framework. The Transis configuration file is 
typically named 'config' and is located in the Transis 'bin' directory.  

3. If it is not the first time you are launching the MLM and you are using the "-restore" 
option, you may want to reset the backup MLM state by deleting its directory located 
under the mlm sub-directory of the HAMSA_HOME directory. The MLM state 
directory name is equal to the full MLM daemon name including both the host name 
part and the logical name part, e.g., HOST_MLM0. 

4. Launch Transis daemon or ensure that a daemon is already running (one per host). 
See the Transis user guide for more details. 

5. Launch the RMI Registry daemon using the provided script: 
- Windows: 

 %HAMSA_HOME%\bin\RMI.bat 
- UNIX: 

$HAMSA_HOME/bin/RMI.csh 
6. Launch the MLM daemons on all the appropriate hosts as follows: 

- Windows: 
%HAMSA_HOME%\bin\MLM.bat -name <MLM_logical_name> -restore 

- UNIX: 
$HAMSA_HOME/bin/MLM.csh -name <MLM_logical_name> -restore 

Please notice that the MLM logical names should only contain the logical part of the 
MLM name specified in the configuration files, i.e., the host name part should be 
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omitted. In case you omit the "-name" option the default "MLM0" logical name will 
be used. 

Administration tool 
1. Set up the AdminGui configuration by updating the config.txt file located in the 

admin sub-directory of the HAMSA_HOME directory. Please notice that the 
AdminGui client's configuration file should be set up appropriately containing the 
MLM daemons configuration similar to that of the MLMs' configuration files. 

2. Launch an AdminGUI client as follows: 
- Windows: 

%HAMSA_HOME%\bin\AdminGui.bat 
- UNIX: 

$HAMSA_HOME/bin/AdminGui.csh 

Notes 
• Please notice that Windows OS users can also benefit the shortcuts supplied in the 

HAMSA's bin sub-directory. 
• Please refer to the HAMSA User Guide for the details of the HAMSA core features. 

 
Enjoy HAMSA! 

 


