

Highly Available Monitoring System
Architecture (HAMSA)

A thesis is submitted in fulfillment of
the requirements for the degree of

Master of Science

by
Gleb Shaviner

supervised by
Prof. Danny Dolev

Institute of Computer Science
The Hebrew University of Jerusalem

Jerusalem, Israel.

December, 2003

Acknowledgements

I am deeply grateful to my advisor, Prof. Danny Dolev, for his support, guidance and
endless patience, which I appreciate very much.

I would also like to thank David Breitgand who introduced me into the theme, for his
help, time and advice of great importance throughout all stages of this work.

Abstract

Monitoring of the environment is an essential functionality needed in any network
management system. In order to achieve flexibility and scalability, network monitoring
facilities are being decentralized. One of the more popular approaches to decentralizing
is the usage of a multi-tier hierarchical structure, in which monitoring functionality is
being distributed among the cooperating nodes in the hierarchy. However, the
advantages of the distributed hierarchical solutions come at the cost of the increasingly
complex meta-management. Meta-management refers to managing the management
tools themselves. In other words, the effort required for maintaining a large-scale
dependable distributed monitoring service may offset the advantages gained from its
decentralization.

In this thesis, we study one of the more important aspects of meta-management of
the distributed hierarchical monitoring services, the high availability. We propose a
novel Highly Available Monitoring Services Architecture (HAMSA) that improves
availability and dependability of the monitoring applications. HAMSA provides for
their guaranteed behavior in an asynchronous network, being subject to the general
omission failure model. In this model, messages may be delayed, lost, reordered, and
duplicated by the network, hosts may crash and recover asynchronously, and transient
network partitions (i.e., the independent isles of connectivity) may be formed due to the
network errors.

HAMSA is a general-purpose middleware that simplifies deployment of the
dependable monitoring applications in a multi-tiered setting. To achieve high
availability with the strong consistency semantics for the state-full monitoring
applications, HAMSA implements a novel primary/backup replication protocol that is
especially well-suited for monitoring. HAMSA uses Group Communication Service
internally, which is transparent to the clients and the monitored resources. The
scalability of HAMSA is achieved through keeping the replication groups relatively
small, and restricting the group communication service usage to the dedicated servers
that have sufficient resources for utilizing it. HAMSA is a complimentary proposal, and
does not require universal acceptance to be deployed.

The contributions of this work are as follows. We present HAMSA, and study the
main algorithms required to implement it. We describe the implementation details of
the fully functional prototype of HAMSA, and evaluate its performance theoretically
and through an actual experimentation. We provide examples of important network
management applications, in which high availability is important, and demonstrate that
communication and processing overhead introduced by HAMSA is relatively low.

4

Contents

1 Introduction and Motivation... 8

1.1 Traditional approaches in Network Management... 8
1.1.1 Two-tier vs. Multi-tier architecture... 8
1.1.2 Mobile Agents and Management by Delegation .. 10
1.1.3 Application Servers... 11

1.2 HAMSA scope.. 11
2 Model ... 13

2.1 (k, ∆)-bofo semantics.. 13
2.2 Problematic scenarios ... 14
2.3 Problem statement... 16

3 Architecture.. 18
3.1 Highly Available Mid-Level Managers (HA-MLMs) .. 19
3.2 HAMSA-compatible Components.. 20
3.3 HAMSA Messaging Service... 22
3.4 Group Communication Service (GCS) ... 23

4 HAMSA algorithms ... 25
4.1 Algorithms description.. 26

4.1.1 HAMSA states .. 26
4.1.2 HA-MLM membership change handling.. 27
4.1.3 External event handling .. 28
4.1.4 State Exchange.. 28
4.1.5 Garbage Collection ... 31
4.1.6 Load-balancing ... 31

4.2 Primary/backup protocol discussion ... 31
5 Implementation Highlights... 33

5.1 Overview... 33
5.2 HAMSA mid-tier framework.. 33

5.2.1 MLM... 33
5.2.2 HAMSA component ... 35
5.2.3 HAMSA stateful object and state ... 36
5.2.4 HA-MLM.. 36
5.2.5 HAMSA plug-ins .. 40

5.3 HAMSA administration tool... 40
5.4 Implementation structure .. 43

5.4.1 admin package .. 43
5.4.2 component package... 43
5.4.3 core package ... 44
5.4.4 exceptions package.. 44
5.4.5 group package... 44
5.4.6 hamlm package.. 44
5.4.7 logger package.. 45
5.4.8 messaging package.. 45
5.4.9 plugins package... 46

5

5.4.10 state package... 46
5.4.11 transis package.. 46

6 HAMSA component applications .. 47
6.1 Post-mortem failure analysis... 47
6.2 Event-driven reactive monitoring ... 49
6.3 Usage-based IP billing .. 50

7 Performance evaluation.. 51
7.1 Trade-off analysis ... 51
7.2 Experiments .. 53

7.2.1 Test-bed setup ... 53
7.2.2 Messaging throughput... 53
7.2.3 MLM recovery overhead .. 54
7.2.4 Discussion ... 57

8 Related work .. 59
9 Future Work ... 61

9.1 Advanced Load Balancing and QoS within HA-MLM .. 61
9.2 Automatic HA-MLM Construction .. 61

10 Conclusion .. 62
Bibliography ... 63
Appendix A: HAMSA Installation Guide... 65
Appendix B: HAMSA Administration Guide... 67

MLM server... 67
Administration tool.. 68
Notes.. 68

6

List of Figures

Figure 1: Centristic approach.. 9
Figure 2: Distributed approach ... 10
Figure 3 HAMSA Architecture... 18
Figure 4: HA-MLMs Hierarchy.. 20
Figure 5: HA-MLM Structure... 21
Figure 6: Membership change handling ... 27
Figure 7: External events handling ... 28
Figure 8: HAMSA State Exchange protocol’s state machine... 29
Figure 9: HAMSA state exchange protocol... 30
Figure 10: HA-MLM internal structure .. 37
Figure 11: HAMSA Messaging Service ... 39
Figure 12: HAMSA administration tool ... 41
Figure 13: All MLMs are put into a single HA-MLM.. 47
Figure 14: Pair-wise Organization .. 48
Figure 15: Usage-based IP billing aplication.. 50
Figure 16: HAMSA and monitoring communication cost as a function of the LANs number

.. 51
Figure 17: HAMSA communication cost per state change as a function of the required

system error failure probability .. 52
Figure 18: Request-response roundtrip time as a function of state replication frequency...... 54
Figure 19: a) MLM recovery time; b) number of messages as a function of HA-MLM

membership size... 56
Figure 20: a) MLM recovery time; b) number of messages as a function of the hosted

components number ... 56
Figure 21: a) MLM recovery time b) number of messages as a function of state size........... 56

7

List of Tables

Table 1: HA-MLM state ... 26
Table 2: HAMSA component state... 27

8

1 Introduction and Motivation
As the networked systems rapidly grow in size, the management techniques of a traditional
centralized network become insufficient. Distribution of management applications is
required. The distribution, however, results in management tools being themselves very
complex distributed systems prone to various failures that are not simple to handle.
Numerous important network management applications such as usage-based accounting,
trend analysis, performance management, fault management, and others, perform
application-specific network monitoring tasks as part of their activities.
The primary target of HAMSA is to diminish the down time of the critical monitoring
services by masking various network and host failures disrupting their normal operation.
Writing a highly available service is difficult. Therefore, our monitoring middleware takes
care of generic problems of distributed computing in a failure-prone environment, and
provides a guaranteed behavior of the monitoring applications requiring a minimal effort
from their developers.
In this work we describe the main building blocks of this architecture, and demonstrate its
power for efficient and reliable monitoring by describing and analyzing the performance of
monitoring applications implemented using HAMSA. The thesis is organized as follows: In
Section 1 general background and motivation are provided. We present the HAMSA’s model
and problem scope in Section 2, an architecture overview in Section 3, and an essence of
HAMSA algorithms in Section 4. Section 5 contains the HAMSA prototype implementation
details. Performance evaluation highlights are covered in Section 7, and, finally, the
discussion on the related work is given in Section 8.

1.1 Traditional approaches in Network Management

1.1.1 Two-tier vs. Multi-tier architecture
Most of the network management solutions prevalent today operate according to the rigid
client/server architecture. In this architecture, a "thick" client (manager) communicates with
the per-device "thin" servers (agents) via some common protocol [11] to retrieve
management information and to control managed entities. All data processing and decision
making are taking place at the manager's workstation. Target device agents are usually quite
primitive and function only as an access to the devices’ local management information.
Therefore, the management process is, in fact, centralized at the manager's workstation.
The traditional two-tier approach to network management is being rapidly abandoned. This is
motivated by the severe scalability and availability limitations of this approach, which is
essentially centralized [11]. The fast progress that has been made in mobile code and
distributed middleware technologies [8] makes more flexible architectures, such as the
popular multi-tier one, both technically feasible and attractive also for the management
applications [2] and [3].
As shown in Figure 1 among the more prominent problems with this approach are the
following:

9

• Since the management agents have limited functionality and capabilities, they only
instrument the access to the management data, while all the computations should be
performed by the manager. Thus, large volumes of data should be transferred over the
network, and the traffic overhead can be high.

• As shown in [10] reactive (i.e., event-driven) monitoring schemes are far more
efficient in terms of communication than polling-based ones. However, in standard
management frameworks, such as SNMP, configuring application-specific threshold-
driven traps is a non-trivial and not always a feasible task.

• Manager station concentrates all the management data aggregation and processing,
and therefore, becomes a bottleneck as the size of the managed network increases.

• Manager station is a single point of failure, which damages general availability of the
monitoring services. Although for some types of management data disconnected type
of monitoring operation can be achieved [11], the disconnected monitoring operation
is not available in the general case. This type of operation, however, is essential for
scaling monitoring services, reducing communication overhead, and increasing
survivability of management services as explained below.

• The sometimes unavoidable network distance between the management station and
the network elements makes it very hard to control the elements, due to the inherent
instability imposed by long control loops.

Figure 1: Centristic approach

Because of these problems, alternative approaches to monitoring architectures, such as the
more flexible multi-tier one, were pursued: [15], [16], [18], [19], [20]. The more important
among them, as well as their relationship to our proposal are discussed in Section 8.
A typical multi-tier monitoring application is described in Figure 15. The target agents
constitute the lowest tier and serve as the source of the management data. The monitoring
manager applications are dynamically dispatched at the middle tier(s), and therefore
sometimes are termed mid-level managers. They monitor the target agents (and, possibly,
communicate with other monitoring components) accumulating and pre-processing the

Manager

Bridge Bridge

10

information collected from them. The end-consumers of this information, the management
front-ends, constitute the uppermost tier.
The flexible multi-tier organization of distributed applications offers considerable benefits.
Note that in the multi-tier architecture, the components residing in a middle tier can partially
or fully implement some of the processing functionality that was previously residing
exclusively on the manager side. Thus, using this architecture reduces the traffic overhead,
shortens the control loops, and extends the management functionality. In particular, the
middle-tier components can implement efficient application-specific event-driven monitoring
schemes.
Survivability and availability of the network monitoring services are also improved. The
mid-tier components can operate autonomously of the first-tier managers (see Figure 15). In
the new scheme, the overall availability of a management application is increased since
different mid-level components of it may be executed at different network locations, and a
failure of one of them does not imply the immediate unavailability of the whole service.
When certain parts of the monitored network become unavailable, e.g., due to a network split,
the mid-tier monitoring components can continue monitoring in their respective partitions,
and later merge the results. This is impossible in the centralized two-tier architecture.

Figure 2: Distributed approach

On the down side, the multi-tier client/server applications are much more difficult to control.
Providing high availability of the mid-tier components in spite of host crashes, network splits
and merges is especially challenging. For example, since the dependencies usually exist
among various management applications, as well as among components of the same
application, even a single failure of a critical component may bring the whole management
application to a halt, or render it inaccurate.

1.1.2 Mobile Agents and Management by Delegation
Further decentralization of network management can be achieved through mobile agents’
approach, possibly combined with the management by delegation.

Bridge Bridge

Top Level Manager

Middle Level
Managers

11

In fact, even general purpose distributed mobile agents frameworks require introducing
sophisticated mechanisms for efficient management, as well as for high availability and
reliability. Most of the existing frameworks, such as [13], refer to the agents’ reliability by
providing simple mechanisms for state backup/recovery that utilize locally available non-
volatile storage, e.g., a file system.
With regard to the network management, reference [2] proposes a distributed management
framework based on the mobile agents’ paradigm. References [3] and [4] propose a
combination of mobile agents and management by delegation approaches. Reference [5]
proposes distributed management with mobile agents, while retaining the standard SNMP
framework.

1.1.3 Application Servers
A standard way of creating a multi-tier client/server application is using an application
server, which supplies the mid-tier run-time execution environment and hides away the
heterogeneity of the network, providing for smooth integration. Usually the middleware
offers an abstraction of the object bus, over which the inter-object communication, typically
termed remote method invocations, are performed.
In addition, application servers take care of the scalability and reliability of the hosted
applications. Some of the industry standard application servers, such as EJB [21], also tackle
the high-availability issues to some extent. However, to the best of our knowledge, no
existing application server provides a highly available run-time environment that copes with
the kind of failures handled in this work. This issue is elaborated in Section 8.

1.2 HAMSA scope
In light of the above, it should be noted that the decentralization of management comes at a
certain price. A distributed management system itself becomes very complex and its behavior
becomes so convoluted that even a very experienced network manager would have
difficulties handling it. We call this the meta-management problem.
Solving the meta-management problem is crucial for the ultimate success of the distributed
management paradigm. The administrators should be relieved from the highly non-trivial
issues of deployment and control of the distributed management system in presence of
various network failures.
We identify a clear requirement for increasing the availability of the critical monitoring
components being part of the management applications. Given the complexity of handling
distributed multi-tier applications in an unpredictable environment prone to various network
failures, it is both important and challenging to provide a maximally transparent
infrastructure that allows a manager to deploy the needed monitoring components of the
middle tier in a highly available manner. This improves the overall failure behavior of the
management applications, enables more efficient applications (such as event-driven
monitoring applications), and therefore contributes to better provisioning of network services
in general.

12

In this work we present our novel Highly Available distributed Management System
Architecture (HAMSA) and its implementation. HAMSA is an extensible generic platform
for the development of distributed management applications with guaranteed behavior in
presence of various network failures. Although the current version of HAMSA is primarily
oriented towards furnishing the management by delegation approach, it can be generalized to
accommodate the mobile management agents as well.
HAMSA supplies efficient system-level solutions for meta-management problems that
include support for flexible hierarchical mid-level management structure, built-in high
availability and fault tolerance of the delegated management components, check pointing of
their activities and load sharing. In order to provide simple, elegant and efficient solutions to
these problems, HAMSA utilizes group communication [6], an approach developed for
facilitating fault tolerant distributed applications, which has matured over the last ten years.
More explanations about the group communication service can be found in Section 3.4.
In this work we present an infrastructure that facilitates highly available application-specific
monitoring components and discuss the management applications, which would greatly
benefit from exploiting it. Our infrastructure transparently handles complex failure scenarios
including network partitions and host failures. The deployment of the infrastructure requires
only minor additions to the application code.

13

2 Model
In this work we assume general omission model. This model allows both the network and the
host to loose an unlimited amount of messages. This model captures all benign failures
including host crashes/recoveries, as well as network splits/merges. More explanations can
be found in [14].
In this model, messages may be delayed, lost, reordered, and duplicated by the network;
hosts, monitored devices, and network links may crash and recover independently; and
network partitions, i.e., the independent isles of connectivity, may be formed due to network
errors.
We say that two entities reside in different network partitions, if they cannot communicate.
We assume network partitions being transient, which means that after some limited time
period of γ the disconnected entities will get connected again.

2.1 (k, ∆)-bofo semantics
One of the common approaches for achieving high availability in a client-server system is the
primary/backup protocol. In the primary/backup replication a service is provided by a set of
servers, while only one server acts as a primary at any given time instance. A client initiates
requests by sending a message to the server that it believes is the current primary. When the
primary server receives the client's request, it processes it, and sends a response. Let us
assume, for simplicity, that all client requests are synchronous. This means that the client
does not initiate a new request until it gets the response to the previous one. Let δ be an upper
bound on the time that it takes for a server to process a client's request, and for a message to
travel in a round-trip between the client and the server. Then, if a request was issued at time t,
and no response is received by the time t + δ, we say that the service outage has occurred at
time t. If at time t + δ + T client receives a response to its request, we say that the service
outage interval is T.
In the primary-backup replication protocol, other servers detect that the current primary
became unavailable, and elect the new primary using some algorithm. The new primary
continues providing the service from the last service-specific state that is known to it. To
allow this, primary should propagate the state changes that it makes as a result of processing
the client's requests, to other servers. Various primary-backup protocols will differ on such
issues as when the state changes are propagated, to which other members of the replication
group, and on the exact sequence of the operations. The common part among all these
protocols is that at some point the primary notifies other members of the replication group
about the state change to allow them for transparent take over in case of this primary's failure.
Reference [14] defines the following four properties for the primary-backup client/server
protocol:

• Pb1: There exists predicate Prmys on the state of each server comprising the
replication group. At any time, there is at most one server s, whose state satisfies
Prmys, i.e., there always is just one active replica of a service in the system.

14

• Pb2: Each client i maintains a server identity Desti, such that a service request i
interacts only with Desti. This property, actually, distinguishes the primary-backup
replication approach from the active replication, in which the client broadcasts its
requests to all the servers in the service replication group. This requires the same
order of processing in order to preserve state consistency of all the servers.

• Pb3: If a client's request arrives at a server that is not primary as defined in Pb1, this
request is not processed.

• Pb4: There exist fixed values k and ∆ such that all service outages can be grouped
into at most k intervals of length of at most ∆ each. This makes the service to behave
like a single (k, ∆)-bofo server. This property rules out implementations, in which the
primary ignores all requests from the clients. This property also implies that only a
bounded numbe1r of failures can be tolerated by the service during its lifetime.

For the general omission failure model N. Budhiraja, K. Marzullo, F. B. Schneider, and S.
Toueg prove in [14] a lower bound of n > 2 ⋅ f on the degree of replication for preserving the
consistency of the service state, where f being the maximal number of failures that may occur
during a given epoch. This condition basically requires a majority of servers being available
to serve clients’ requests at any moment, unless in the state of service outage, in order to
ensure a single consistent service state.
In this work we also utilize the primary-backup approach. However, we show that different
policies can be preferred for communication between the network monitoring services and
the monitored devices on one hand, and for communication between the monitoring clients
and the services on the other hand. In fact, the general service availability can be
significantly improved in terms of the disconnected operation during the periods of service
outage from the clients’ perspective, while still preserving the four primary-backup protocol
properties. More details on the proposed algorithms and policies can be found in Section 4.

2.2 Problematic scenarios
In order to better understand the main issues we would have to cope with, if we relaxed the
bofo properties for a single active replica of a service, let us consider the following service
replication scenarios in terms of the general omission model.
Let S denote a network monitoring service responsible for the monitoring of a device D.
Let the two servers, A and B, comprise the service replication group G. Service S is deployed
at G, and both servers A and B receive its replica.
Let the state of the service S be defined as a recursive function Fs from the membership of G,
in which it has been accumulated and the previous state. The initial state is denoted by ℑ.
Thus, for example, for the next membership M, the state would be denoted by Fs(M, ℑ).

1. At the first stage both servers A and B run in the same partition that includes the
monitored device D. Let the service S start running on A as its primary server. Having
accumulated some initial state, S requests its replication. At this point the state is
propagated to B by the primary server A. Therefore the replicated state is denoted
Fs({A,B}, ℑ).

15

2. Then, due to a network or a host failure, B leaves to a separate partition or simply
shuts down, while S keeps running on A and eventually updates its state, which is
based on the information from Fs({A,B}, ℑ). This new state, termed Fs({A}, Fs({A,B},
ℑ)), cannot be shared with B since it's unavailable now.

3. If A fails now and stops working with D (or shuts down) B may come up and try to
recover the service S in its new partition from the most updated state that B is aware
of, i.e., Fs({AB}, ℑ) from (1). This is the state that S had accumulated at A prior to the
B’s failure in (2). As soon as B joins the partition containing D, S that is executing on
B, starts accumulating a new state, which is unknown to A and is not based on the
information from Fs({A}, Fs({AB}, ℑ)), but rather solely on the information from
Fs({AB}, ℑ). The new state is: Fs({B}, Fs({AB}, ℑ)).

The above development gives raise for at least three possible scenarios that require a special
handling:

a. In this scenario the service S completes its work and stops running on the server B
while the server A is still disconnected. S reports the results of the monitoring task to
its manager client. Assume B fails or gets disconnected. Shortly afterwards A comes
up and recovers S from the state Fs({A}, Fs({A,B}, ℑ)), since it is unaware of the fact
that S has already completed on B. This may perplex the external clients receiving the
information provided by S.

b. Another option for B is to recognize the failure of A, while A may simply join a
different network partition and continue running S in that partition. In such case
concurrent external events that may occur at different partitions and involve the same
external party may puzzle the latter.

c. It is also possible that the servers get split in such way that the target device D can be
observed from multiple partitions simultaneously, while the servers residing in
different partitions do not see each other. Therefore when the servers from the
different network partitions are merged together, it is possible that each of them has
different states for their respective copies of the same application. Due to concurrency
these states might contain overlapping information. This raises the following
question: should these states be merged in some way, or should one state be given
preference over the other?

It is worth noticing that the first two cases described in subsections (a) and (b), can be
considered as a more general one, when two disconnected application’s replicas send an
output to an external entity in parallel. This is because the work completion (a) can be treated
as yet another kind of output, as well as the monitoring observation reports described in (b).
In order to avoid such inconsistencies and preserve the main four properties presented above,
a straightforward primary/backup approach would suggest ceasing any activity in partitions
that may potentially violate any of the bofo properties. However, such approach will
probably cause significant loss of the highly valuable monitoring information, while in fact,
some of the servers may still have access to the target monitored device and could continue
monitoring it while even in disconnected mode.

16

Therefore, our goal is to find a more suitable approach for the monitoring services replication.
The following issues should be handled in order to provide a monitoring service with a
consistent state for carrying on its task:

• Obtaining a single consistent service state;
• Preserving as much of the valuable monitoring data as possible;
• Not baffling external entities that interact with the network monitoring application by

an inconsistent behavior.

2.3 Problem statement
Having considered the above problematic scenarios we will now define the basic terms and
properties of the HAMSA’s problem domain.
We use the Lamport timestamp [30] notion of time t in our definitions.

• Monitoring observations consistency: We will use Ms(t, d) to denote a single
monitoring observation of the monitored device d obtained by the monitoring service
S at time t. A monitoring service keeps its observation history that is an ordered,
possibly infinite, sequence of observations Ms(ti, d), where the value of ti serving as
the observations’ ordinal index.
We say that a service’s observation history is consistent, if for any two observations
Ms(tl, d) and Ms(tm, d) for the same device d: l < m if and only if tl < tm.

• External events consistency: We will call any processing entity, e.g., management
client, interacting with a monitoring service an external entity. The interactions of a
monitoring service with an external entity are of two types:

o Input interaction: the service receives information from an external party;
o Output interaction: the service sends information to an external party;

Any external event of interaction between the service S and an external party is
denoted as ei, = Ins(m, p, ti) ∨ Outs(m, p, ti), where i being the ordinal number of the
component external event, m being a message containing the interaction data, and p
denoting the external party: the sender in case of the In event, and the destination in
case of the Out event. It is obvious that the events order can significantly influence
the service consistency.
We say that two events ei and ej are in causal relationship: ei ⊰ ej, if the following
conditions are preserved ([6] provides more details):

o If ei, ej∈ Ex, where Ex being the external events history of a specific party x,
and ex,i ⊰ ex,j, then ti < tj.

o If ei ∈ Ex and ej ∈ Ey, where Ex and Ey being the external event histories of the
parties x and y respectively, and ei = Out(m, x, ti) and ej = In(m, y, tj) for the
same message m then ti < tj and ei ⊰ ej.

o If ei ⊰ en and en ⊰ ej, then ei ⊰ ej.

17

We will use the term external events history for an ordered (possibly infinite)
sequence of external events. We say that an external events history is consistent for a
specific service, if and only if:

o The external events history on the service side preserves the causal
relationship of events;

o For any external party involved in interactions with the service the order of its
interactions with the service equals that of the server-side.

• Network monitoring service consistency must be preserved by HAMSA. We say that
a service is consistent if and only if:

o Its monitoring observation history is consistent;
o Its external events history is consistent.

18

3 Architecture
HAMSA is a generic flexible architecture that defines the functionality of a highly available
run-time environment for multi-tier network monitoring services. Multi-tier monitoring
services usually consist of a front-end client GUI at the uppermost tier; monitoring logic that
collects and processes management information at the middle tier(s); and finally the
monitored device agents at the lower tier. This structuring provides for disconnected
operation, meaning that temporary disconnecting of the first tier from the rest of a monitoring
service (e.g., due to some failures) does not imply a stoppage of the monitoring activities.
The higher availability of multi-tier management services is achieved by a transparent
replication of the services’ run-time environment, while the service itself remains virtually
unchanged. Since a service implementation is not modified to accommodate to the new
execution environment, HAMSA may not assume any specific implementation, and should
guarantee that the service’s original semantics are not inadvertently destroyed due to the
replication.
In order to provide this functionality, HAMSA defines a set of generic interfaces, their
semantics, relationships and methods of interaction for the monitoring services deployed at
HAMSA. We term such network monitoring services HAMSA-compatible components. We
use the term components (as done in many other middleware software systems) to describe
objects that implement a set of the predefined interfaces allowing dynamically to mix and
match this object with other objects that conform to the same set of interfaces.
Figure 3 depicts the three-tier structure of HAMSA. Front-end clients from the first tier
communicate with the monitoring logic executing at the second tier using some object bus
for remote access. HAMSA can be implemented using different middleware technologies for
this part of the architecture. Our current implementation uses the standard J2EE technology.
Clients locate both the HA-MLMs and the monitoring components through JNDI naming and
directory service, and interact with them using the standard Java RMI protocol [28].

MLM

GC

MLMMLM

GC

Remote Method Invocation ORB (Java RMI)

MLM

MLM MLM

Group Communication Service (Transis)

Third Party
Applications

Frontend

HA-MLMs

Figure 3 HAMSA Architecture

19

The run-time environment for the middle tier, i.e., for the components comprising the
monitoring logic, is provided in full by the HAMSA framework, as described in the
following sections.
The following guarantees on the execution of the hosted network monitoring components in
the middle tier generate the primary added value of HAMSA:

• Failures of the components are masked from the outside entities. As long as HAMSA
has sufficient resources for executing the components, components function
continuously despite host failures and recoveries (i.e., the machine running the
component), arbitrary asynchronous network splits and merges.

• In case of network splits, a single instance of each component is executed per
network partition.

• The component, whose host machine has failed, is guaranteed to resume operation
from the last consistent state. We define a state being consistent if no discrepancies
exist between its content and any component related data known to the outside world,
e.g., management clients.

• Component's interactions with the environment may potentially influence the state of
other components, and/or external entities. In this case, interactions (messages,
method invocations) are termed non-idempotent. Failure, and a subsequent recovery,
of a component being in the middle of a non-idempotent interaction may violate the
original interaction semantics. An advantage of HAMSA over other middleware
architectures is that it preserves the original at-most-once or at-least-once semantic of
the component interactions in spite of asynchronous network failures.

These advantages come at a certain price in bandwidth and processing overhead. In Section 7
we discuss the trade-offs between the extended functionality of HAMSA and this overhead.
Also the current HAMSA implementation restricts the inter-process communication model to
asynchronous communication and messaging. This communication model, though, fits well
into the network monitoring domain.

3.1 Highly Available Mid-Level Managers (HA-MLMs)
The run-time environment with the above properties is provided by a set of virtual servers
termed Highly Available Mid-Level Managers (HA-MLMs). HA-MLMs are logical entities
that are comprised of one or more physical servers called Mid-Level Managers (MLMs), see
Figure 3. To its users, every HA-MLM appears as a single logical entity that exposes the
special HA-MLM Service Interface (see Section 5 for more details). Each MLM in a given
HA-MLM is capable of exposing the HA-MLM Service Interface, but at any given moment
only a single primary MLM provides this functionality.
As Figure 3 shows, MLMs communicate with each other using a Group Communication
Service (GCS) that provides partitionable membership semantics, virtual synchrony
execution model, and reliable FIFO message ordering. Section 3.4 provides more details
regarding the GCS in HAMSA.

20

HAMSA encourages the local deployment of an MLM at the managed device wherever
feasible, since this will greatly reduce the management traffic overhead and will enable
simple solutions for complex problems, such as atomic snapshot of the managed device state.
Network administrators create HA-MLM groups in order to delegate network monitoring
components to them later. All MLMs in the managed network join a special "all-MLMs"
HA-MLM group termed HAMSA Enterprise upon the boot process. New HA-MLMs can be
created through this root HA-MLM interface.
The HA-MLMs can be organized into a logical hierarchy as shown in Figure 4. The only
constraint of the HA-MLMs hierarchy is that the MLMs comprising the nominal membership
of any given HA-MLM must be contained in the membership of the HA-MLMs that are
higher in the hierarchy. In other words, if MA is the set of MLM members of a HA-MLM A,
MB is the set of MLM members of HA-MLM B, and A is higher in the hierarchy than B, then
MB ⊆ MA must be true.

Figure 4: HA-MLMs Hierarchy

3.2 HAMSA-compatible Components
HAMSA provides a special interface for the HAMSA-compatible components’ dynamic
delegation. The identity of the HA-MLM, to which the component is being delegated, is part
of this component’s identity.
The MLM serving a specific component delegation request is responsible to propagate the
component’s meta-data, as well as its executable to all members of the HA-MLM through the
group communication service, see Section 3.4. When all MLMs in the HA-MLM receive a
copy of a component on their non-volatile storage, the component becomes available for
serving external clients.
One of the HA-MLM members is made responsible for running an active replica of the
newly delegated component according to some predefined policy. Policies for the primary
MLM election can vary based on specific criteria definition, e.g., a load-balancing algorithm.
See Section 4.1.6 for more details.
The primary MLM selected to host the active replica of a component is termed component
host. In the same network partition there can be only a single component host for any given
component at any given time. Other MLMs within the same HA-MLM keep dormant replicas
serving as warm backups for the components, whose host MLM may fail, see Figure 5. This

A, B, C, D, E, F, G

A, B, C , F C, D, G

A, B, F A, CA, B

Enterprise

HA-MLM2HA-MLM1

ZYX

A, B, C, D, E, F, G

A, B, C , F C, D, G

A, B, F A, CA, B

Enterprise

HA-MLM2HA-MLM1

ZYX

21

is different from the more common practice of keeping components on a component server,
and downloading them on demand. HAMSA performs component propagation as above to
increase their availability.
The information about the HAMSA monitoring components delegated to a HA-MLM and the
HA-MLM’s logical hierarchy information comprise the state of this HA-MLM. This state is
replicated among the HA-MLM members on a per-update basis using the group
communication service. When membership changes occur in the HA-MLM (i.e., MLMs
join/leave the HA-MLM group because of failures), members of the group are notified by the
group communication service, and they run a state exchange protocol (see Section 4.1.4) in
order for the HA-MLM to resume its regular operation.
As a result of network partition changes a HA-MLM can be in either majority or minority
state. This is based on the number of MLM members that are present in the given network
partition, compared to the total number of the MLMs that belong to the HA-MLM. The set of
all the MLMs comprising a HA-MLM is the HA-MLM’s nominal membership. In this work
we use the term minority for any non-majority state. See Section 4 for more details on the
HA-MLMs behavior in membership changes.
Since the state of a HA-MLM is replicated among all its members, any HAMSA component
can be resumed from a consistent point by any other MLM in the HA-MLM that remains
operational as explained in the following sections. Each time a component is (re-)activated at
an MLM, it also updates the external naming and directory service in order to renew the
binding between the component's name and its communication handles. Thus, for the
network administrator the use of HAMSA creates a reliable environment, in which the
delegated tasks "simply do not fail", unless a catastrophic failure occurs.

Middleware

Group Communication Toolkit

Active HA-MLM Interface

Passive Component X

Active Component Y

Passive HA-MLM Interface

Active Component X

Passive Component Y

MLM i MLM j

...

Figure 5: HA-MLM Structure

To render warm backups of the executing components, MLMs transparently replicate the
state of the components delegated to their HA-MLM. The component state is co-located with
the component itself in order to achieve high availability. This is another difference between
HAMSA, and more traditional approaches, in which a dedicated database is used to store the
state of the components.

22

The state of a component consists of its interaction state and internal state. Interaction state
contains all the unprocessed inbound and outbound interactions between this component and
external entities. It is HAMSA framework’s responsibility to manage the components’
interaction states. A component’s internal state consists of arbitrary application-specific
objects. The internal state objects are managed by the components themselves, while
HAMSA provides the means for reliable backup and recovery of the state objects with no
knowledge of their internal semantics. This is done through a dedicated interface that allows
components for demanding state replication without knowing any details of the replication
mechanism. Assuming that a state replication is required any time it affects a component’s
consistency, this, along with the additional properties of the HAMSA algorithms, allows us
for preserving the desired HAMSA components semantics.
Components may interact with other entities executing within the same HA-MLM, in
different HA-MLM, and outside HAMSA, e.g., with the front-ends residing in the first tier,
and the network elements.
To provide its guarantees, HAMSA requires that all non-idempotent interactions between the
HAMSA-compatible components and any external entities are made through HAMSA
messaging service, as described in the next section. This allows HAMSA for transparent
replication of the interaction part of the component state.

3.3 HAMSA Messaging Service
HAMSA messaging service (HMS) is defined as a generic mechanism providing HA-MLMs’
basic messaging services to abstract entities named recipients. HMS uniquely identifies a
recipient entity by its symbolic name. A recipient name consists of a principal prefix that is
unique within a specific HA-MLM, and the HA-MLM name. Both HAMSA components and
external parties are treated by HMS as recipient entities. The recipients that are locally hosted
by a HA-MLM are termed local for this HA-MLM’s HMS, all other recipients are termed
remote.
In order to start getting service from HMS, a recipient entity is supposed to register at HMS
of some HA-MLM. The registered recipients enjoy the following set of basic messaging
services: register, deregister, send (including HA-MLM level broadcast), receive, and poll.
We define two basic types of recipients: synchronous (capable of receiving messages
synchronously via a callback interface) and asynchronous (responsible to fetch the pending
messages from HMS by themselves).
The HA-MLM assigns two types of communication for each component: Mailbox, and Proxy.
Mailbox is needed for direct sending a message to a component. There is one mailbox per
HA-MLM with a separate message queue per a recipient served by this HA-MLM. In order
to support remote method invocations, while using the HAMSA consistency and ordering
mechanisms transparently, we use the standard Java proxy [28] approach. Any remote
invocation between a HAMSA component and any other party is intercepted, and processed
by the per-component proxy. The proxy creates a message from the method call performed
on it, and relays it to the HAMSA messaging service in form of a regular external interaction
message. One restriction of this approach is that HAMSA-compatible component cannot
support synchronous method invocations with non-void return values. HAMSA

23

communication model requires that if a caller wants to receive information from a
component it has to supply either a callback interface or to be registered as a recipient at the
mailbox serving this component.
Allowing direct interactions of the components with their environment is not always safe if
we wish to comply with the (k, ∆)-bofo semantics. HAMSA defines that each component is
assigned an interaction approver that policies its interactions. In particular, HMS may defer
interactions with the outside entities depending on the specific state of the HA-MLM. In this
work we suggest utilizing the majority based interaction approval policy, i.e., a component
may send/receive data only when it resides in a partition with majority of the HA-MLM
member servers available in the specific network partition.
In order for the HAMSA messaging service to be transparent and straightforward for the
parties that participate in the interactions, they should be unaware of the message handling
mechanism implementation. For this purpose HMS is responsible to intercept any interaction
between a HAMSA component and an external party, and to fulfill it only when the
consistency of such interaction and of the whole system can be guaranteed.
However, the interactions between the HAMSA-compatible components and the monitored
network elements are not handled by HMS and, therefore, are not restricted in any way, since
it is not feasible This is the key feature distinguishing our solution from the existing
approaches [14], and the main reason for HAMSA’s being primarily targeted to monitoring,
and not to other kinds of management activities that may affect the state of the target devices.
As described above, interactions with the target devices are supposed to be implicitly
reflected in the component-specific state objects, which get replicated either on demand from
a component that owns it, or transparently to the component, upon an outgoing interaction
initiated by the component.
An important property of HMS is its distinguishing between incoming and outgoing events
for communication with external parties. When a HAMSA component receives an event
from external entities, it does not enforce an immediate update of the replicated state among
the HA-MLM members hosting this component. This is because incoming events do not
immediately affect the component consistency, as defined in Section 2.3. However, it is not
the case with the outgoing events. Therefore, upon an external interaction attempted by the
component itself, the replicated state of the component is synchronized among all the MLMs
prior to handling the outgoing message. As we explained in Section 2.3 this leads to the
following key property of HAMSA:

• A HAMSA component that potentially made its internal state publicly available
through an interaction with external entity would never return to a more outdated
state in spite of the errors found in the general omission failure model.

3.4 Group Communication Service (GCS)
Group communication service is a message passing service that provides a concept of a
process group. Each process group is a group of end-points communicating according to the
many-to-many model and referred to by a single logical name. A message sent to the group is
delivered according to the same requested order to every member of the group (or to nobody),

24

provided that the member does not crash. A group communication service is usually
comprised of a membership service and a reliable message ordering service.
The group membership is a list of group members that are considered connected and active,
and that the group members agree on. The objective of the membership service is to handle
various asynchronous events, such as: network partitions and merges, host failure and
recovery, group members join and leave. The membership service notifies the group
members about the membership changes, so that any two members that belong to the same
membership are indeed connected.
The replication of the components state within a HA-MLM is facilitated by a group
communication toolkit that is not visible outside HA-MLM (see Figure 3). Such toolkit
systems usually allow processes for forming groups that can be addressed by a single logical
name, so that messages can be sent to the group using this name as an address, and all
operational members of the group receive them. HA-MLMs are realized in HAMSA as
process groups.
HAMSA relies on the GCS toolkit to provide the following capabilities:

• Reliable multicast FIFO delivery of messages.
• Per-group notification of membership changes either due to network failures, or

members (i.e., MLMs in the context of HAMSA) voluntarily joining/leaving the
group.

• Virtual synchrony model of message delivery, which, simply stated, means that
members of the group that go together through the same set of membership changes,
receive the same set of messages.

• Partitionable membership model, which means that although members of the same
group can find themselves in different network partitions (due to asynchronous
network splits), each connected component can continue its operation. And when a
network merge occurs, the members can resume operation from a consistent point in
the message stream so that the virtual synchrony model is preserved.

There are a number of group communication toolkits available that supply this functionality,
such as [7]. The HAMSA architecture does not dictate any specific choice of GCS. It is also
possible that as the middleware technology advances, the GCS with the needed semantics
will become an integral part of a standard object middleware, therefore removing the need
for an external GCS.

25

4 HAMSA algorithms
In order to facilitate higher availability of a management component without changing the
components themselves, HAMSA has to deal with the failure possibilities, giving raise to
multiple conflicting states of a component transparently. The primary requirement from
HAMSA with respect to the failure handling is to conform to the failure model and external
events semantics expected by the management component that is not aware of being
replicated. It is also desirable to minimize the loss of the valuable information, when a
common consistent state is obtained from the multiple states of the component’s replicas.
HAMSA allows different network partitions to make progress concurrently. It automatically
handles the consistency maintenance issues arising from the complex failure scenarios. As
described in Section 2, restarting a component from a warm backup in case of a failure raises
the following non-trivial problems:

a. A management component may depend on its state checkpoint. Such components are
termed history-dependent. When a history-dependent component is recovered at a
different MLM, this should be done from a consistent point with respect to the
component’s state and to the interactions with external parties that could have taken
place prior to the component’s recovery.

b. It is possible for several replicas of the same component to execute simultaneously.
On the other hand, external parties treat the component as a single logical entity and
are unaware of the replication mechanism. Enabling external entities to access
different replicas of a component inconsistently would severely baffle an external
party communicating with the component, and would violate the (k, ∆)-bofo server
semantics, as defined in Section 2.1.

Concerning the history-dependent components, the design of HAMSA was made along with
the following guidelines. First, the only thing that a component is aware of is, that in case of
a failure at its current host, it will be restarted at some other MLM. Second, the component
should not get involved with the details of its state replication. Third, the only responsibility
of a history-dependent component is to maintain its state as an arbitrary object or a set of
objects, and inform the hosting MLM about the changes it makes to its state.
In case of a history-independent component, it is straightforward to resume it at a different
location, since this only requires deciding, which MLM should take care of it. This decision
can be easily achieved thanks to the membership notifications from the GCS received by all
the HA-MLM members at times of the network and host failures. Having the membership
notifications provided, there is no need in additional agreement protocol on the MLM’s level,
since these notifications are already the output of a distributed agreement protocol that is run
at the GCS level.
In regard to obtaining a common state out of multiple conflicting states, one should observe
that there is actually no way to merge multiple states, due to the possibility of the
concurrently executing component instances. In this case, some parts of the component
executions may overlap, and, if consistency is the issue, only one of the conflicting states can
and should be preferred.

26

We will show that, in fact, we have fairly good means to resolve these conflicts in a
meaningful way. We would prefer the state of the component instance that has more external
communication events (completed, or being in progress) with an involved external party. The
intuition behind this rule is that the more communication with the external party has been
performed, the more information is in the component’s copy state. What is even more
important, this rule allows us for satisfying one of the main consistency requirements defined
in Section 2.3, namely, preserving the execution semantics, as expected by external parties.

4.1 Algorithms description
The following sections present the major HAMSA algorithms. These algorithms constitute
the main logic of the key HAMSA’s mid-tier element, the MLM. HAMSA MLM’s logic is
event-driven. It is based on two basic event types:

• Membership change: is an event provided by the group communication service that
informs about a HA-MLM membership change. Section 4.1.2 presents the HAMSA
algorithm for handling this type of events.

• Regular: is either an internal HAMSA event provided through the group
communication service from some other HAMSA mid-tier entity, or an external
interaction event issued via remote method invocation by an external party. Section
 4.1.3 presents the HAMSA’s external events handling algorithm.

In addition, the HAMSA state exchange, load balancing, and garbage collection algorithms
are discussed in the following sections.
For the sake of simplicity we present the HAMSA algorithms assuming that there exists only
one monitored device. We also assume that the executables of the HAMSA components have
already been successfully propagated and initialized at all the MLMs in the HA-MLM’s
nominal membership; and the initial responsibilities for the components execution have been
assigned among the MLMs.

4.1.1 HAMSA states
As described in Section 2.3, HAMSA deals with two main stateful entities: HA-MLM and
HAMSA component. Table 1 and Table 2 describe the variables comprising these entities’
states respectively. We will use these states definitions in the algorithms’ pseudo-code in the
following sections.

Variable Description
N Nominal MLMs membership of the HA-MLM
Components Meta-data of the components that are currently hosted by the HA-MLM
Mailbox Per-component interaction state, i.e., buffer of pending messages,
Progress HA-MLM progress reflects the number of external requests resulting in

a HA-MLM update, see Section 4.1.4

Table 1: HA-MLM state

27

Variable Description
S Internal component state based on the monitoring observations history

obtained by the component copy executing on a specific MLM host
Progress HAMSA Component progress reflects the number of outgoing events

issues by the specific component, see Section 4.1.4

Table 2: HAMSA component state

4.1.2 HA-MLM membership change handling
A HA-MLM membership change may result in one of the following changes:

• An MLM in a majority partition of a HA-MLM can move either to (1) a majority
partition with different configuration or to (2) a minority partition.

• An MLM in a minority partition of a HA-MLM can moves either to (1) a majority
partition, or to (2) a minority partition with different configuration.

In case of a membership change with a merge of partitions containing multiple replicas of the
same component with different accumulated states, we need to ensure that a single
component replica is executed with a single consistent component state. This is done through
the HAMSA state exchange protocol, as explained in Section 4.1.4.
Figure 6 presents the algorithm used by HAMSA to handle the membership changes.
Let V and V’ be the previous and the new membership of the handled HA-MLM. These
variables will also be used in the following sections.

Figure 6: Membership change handling

We elaborate the load-balancing policies mentioned in this algorithm in Section 4.1.6.

 If |V’| <= [|N| / 2] then { // We moved into a minority partition
 Purge HA-MLM’s Mailbox
 IneractApproval := false
 } else // We moved into a majority partition
 InteractApproval := true

If not V’ ⊆ V then {
Perform HA-MLM and components state exchange // see Section 4.1.4
For each component and the HA-MLM itself do {

Elect the host MLM based on the load balancing policy
If the local MLM is elected then

Activate the entity (component/HA-MLM)
 Else If an entity is active at this MLM then
 Move the entity into the dormant state
 }

}

28

4.1.3 External event handling
The requirement for external interaction events handling is to obligate all components to
perform any such interaction only through the special HAMSA messaging service
mechanism presented in Section 3.3. For the sake of high availability the HAMSA messaging
mechanism propagates any event to all the available MLMs comprising a specific HA-MLM.
This mechanism should defer and accumulate any event, either sent by a component or to be
received by a component, until the consistency conditions are fulfilled.
We say that the external interactions are permitted, if and only if the majority of the HA-
MLM’s members is present in the specific HA-MLM membership. I.e., any interaction with
an external application is restricted and will be deferred as long as only half or less than half
of the MLMs comprising the HA-MLM are present. Once the condition is met, all the
delayed interactions should be “released” and fulfilled by HAMSA. See the algorithm
presented in Figure 7 for more details.

Figure 7: External events handling

4.1.4 State Exchange
The HAMSA state exchange protocol specifies the mechanism for obtaining the most
updated state of a HAMSA entity in case of a HA-MLM membership change. The HAMSA
state exchange protocol follows the state machine replication approach. It is designed to treat
both HA-MLMs and HAMSA components as generic stateful objects. Therefore, HAMSA
utilizes the same protocol for exchanging states of all the HAMSA entities.
As discussed in Section 4.1.2, one of the main issues that the HAMSA state exchange
protocol faces is obtaining a single consistent state out of potentially multiple state instances
coming from different partitions. The straightforward approach is to select a single whole
state as is from one of the merged partitions. Another option is trying to merge multiple state
instances into a single state on behalf of the component. Unfortunately, there is no common
mechanism to merge component-specific state without intervening into the component
specific internal implementation. Thus, we need to pick the “right” state instance. For this
purpose we introduce the state progress parameter to indicate how updated a specific state
instance is.
In order to ensure the component state consistency it should be replicated on any external
interaction request. However, since only outgoing interaction can expose component state

 Let e be the handled event
 If InteractApproval == false then {
 Defer e
 Finish
 }
 If e.type is outgoing external interaction

Replicate the state of the component e.sender to all the HA-MLM members
 Deliver e to e.recipient

29

related data to external entities, the state replication can be omitted in case of incoming
interactions. We use the number of times a state was replicated, or the number of outgoing
external interactions, as the key parameter of the HAMSA entity state’s progress, since this is
the main indicator of a potential state change.
In fact, we probably might find a more updated state instance in terms of the accumulated
monitoring information; however, we in such case we would violate the component’s
consistency.
In this section we describe the state exchange protocol of a single HA-MLM. However, in
order to reduce the recovery time overhead in case of a HA-MLM membership change,
HAMSA allows multiple HA-MLMs for executing their state exchange protocols in parallel
without interfering each other.
The HA-MLM state exchange protocol consists of the following two basic phases marked
with the white color in Figure 8:

• State advertisement: all the MLMs hosts distribute the state object descriptions on
behalf of the hosted stateful objects to other HA-MLM members. For each state
instance, an MLM concludes, which HA-MLM member should be the state object’s
update source, based on the progress parameter values received from other MLMs;

• State distribution: every MLM checks, whether it is the update source of some of the
hosted states instances. If there are such objects, the MLM distributes them to all the
members of the HA-MLM through the group communication service.

In order to make the state exchange as efficient as possible our protocol utilizes a single state
advertisement message containing the progress details of all the state objects taking part in
the state exchange process. Nevertheless, the distributed state objects are sent in separate
messages due to their potentially large size. Every message should reach all the MLMs in the
membership, therefore, each state exchange protocol requires n ⋅ (n + m) messages, where n
representing the number of state advertisement messages that is equal to the membership size
of the HA-MLM, and m representing the number of the state distribution messages, which in
turn is equal to the number of the state objects hosted by the specific HA-MLM.
The state machine diagram in Figure 8 depicts the main steps of the protocol.

Figure 8: HAMSA State Exchange protocol’s state machine

Init

State
Advertisements

Processing
State

Distribution

State
Updates

Processing

Finish

- Init
- State

advertisement

All the
advertisements
received

Distribute
my states

All the state
updates received

New
Membership
change

Init

State
Advertisements

Processing
State

Distribution

State
Updates

Processing

Finish

- Init
- State

advertisement

All the
advertisements
received

Distribute
my states

All the state
updates received

New
Membership
change

30

Figure 9: HAMSA state exchange protocol

 Data structures:
- StateSource: { sourceName, stateDescriptor }

State exchange initialization:
- Objs := ∅ // a set of stateful objects participating in the state exchange
- Fellows := V // a copy of current membership set
- Fellows.remove(MyMLMName)
- Add the HA-MLM to Objs
- Add states of all the components that are hosted by the HA-MLM to Objs
- Sources := a map of StateSource objects of size |Objs|
- For (i = 0; i < |Objs|; i++) do { // init Sources with my MLM for all objs

Sources.put(MyMLMName, Objs[i].getStateDescriptor())
Objs[i].suspend()

 }
 State Advertizement:

- MyDescriptors := ∅
- For all entries in Objs do: add Objs[i].StateDescriptor to MyDescriptors
- Multicast MyDescriptors to the HA-MLM members

Wait for all available MLMs’ state advertisements until the Fellows set gets empty.
When a state advertisement message (HisDescriptors) arrives, do {

- Fellows.remove(HisDescriptors.getMLMName())
- For all entries in HisDescriptors:

If (HisDescriptors[i].progress > MyDescriptor[i].progress) or
 (HisDescriptors[i].progress == MyDescriptor[i].progress and
 HisDescriptors.getMLMName() < MyMLMName))
 Sources.put(HisDescriptors.getMLMName(),HisDescriptor)

 }
 State Distribution:

- For (i = 0; i < |Sources|; i++)
If Sources[i].getSourceName() == MyMLMName then {
 Distrubute Objs[i] // I am the source

Sources[i].remove()
}

Wait for all the state updates. When a state message (HisState) arrives, do {
- Objs[HisState.getName()].update(HisState)
- Objs[HisState.getName()].resume()
- Sources[i].remove()
- If Sources.isEmpty() then: Finish

31

In case an additional state exchange is required due to a new membership change, while
another state exchange process is already in progress, the currently executing state exchange
protocol is immediately reset and restarted. The pseudo-code in Figure 9 describes the
HAMSA state exchange process in detail.

4.1.5 Garbage Collection
HAMSA messaging service propagates any external interaction message to all the HA-MLM
members upon its arrival. As described in Section 4.1.3, HAMSA delivers these messages to
their recipients only if the external interactions are permitted.
For the sake of efficiency HAMSA replicates the component internal states only at outgoing
external interactions, while the propagated incoming messages are stored in the MLMs
memory as part of the HA-MLM state. In case of a failure, storing the incoming messages in
the MLMs’ memory allows for avoiding potential loss of valuable information. This is
achieved by enabling retransmission of these messages to a recipient component, when it is
restarted at a different MLM location.
When an outgoing external interaction is dispatched by a component, the HAMSA policy
requires replication of the component’s internal state, and therefore, ensures up to date
consistent synchronization of the dormant replicas. According to the policy we propose, this
is the most appropriate time for the HAMSA messaging service to perform the garbage
collection procedure by purging the stored incoming messages.
Additional policies can be considered, depending on the specific requirements of the message
delivery service. For example, in case maximum consistency is required, and no message
losses can be tolerated, it is possible to synchronize the component state on every external
interaction regardless its direction. More relaxed limited mailbox capacity, watermark-based
policies can also be considered.

4.1.6 Load-balancing
As explained in Section 3.2 HAMSA implements a special policy in order to elect a primary
MLM for running an active replica of a specific HAMSA component.
The simplest type of such policy is the preferred location one, which applies, for example,
for finding the most proximate available MLM for a specific monitored device. This, in fact,
static scheme also implies implicit enforcement of a load-balancing policy by spreading the
monitoring tasks load among different MLMs, assuming that the monitored devices are
spread as well.
In addition, dynamic load-balancing policies can be applied to the components’ load
distribution decision. The research of the dynamic load-balancing policies is out of scope of
the current work.

4.2 Primary/backup protocol discussion
It was shown in [14] that the general omission failure model implies the lower bound of
n > 2 ⋅ f on the degree of replication in the primary-backup protocols, where n is the number
of replicas, and f is the number of failures.

32

Now, let us consider HAMSA's algorithms in light of this model. First, we observe that
concerning the interactions between the external clients and the HAMSA components (and
among the different components in the second tier), HA-MLMs that host these component
behave like a (k, ∆)-bofo server with respect to every component. Indeed, for each component
there is a single primary MLM in the HA-MLM group at any given time, providing the
component with the communication services. If a majority of MLMs fails in HA-MLM, and
the interaction approval policy is majority-based, no communication with the component is
possible. However, in HAMSA this does not imply the service outage. In fact, components
continue running, and perform monitoring on the target network elements. It is just the
results of their activity that are temporarily unavailable.
We relax the single primary server property when it comes to communication between the
components and their target network elements. In fact, we allow multiple primaries operating
in different partitions simultaneously, and gathering the monitoring information concerning
the network elements in their respective partitions, with one primary instance per partition.
However, to preserve the bofo server semantics to the higher-level clients of these
components, we allow at most one primary server (the one that executes in the majority
partition, if exists) to communicate with entities other than the monitored network elements.
To appreciate HAMSA model, consider a non-replicated monitoring application that
communicates with some manager at one hand, and with the network elements on the other
hand. If this application is stateful, then it should be capable of storing its state on the non-
volatile storage each time it considers that the loss of the information gathered thus far is
undesirable. If such an application fails, it is subsequently re-started. Upon a restart this
application re-reads its state from the non-volatile storage, and continues its operation from
the last consistent point that it exposed to the outside world. In HAMSA, we preserve this
single object image of the application, but at the same time we shorten the service outage
time (i.e., the impossibility to continue the monitoring process) by consistently replicating
the application, so that the monitoring continues even if less than 2 ⋅ f replicas exist in a given
network partition.
Thus, in our three-tier architecture, communication between the management clients (the
uppermost tier entities), and the servers indeed obeys the restrictions imposed by the low
bound on the primary-backup protocols. We allow the periods of unavailability of the mid-
level entities performing continuous monitoring tasks to the management clients, when such
communication may compromise a single object behavior of the monitoring component.
However, for communication of the monitoring components with the target management
agents (the bottom tier), we relax the demand of [14], on having a single primary system-
wide at any given time instance, since the read monitoring operations are idempotent.
We allow multiple primaries to operate simultaneously in non-communicating network
partitions transparently to the high-level clients who still regard them as a single entity. Upon
a re-merge of the previously split network, our middleware automatically obtains the most
updated monitoring state about the disconnected network elements that have been available
in some network partition, and were unreachable in the others. To the best of our knowledge,
HAMSA is the only monitoring middleware with such high-availability guarantees,
specifically designed to address the meta-management challenges of the three-tier monitoring
architecture.

33

5 Implementation Highlights

5.1 Overview
We implemented a full HAMSA prototype and the initial performance results are presented
in this work.
The current implementation of HAMSA uses Java programming language [28] and therefore
is platform independent. We tested it on Windows 2000/XP and Linux operating systems.
We use an advanced group communication toolkit called Transis [7] that provides a virtually
synchronous execution model [12] and transparent handling of network partitions and merges,
as required in Section 3.4. This toolkit allows us for ensuring the fault tolerance of the core
architecture components.
We utilize standard J2SE implementation of Java Naming and Directory Service (JNDI) for
locating HAMSA entities, and Java Remote Method Invocation (RMI) [28] for accessing the
HAMSA distributed system by external entities.
We invested much effort in making HAMSA easy to install, configure, and use. This is
achieved by the provided Installation and Administration Guides (see the Appendices). In
addition, HAMSA software is built of independent modules with pluggable internals for
potential further research, customization and extension, as explained in the following
sections.
The HAMSA implementation consists of two main parts:

• The HAMSA MLM server that implements the core HAMSA logic and provides the
main functionality of the HA-MLMs mid-tier framework;

• The administration GUI tool providing a human administrator with a user-friendly
graphic interface to HAMSA.

The following sections present the current HAMSA implementation highlights.

5.2 HAMSA mid-tier framework

5.2.1 MLM
HAMSA MLM server provides an execution environment for the hosted HAMSA elements.
The main element an MLM is responsible for is the logical HA-MLM replication group
entities. According to the policies described in Section 3.1, an MLM may belong to a number
of different HA-MLMs.
MLM is implemented as a server-side daemon that should execute at any host comprising the
HAMSA framework.
MLM maintains a set of the HA-MLM groups it belongs to. Each element of this set is an
instance of the object implementing the HA-MLM functionality, as described in Section
 5.2.4. Only one MLM becomes the primary for each HA-MLM according to its predefined

34

location policy. The HA-MLM instance hosted by the elected primary MLM becomes active
and registers itself at the naming and directory service to enable other parties’ access.
Being an execution environment provider, an MLM is responsible to provide a number of
services necessary for normal execution of hosted elements, and for those elements to
conform to the HAMSA semantics, as defined in this work.
The following sections describe the main services provided by MLM.

a. Group Communication service
The group communication service utilized by HAMSA is provided by an underlying
group communication service toolkit. Specific implementation of the GCS toolkit is out
of scope of this work. MLMs integrate with the GCS toolkit to provide the group
communication services to the hosted HAMSA elements. The current implementation
relies on the Transis GCS toolkit [7] for reliable group communications services and the
messages ordering guarantees defined in Section 3.4.
MLM provide the hosted elements with the following group communication services:

• HA-MLM membership discovery allows for obtaining a list of the MLMs
currently comprising the membership of a specific HA-MLM.

• Listen to HA-MLM membership change events (see Section 4.1) in the HA-MLMs,
which the MLM belongs to. The MLM receives asynchronous network
partitioning and merging events from the GCS toolkit, and passes them for
handling to the relevant HA-MLM.

• Listen to regular events (see Section 4.1) related to the elements hosted by the
MLM. Upon a regular event arrival the MLM is also responsible to route the
received message to the appropriate HA-MLM.

• Multicast event to entities in both, locally hosted and external HA-MLM groups;

b. State Persistence service
MLM provides its hosted elements with a persistent check-pointing mechanism for better
recovery in case of crashes and/or network partitioning. This mechanism is responsible to
maintain the state objects of the hosted elements on a non-volatile storage through the
following services:

• Commit a state object of a hosted element by writing a copy of the object instance
onto a non-volatile storage, e.g., a file system.

• Reload a hosted element’s state object from its non-volatile storage.
• Decommission a hosted element’s state object that is no more in use.

c. Naming and Directory service
As described in Section 3 HAMSA uses a naming and directory service to enable
locating of the HAMSA entities by an interested party. Similarly to the group
communication service the actual implementation of the naming and directory service is
out of the HAMSA’s scope. Since the whole HAMSA prototype was implemented in
Java, we utilize the standard JNDI [28] service.

35

Therefore, the MLM server provides its hosted elements with a set of services listed
below through a straightforward integration with the standard JNDI service
implementation.

• (Re-)bind an object instance to its name.
• Lookup a reference to the currently bound object instance by its name;
• Unbind the current object binding by its name.

d. HAMSA Execution Environment Sandbox
The components executing at a specific MLM server are provided with virtual sandbox
mechanism that enables isolation of the HAMSA components from each other and from
the underlying system implementation.
The current sandbox implementation is very basic. It relies on the standard Java built-in
mechanisms, such as class loader and security manager. For more details refer to the
standard Java 2 SDK documentation [28].

5.2.2 HAMSA component
HAMSA compatible component is a standard Java archive (JAR) package containing at least
one class implementing the component interface specified by HAMSA. A component
provider must define the main class of the package to be used by HAMSA. A HAMSA
compatible component is launched by calling its main class’s run method. The components
are executed in separate threads of the hosting MLM’s Java Virtual Machine (JVM).
We support a basic component versioning mechanism that can be extended in the future. The
current implementation ensures that only the most updated component version will be
executing.
In order to increase its usability, HAMSA provides a set of easy-to-use tools for adjusting a
ready application to a HAMSA-compatible component, as well as for developing of new
HAMSA-compatible network monitoring components. In order to make the development of
the HAMSA components easier we suggest the following two basic approaches:

• In case you already have a ready network monitoring application with its own
complex logic, and it is a regular Java application, you may prefer utilizing the
automatic HAMSA wrapper utility that will automatically adjust your application to
be compliant with HAMSA requirements;

• In case you prefer to enjoy more of the HAMSA features, you can utilize the provided
basic implementation of HAMSA component. If you use the class extension
technique to build your monitoring logic on top of the basic component
implementation, you will save the need to implement the default behavior of HAMSA
component, such as its naming interface, state maintenance, and basic runtime
statistics management.

One can also refer to the provided sample reference component implementation that utilizes
the HAMSA basic component implementation.

36

5.2.3 HAMSA stateful object and state
HAMSA provides a generic definition of stateful object. Both HA-MLM and HAMSA
component are implemented as stateful objects.
Stateful object is any entity that is interested in keeping its state persistent in form of a set of
HAMSA state objects that comply to the specified implementation guidelines and interfaces.
State object is an arbitrary object treated by HAMSA as a “black box”. The only requirement
for HAMSA compatible state object is to provide its identification and progress. The
progress parameter is used by the state exchange protocol to identify the most advanced state
instance.
One could implement the state progress as any comparable metric, but, in order to meet all
the HAMSA guarantees, the suggested progress metric, namely the number of outgoing
external interactions, must be used. Nevertheless, in case weaker guarantees are sufficient for
a specific component or its specific state object, a different progress metric can be preferred.
HAMSA identifies the state objects by their name, which must be unique within the scope of
a specific stateful object. HAMSA maintains the set of multiple state objects belonging to the
same stateful object in the structure named object state map. A state map contains all the
state objects of the specific stateful object (0 or more), and provides an access to them by
their names.

5.2.4 HA-MLM
As presented in Section 3.1, HA-MLM is an entity providing generic hosting, replication,
messaging and execution mechanisms for network monitoring services, i.e., for HAMSA
components. A HA-MLM entity maintains all the data required to manage the HAMSA’s
flexible hierarchical framework for execution of HAMSA components.
HA-MLM entities are hosted by the MLM servers that belong to the membership of the
specific HA-MLM. For each HA-MLM, a member MLM is elected to serve as the primary
one similarly to the way the primary MLM is selected for running HAMSA components. The
chosen MLM is responsible to register the HA-MLM instance at the naming and directory
service, so that other parties would locate and enjoy this HA-MLM’s.
HA-MLM’s implementation consists of three layers providing the three main HA-MLM
roles, namely: (1) group hierarchy manager, (2) messaging service provider, and (3) HAMSA
components hosting and execution framework. Each one of these layers relies on the
functionality provided by a lower layer, as described in the following sections.
In addition, certain parts of the HA-MLM implementation are implemented as easily
replaceable plug-ins, as shown in Figure 10. For more detailed plug-ins description see
Section 5.2.5.

a. HA-MLM group hierarchy management
The HA-MLM groups have hierarchical tree structure. A user may create a sub-group of
any HA-MLM node in the tree using one or more MLMs comprising this HA-MLM, as
explained in Section 3.1. By default there is one general HA-MLM group composed of

37

all the registered MLMs. An MLM is preconfigured to automatically join this group by
its default name, e.g., “enterprise”, upon initialization.

Figure 10: HA-MLM internal structure

The HA-MLM group hierarchy manager is the lowest layer of the HA-MLM
implementation. It utilizes the group communication service provided by its MLM server
for receiving indications of network partitioning resulting in the HA-MLM’s membership
changes.
As stated in Section 4.1, a HA-MLM is capable of handling two basic event types:
membership change and regular. Therefore, our implementation provides two handlers
responsible for handling of these events that are routed by the MLM to the specific HA-
MLM instance.
The membership change events handler utilizes the algorithm presented in Section 4.1.2.
In case a state exchange is required, it also initiates the state exchange process described
in Section 4.1.4.
The regular events handler follows the policy defined in Section 4.1.3, and activates an
appropriate sub-handler responsible for the specific type of handled event. The regular
events can be either of internal type related to some system activity, or of external type
containing an external interaction message. The former type’s sub-handlers are provided
by one of the three HA-MLM layers according to the internal event sub-type, while the
latter type is handled by the messaging service, as described in the next section.
The HA-MLM group hierarchy manager serves two basic types of consumers: (1)
HAMSA administration clients responsible to administer and maintain the HAMSA
framework, and (2) hosted HAMSA components. These services enable the tree
hierarchy management.
The following services are currently provided by this HA-MLM layer:

• Add/remove sub-group HA-MLM: creates a new HA-MLM under the current one
in the HA-MLMs hierarchy;

Components Hosting and Execution

Messaging Service

Group Management

H
A

-M
LM

Interaction
Approval

Policy Plug-in

Load Balancing and
Location Assignment

Policy Plug-in

Mailbox Synchronization
and Garbage Collection

Policy Plug-in

Group
Communication

Toolkit (via MLM)

HA-MLM Services API

HA-MLM Clients

Components Hosting and Execution

Messaging Service

Group Management

H
A

-M
LM

Interaction
Approval

Policy Plug-in

Load Balancing and
Location Assignment

Policy Plug-in

Mailbox Synchronization
and Garbage Collection

Policy Plug-in

Group
Communication

Toolkit (via MLM)

HA-MLM Services API

HA-MLM Clients

38

• Get parent HA-MLM group: Since the only supported hierarchy structure is the
tree, there always is only one parent for any given HA-MLM except for the root
one that is termed enterprise and has no parent node;

• Get a specific sub-group HA-MLM by its name;
• Get all sub-group HA-MLMs;
• Get nominal membership: supplies a list of the MLMs comprising the nominal

HA-MLM membership;
• Get currently effective membership: supplies a list of the MLMs comprising the

HA-MLM membership in the current network partition. It must be a subset of the
HA-MLM’s nominal membership;

• Get a historical membership view: for sake of future statistical investigation, an
HA-MLM also keeps the historical data regarding its past memberships.

• Get name of the MLM server currently hosting the specified HA-MLM;
• Get/set the HA-MLM status (active/suspended): a HA-MLM is automatically

suspended when it resides in a network partition with minority (non-majority) of
its MLMs available;

b. Messaging service
The messaging service is the middle layer of the HA-MLM implementation. On top of
the group hierarchy management it provides the HA-MLM’s highly available messaging
functionality.
The messaging service layer handles the generic recipient entities and provides all the
messaging-related services they need, as described in Section 3.3. It also maintains a
mailbox with separate queues of messages for all the recipients. A HA-MLM uses its
mailbox to store pending messages, in case their immediate delivery is not possible for
some reason. In case of an outgoing external event the messaging service is responsible
to initiate the mailbox synchronization and garbage collection process, as explained in
Section 0.
In addition, the messaging service layer of HA-MLM is responsible for the following
activities:

• Register/deregister recipient: a HAMSA recipient must be registered at one of the
HA-MLMs in order to enjoy the messaging services. At the registration time a
recipient is provided with a unique name comprised of the recipient name prefix
part and the HA-MLM name using the standard URI [29] email-like notation, e.g.,
aaa@bbb, where aaa being the recipient name prefix, and bbb being the name of
the HA-MLM the recipient is registered at. In order to incorporate HAMSA into
more generic framework of networking services in the future, the HAMSA
specific URI service prefix can be added to the HAMSA recipient name structure,
e.g., hamsa:aaa@bbb.

• Send message: a message can either be sent to a specific HAMSA recipient by its
full name, or broadcasted to all the recipients registered at a specific HA-MLM by
using the asterisk as a recipient name prefix, e.g., *@bbb.

39

 Message sending is an asynchronous process. Normal return status of the send
service call only means that the message has been successfully propagated to all
the HA-MLM members as an outgoing event. It does not guarantee the immediate
message delivery.

• Receive message: once called this service blocks until a new message is received
for the recipient that called it. If the message is already available in the recipient’s
mailbox queue, it returns immediately.

• Poll message: similar to receive, but it does not block. Poll returns null in case no
messages are available for the recipient that called it.

Figure 11 depicts how a message is communicated to a recipient component. (1), The
sent message is not delivered to the target component immediately. Instead, (2), it is
propagated to all MLMs in the HA-MLM using the group communication service. When,
the message arrives at the group communication service level at all operational MLMs,
including the propagator, (3), the MLM host routes the message to the relevant HA-MLM
that puts it into the component’s mailbox queue. Then, (4), the messaging service
consults the component's interaction approver. If the interaction approver permits the
interaction, (5), the message is delivered to the active target component. See Section 4.1.3
for the algorithm’s description.

Group Communication Service

MLM barMLM foo

(1) Regular
 Message
 for A@bar

Component
Component

Active
Component A

Component
ComponentDormant

Component A

(2) Multicast
 Regular
 Message for
 A@bar

(3) Regular
 Message for
 A@bar

(3) Regular
 Message for
 A@bar

(5) Message
 delivery Interaction

Approver(4) Approval
 request

Figure 11: HAMSA Messaging Service

c. HAMSA components hosting and execution service
The components hosting, execution, and life-cycle management service is the top layer of
the HA-MLM implementation. It is the only layer that is aware of the network
monitoring components existence, and, therefore, provides all the services required for
the HAMSA components delegation, replication, and execution:

40

• Everyday component lifecycle services, such as sandbox functionality provided
through the MLM hosting this HA-MLM.

• Fault tolerance related services, such as components state storage and replication
management provided through the MLM, state exchange in case of a network
partitioning.

• Add/remove component: This is the HA-MLM component delegation/removal
service. Adding a new component includes its delegation, replication to all the
HA-MLM members.

• Start/stop component: An administration client can request a HA-MLM to launch,
suspend, and resume a specific component.

• Get components: provides a set of components interfaces for the components that
are hosted by the HA-MLM.

• Get status: indication whether a component is running, suspended, deactivated,
etc.

• Get state: allows for obtaining the current component’s state map.

5.2.5 HAMSA plug-ins
As shown in Figure 10 the current implementation of HAMSA supplies the following plug-
ins that can be easily replaced for testing of different algorithms with HAMSA framework:

• Group communication toolkit: is provided through the described above MLM
interface;

• Interaction approval policy: is used by the messaging service. It implements the logic
of the decision whether a specific interaction is approved or not. The current HAMSA
prototype provides an implementation for the majority-based interaction approval
policy, as described in Section 3.3;

• Mailbox synchronization and garbage collection policy: provides the messaging
service with the functionality described in Section 0. The current HAMSA prototype
utilizes the synchronization and garbage collection mechanism for purging pending
messages at every state replication caused by an outgoing external interaction.

• Load balancing and location assignment policy: assists the components hosting and
execution service to identify the most appropriate location for a HAMSA
component’s execution, as explained in Section 4.1.6.

5.3 HAMSA administration tool
The HAMSA administration tool is a graphic front-end interface that allows a human
administrator for performing various HAMSA administration and maintenance tasks. This
tool is provided as an example of HAMSA framework management client implementation.
Using the provided APIs it is also possible to develop other management clients.
Our administration tool was implemented with strong focus on its usability. It has a user-
friendly file explorer-like graphic interface with the HA-MLM hierarchy tree on the left side

41

and the display area providing the information related to the selected HA-MLM on its right
side, see Figure 12.
The administration tool enables working with three basic entities: HA-MLM, messenger, and
HAMSA component. HA-MLM and HAMSA component entities were described earlier.
Messenger is a graphic representation of the HAMSA messaging service recipient entity. It
connects to the messaging service of a HA-MLM as its recipient, and allows for sending and
receiving text messages to any other HAMSA recipient, including other messengers and
HAMSA components.
The left-side HA-MLMs tree of the graphic interface enables the navigation through the
potentially complex HA-MLMs hierarchy. HAMSA enterprise HA-MLM is the root node by
default. In addition, all the HA-MLM nodes are marked with an appropriate color to indicate
their current status.

• Green color means that the HA-MLM is reachable and ready to serve any request.
• Yellow color means that the HA-MLM is reachable, but can only serve “read”

requests, since it is suspended, e.g., due to the interaction approval policy constraints,
i.e., the current membership of the HA-MLM does not contain majority of the MLMs.

• Red color means that the HA-MLM is unreachable.

Figure 12: HAMSA administration tool

Having selected a reachable HA-MLM in the left-side tree, one can choose any of the
provided three HA-MLM information views on the right side, namely: (1) the current and the

42

nominal MLMs membership, (2) the HAMSA messengers registered with this HA-MLM, (3)
the HAMSA components hosted by the HA-MLM.
The top part of the application contains the menu-driven toolbar that allows for performing
various actions on the described above entities. And, finally, the bottom part displays the
HAMSA console that allows for keeping track of possible error, warning and notification
messages.
The following functionality is provided through the toolbar menus:

• File menu:
o Refresh: resets the connection of the administration tool to the HA-MLMs by

reconnecting to the root HAMSA enterprise HA-MLM;
o Exit: closes the application;

• HA-MLM menu:
o Add: opens a dialog for the new HA-MLM creation;
o Remove: removes the selected HA-MLM;

• Messenger menu:
o Add: opens a dialog for the new messenger creation. A new window is opened

for each newly created messenger;
o Reopen: reopens the window of already existing messenger. Prior to this

action the messenger must be selected in the Messengers view on the right
side of the application window. Instead of using this action from the menu,
one can get the same effect by double-clicking on the selected messenger.

o Remove: removes the selected messenger;
• Component menu:

o Add: opens a dialog for entering the data necessary for the new HAMSA
component creation. The mandatory fields are:

 Component name: the specified name may not contain spaces and/or
special characters. This name will be used as recipient name prefix,
while the component’s full name will be comprised of the provided
name and the HA-MLM name.

 Interaction approval policy: specifies the policy to be used for the
specific component.

 Component JAR file: specifies the location of the JAR file containing
the component logic.

 Main class name: specifies the name of the class implementing the
HAMSA component interface. The name should include the full
package name.

 HAMSA compliant: if not checked, the administration tool assumes
that the added component does not implement the HAMSA component
interface, but rather contains a regular Java application main method.

43

In such case the automatic HAMSA component wrapper is activated to
wrap the specified application with default HAMSA interface
implementation.

In addition one can specify the component’s description and a space separated
list of arguments that the application main method will be invoked with. The
latter option is relevant only for non-HAMSA compliant components.

o Start: in case the selected component has not been started yet, it is initiated
and started. If the component was suspended, it is resumed. Otherwise, it does
nothing.

o Stop: suspends the selected component’s execution. Please notice that both
start and stop actions implementation rely on the JVM-specific thread
suspension and resuming implementation.

o Remove: removes the selected HAMSA component;
• Help:

o About: provides some general information about HAMSA.

5.4 Implementation structure
The current HAMSA prototype is implemented in Java language, and therefore, its modules
are grouped into packages according to their functionality. The following list summarizes the
structure and content of the main HAMSA packages in alphabetical order. We also provide a
very brief description of the most important classes in these packages.

5.4.1 Admin package
This package contains the HAMSA administration tool implementation. AdminGui is the
main class of this application.

5.4.2 Component package
This package contains the HAMSA component related functionality:

• ComponentIntf specifies the interface an application should implement in order to
become a HAMSA compatible component;

• BasicComponentImpl provides the default implementation of the basic HAMSA
component functionality that can be extended with some application specific logic.
This module is intended to save developers’ efforts for developing new HAMSA
components.

• ComponentState is used internally by HAMSA to maintain the component’s meta-
data, i.e.., the data provided at the component delegation. ComponentState object is
replicated similarly to other HAMSA state objects as a part of the HA-MLM state.
ComponentState uses ComponentVersion as its progress metric;

• ComponentStruct is used internally by HAMSA to maintain the component’s runtime
data. This structure is kept for active component replicas only;

44

• ComponentVersion implements the component versioning logic;
• PerHostComponentStatistics maintains the statistical data regarding a component’s

activation history on different MLM hosts. It is utilized as one of the default state
objects in the BasicComponentImplemtation’s state map;

5.4.3 Core package
The core package contains the core modules of the HAMSA functionality, namely:

• MLM is an implementation of the MLM server functionality, as described in Section
 5.2;

• HamsaEvent is the basic HAMSA event definition;
• HamsaInteractionApprover is the majority based interaction approval policy

implementation;
• Host2GroupIntf specifies the interfaces provided by an MLM to its hosted HA-MLM

objects.

5.4.4 Exceptions package
This package contains the exception classes’ definitions used by HAMSA.

5.4.5 Group package
This package implements the group hierarchy management functionality of HA-MLM. It also
serves as a relay for the messaging service layer implemented in the HamsaMailbox module
of the messaging package. I.e., for the messaging service we use class composition rather
than direct inheritance.

• Group is the main class of this package implementing the core logic of HA-MLM;
• GroupIntf specifies the HA-MLM’s subset of interfaces that are related to the group

hierarchy management functionality;
• GroupState and GroupProgressMetric implement the HA-MLM’s meta-data state

and its progress metric respectively;
• GroupStateXchangeProtocol extends the basic StateXchangeProtocol implemented in

the state package. It provides the HA-MLM group specific functionality required for
the full state exchange of a HA-MLM;

5.4.6 HaMLM package
This package extends the group package’s modules with the messaging service to provide the
HAMSA components hosting and execution layer of HA-MLM:

• HaMLM is the main class of this package. It extends the Group class and implements
the core components hosting and execution logic of HA-MLM;

45

• HaMLMIntf, HaMLMState and HaMLMStateXchangeProtocol extend the appropriate
classes of the group package to complete the HA-MLM’s the components related
functionality;

5.4.7 Logger package
This package provides the HAMSA proprietary generic severity-based logging mechanism
with extensible model of multiple logger agents.

• Logger implements the main logging logic implemented as a singleton class. It allows
the logger agents for subscribing to logging events of specific severities. Its main log
method handles all the logging events and passes them to the relevant subscribed
logger agents;

• Severity specifies the set of severity supported by the logging mechanism. The
currently defined severities are: debug, GUI alert, notification, warning, error, and
fatal error;

• LoggerIntf specifies the interface to be implemented by a logger agent;
• DefaultLogger provides the basic implementation of a logger agent;
• The rest of the classes in this package provide specific implementations of various

logger agents, e.g., FileLogger, PrintStreamLogger, etc.;

5.4.8 Messaging package
This package contains all the modules involved in the HA-MLM messaging service:

• MessageServiceIntf defines the API of the HA-MLM messaging service;
• MessageClientIntf defines the interface that a message service recipient should

implement;
• HamsaMailbox implements the HA-MLM’s messaging service layer. It is

incorporated into the Group module implementation;
• HamsaMailboxPolicy specifies the mailbox synchronization and garbage collection

policy;
• HamsaMessage specifies the basic message entity used by the messaging service.

This class extends the HamsaEvent one that is defined in the core package;
• HamsaRecipient implements the recipient specific part of the HamsaMailbox. It

maintains the recipient’s queue of pending messages;
• ExternalInteractionMsg extends the HamsaMessage to represent a HAMSA external

interaction event;
• Rest of the classes in this package implement various message types that are

internally used by HAMSA;

46

5.4.9 Plugins package
This package contains two types of modules: those implementing not HAMSA-specific
generic functionality, and HAMSA plug-in modules. The latter, such as FileHelper and
JNDIHelper utilities, generic FIFO queue, alarm and monitor implementations, are used by
most of the HAMSA modules in all packages, while the usage of the latter was describes in
Section 5.2.4.

5.4.10 State package
This package contains all the modules dealing with the HAMSA state management,
replication, and exchange. Section 5.2.3 provides more details on the functionality of the
following modules:

• StatefulObjIntf and BasicStateFulObjImpl provide the interface and the default
implementation of the entities that are interested in HAMSA’s state replication
services, e.g., HA-MLM and component modules implement this interface;

• StateHostIntf specifies the interface that a state replication service provider should
implement. HAMSA MLM module implements this interface;

• StateMap implements the entity maintaining a set of state objects belonging to the
same stateful object;

• StateIntf and State provide the interface and the default implementation for
component specific state objects;

• StateDescriptorIntf and StateDesciptor specify the interface and the default
implementation of the state descriptor that is a parameter provided by the state object
implementer. It contains the state progress metric.

• StateXchangeProtocol provides a generic basic implementation of simultaneous state
exchange process for multiple stateful objects. It follows the algorithm specified in
Section 4.1.4;

5.4.11 Transis package
The Transis package provides the interface to the Transis group communication toolkit. Its
specification can be found in [7].

See the Appendices for the additional information on how to use HAMSA
The following sections provide analysis of the current HAMSA model behavior and
overheads.

47

6 HAMSA component applications
In this section we present typical network monitoring applications, demonstrate how one can
deploy them using HAMSA, and explain the benefits network monitoring applications gain
from taking the HAMSA approach.

6.1 Post-mortem failure analysis
The first network monitoring application is a highly available post-mortem failure analysis
system. In this application, several MIB scalar variables from each network element are
being kept in a centralized repository, and when a network failure occurs, the management
system searches this repository for the relevant variables, whose values may suggest the
source for the failure (see for example [22]).
In a typical two-tier scenario such a system is deployed at a single station, and the MIB
variables of all network elements are accessed from it. The collected data is kept in the local
file system. When a failure of a monitored element (or of several elements from the same
network region) is detected the collected data is searched and the behavior of the relevant
MIB variables is examined in order to identify the cause of the problem.
In HAMSA, the centralized polling application and its repository are being handled
transparently by the middleware. The administrator chooses a set of MLMs by either
selecting an existing HA-MLM, or defining a new one, and delegates the polling component
to this HA-MLM. Based on the component placement policy, the controller activates this
polling component at one of the MLMs, while the replicas are kept for warm backup at other
MLMs.

Figure 13: All MLMs are put into a single HA-MLM

If the network splits, the monitoring continues automatically in each network partition where
at least one MLM of the split HA-MLM is present. The state (e.g., the collected MIB
variables), is kept locally per replica of the monitoring component in each network partition.

48

When the network re-merges these autonomously collected states become available to the
administrator.
One question raised by this example concerns different configuration trade-offs available for
the monitoring application that uses HAMSA. Consider the typical network configuration
illustrated in Figure 13. In this scenario, the information arrives at the monitoring station
from k LANs. If the monitoring is done by centralized polling from the management station,
and the connectivity to one of the LANs is lost, the monitoring of its elements cannot
continue. In particular, if the failure is caused by a misconfigured access interface in the
LAN's access router, the information about the cause of the problem will not be available.
This is because the connectivity may be lost before the values of the router's MIB variables
suggesting the cause of the problem are retrieved.
If however the administrator configures HA-MLM in such a way that there is at least one
MLM per LAN, the MLM in the disconnected LAN will re-start a separate copy of the
monitoring as soon as it detects (through the underlying group communication service) that
there is a network partition, and all variables in the router's MIBs will be polled.
Once connectivity is re-established (say, through rolling back the configuration) the
management station will be able to access this information, and the manager will be able to
identify the source of the problem, (i.e., wrong configuration) and to fix it.

Figure 14: Pair-wise Organization

This example also demonstrates the importance of proper HA-MLM configuration. The
administrator may be tempted to have at least one MLM in each LAN, as in our example.
However, since the state of each monitoring component is distributed by HAMSA to all
members of the HA-MLM, the communication costs induced by the replication may become
too high.
In fact, one may choose to create m separate applications, each having a different HA-MLM
containing only a pair of MLMs, as described in Figure 14. In this case, the monitoring
application for each LAN is running separately on the local MLM (according to the distance-
based component placement policy), and thus being unaffected by a possible network

49

partition. If, however, the local MLM itself fails, a copy of the monitoring process for that
LAN will be initiated automatically by HAMSA on the MLM that is co-located with the
management station. This configuration also reduces the overall monitoring traffic when
there are no failures, since in this case the monitoring is done locally and the state of the
monitoring components is synchronized among the two MLMs only upon the external
interactions.
There exists a trade-off between the monitoring overhead traffic, and the overhead traffic
induced by HAMSA due to replication it performs behind the scene. The actual amount of
overhead depends on the total number of MLMs in a HA-MLM, the size of the application
state in HAMSA, the frequency of external interactions, and the amount of data involved in
these interactions.
For example, in the described post-mortem failure analysis application, one can choose to
have a small state (i.e., the serial number of the last poll), or a very large state (i.e., the actual
data of the last 10 minutes polling). Clearly, the latter choice allows a faster recovery after a
failure of a monitoring component, but it generates much more overhead traffic. We study
these trade-offs in Section 7, and show that the overhead required by HAMSA to provide the
extra functionality is much smaller than the monitoring costs we saved.

6.2 Event-driven reactive monitoring
A more complex monitoring application demonstrating the inter-process communication
capabilities of HAMSA is an event-driven reactive monitoring network monitoring
application. In such an application we are required to detect when a function (typically the
sum) of a number of MIB variables, each belonging to a different network element, exceeds a
predefined threshold.
A centralized realization of this application involves a polling station that monitors all
variables at all network elements, computes the function and sets up an alarm if the value has
exceeded the threshold. This solution induces both significant traffic overhead and
computation load at the monitoring station that grow linearly with the number of polled
elements.
To address these issues, several algorithms that combine local computation, traps, and a
centralized monitoring station were proposed in [10]. However, in order to deploy these
algorithms the agent should be able to carry on simple computation components and issue
traps, which are in many cases beyond the ability of the standard SNMP trap framework.
This is a very good example where the extended functionality of HAMSA can be utilized.
The global reactive monitoring application is executed in HAMSA in a distributed way.
Namely, a number of copies of the same monitoring component are launched at several HA-
MLMs. Each HA-MLM is responsible for its own local set of devices. According to the
algorithm of [10], if a local threshold event has been detected (in this case the “local” means
“with respect to the local set of variables”), then the other copies of the monitoring
component are being notified using HAMSA messaging service. Then according to the
algorithm, a global poll may be initiated, and, if needed, an alarm is declared. If one of the
local monitoring processes fails, HA-MLM controller restarts it on another MLM, and the
system continues functioning. This, of course, comes with a cost of increasing the monitoring

50

traffic, but paying such a cost is definitely better than losing the ability to carry on with the
critical monitoring component.

6.3 Usage-based IP billing
As an additional example, consider the following possible organization of a usage-based IP
billing application that relies on its own network monitoring components to collect the
needed information. The structure of this application is shown in Figure 15. In the lowest tier
of the application there are target agents capable of providing the raw information about their
respective devices. In the second tier there are three types of monitoring components: flow
collector, session collector, and flow preprocessor. The flow collector component monitors
the forwarding devices and obtains the raw data about the IP flows from them directly.
The session collector component monitors some Authentication, Authorization and
Accounting server(s), such as RADIUS [9], collecting the user-session information. The flow
preprocessor component monitors the flow collector and the session collector in order to
correlate the users with their flows and reports this pre-processed information to the upper
tier. The upper tier of the application consists of the billing component that generates the per-
user bills.

Figure 15: Usage-based IP billing application

Although a failure of any component at the second tier does not imply the immediate
stoppage of all the application activities, the billing application, as a whole, cannot proceed
in a regular manner and eventually would halt or become inaccurate if no additional
measures are taken. For example, if the flow pre-processor component fails then at some
point the flow collector will run out of the storage space and will be forced either to loose
valuable information, or to seize its activity.
In light of the above we identify a clear requirement for increasing the availability of the
critical monitoring components being part of the management applications. Providing a
maximally transparent infrastructure that allows a manager to deploy the needed monitoring
components of the second tier in a highly available manner would improve the overall failure
behavior of the described applications, and therefore contribute to the better provisioning of
the network services in general.

Billing Application
First TIer

Second TIer

IP Network
Routers

DHCP Server

Third TIer

RADIUS Server

Flow
Pre-Processor

Session
Collector

Flow
Collector

51

7 Performance evaluation

7.1 Trade-off analysis
In order to understand the trade-off between the communication overhead induced by
HAMSA, and the possible reduction in monitoring overhead, consider again the scenario
described in Figure 13, and Figure 14. We want to compare the amount of traffic overhead
generated by the monitoring application without HAMSA with the overhead induced by
HAMSA and the underlying group communication service.
The group communication service is responsible for failure detection that is based on
periodic broadcasting of short I-am-alive messages. In general, this overhead grows as m2,
where m being the size of HA-MLM. Optimizations that reduce by factor l, the number of
LANs, are possible [23]. However, this is inevitable overhead of failure detection that cannot
be strictly attributed to HAMSA or group communication, because any application wishing
to achieve the high availability guarantees of HAMSA on its own would pay these costs
anyway. The experiments performed in [23] with the current implementation of Xpand and
Transis show that group communication scales to 200 hosts dispersed over WAN without
visible impact on the regular traffic.
The overhead of HAMSA itself strongly depends on the way we configure HA-MLMs and
on the size of the application state. In order to investigate the trade-off, assume that the state
size sent by HAMSA is 150 bytes. This is a reasonable size, when one chooses to use a small
state (like a measurement sequence number).
Figure 16 depicts the tradeoff for the two choices of HA-MLM configuration and for 10, and
20 scalar MIBs variables in each LAN. We assumed here that due to the SNMP encoding,
polling of one variable takes about 150 bytes, and thus polling 10 or 20 variables per LAN
will consume 1500, and 3000 bytes respectively for each LAN.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6
x 10

4

number of LANs

co
m

m
un

ic
at

io
n

co
st

HAMSA: 2 MLMs HA−MLM
HASMA: k MLMs HA−MLM
MONITORING: 10 VARs
MONITORING: 20 VARs

Figure 16: HAMSA and monitoring communication cost as a function of the LANs number

52

Let n be the HA-MLM membership size, and m be the number of hosted monitoring
component with a single state object per component. Assume we need to update all m
component states each polling interval. In this case the state replication takes 150 ⋅ n ⋅ m
bytes. On the other hand, if we use m different HA-MLMs, each of size 2, HAMSA's
overhead is reduced to 300 ⋅ m.
One can easily see that even for a very small number of monitored variables the overhead of
HAMSA is significantly smaller than the monitoring overhead of a traditional application.
This is a big advantage even without considering the HAMSA's main goals: extended
functionality and reliability.
The main mission of HAMSA is increasing the system reliability. However, the high
reliability comes with the cost of introducing more MLMs. In particular, this implies a higher
communication overhead. Thus, there is a trade-off between the level of availability and the
traffic overhead. In order to evaluate this trade-off, we consider the same scenario as above.
The current host MLM of an active component replica propagates its state to the rest of its
HA-MLM through multicast. Thus, communication cost of HA-MLM replicating the state is
linear in the number of group members. However, when we increase the number of MLMs in
the group, we reduce the probability of a total system failure, since HA-MLM restarts the
failed process on a different MLM as long as they are available.
Thus, if we have m MLMs in a HA-MLM, and the independent probability of a single MLM
failure is p, the probability of the application failure is p = 1 – pm. Since we have only one
active component per network partition then the communication is s ⋅ (m – 1) per each state
in the component state, where s being the component state size. To obtain specific numbers,
let s be 150 bytes, as in our example. Then, in order to get an application failure probability
of p we pay 150 ⋅ (– 1) bytes per change. This cost is plotted in Figure 17, for
single MLM failure probability of 0.1, 0.01, 0.001, and 0.0001.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

100

200

300

400

500

600

700

800

Probability of total failure

co
m

m
un

ic
at

io
n

co
st

Single failure prob = 0.1
Single failure prob = 0.01
Single failure prob = 0.001
Single failure prob = 0.0001

Figure 17: HAMSA communication cost per state change as a function of the required

system error failure probability

log(1 – p)
log p

53

As one can see, in order to get the often desired “5 nines” reliability, starting from a very
high error rate of 0.1 on a single machine, 6 MLMs are sufficient. The communication cost
150 ⋅ (6 – 1) = 750 bytes per state change) becomes much smaller when the reliability of a
single machine increases.

7.2 Experiments
In our experiments we evaluated the following HAMSA capabilities:

• Messaging throughput: We measured the HAMSA’s overhead in the messaging
interactions between an external client and a hosted HAMSA component;

• MLM host recovery overhead as a function of:
o HA-MLM size;
o Number of components;
o Component state size;

The following sections describe the achieved results.

7.2.1 Test-bed setup
In our HAMSA experiments we used the following configuration:

• Hardware:
o Servers: Intel PIII 800MHz with 512MB RAM;
o Network: 100Mbps Ethernet LAN;

• Software:
o Java SDK: 1.3.1;
o OS: Debian Linux 3.0;
o Group Communication Service toolkit: Transis [7] utilizing group multicast;

We used a set of HAMSA components with different state sizes that implemented the “echo”
messaging functionality, i.e., the components sent an automatic reply to the sender of every
received message. Our components were implemented based on the provided HAMSA
component infrastructure that utilized all the HAMSA framework capabilities. In particular,
the components’ states were replicated and saved to the file based persistent storage at each
outgoing reply message.

7.2.2 Messaging throughput

In this experiment we evaluated the state replication overhead applied by HAMSA in case of
a simple request-response interaction between a management client and a monitoring
component that requires state replication. We measured the time passed from the moment a
client issued a request message till the reply arrival. The main goal of this experiment was to
see whether the state replication overhead significantly affects the communication throughput.

54

Therefore we executed the same test case with different state replication frequency. Since
the state replication in HAMSA takes place only at an outgoing interaction time, we modeled
a component that ignores a preconfigured number of requests, replying only on every x-th
message. I.e., the higher the value of the parameter x is, the lower the frequency of the state
replication is.

We expected the total overhead to get lower as the number of required replications was
reduced. In other words, the less we interact with a component, the less we pay in
synchronization overhead. We used the following values for the replying i.e., replicating state,
frequency: every 1st, 2nd, 4th, 8th, 16th, 32th, and 64th message, where 1 being the highest
frequency and 64 being the lowest one. Despite our straightforward and reasonable
estimation, Figure 18 shows that for the values we used the HAMSA’s state replication
overhead is minor.

msec

0

100

200

300

400

1 2 4 8 16 32 64
Replicating state every X messages

Figure 18: Request-response roundtrip time as a function of state replication frequency

7.2.3 MLM recovery overhead
This set of experiments intended to evaluate the HAMSA’s overhead in case of network/host
failures causing HA-MLM membership changes.
In each test scenario described below we set up a system configuration of two HA-MLMs,
i.e., we created a dedicated HA-MLM to host the components in addition to the default
HAMSA Enterprise one. In our experiments we analyzed the behavior of the MLMs in the
dedicated HA-MLM. We used test components maintaining two internal state objects each.
These states represented the application internal logic checkpoints and the accumulated
monitoring data respectively. The former one had a constant size of 1K. We changed the size
of the latter according to the test case requirements. All the components had the same
preferred location MLM assignment policy, i.e., all the components always had the same
primary MLM server.
We defined a set of major scenarios to test the recovery capabilities of the HAMSA MLMs.
Each scenario focused on the influence of a specific HA-MLM parameter on the MLM
recovery overhead. We tested how the following three parameters affect the MLM’s recovery
overhead in terms of time and number of messages:

55

• Membership size of the HA-MLM: three different sizes: 3, 5, and 7 were tested. In this
scenario the HA-MLM hosted a single component with two state objects of 1K and
10K respectively. See Figure 19;

• Number of hosted components: we used similar components with two state objects of
1K and 10K each. The number of components varied as follows: 0, 1, 5, 10, 20. See
Figure 20;

• State size of the hosted component: The HA-MLM hosted a single component with
two state objects, one of 1K, the other one with different sizes: 0K (no second state),
1K, 10K, and 100K. See Figure 21;

In all the experiments we analyzed the behavior of each one of the MLMs in the replication
group. Let us consider a HA-MLM H with at least three MLMs. Let A, B, and C be MLMs in
H. Assume all the MLMs available in the same partition in the beginning. Let us analyze the
possible scenarios that an MLM is supposed to cope with in case of a membership change.
1. Let the current partition of H contain all the MLMs except for A; and let B be the current

components’ primary server. Then let MLM A join this partition after being either down
or in some other network partition. Assume A is supposed to become the primary server
for the components according to their preferred location policy. In this case we measure:

a. The effort required for A to initialize itself, to synchronize its state objects with
other MLMs, and to take over the responsibility for running the monitoring
components;

b. The effort required for B and C (B is the state update source) to participate in the
state exchange process, while the responsibility for hosting the active components
moves to A.

2. Assume now that A is leaving the common partition due to its host or network link failure.
Then one of the remaining MLMs (in our scenario it is B) should take over the tasks that
A was responsible for. In this case we measured:

a. The effort required for B to take over the activities of A. Please notice that this case
differs from the case (a) in the previous scenario, since no initialization and state
exchange is required this time;

b. The effort required for C to handle the membership change event. No state exchange
is required in this case according to the algorithm in Section 4.1.4.

56

Basic svc

0.00

1.00

2.00

3.00

4.00

5.00

3 5 7

Full restart
Take ov er
Pasiv e st. ex ch.
No st. ex ch
Basic sv c

Msgs

0

10

20

30

3 5 7

Figure 19: a) MLM recovery time; b) number of messages as a function of HA-MLM
membership size

Basic svc

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 1 5 10 20

Full restart
Take ov er
Pasiv e st. ex ch.
No st. ex ch
Basic sv c

Msgs

0

20

40

60

80

100

0 1 5 10 20

Figure 20: a) MLM recovery time; b) number of messages as a function of the hosted
components number

Basic svc

0.00

1.00

2.00

3.00

4.00

5.00

0K 1K 10K 50K

Full restart
Take ov er
Pasiv e st. ex ch.
No st. ex ch
Basic sv c

Msgs

0

10

20

30

0K 1K 10K 50K

Figure 21: a) MLM recovery time b) number of messages as a function of state size

57

In order to get a better idea regarding the trade-offs between the HAMSA’s benefits and its
overhead we compared the behavior of HAMSA framework with that of a simple simulation.
This application simulated a monitoring service maintaining its own persistent state backup
using the local file system providing very basic reliability semantics with no replication for
high availability. We used the recovery time overhead of this application as our basic
measurement unit for the performance evaluation. In the above figures, all three recovery
time diagrams contain the following four charts:

• MLM full initialization with taking responsibility for the components from the other,
already running MLMs, as described in subsection 1a;

• MLM taking over the responsibility for running components with no initialization or
state exchange, as described in subsection 2a;

• MLM taking part in the state exchange only, as described in subsection 1b;
• MLM handling a membership change event that does not apply a state exchange, as

described in subsection 2b;

7.2.4 Discussion
In the theoretical trade-off analysis of Section 7.1, we assumed that only unicast
communication is enabled between the MLMs in HA-MLM groups. However, in our
experimental setup we used a single broadcast domain. The implication of this is that the
group communication overhead due to failure detection and membership maintenance is
reduced by the constant factor of n, where n being the size of the HA-MLM group. Similarly,
the application-specific communication overhead of a HAMSA-based application due to the
state synchronization is reduced by the same factor. This explains the difference between the
theoretical estimations and our experiments results.
In particular, in our first experiment the state replication required a single message to update
all the HA-MLM members. However, with no support for multicast, the state replication
message would have been sent to every HA-MLM member separately, which in our case
would have doubled the number of the state replication messages.
The measurement results show relatively low throughput for a simple messaging interaction.
However, first, the presented results include the group communication overhead that does not
depend on HAMSA, and is crucial for a highly available replication mechanism. Second,
HAMSA was not designed to serve as a general-purpose messaging bus, but rather was
focused on providing strict high availability guarantees to the hosted components.
On the other hand, we showed that HAMSA replication mechanism’s overhead does not
significantly depend on the amount of replications requested by the hosted components. This
is an extremely important feature for a replication framework, which, in particular, shows
that even with unicast only communication in place we would get similar results.
In the second experiment, we measured the MLM recovery time and the number of
transmitted messages that were involved the HA-MLM state exchange protocol. As
explained in Section 4.1.4, this protocol requires sending m ⋅ (m + n) messages per HA-MLM,
where m being the HA-MLM membership size, and n being the number of the state objects

58

hosted by the specific HA-MLM. In case the multicast communication is available m + n
messages should be sufficient.
We can see that the MLM recovery time was affected neither by the HA-MLM membership
size, nor by the size of the replicated state objects. The membership size only affected the
number of the state advertisement messages sent in the process of state exchange, which, in
our case of two HA-MLMs, was minor time-wise, adding just 2m messages to the state
exchange process (m varied from 3 to 7). However, we could see this overhead in the
growing number of messages, which still is reasonable, since this is the minimal number of
messages required by any replication protocol.
The tested state objects size did not contribute any additional messages, since a state object
could fit into a single message. The only additional overhead in this case was the longer I/O
operation of writing the state objects to the file. It seems that for the tested object sizes this
issue did not become a bottleneck.
However, the number of hosted components has a significant impact on both the MLM
recovery time, and the number of messages sent during the state exchange process. Without
getting into the low level details of the HAMSA’s implementation, we can see that the
overhead, both time and message-wise, grows linearly with the number of the hosted
components (notice that in our diagrams the x-axis grows exponentially). This overhead,
again, can be considered reasonable, since each component requires a dedicated handling for
its state replication, as well as for the execution by its MLM host in a separate thread.
The current HAMSA implementation’s main target was to provide a proof of concept for the
feasibility of our approach. We consider this implementation being a prototype, rather than a
full-scale mature product. Further code optimization will be required to enhance HAMSA’s
functionality and to improve its performance.
In spite of these facts we showed that although HAMSA introduces a significant overhead,
this overhead is reasonable and not any higher that one might expect from a generic high-
availability and replication framework for network monitoring services. Moreover, we
demonstrated that HAMSA significantly improves the existing model for the primary/backup
family of replication protocols, providing an extensive architecture adjusted to the specific
requirements of the network monitoring applications and their management.

59

8 Related work
HAMSA combines different architectural and technology elements: 3-tier architecture,
distributed delegation, high availability with the strong semantics.
Achieving scalability of the network management through the hierarchical architecture has
been a common approach for a long time. The quest for more efficient and versatile
management paradigms has been pursued by many researches over the last few years.
The multi-tier architecture, and in particular, the three-tier architecture approach for
monitoring is not new. Starting from the SNMPv2 [11] protocol the multi-tier approach is
proposed as part of the SNMP family of standards based on the so-called Mid-Level
Managers (MLMs) as well as the Manager-to-Manager (M2M) communication model. These
enhancements to the original SNMP framework have a potential to dramatically improve
scalability of the SNMP-based monitoring.
Other approaches suggest using mobile agents, active networks, or programmable networks
for decentralizing and shortening the control [16], [19]. Usually, these proposals focus on the
mechanics of the mobility and extended functionality rather than on the high availability and
meta-management issues being in the focus of this work.
Several approaches for integrating the management by delegation approach [24] into SNMP
environment have been proposed recently [25]. With the advent of Java, the delegation is
easily implemented by exploiting its mobility and security features making Java a preferred
language for developing delegated programs.
Novel architectures were proposed in the recent years for highly flexible and adjustable
multi-tier management frameworks, such as [26], [27]. However, they assume a weak failure
model for their architecture, which cannot satisfy important types of network monitoring
services as presented in this work.
Java Management Extension [17] is an emerging Java standard for representing managed
objects as Java Beans. JMX Bean is an object that serves as a Java wrapper facade for the
actually managed object. JMX Beans can co-locate with the objects they represent at the
agent side, or be deployed in a distributed fashion. In the latter case, JMX Beans need
distributed object services of the second tier that are currently left unspecified by JMX.
HAMSA components can be implemented as JMX Beans.
One of the more mature Java technologies for deploying three-tier Java applications is
provided by Enterprise Java Beans (EJB) [21]. EJB defines interfaces for Application Server,
and Enterprise Java Bean components that execute in the environment of the application
server managing all the transactions, persistency, security, and naming services for the
components.
The problems that HAMSA copes with are very similar to those of the state-full EJB
clustering. Some of the existing EJB implementations provide fail-over models that allow for
replication of the beans' states, and support takeover of the failed beans by other servers in
the cluster [21]. Most EJB servers perform state-full fail-over by using either in-memory
replication, or persistent storage to a shared database. These solutions are inappropriate for
the network monitoring domain, since they rely on the fact that the network remains

60

connected. To the best of our knowledge, there is no current implementation of EJB, or other
application server technology that provide the high availability of the second-tier components
execution to the level that allows their comparison with HAMSA.
And finally it is definitely worth mentioning last but not least, the industry standard network
management and monitoring tools: OpenView by HP and NetView by IBM. These tools are
historically most widely used and are considered as very sophisticated applications in the
network management area. However, we believe that, while providing advanced means for
flexible distributed management, these tools still do not put enough emphasis on the meta-
management issues, and specifically, the high availability of the management and monitoring
applications.

61

9 Future Work
This section suggests some of the possible directions of future HAMSA enhancements.

9.1 Advanced Load Balancing and QoS within HA-MLM
It is possible that due to some load considerations, it will become necessary to move a
HAMSA component among the MLMs within its HA-MLM membership even during the
components’ normal execution, and not just in case of failures. This is in order to prevent the
load accumulation on a specific MLM and, thus, the degradation in the quality of service
(QoS) provided to the management component by its host.
A management component may be interested in requesting a specific QoS level from its HA-
MLM. In this case we could consider the following approach: At some point a host MLM
concludes that it is only possible to satisfy the requested QoS by moving the management
component. Then the MLM would exchange the QoS-related information with other MLMs
via the group communication service in order to identify the most appropriate new location
for the management component.
In this approach, MLMs do not need to monitor each other continuously, but only when the
real need to re-balance the management components arises. Therefore, the overhead of the
load balancing is kept reasonably low.
Additional more advanced load-balancing and QoS policies can be considered.

9.2 Automatic HA-MLM Construction
In the current version of HAMSA, a human network administrator specifies the members of a
HA-MLM group manually. This makes the management systems based on HAMSA very
flexible and provides the administrator with full control over them. On the other hand, as a
management system grows and its complexity increases, it becomes time-consuming and
failure-prone to manage HA-MLM groups manually. Moreover, human managers may not
always choose the optimal set of MLMs to comprise a HA-MLM group with respect to
multiple dynamically changing parameters such as network load, resource consumption, load
sharing, physical location, etc.
In the future, the work of a HA-MLM group construction could be automated to the possible
extent. Ideally, an administrator should be capable of specifying a management component
along with its QoS and high-availability requirements, leaving the low-level work of optimal
HA-MLM formation to HAMSA, while still having the option to intervene into the
construction process manually, if necessary.

62

10 Conclusion
Efficient monitoring of large and dynamic distributed systems becomes challenging. In spite
of numerous novel technologies and approaches described in brief in this work, they are not
widely utilized by the management community yet. There are several reasons for this. We
believe that one of the more fundamental problems with the distributed hierarchical
management in general is the increased complexity of the meta-management, i.e.,
administrating the management system itself.
We present a lightweight monitoring middleware called HAMSA that dynamically allows to
enhance monitoring functionality, and to decentralize it in a reliable and efficient manner.
This work presents the architectural overview of the middleware, and the possible functional
and performance trade-offs involved in its deployment. By leveraging a group
communication middleware our architecture increases availability, modularity, and
scalability of network monitoring.

63

Bibliography
[1] Y. Yemini, The OSI Network Management Model. IEEE Communications Magazine

pages 20-29, May 1993.
[2] A. Sahai and C. Morin, Towards Distributed and Dynamic Network Management, Proc.

NOMS'98, New Orleans, Louisiana, USA, February 1998.
[3] M. Feridun, W. Kasteleijn and J. Krause, Distributed Management with Mobile

Components, Proc. IM'99, Boston MA, USA, May 1999.
[4] A. Bieszczad and B. Pagurek, Towards Plug-and-Play Networks with Mobile Code, Proc.

ICCC'97, Cannes, France, November 1997.
[5] M. Zapf and K. Herrmann and K. Geihs, Decentralized SNMP Management with Mobile

Agents, Proc. IM'99, Boston, MA, USA, May 1999.
[6] ACM, Communications of the ACM 39(4), special issue on Group Communications

Systems, April 1996.
[7] Y. Amir, D. Dolev, S. Kramer and D. Malki, Transis: A Communication Sub-System for

High Availability, Proceedings of the 22nd Annual International Symposium on Fault-
Tolerant Computing, July 1992.

[8] Robert Orfali, Dan Harkey, and Jeri Edwards, Client/Server Survival Guide, 3rd edition,
John Wiley & Sons, 1999

[9] RADIUS, IETF RFC2138, RFC2139

[10] M. Dilman and D. Raz, Efficient Reactive Monitoring, IEEE Journal on Selected
Areas in Communications (JSAC), special issue on recent advances in network
management, 20(4):668–677, May 2002.

[11] William Stallings, SNMP, SNMPV2, SNMPV3, and RMON 1 and 2, Addison-Wesley,
January 1999.

[12] K. P. Birman, A. Schiper and P. Stephenson, Lightweight causal and atomic group
multicast, ACM Transaction on Computer Systems, Vol. 9 (3): 272-314, August 1991.

[13] BBN Technologies, Cougaar Architecture Document, ver. 10.0, February 2003.
[14] N. Budhiraja, K. Marzullo, F. B. Schneider, S. Toueg, Primary-backup Protocols:

Lower bounds and optimal implementations, Third IFIP Working Conference on
Dependable Computing, Mondello, Italy, pp. 187—198, January 1992

[15] M. Daniele, B.Wijnen, M. Ellison, and D. Francisco, Agent extensibility (AgentX)
protocol, RFC 2741, January 2000.

[16] A. Bieszczad, B. Pagurek, and T. White, Mobile agents for network management, IEEE
Communications Surveys, 1(1):2–9, 1998.

[17] Sun Microsystems, Java management extensions (JMX) instrumentation and agent
specification, v1.1, mar 2002.

[18] B. Pagurek, Y.Wang, and T. White, Integration of mobile agents with SNMP: Why and
how, In 2000 IEEE/IFIP Network Operations and Management Symposium, pages 609 –
622, Honolulu, Hawaii, USA, April 2000.

[19] D. Raz and Y. Shavitt, Active networks for efficient distributed network management,
IEEE Communications Magazine, 38(3), March 2000.

[20] M. G. Rubinstein and O. C. M. B. Duarte, Evaluating tradeoffs of mobile agents in
network management, Networking and Information Systems Journal, 2(2):237–252,
1999. HERMES Science Publications.

64

[21] E. Roman, S. Ambler, and T. Jewell, Mastering Enterprise Java Beans, Wiley, 2nd
edition, 2002.

[22] E. P. Duarte Jr. and Aldri L. dos Santos, Semi-Active Replication of SNMP Objects in
Agent Groups Applied for Fault Management, 7th IEEE/IFIP International Symposium
on Integrated Network Management IM, Seattle, WA, May 2001

[23] T. Anker, G. Chockler, D. Dolev, and I. Shnaiderman, The design of xpand: A group
communication system for wide area, Technical Report HUJI-CSE-LTR-2000-31, The
Hebrew University, July 2000

[24] Y. Yemini, G. Goldszmidt, and S. Yemini, Network Management by Delegation, In The
Second International Symposium on Integrated Network Management, pages 95–107,
Washington, DC, USA, April 1991.

[25] D. Levi and J. Shonwalder, Definitions of Managed Objects for the Delegation of
Management Scripts, May 1999, RFC 2592.

[26] E. Al-Shaer, A Dynamic Group Management for Scalable Distributed Event
Correlation, IEEE/IFIP Integrated Management (IM'2001), May 2001.

[27] R. van Renesse and K. Birman, Astrolabe: A Robust and Scalable Technology For
Distributed System Monitoring, Management, and Data Mining, Submitted to ACM
TOCS, Nov. 2001.

[28] Sun Microsystems, Java 2 Platform, Standard Edition Platform Overview,
http://java.sun.com/j2se

[29] T. Berners-Lee, R. Fielding, U.C. Irvine, L. Masinter, Uniform Resource Identifiers
(URI): Generic Syntax, IETF, RFC 2396

[30] Leslie Lamport, Time, Clocks, and the Ordering of Events in a Distributed System,
Communications of the ACM, 21(7): pp 558-565, 1978

65

Appendix A: HAMSA Installation Guide
This document will guide you how to install HAMSA in just 10 easy steps.
The HAMSA distribution supplies two basic modules:

• MLM server: server-side daemon actually providing the core HAMSA functionality.
You should install an instance of MLM on every server that you want to take part in
the HAMSA framework.

• AdminGui: client-side GUI front-end for easy administration of HAMSA. You should
install an instance of AdminGui on any administration station that will deal with
HAMSA.

Prior to the HAMSA installation make sure that you have a full JDK 1.3.1 or higher installed
on all the machines you want to utilize for the HAMSA framework. If you have already got it
you can now proceed with the installation as explained below.

1. Unzip the content of the HAMSA distribution onto your disk.
2. Decide where you want to install HAMSA, and define a new environment variable

HAMSA_HOME that specifies the desired deployment location path.
3. Locate the installation environment setup configuration script:

- env-setup.bat for Windows OS
- env-setup.csh for UNIX OS

4. Update the selected env-setup configuration script as follows:
a. Mandatory:

- Windows only: specify the drive letter of the deployment path, e.g. D:
b. Optional (for advanced users only):

- Specify the installation type by changing the INSTALLATION_TYPE
variable's value to either MLM or Admin. This will affect the hamsa.jar's main
class setting in the manifest file.

- Specify the deployment path in case you want it to be different from
HAMSA_HOME.

- It is recommended to launch the installation process from the very directory,
where the installation script is located. Otherwise, specify the distribution
location path.

- In case you prefer your installation to use a temporary directory other than the
specified one, you should change the TMP_VOLUME (Windows only) and
TMP_DIR variables' values.

- In case you prefer using compilation flags different from the default one, you
can update the FLAGS variable.

5. Update the local_config.txt file to be used in the installation. This file should contain
a non-empty list of the MLM names (one per line). An MLM name typically consists
of the name of the host where the MLM will be executing and the logical name of the

66

specific MLM. The host name and the logical name are concatenated through the '_'
character. Please notice that you should use the host name as it is provided by the
system hostname call. In addition, the host name should only contain the host part of
the fully qualified dotted notation's host name, i.e., without the domain name.
Please also notice that the lines starting with the semicolon character are treated as
comments lines.

6. Locate the appropriate installation script. You can choose one of the following
HAMSA installation procedures:
a. Runtime installation - uses precompiled distribution build (JAR libraries). Launch

it by running:
- install.bat for Windows OS
- install.csh for UNIX OS. It uses standard C-shell. You may need to grant

execution permissions to this file if missing, in order to be able to run it. Refer
to the 'chmod' command's manual documentation for more information.

b. Build installation - allows you for changing the HAMSA code by rebuilding all
the HAMSA application's JAR libraries. It is currently available for Windows
installation only. Launch it by running:
- install-build.bat for Windows OS

Once completed the build installation performing the runtime installation is no longer
necessary.

7. Launch the installation script. As mentioned above it is strongly recommended that
you do it from the root directory of the distribution, i.e., the very directory where the
installation script itself is located.

8. For easier use of HAMSA it is recommended to add the HAMSA bin directory to
your system path as follows:

- Windows: %HAMSA_HOME%\bin
- UNIX: $HAMSA_HOME/bin

9. Install Transis (see the Transis installation guide for more details).
10. Refer to the HAMSA Administrator Guide to get HAMSA up and running.

Enjoy HAMSA!

67

Appendix B: HAMSA Administration Guide

This HAMSA distribution supplies two basic modules:
• MLM server: server-side daemon actually providing the core HAMSA functionality.

You should have a running MLM daemon instance on every server that you want to
take part in the HAMSA framework.

• AdminGui: client-side GUI tool for easy administration of HAMSA. One can decide
to develop her own administration client using the HAMSA's extensive APIs.

MLM server
In order to launch an MLM server daemon you should:

1. Set up the MLM configuration by updating the config.txt file located in the mlm sub-
directory of the HAMSA_HOME directory.
Please notice that all the MLMs' configuration files should contain consistent MLM
daemons section listing the same MLM names for all the participating hosts.

2. Set up the Transis daemons configuration by updating the Transis configuration file at
all the hosts comprising your HAMSA framework. The Transis configuration file is
typically named 'config' and is located in the Transis 'bin' directory.

3. If it is not the first time you are launching the MLM and you are using the "-restore"
option, you may want to reset the backup MLM state by deleting its directory located
under the mlm sub-directory of the HAMSA_HOME directory. The MLM state
directory name is equal to the full MLM daemon name including both the host name
part and the logical name part, e.g., HOST_MLM0.

4. Launch Transis daemon or ensure that a daemon is already running (one per host).
See the Transis user guide for more details.

5. Launch the RMI Registry daemon using the provided script:
- Windows:

 %HAMSA_HOME%\bin\RMI.bat
- UNIX:

$HAMSA_HOME/bin/RMI.csh
6. Launch the MLM daemons on all the appropriate hosts as follows:

- Windows:
%HAMSA_HOME%\bin\MLM.bat -name <MLM_logical_name> -restore

- UNIX:
$HAMSA_HOME/bin/MLM.csh -name <MLM_logical_name> -restore

Please notice that the MLM logical names should only contain the logical part of the
MLM name specified in the configuration files, i.e., the host name part should be

68

omitted. In case you omit the "-name" option the default "MLM0" logical name will
be used.

Administration tool
1. Set up the AdminGui configuration by updating the config.txt file located in the

admin sub-directory of the HAMSA_HOME directory. Please notice that the
AdminGui client's configuration file should be set up appropriately containing the
MLM daemons configuration similar to that of the MLMs' configuration files.

2. Launch an AdminGUI client as follows:
- Windows:

%HAMSA_HOME%\bin\AdminGui.bat
- UNIX:

$HAMSA_HOME/bin/AdminGui.csh

Notes
• Please notice that Windows OS users can also benefit the shortcuts supplied in the

HAMSA's bin sub-directory.
• Please refer to the HAMSA User Guide for the details of the HAMSA core features.

Enjoy HAMSA!

