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Abstract

This thesis presents a scheme that achieves self-stabilizing Byzantine digital clock

synchronization assuming a “synchronous” system. This synchronous system is es-

tablished by the assumption of a common external “beat” delivered with a regularity

in the order of the network message delay, thus enabling the nodes to execute in

lock-step. The system can be subjected to severe transient failures with a permanent

presence of Byzantine nodes. The presented algorithms guarantee eventually syn-

chronized digital clock counters, i.e. common increasing integer counters associated

with each beat.

Two algorithms for achieving this synchronization are given. The first one, pro-

duces digital clock synchronization directly. The second one, produces an underlaying

pulse which can be used to create clock synchronization, or can be used for other syn-

chronization goals.

Using the digital clock synchronization, one can go on to achieve regular clock

synchronization, progressing at real-time rate and with high granularity. In addition,

a general Byzantine stabilizer is shown, based on the pulse synchronization algorithm.

This thesis shows the first algorithms to achieve deterministic linear convergence

time, supporting f < n
3

Byzantine nodes. In addition, it does not require the use of

local physical timers. Moreover, it is the first to show a self-stabilizing protocol that

overcomes Byzantine faults and operates in a network that is not fully connected.
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Chapter 1

Introduction

Most distributed tasks require some sort of synchronization. Clock synchronization

is a very straightforward and intuitive tool for supplying this. pulse synchronization

can be used as an underlying building block to achieve clock synchronization, as well

as solving other synchronization problems; in a sense, pulse synchronization is a

more fundamental synchronization problem.

It thus makes sense to require such an underlying synchronization mechanism to

be highly fault-tolerant.

1.1 Two Synchronization Mechanisms

This thesis presents two such mechanisms: digital clock synchronization and pulse

synchronization. Both algorithms are self-stabilizing and are tolerant to permanent

presence of Byzantine faults. That is, they attain synchronization, once lost, while

containing the influence of the permanent presence of faulty nodes.

Consider a system in which the nodes execute in lock-step by regularly receiving a

common “pulse” or “tick” or “beat”. The digital clock synchronization problem is to

ensure that eventually all the correct nodes hold the same value of the beat counter

(digital clock) and as long as enough nodes remain correct, they will continue to hold

the same value and to increase it by “one” following each beat. In this thesis, the

terms “clock” and “digital clock” are used interchangeably.

The pulse synchronization problem is to agree on some “special beats” that are

Cycle beats apart. More specifically, the pulse synchronization problem is to ensure

that eventually all correct nodes pulse together, and as long as enough nodes remain
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correct, they continue to pulse together Cycle beats apart. For example, given

Cycle = 7 we would like all correct nodes, that may start at arbitrary initial states,

to eventually pulse together every 7 beats, and continue so as long as there are

enough correct nodes.

We will use the “beat” notation for the “global” signal received, and “pulse” for

the “special beats” agreed upon.

The motivation for such a pulse synchronization algorithm is to allow for “long”

algorithms enough time to execute. For example, setting Cycle to be the worst-case

execution-time for terminating Byzantine agreement, one can start an agreement on

the next clock value each pulse1; and thus solve the digital clock synchronization

problem.

In both problems, the global beat system provides some measure of synchroniza-

tion. For example, given a global beat system with beat interval at least as long as

the worst-case execution-time for terminating Byzantine agreement, the digital clock

synchronization problem is solved by initiating a Byzantine agreement on the next

clock value, each time a beat is received. Under the same assumption, the pulse

synchronization problem is solved by initiating a Byzantine agreement on the next

time when the nodes should pulse, each time a beat is received.

The crux of both problems is to achieve synchronization when it is not given

by the global beat system; that is, when the beat interval length is in the order

of communication’s end-to-end delay. Since in that scenario the global beat system

does not provide - by itself - enough synchronization, and a more complex algorithm

is required to exert the required synchronization. The main contribution of the thesis

is achieving exactly that.

1.2 Contribution

Two different synchronization problems are presented and solved herein. Both are

highly fault tolerant. That is, self-stabilizing and tolerant to permanent presence of

Byzantine faults.

The first, the digital clock synchronization problem, was presented before in [2].

In [2] a randomized solution was given, with expected exponential convergence time.

Here we give a solution that converges deterministically in linear time. The main

1See [1] for such a self-stabilizing Byzantine clock synchronization algorithm, which executes on
top of a self-stabilizing Byzantine pulse-synchronization primitive in a semi-synchronous network.
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drawback of the presented solution is that it supports only f < n
4
, as opposed to the

solution of [2], which supports f < n
3
.

To overcome this weakness, the pulseing problem is defined and solved. Its so-

lution is tolerant to up to f < n
3

Byzantine nodes, and converges deterministically

in linear time. However, it does not solve the digital clock synchronization problem

directly, but rather requires an additional step to convert it to a digital clock syn-

chronization solution. Luckily, this additional step does not change the convergence

time or the Byzantine fault tolerance level.

In addition, the pulse solution algorithm is the first one in the presented model

that does not require the nodes to be fully connected to each other; it only requires

that there are 2 · f + 1 distinct routes between any two correct nodes.

1.3 Thesis Outline

The thesis is organized as follows: a short survey of related work is given in Chapter 2.

Chapter 3 defines the model and both of the clock/pulse synchronization problems.

Chapter 4 discusses in depth the digital clock synchronization problem, and provides

a solution to it. Chapter 5 discusses in detail the pulse synchronization problem, and

provides a solution to it. Lastly, Chapter 6 contains conclusions and future work.



Chapter 2

Related Work

Digital clock synchronization and pulse synchronization are related problems; and in

the model that this thesis operates in they are equivalent (see Section 3.4). When

considering previous work, it can be divided into 3 categories: clock synchronization,

pulse synchronization and combining Byzantine faults with self-stabilization. Pulse

synchronization has been discussed only in the context of combining the two fault

models, as opposed to clock synchronization which has been discussed in each of the

fault models independently.

2.1 Digital Clock Synchronization

The presented self-stabilizing Byzantine clock synchronization algorithms assume that

common beats are received synchronously (simultaneously) and in the order of the

message delay apart. The clocks progress at real-time rate. Thus, when the clocks

are synchronized, in-spite of permanent Byzantine faults, the clocks may accurately

estimate real-time.1 Following transient failures, and with on-going Byzantine faults,

the clocks will synchronize within a finite time and will progress at real-time rate,

although the actual clock-reading values might not be directly correlated to real-

time. Many applications utilizing the synchronization of clocks do not really require

the exact real-time notion (see [3]). In such applications, agreeing on a common clock

reading is sufficient as long as the clocks progress within a linear envelope of any

real-time interval. An additional advantage of the current solution is that it can be

1All the arguments apply also to the case where there is a small bounded drift among correct
clocks.
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implemented without the use of local physical timers at the nodes. Local timers are

only needed to achieve a high granularity of the synchronized clocks.

Clock synchronization in a similar model has earlier been denoted as “digital clock

synchronization” ([4, 5, 6, 7]) or “synchronization of phase-clocks” ([8]), in which the

goal is to agree on continuously incrementing counters associated with the beats. The

convergence time in those papers is not linear, whereas in the current solution it is

linear.

The additional requirement of tolerating permanent Byzantine faults poses a spe-

cial challenge for designing self-stabilizing distributed algorithms due to the capability

of malicious nodes to hamper stabilization. This difficulty may be indicated by the

remarkably few algorithms resilient to both fault models (see [9] for a short review).

The digital clock synchronization algorithms in [2] are, to the best of our knowledge,

the first self-stabilizing algorithms that are tolerant to Byzantine faults. The ran-

domized algorithm, presented in [2], operating in the same model as in the current

thesis, converges in expected exponential time.

In [1] it was previously presented a self-stabilizing Byzantine clock synchronization

algorithm, which converges in linear time and does not assume a synchronous sys-

tem. That algorithm executes on top of an internal pulse synchronization primitive

with intervals that allow to execute Byzantine agreement in between. The solution

presented in the current thesis also converges in linear time and only assumes that

the (external synchronously received) beats are on the order of the message delay

apart. The current solution is simpler, and takes advantage of the stronger model,

as opposed to [1], which would not improve its precision if executed in the current

model.

Remark 2.1.1. Chapter 4 have been previously publish in [10].

2.2 Pulse Synchronization

The first pulseing algorithm was given in [11], in a self-stabilizing and Byzantine

tolerant model. It was later shown that a pulseing algorithm can be used as an

underlying layer to achieve clock synchronization ([1]), token circulation ([12]) and a

general stabilizer ([9]). All of these results are given in a self-stabilizing, Byzantine

tolerant manner, in a model in which message delivery time is bounded (but there is

no global beat system). This gives the motivation for producing robust and efficient
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pulseing algorithms, as they can be used to improve the robustness of a variety of

applications.

In [11] and [13] the presented pulse synchronization procedures do not assume

any sort of prior synchronization such as common beats. The former is biologically

inspired and the latter utilizes a self-stabilizing Byzantine agreement algorithm de-

veloped in [14]. Both of these pulse synchronization algorithms are complicated and

have complicated proofs, while the current pulse solution is achieved in a relatively

straightforward manner and its proofs are simpler. Due to the relative simplicity of

the algorithm, formal verification methods, as were used in [15], can potentially be

used to formally verify the correctness of the proposed algorithms.

2.3 Self-stabilization and Byzantine Faults

Several fault tolerant stabilizers exist (see [16], [17] and [18]) with varying requirement

and features (such as local containment of faults). In [9], it was shown that pulse

synchronization can be used to create a generalized stabilizer. However, in [9] the

stabilizer is complex, and can stabilize a narrow class of algorithms. In Section 5.9.2

we show a simpler stabilizer, which can stabilize a wider range of algorithms.



Chapter 3

Model and Problem Statement

This chapter contains the formal definition of the model in which the different syn-

chronization problems are defined and solved. In addition, the formal definitions of

the Digital Clock and Pulse synchronization problems are given.

3.1 Model

Consider a fully connected network of n nodes. All the nodes are assumed to have

access to a “global beat system” that provides “beats” with regular intervals. The

communication network and all the nodes may be subject to severe transient failures,

which might eventually leave the system in an arbitrary state.

We say that a node is Byzantine if it does not follow the instructed algorithm

and non-Byzantine otherwise. Thus, any node whose failure does not allow it to

exactly follow the algorithm as instructed is considered Byzantine, even if it does

not behave fully maliciously. A non-Byzantine node will be called non-faulty. In

the following discussion f will denote the upper bound on the number of permanent

Byzantine nodes. The Digital Clock synchronization solution supports f < n
4
; the

Pulse synchronization solution supports f < n
3
.

Assume that the network has bounded time on message delivery when it behaves

coherently. Nodes are instructed to send their messages immediately after the occur-

rence of a beat from the global beat system. In addition, message delivery and the

processing involved can be completed between two consecutive global beats, by any

node that is non-faulty. More specifically, the time required for message delivery and

message processing is called a round, and we assume that the time interval between
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global beats is greater than and in the order of such a round. Due to transient faults,

different nodes might not agree on the current beat/round number. Hence, we use

a notion of an external beat number r, which the nodes are not aware of, but will

simplify the presentations and discussions.

At times of transient failures there can be any number of concurrent Byzantine

faulty nodes; the turnover rate between faulty and non-faulty behavior of nodes can be

arbitrarily large and the communication network may also behave arbitrarily. Even-

tually the system behaves coherently again. At such case a non-faulty node may still

find itself in an arbitrary state.

Definition 3.1.1. The system is coherent if there are at most f Byzantine nodes,

and each message sent at a beat to a non-faulty destination arrives and is processed

at its destination before the next beat.

Remark 3.1.2. The definition of coherent depends on the value of f and hence is

different for the different synchronization problems. It should be clear from the context

which value of f is relevant.

This remark holds for the following definitions as well.

Since a non-faulty node may find itself in an arbitrary state, there should be some

time of continues non-faulty operation before it can be considered correct.

Definition 3.1.3. A non-faulty node is considered correct only if it remains non-

faulty for ∆node rounds during which the system is coherent.1

The algorithm parameters n, f, as well as the node’s id are fixed constants and

thus are considered part of the incorruptible correct code at the node. Thus, it is

assumed that non-faulty nodes do not hold arbitrary values of these constants.

3.2 The Digital Clock Synchronization Problem

The Digital Clock synchronization problem consists of synchronizing integer values

among the different nodes, in such a way that they all agree on the same value, and

increase it by 1 each beat. More formally:

Denote by DigiClockp(r) the value of the digital clock at node p at beat r. We

say that the system is in a synchronized state if for all correct nodes the value of their

DigiClock is identical.

1The assumed bound on the value of ∆node, for each problem, will be defined later.
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Definition 3.2.1. The digital-clock synchronization problem

Convergence: Starting from an arbitrary system state, the system reaches a syn-

chronized state after a finite time.

Closure: If at beat r the system is in a synchronized state then for every r′, r′ ≥ r,

1. the system is in a synchronized state at beat r′; and

2. DigiClock(r′) = (DigiClock(r) + r′ − r) (mod max-clock), 2 at each correct

node.

Remark 3.2.2. The above problem statement implicitly requires that the precision of

the clock synchronization is zero. That is, an algorithm that solves the above problem

would have all correct nodes agree on the same value of DigiClock at the same time.

Previous works (such as [1]) that operate in a different model (without a distributed

external “beat” system) would not achieve precision zero, even if executed in the cur-

rent model. Hence, the proposed algorithm herein fully utilized the strength of the

“global beat system” model.

3.3 The Pulse Synchronization Problem

The Pulse synchronization problem consists of having all correct nodes “pulse” to-

gether every predefined period of time. The following is a formal definition.

We say that a system is [φ, ψ]-pulsing if all correct nodes pulse together in the

following pattern: φ consecutive beats of pulses followed by ψ consecutive beats of

non-pulse. That is, the system has a Cycle of length φ+ψ beats, out of which only

the first φ beats are pulses. More formally, denote by pulsedp(r) = True if p pulsed

on beat r and pulsedp(r) = False, otherwise.

Definition 3.3.1. A system is [φ, ψ]-pulsing in the beat interval [r1, r2] if there

exists some 0 ≤ k < φ + ψ, such that for every correct node p, and for every beat

r ∈ [r1, r2], it holds that:

1. pulsedp(r) = True, in case 0 ≤ r − k (mod φ+ ψ) < φ; and

2. pulsedp(r) = False in case φ ≤ r − k (mod φ+ ψ) < φ+ ψ.

2“max-clock” is the wrap around of the variable DigiClock. All increments to DigiClock in the
rest of the thesis are assumed to be (mod max-clock).
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(k denotes the offset, from r1, of the first pulse in the pattern.)

For example, consider “1” to represent a beat in which all correct nodes pulse,

and “0” to represent a beat in which all correct nodes do not pulse. Using this

notation, the following is a pulseing pattern of a [φ, ψ]-pulsing system.

[. . . ,

φ beats︷ ︸︸ ︷
1, 1, . . . , 1,

ψ beats︷ ︸︸ ︷
0, 0, . . . , 0︸ ︷︷ ︸

Cycle beats

,

φ beats︷ ︸︸ ︷
1, 1, . . . , 1,

ψ beats︷ ︸︸ ︷
0, 0, . . . , 0︸ ︷︷ ︸

Cycle beats

, . . .]

Definition 3.3.2. The pulseing problem

Convergence: Starting from an arbitrary state, the system becomes [φ, ψ]-pulsing

after a finite number of beats.

Closure: If the system is [φ, ψ]-pulsing in the beat interval [r1, r2] it is also [φ, ψ]-

pulsing in the interval [r1, r2 + 1].

Definition 3.3.3. a [φ, ψ]-pulser is an algorithm A, such that once the system is

coherent (and stays so), it solves the pulseing problem.

The objective is to develop an algorithm that pulses only once every Cycle.

Notation 3.3.1. We denote a [1, ψ]-pulser as [ψ + 1]-pulser.

Using the above notation, “1” for pulseing and “0” for non-pulseing, a [Cycle]-

pulser looks as follows:

[. . . , 1, 0, 0, . . . , 0︸ ︷︷ ︸
Cycle beats

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
Cycle beats

, . . .]

The goal is to build a [Cycle]-pulser for any Cycle > 0. That is, a self-stabilizing,

Byzantine tolerant algorithm that eventually pulses every Cycle beats.

3.4 Digital Clock vs. Pulse

This section shows that the digital clock synchronization problem is equivalent to the

pulseing problem. One direction of the equivalence is: given an algorithm that solves

the digital clock synchronization problem, simply pulse every time the DigiClock

variable is divisible by Cycle. This produces a [Cycle]-pulser algorithm.
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The other direction is a bit more complicated. Given a [f +2]-pulser algorithm,

every pulse execute a Byzantine agreement on what the DigiClock value will be in

the next pulse. In addition, each beat DigiClock is increased by 1, and when the

Byzantine agreement terminates, the DigiClock is set to the agreement value. This

way, all nodes agree on the value of DigiClock and increase it by one at each beat.

In the following chapters, a direct solution to the digital clock problem is provided,

along with an indirect solution (via pulseing). The indirect solution has better “prop-

erties”. However, it is important to consider the direct solution as well, as it provides

insight into some synchronization complexities. This leads to a better understanding

of the requirements of a highly fault tolerant synchronization mechanism.



Chapter 4

Digital Clock Synchronization

This chapter details a solution for the Digital Clock synchronization problem. The

algorithm given in Section 4.4 supports up to n
4

Byzantine nodes, and all references

to f in this chapter assume that f < n
4
.

4.1 Chapter Outline

Section 4.2 defines the requirements of the BC protocol which is used as a sub-routine

for the digital clock synchronization algorithm. Section 4.3 describes an implemen-

tation of the BC protocol. In Section 4.4 our solution for the digital clock problem

is presented. Section 4.5 contains the proof of correctness of the algorithm presented

in Section 4.4. The rest of the chapter is dedicated to complexity analysis of the

algorithm, and a discussion of the results.

4.2 The Byzantine Consensus Protocol

The digital clock synchronization algorithm utilizes a Byzantine consensus protocol

as a sub-routine. Denote this protocol by BC. We require the regular three conditions

of Consensus from BC, and one additional fourth requirement. That is, in BC the

following holds:

1. Agreement: All non-faulty nodes terminate BC with the same output value.

2. Validity: If all non-faulty nodes have the same initial value v, then the output

value of all non-faulty nodes is v.
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3. Termination: All non-faulty nodes terminate BC within ∆ rounds.

4. Solidarity. If the non-faulty nodes agree on a value v, such that v 6=⊥ (where

⊥ denotes a non-value), then there are at least n− 2 · f non-faulty nodes with

initial value v.

Remark 4.2.1. Note that for n > 4f the “solidarity” requirement implies that if the

Byzantine consensus is started with at most n
2

non-faulty nodes with the same value,

then all non-faulty nodes terminate with the value ⊥ .

As we commented above, since BC requires the nodes to maintain a consistent

state throughout the protocol, a non-faulty node that has recently recovered from a

transient fault cannot be considered correct. In the context of this chapter, a non-

faulty node is considered correct once it remains non-faulty for at least ∆node = ∆+1

beats and as long as it continues to be non-faulty.

In Section 4.3 we discuss how a typical synchronous Byzantine consensus protocol

can be used as such a BC protocol. The specific example we discuss has two early

stopping features: First, termination is achieved within 2f + 4 of our rounds. If the

number of actual Byzantine nodes is f ′ ≤ f then termination is within 2f ′+6 rounds.

Second, if all non-faulty nodes have the same initial value, then termination is within

4 rounds.

The symbol ∆ denotes the bound on the number of rounds it takes BC to terminate

at all correct nodes. That is, if BC has some early stopping feature, we still wait

until ∆ rounds pass. This means that the early stopping may improve the message

complexity, but not the time complexity. By using the protocols in Section 4.3, we

can set ∆ := 2f + 4 rounds.

Remark 4.2.2. The symbol ∆ is also used in Chapter 5. Its value will be clear from

the context.

4.3 Byzantine Consensus (BC) Implementation

We present a BC protocol, denoted Byz-Consensus, that has the four properties re-

quired by our algorithm. This is done by converting the Byzantine agreement protocol

in [19] into a Byzantine consensus protocol. In the following sections we show that

the converted protocol guarantees agreement, termination, validity and solidarity.
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We start by presenting our BC protocol in Figure 4.1. In the following subsection

we claim that the broadcast primitive continues to hold its properties in the new

protocol. The full proofs are in Appendix 7.

4.3.1 The BC Protocol

The difference between a Byzantine agreement protocol and a Byzantine consensus

protocol is that in agreement there is a general G with some initial value v, and

all correct nodes need to agree on G’s value. In consensus, there is no general, and

every correct node has its own initial value, and all correct nodes need to agree on

an output value. Byzantine consensus “can be seen” as an agreement problem where

the general might have sent different values to different nodes, and all correct nodes

need to agree on what value G has sent.

We use the Byzantine agreement protocol in [19], and alter it in the following way.

We consider the general to be a virtual node I0, that sends its value to all nodes in the

first round. I0 does not participate in the protocol, except for “supposedly” having

“sent” its value in the first round. Other than this change, our protocol is almost

identical to the protocol in [19]. The added change transforms the protocol in [19]

to a Byzantine consensus protocol, and also ensures that solidarity holds. Note that

I0 is not considered a Byzantine node or a correct node, it has a special status of a

“virtual” node. That is, neither n (the number of nodes in the system) nor f count

I0.

We achieve the solidarity requirement by sending the initial value of every node

to all other nodes. We say that two messages “(v)” are distinct if they were sent by

different nodes. An echo message is sent only if a correct node received n−f distinct

“(v)” messages. Hence, there were at least n−2 ·f nodes with v as their initial value.

Clearly, no correct node will accept if not even a single correct node has sent an echo

message. Therefore, if a correct node accepted some value v′, then an echo message

was sent by a correct node, and that means that at least n− 2 · f correct nodes had

v′ as their initial value.

The protocol we present here is round based, and each round consists of two

phases. In Appendix 7, Subsection 7.2, we prove the following: The “Agreement”,

“Validity”, “Termination” and “Solidarity” conditions hold for Byz-Consensus.
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Protocol Byz-Consensus/* executed at node p where m is the initial value
*/

1. broadcasters := φ; v :=⊥;

2. phase = 1:
send(m) to all nodes;

3. phase = 2:

(a) if received n−f distinct (v′) messages by end of phase 1 then
send(echo, I0, v′, 1) to all nodes;

(b) if received n− f distinct (echo, I0, v′, 1) messages by the end
of phase 2 then v = v′;

4. round r for r = 2 to r = f + 2 do:

(a) if v 6=⊥ then
invoke broadcast(p, v, r);
stop and return(v);

(b) by the end of round r:
if in round r′ ≤ r accepted(I0, v′, 1) and (qi, v′, i) for all i, 2 ≤
i ≤ r,

where all qi distinct then
v := v′;

(c) if |broadcasters| < r − 1 then
stop and return(v);

5. stop and return(v);

Figure 4.1: The Byzantine Consensus algorithm

4.3.2 The broadcast Primitive

We use the same broadcast primitive as in [19]. The broadcast primitive is provided

here for convenience. It is almost an exact copy of the broadcast primitive in [19],

with minor changes for readability.

A minor difference needs to be addressed in the broadcast primitive. Instead

of allowing the acceptance of messages only from the set of nodes P , we also allow

accepting a message from a single virtual node, named I0. That is, a node may accept

a message (I0, v, 1). However, since I0 is not an actual node, it does not participate

in sending messages or receiving them.

When stating (and proving) the properties of the broadcast primitive, we consider

I0 /∈ P . We consider n = |P | and f to be the number of Byzantine nodes not

including I0.

Note that an init message for I0 is never sent, because I0 is a virtual node, and
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Broadcast Primitive /* rules for broadcasting and accepting (p,m, k) */

Round k:
Phase 2k − 1:

node p sends (init, p,m, k) to all nodes.
Phase 2k:

if received (init, p,m, k) from p in phase 2k − 1
and received only one (init, p, , ) message in all previous phases

then send (echo, p,m, k) to all;
if received (echo, p,m, k) from ≥ n− f distinct nodes in phase 2k
then accept (p,m, k);

Round k + 1:
Phase 2k + 1:

if received (echo, p,m, k) from ≥ n− 2f distinct nodes in phase 2k
then send (init′, p,m, k) to all;
if received (init′, p,m, k) from ≥ n− 2f distinct nodes in phase 2k + 1
then broadcastuers := brodcasters ∪ {p};

Phase 2k + 2:
if received (init′, p,m, k) from ≥ n− f distinct nodes in phase 2k + 1
then send (echo′, p,m, k) to all;
if received (echo′, p,m, k) from ≥ n− f distinct nodes in phase 2k + 2
then accept (p,m, k);

Round r ≥ k + 2:
Phase 2r − 1, 2r:

if received (echo′, p,m, k) from ≥ n − 2f distinct nodes in previous
phases,

and not sent (echo′, p,m, k)
then send (echo′, p,m, k) to all;
if received (echo′, p,m, k) from ≥ n−f distinct nodes in previous phases
then accept (p,m, k);

Figure 4.2: The broadcast primitive

its init message is simulated by the first phase of the Byz-Consensus protocol.

Also note that the messages sent in line 3.a and received in line 3.b are of the

same format as messages sent by the broadcast primitive. That is, nodes may accept

a message (I0, v, 1), “as if” I0 actually sent it. Hence, we cannot simply use the

original broadcast primitive as a “black box”, even though it has not been changed.

We are required to reprove the properties shown in [19].

The properties that hold regarding the broadcast primitive used in our protocol,

are:

1. Correctness : If a correct node p ∈ P executes broadcast(p,m, k) in round k,

then every correct node accepts (p,m, k) in the same round.

2. Unforgeability : If a correct node p ∈ P does not execute broadcast(p,m, k),

then no correct node ever accepts (p,m, k).
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3. Relay : If a correct node accepts (p,m, k) in round r for some p ∈ P ∪{I0}, then

every other correct node accepts (p,m, k) in round r + 1 or earlier.

4. Detection of broadcasters : If a correct node accepts (p,m, k) in round k or later,

for some p ∈ P ∪{I0}, then every correct node has p ∈ broadcasters at the end

of round k + 1.

The proofs of the above properties are in Appendix 7, Subsection 7.1.

4.4 Digital Clock Synchronization Algorithm

The following digital clock synchronization algorithm tolerates up to f < n
4

concurrent

Byzantine faults. The objective is to have the digital clocks increment by “1” every

beat and to achieve synchronization of these digital clocks.

4.4.1 Intuition for the Algorithm

The idea behind our algorithm is that each node runs many simultaneous Byzantine

consensus protocols. In each round of the algorithm it executes a single round in

each of the Byzantine consensus protocols, but each Byzantine consensus protocol

instance is executed with a different round number. That is, if BC takes ∆ rounds

to terminate, then each node runs ∆ concurrent instances of it, where, for the first

one it executes the first round, for the second it executes the second round, and in

general for the ith BC protocol it executes the ith round. We index a BC protocol

by the number of rounds passed from its invocation. When the ∆th BC protocol is

completed, a new instance of BC protocol is initiated. This mechanism, of executing

concurrently ∆ BC protocols, allows the non-faulty nodes to agree on the clock values

as of ∆ rounds ago. The nodes use the consistency of these values as of ∆ rounds ago

together with the exchange of their current values to “tune” the future clock values.

4.4.2 Preliminaries

Given a Byzantine consensus protocol BC, each node maintains the following variables

and data structures:

1. DigiClock holds the beat counter value at the node.



4.5 Lemmata and Proofs 25

2. ClockVec holds a vector containing the value of DigiClock that each node sent

in the current round.

3. DigiClockmost holds the value that appears at least n
2

+ 1 times in ClockVec, if

one exists.

4. Agree[i] is the memory space of the ith instance of BC protocol (the one initial-

ized i rounds ago).

5. v holds the agreed value of the currently terminating BC.

6. vprev holds the value of v one round ago.

Note that all the variables are reset or recomputed periodically, so even if a node

begins with arbitrary values in its variables, it will acquire consistent values. Similarly,

the memory space of BC is reset whenever a node initiates and starts to execute a

new BC instance. The consistency of the variable values used for BC are taken care

of within that protocol.

Figure 5.3 presents the digital clock synchronization algorithm.

Remark 4.4.1. The model allows for only one message to be sent from node p to p′

within one round (between two consecutive beats). The digital clock synchronization

algorithm in Figure 5.3 requires sending two sets of messages in each round. Observe

that the set of messages sent in Step 2 is not dependent on the operations taking place

in Step 1, therefore, all messages sent by the algorithm during each round can be sent

right after the beat and will arrive and processed before the next beat, meeting the

model’s assumptions.

Note that a “simpler” solution, such as running consensus on previous DigiClock,

incrementing it by ∆ + 1 and setting that as the current DigiClock would not work,

because for some specific initial values of DigiClock the Byzantine nodes can cause

the non-faulty nodes to get “stuck” in an infinite loop of alternating values.

4.5 Lemmata and Proofs

All the lemmata, theorems, corollaries and definitions hold only as long as the system

is coherent. We assume that all nodes may start in an arbitrary state, and that from

some time on, at least n− f of them are concurrently correct. We will denote by G a
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Algorithm Digital-SSByz-ClockSync /* executed at each beat
*/

1. for each i ∈ {1, ..,∆} do
execute the ith round of the Agree[i] BC protocol;

2. send value of DigiClock to all nodes and store the received
clocks of other nodes in ClockVec;

3. set the following:

(a) v:= the agreed value of Agree[∆];

(b) DigiClockmost:= the value appearing at least bn
2
c + 1

times in ClockV ec, and 0 otherwise;

4. (a) if (v = 0) or (v = vprev + 1) then
DigiClock := DigiClockmost + 1 (mod max-clock);

(b) else
DigiClock := 0;

5. for each i ∈ {2, ...,∆} do

Agree[i] := Agree[i− 1];

6. initialize Agree[1] by invoking BC(DigiClock).

7. vprev := v.

Figure 4.3: The digital clock synchronization algorithm

group of nodes that behave according to the algorithm, and that are not subject to

(for some pre-specified number of rounds) any new transient faults. If, |G| ≥ n − f

and remain non-faulty for a sufficiently long period of time (Ω(∆) global beats), then

the system will converge.

For simplifying the notations, the proof refers to some “external” round number.

The nodes do not maintain it, it is only used for the proofs.

Definition 4.5.1. We say that the system is Calm(α, σ), σ > α, if there is a set

G, |G| = n − f, of nodes that are continuously non-faulty during all rounds in the

interval [α, σ − 1].



4.5 Lemmata and Proofs 27

The notation Calm(α, σ ≥ β) denotes that Calm(α, σ) and σ ≥ β. Specifically,

the notation implies that the system was calm for at least β rounds. Notice that all

nodes in G are considered correct when the system is Calm(α, σ ≥ ∆).

Note that in typical self-stabilizing algorithms it is assumed that eventually all

nodes behave correctly, and therefore there is no need to define Calm(). In our

context, since some nodes may never behave correctly, and additionally some nodes

may recover and some may fail we need a sufficiently large subset of the nodes to

behave correctly for sufficiently long time in order for the system to converge.

In the following lemmata, G refers to the set implied by Calm(α, σ), without

stating so specifically.

Lemma 4.5.2. If the system is Calm(α, σ ≥ ∆ + 1), then for any round β, β ∈
[α + ∆ + 1, σ], all nodes in G have identical values of v after executing Step 2 of

Digital-SSByz-ClockSync.

Proof. Irrespective of the initial states of the nodes in G at the beginning of round

α (which is after the last transient fault in G occurred), the beats received from the

global beat system will cause all nodes in G to perform the steps in synchrony. By

the end of round α, all nodes in G reset BC protocol Agree[1].

Note that at each round another BC protocol will be initialized and after ∆ rounds

from its initialization each such protocol returns the same value at all nodes in G,
since all of them are non-faulty and follow the protocol. Hence, After ∆ + 1 rounds,

the values all nodes in G receive as outputs of BC protocols are identical. Therefore

v is identical at all g ∈ G, after executing Step 2 of that round.

Since this claim depends only on the last ∆ + 1 rounds being “calm”, the claim

will continue to hold as long as such a G set of nodes not experiencing transient faults

exists. Thus, this holds for any round β, α+ ∆ ≤ β ≤ σ.

Lemma 4.5.3. If the system is Calm(α, σ ≥ ∆ + 2), then for any round β ∈
[α+∆+1, σ], either all nodes in G perform Step 4.a, or all of them perform Step 4.b.

Proof. By Lemma 4.5.2, after the completion of Step 2 of round α+ ∆ + 1 the value

of v is the same at all nodes of G, hence after an additional round the value of vprev is

the same at all nodes of G. Since the decision whether to perform Step 4.a or Step 4.b

depends only on the values of v, and vprev, all nodes in G perform the same line

(either 4.a or 4.b). Moreover, because this claim depends on the last ∆ + 2 rounds

being “calm”, the claim will continue to hold as long as no node in G is subject to a

fault.
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Denote ∆1 := ∆+2.All the following lemmata will assume the system is Calm(α, β),

for rounds β ≥ ∆1. Therefore, in all the following lemmata, we will assume that in

each round β, all nodes in G perform the same Step 4.x (according to Lemma 4.5.3).

Lemma 4.5.4. If the system is Calm(α, σ ≥ ∆1), and if at the end of some β ≥
α+ ∆1 − 1, all nodes in G have the same value of DigiClock, then at the end of any

β′, β ≤ β′ ≤ σ, they will have the same value of DigiClock.

Proof. Since we consider only β ≥ α+∆1−1, by Lemma 4.5.3 all nodes in G perform

the same step in Step 4. For round β′ = β+1, the value of DigiClock can be changed

at Lines 4.a or 4.b. If it was changed at 4.b then all nodes in G have the value 0 for

DigiClock. If it was changed by Step 4.a, then because we assume that at round β

all nodes in G have the same DigiClock value, and because |G| = n − f ≥ bn
2

+ 1c,
the value of DigiClockmost computed at round β′ is the same for all nodes in G, and

therefore, executing Step 4.a will produce the same value for DigiClock in round β′

for all nodes in G.
By induction, for any β ≤ β′ ≤ σ, all nodes in G continue to agree on the value of

DigiClock.

Denote ∆2 := ∆1 + ∆ + 1. All the following lemmata will assume the system is

Calm(α, σ), for σ ≥ ∆2.

Lemma 4.5.5. If the system is Calm(α, σ ≥ ∆2), then at the end of any round

β, β ∈ [α+ ∆2 − 1, σ], the value of DigiClock at all nodes in G is the same.

Proof. Consider any round β′ ∈ [α + ∆1 − 1, α + ∆1 + ∆− 1]. If at the end of β′ all

nodes in G hold the same DigiClock value, then from Lemma 4.5.4 this condition

holds for any β, β ∈ [α+ ∆2 − 1, σ]. Hence, we are left to consider the case where at

the end of any such β′ not all the nodes in G hold the same value of DigiClock. This

implies that Step 4.b was not executed in any such round β′. Also, if Step 4.a was

executed during any such round β′, and there was some DigiClock value that was

the same at more than n
2

nodes in G, then after the execution of Step 4.a, all nodes

would have had the same DigiClock value. Hence, we assume that for all β′, only

Step 4.a was executed, and that no more than n
2

from G had the same DigiClock

value.

Consider round β′′ = α + ∆1 + ∆. The above argument implies that at round

β′′ − ∆, Step 4.a was executed, and there were no more than n
2

nodes in G with the
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same DigiClock value. Since n
2
< n−2 ·f, the “solidarity” requirement of BC implies

that the value entered into v at round β′′ is ⊥ . Hence, at round β′′ Step 4.b would

be executed.

Therefore, during one of the rounds β ∈ [α + ∆1 − 1, α + ∆1 + ∆], all the nodes

in G have the same value of DigiClock, and from Lemma 4.5.4 this condition holds

for all rounds, until σ.

Remark 4.5.6. The requirement that f < n
4

stems from the proof above. That is

because we require that n
2
< n− 2 · f (to be able to use the “solidarity” requirement of

BC). We note that this is the only place that the requirement f < n
4

appears, and that

it is a question for future research whether this can be improved to the known lower

bound of f < n
3
.

Corollary 4.5.7. If the system is Calm(α, σ ≥ ∆2), then for every round β, β ∈
[α+ ∆2 − 1, σ − 1], one of the following conditions holds:

1. The value of DigiClock at the end of round β + 1 is “0” at all nodes in G.

2. The value of DigiClock at the end of round β + 1 is identical at all nodes in G
and it is the value of DigiClock at the end of round β plus “1”.

Lemma 4.5.8. If the system is Calm(α, σ ≥ ∆2 + ∆), then for every round β ∈
[α+ ∆2 + ∆− 1, σ], Step 4.b is not executed.

Proof. By Corollary 4.5.7, for all rounds β, β ∈ [α + ∆2 − 1, σ − 1] one of the two

conditions of the DigiClock values holds. Due to the “validity” property of BC, after

∆ rounds, the value entered into v is the same DigiClock value that was at the nodes

in G, ∆ rounds ago. Therefore, after ∆ rounds, the above conditions hold on the

value of v, vprev. Hence, for any round β, β ∈ [α+∆2 +∆−1, σ] one of the conditions

holds on v, vprev. Since for both of these conditions, Step 4.a is executed, Step 4.b is

never executed for such a round β.

Corollary 4.5.9. If the system is Calm(α, σ ≥ ∆2 + ∆), then for every round β,

β ∈ [α+ ∆2 + ∆− 1, σ], it holds that all nodes in G agree on the value of DigiClock

and increase it by “1” at the end of each round.

Corollary 4.5.9 implies, in a sense, the convergence and closure properties of al-

gorithm Digital-SSByz-ClockSync.
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Theorem 4.5.10. From an arbitrary state, once the system stays coherent and there

are n−f nodes that are non-faulty for 3∆+3 rounds, Digital-SSByz-ClockSync ensures

convergence to a synchronized state. Moreover, as long as there are at least n − f

correct nodes at each round the closure property also holds.

Proof. The conditions of the theorem implies that the system satisfies the property

Calm(α, σ ≥ ∆2 + ∆). Consider the system at the end of round ∆2 + ∆ and denote

by Ḡ a set of n− f correct nodes implied by Calm(α, σ ≥ ∆2 + ∆). Consider all the

∆ instances of BC in their memory. Denote by BCi the instance of BC initialized i

(0 ≤ i ≤ ∆−1) rounds ago. By Lemma 4.5.8, Step 4.b is not going to be executed (if

the nodes in Ḡ will continue to be non-faulty). Therefore, at the end of the current

round,

1. the set of inputs to each BCi contained at least bn
2
c + 1 identical values from

non-faulty nodes, when it was initialized (denote that value Ii);

2. for every i, 0 ≤ i ≤ ∆− 1, either Ii = Ii+1 or Ii = 0;

3. I0 is the value that at least bn
2
c+1 non-faulty hold in their DigiClockat the end

of the current round.

The first property holds because otherwise, by the “solidarity” property of BC,

the agreement in that BC will be on ⊥ and Step 4.b will be executed. The second

property holds because otherwise Step 4.b will be executed. The third property holds

since this is the value they initialized the last BC with.

Observe, that each BCi will terminate in ∆− i rounds with a consensus agreement

on Ii, as long as there are n− f non-faulty nodes that were non-faulty throughout its

∆ rounds of execution. Thus, under such a condition, for that to happen some nodes

from Ḡ may fail and still the agreement will be reached. Therefore, Corollary 4.5.9

holds for each node that becomes correct, i.e., was non-faulty for ∆ rounds, because

it will compute the same values as all the other correct nodes.

By a simple induction we can prove that the three properties above will hold

in any future round, as long as for each BC there are n − f non-faulty nodes that

executed it.

Thus, the three properties imply that the basic claim in Corollary 4.5.9 will con-

tinue to hold, which completes the proof of the convergence and closure properties of

the system.
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Note that if the system is “synchronized” and the actual number of Byzantine

faults f ′ is less than f, then Theorem 4.5.10 implies that any non-faulty node that is

not in G (there are no more than f −f ′ such nodes) synchronizes with the DigiClock

value of nodes in G after at most ∆ global beats from its last transient fault.

4.6 Complexity Analysis

The clock synchronization algorithm presented above converges in 3 · ∆ + 3 rounds.

That is, it converges in Ω(f) rounds (since ∆ = 2 · f + 4 for our BC of choice).

Once the system converges, and there are at least |G| = n− f correct nodes, the

BC protocol will stop executing after 4 rounds for all nodes in G (due to the early

stopping feature of BC we use). During each round of BC, there are n2 messages

exchanged. Note that we execute ∆ concurrent BC protocols; hence, over a period

of ∆ rounds, there are ∆ · 4 · n2 messages sent. Therefore, the amortized message

complexity per round is O(n2). Note that the early stopping of BC does not improve

the convergence rate. It only improves the amortized message complexity.

4.7 Discussion

4.7.1 Additional Results

The digital clock synchronization algorithm presented here can be quickly transformed

into a token circulation protocol in which the token is held in turn by any node for any

pre-determined number of rounds and in a pre-determined order. The pre-determined

variables are part of the required incorruptible code. E.g. if the token should be

passed every k beats, then node pi, i = 1+bDigiClock
k

c (mod n) holds the token during

rounds [k ·(i−1)+1, k ·i]. Similarly, it can also produce synchronized pulses which can

then be used to produce the self-stabilizing counterpart of general Byzantine protocols

by using the scheme in [9]. These pulses can be produced by setting max-clock to be

the pulse cycle interval, and issuing a pulse each time DigiClock = 0.
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4.7.2 Digital Clock vs. Clock Synchronization

In the described algorithm, the non-faulty nodes agree on a common integer value,

which is regularly incremented by one. This integer value is considered “the synchro-

nized (digital) clock value”. Note that clock values estimating real-time or real-time

rate can be achieved in two ways. The first one, is using the presented algorithm to

create a new distributed pulse, with a large enough cycle, and using the algorithm

presented in [1] to synchronize the clocks. The second, is to adjust the local clock

of each node, according to the value of the common integer value, multiplied by the

predetermined length of the beat interval.1 This way, at each beat of the global beat

system, the clocks of all the nodes are incremented at a rate estimating real-time.

1This value need also be defined as part of the incorruptible code of the nodes.
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Pulse Synchronization

This chapter details a solution for the pulse synchronization problem. The algorithm

given in this chapter supports up to n
3

Byzantine nodes, and all references to f assume

that f < n
3
.

5.1 Chapter Outline

Section 5.2 provides an overview of the proposed solution. Section 5.3 defines the

requirement of the BBB, a sub-routine used by the given solution. In Section 5.4

describes the basic algorithm used to solve the pulse synchronization problem. Sec-

tion 5.5 proves the correctness of the algorithm provided in Section 5.4. The following

section, Section ??, uses the algorithm in Section 5.4 to produce the required solution.

Sections 5.7 discusses the connectivity requirements of the given algorithm. The rest

of the chapter is dedicated to complexity analysis of the algorithm, and a discussion

of the results.

5.2 Solution Overview

We first show how to construct a [∆,∆ + Cycle′]-pulser A for any Cycle′ > ∆,

where ∆ is a bound on running a given distributed agreement protocol. We continue

by showing how to construct a [φ + ψ]-pulser from any [φ, ψ]-pulser. Using this,

we construct a [2 · ∆ + Cycle′]-pulser A′ for any Cycle′ > ∆. Lastly, using A′, we

construct a [Cycle]-pulser for any Cycle ≥ 1.
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The construction of A uses a building block that is similar to the Byzantine firing

squad problem. We denote this building block by BBB (Byzantine Black Box).

5.3 The Byzantine Black Box Agreement

BBB is defined to be a round based distributed protocol, such that each node p has a

binary input value vp and a binary output value Vp. BBB has the following properties:

1. Termination: The algorithm terminates within ∆ rounds.

2. Agreement : All non-faulty1 nodes agree on the same output value V . That is,

for any two non-faulty nodes p, p′ it holds that Vp = Vp′ .

3. Validity : V = 1 only when there exists at least one non-faulty node that has

initiated the protocol with 1 as its input value. If there are f + 1 non-faulty

nodes that have initiated the protocol with input value equal to 1, then V = 1.

BBB is required to be Byzantine tolerant, but is not required to be self-stabilizing.

The self-stabilization of the [φ+ ψ]-pulser A (presented in a later section) will not

be hampered by this. In addition, A will rely only on the properties of BBB (when it

is executed by enough correct nodes) for its operation. In A all messages exchanged

among the nodes will use BBB. Since the presented BBB can tolerate f < n
3

Byzantine

nodes, A can tolerate the same ratio of permanent Byzantine failures.

Remark 5.3.1. A BBB protocol that satisfies the above properties can be constructed

by executing concurrently a separate Byzantine agreement on the value of each node.

Once all these agreements terminate (after some ∆ rounds), check whether there

are f + 1 “1”s in the resulting vector of output values. One can easily prove that this

protocol satisfies the above properties when there are more than 2n/3 nodes that where

continuously non-faulty throughout all the ∆ rounds of executing the protocol.

the algorithm above executes n · ∆ Byzantine agreement algorithms concurrently.

It can be improved to execute only ∆ algorithms concurrently by executing Byzantine

consensus instead of Byzantine agreement.

As commented above, since BBB requires the nodes to maintain a consistent

state throughout the protocol, a non-faulty node that has recently recovered from a

1A node is considered non-faulty in BBB only if it is non-faulty throughout the whole execution
of BBB.
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transient fault cannot be considered correct. In the context of this chapter, a non-

faulty node is considered correct once it remains non-faulty for at least ∆node = ∆+1

and as long as it continues to be non-faulty.

5.4 A [∆,∆ + Cycle′]-pulser for Cycle′ > ∆

Figure 5.1 presents an algorithm that produces a [∆,∆+Cycle′]-pulser, for Cycle′ >

∆. This algorithm executes ∆ simultaneous BBB protocols. We denote by BBBi the

ith instance of BBB. V(BBBi) refers to the output value V of BBBi (when defined).

Algorithm Large-Cycle-Pulser /* executed at each beat */

1. for each i ∈ {1, ..,∆} do
execute the ith round of the BBBi protocol;

2. (a) if Counter > 0 then
Counter := min{Counter − 1, Cycle′};
WantToPulse := 0;

(b) else
WantToPulse := 1;

3. if V(BBB∆) = 1 then

(a) do pulse;

(b) Counter := Cycle′;

4. for each i ∈ {2, ...,∆} do
BBBi := BBBi−1;

5. initialize BBB1 by invoking BBB(WantToPulse).

Figure 5.1: A [∆,∆ + Cycle′]-pulser algorithm for Cycle′ > ∆.

5.5 Proof of Large-Cycle-Pulser’s correctness

All the lemmata, theorems, corollaries and definitions hold only as long as the system

is coherent. We assume that nodes may start in an arbitrary state, and nodes may

fail and recover, but from some time on, at any round there are at least n− f correct

nodes.

Let G denote a group of non-Byzantine nodes that behave according to the al-

gorithm, and that are not subject to (for some pre-specified number of rounds) any

new transient faults. We will prove that if |G| ≥ n− f and all of these nodes remain
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non-faulty for a long enough period of time (Ω(∆) global beats), then the system will

converge.

For simplifying the notations, the proofs refer to some “external” beat number.

The nodes do not maintain it and have no access to it, it is only used for the proofs’

clarity.

Definition 5.5.1. A group G is Correct(α, β) if |G| ≥ n−f , and every node p ∈ G
is correct during the beat interval [α, β]. Let δ mark the length of the interval, that is

δ = β − α+ 1.

Note that each node p ∈ G, when G is Correct(α, β), has not been subject to

a transient fault in the beat interval [α − ∆node, β]; and is non-faulty during that

interval.

Definition 5.5.2. We say that a system is Correct(α, β) if there exists a set G
such that G is Correct(α, β).

In the following lemmata, G refers to any set implied by Correct(α, β), without

stating so specifically. The proofs hold for any such set G.

Note that if the system is coherent, and there has not been a transient fault for at

least ∆ + 1 beats, then G contains all nodes that were non-faulty during that period.

Lemma 5.5.3. ∀β ≥ α: If the system is Correct(α, β) then at any beat r ∈ [α, β],

either all nodes in G pulse or they all do not pulse.

Proof. A node pulses only in line 3.a, which is executed only when the value of

V(BBB∆) = 1. All nodes in G have not been subject to transient faults in the

∆node = ∆ + 1 beats preceding r. Therefore, BBB∆ has been initialized properly

∆ beats ago, and during the ∆ rounds of BBB∆’s execution, it has been executed

properly by at least n−f nodes. Hence, according to Agreement of BBB, all nodes in

G have the same value of V(BBB∆). Therefore, all nodes in G “act the same” when

considering line 3.a: either all of them execute line 3.a or they all do not execute

it. This holds for any beat after α (as long as G continues to contain n − f correct

nodes). Therefore, at any such beat r ∈ [α, β], either all nodes in G pulse or they

all do not pulse.

Lemma 5.5.4. ∀β ≥ α+∆+Cycle′: If the system is Correct(α, β), then at some

beat r ∈ [α, β] all nodes in G pulse.
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Proof. According to the previous lemma, all nodes in G pulse together during the

interval [α, β]. Hence, if one of them pulsed in the interval [α, α + Cycle′], all of

them pulsed, and we are done.

Otherwise, consider the case where no node in G has pulsed in the interval

[α, α + Cycle′]. Hence, at beat α + Cycle′, for all the nodes in G, the Counter

variable has decreased to 0 or is negative. This is because Counter is bounded from

above by Cycle′ (which is a fixed parameter of the protocol and is identical at all

nodes); and as long as it holds a positive value, it decreases by 1 during each beat

of the interval [α, α + Cycle′] (since no node pulses in that interval, Counter never

increases). Since the interval is at least Cycle′ beats long, the value of Counter is

less than (or equal to) 0.

Therefore, at beat α + Cycle′ there are |G| ≥ n − f > f + 1 correct nodes with

WantToPulse = 1. Therefore, according to Validity of BBB, ∆ beats afterwards

V(BBB∆) will output 1, and all nodes in G will pulse. Thus, in the interval [α, α +

∆ + Cycle′] all nodes in G pulse. Therefore, the claim holds for any beat interval

[α, β], where β ≥ α+ ∆ + Cycle′].

Remark 5.5.5. The above lemma proves progress. That is, starting from any state,

eventually there will be a pulse.

Consider a system that is Correct(α, β) (for β ≥ α + ∆ + Cycle′), from

Lemma 5.5.3, starting from beat α all nodes in G pulse together. From Lemma 5.5.4,

by beat α + ∆ + Cycle′ all nodes in G have pulsed. Therefore, by that round they

have all reset their Counter values at the same beat. Since WantToPulse depends

solely on the value of Counter, and since all nodes in G agree on the output value of

the BBB protocols, all nodes in G perform exactly the same lines of code following

each beat in the beat interval [α+ ∆ + Cycle′, β].

Lemma 5.5.6. ∀β ≥ α + 3 · ∆ + 2 · Cycle′: If the system is Correct(α, β), then

the system is [∆,∆ + Cycle′]-pulsing in the beat interval [α+ 3 ·∆ + 2 · Cycle′, β].

Proof. According to previous lemmas, all correct nodes pulse at some beat γ, no

later than beat α+∆+Cycle′; and from then on they all pulse together. At beat γ

they all reset their counters and will have positive Counter values for at least Cycle′

rounds. Since Cycle′ > ∆, in the following ∆ beats, the value of WantToPulse will

be 0, and hence BBB1 is initialized during these beats with the value 0. Therefore,

once these values will emerge from BBB, there will be a period of Cycle′ > ∆ with
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no pulses. That “quite” period will start at beat γ + ∆. This quite period might

be longer than Cycle′ if there were other pulses during the beat interval [γ, γ + ∆].

In any case, a quite period will commence at beat γ + ∆ and will be at least Cycle′

beats long, and no more than Cycle′ + ∆ beats long.

Now consider what happens after this quite period. Eventually, the value of

WantToPulse will be set to 1 (after no more than Cycle′ + ∆ beats), and will stay

so until the next pulse. Mark the beat at which all nodes in G set WantToPulse to

1 as γ′. Notice that because the quite period is greater than ∆ then once its values

start “coming out” of BBB∆ there will be quite for at least ∆ beats. Hence, once

WantToPulse is set to 1, it will stay that way for ∆ beats, until 1 comes out of

BBB∆. This will happen at beat γ′ + ∆. Once this happens, there are ∆ 1’s “on

the way” in the coming BBBs. Therefore, there will be a pulse for ∆ beats. Due

to the first pulse, WantToPulse will be 0 for all the ∆ pulse beats. After the

last pulse beat, WantToPulse will be 0 for an additional Cycle′ beats. Afterwards,

WantToPulse will turn to 1, and will stay so for ∆ beats. Thus there is a pattern

of WantToPulse being 0 for ∆ + Cycle′ beats then being 1 for ∆ beats, and so on.

Therefore, the pulseing pattern will be the same, as required.

Note that the pulseing pattern starts on beat γ′ + ∆, and the pattern continues

(at least) until beat β. Hence, the system is [∆,∆ + Cycle′]-pulsing in the beat

interval [γ′ + ∆, β]. Because γ′ ≤ γ + Cycle′ + ∆ and since γ ≤ α + ∆ + Cycle′, we

conclude that γ′ + ∆ ≤ α+ 3 ·∆ + 2 · Cycle′, as required.

Remark 5.5.7. The above lemma shows that the convergence time of the pulseing

algorithm depends on the value of Cycle. However, since for clock synchronization

the value of Cycle is in the order of ∆, the convergence of the clock synchronization

will depend on ∆ and not on the value of max-clock (the wrap around value of the

digital clock).

The following theorem states that we have constructed a [∆,∆+Cycle′]-pulser.

Theorem 5.5.8. The Large-Cycle-Pulser algorithm is a [∆,∆ + Cycle′]-pulser.

Proof. By Lemma 5.5.6, once there are enough nodes that have not been subject to

transient faults for 3·∆+2·Cycle′ beats, the system becomes [∆,∆+Cycle′]-pulsing

for the beat interval [γ′+∆, β] . This is true for any β ≥ α+3·∆+2·Cycle′. Hence, as

long as the system is coherent, once the system is [∆,∆+Cycle′]-pulsing in the beat

interval [γ′+∆, β], it is also [∆,∆+Cycle′]-pulsing in the beat interval [γ′+∆, β+1];

and therefore Large-Cycle-Pulser algorithm is a [∆,∆ + Cycle′]-pulser.
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5.6 A [Cycle]-pulser for Cycle > 0

In the previous section a [∆,∆ + Cycle′]-pulser was presented, for any value of

Cycle′ > ∆. Now a general way to transform a [φ, ψ]-pulser into a [φ+ ψ]-pulser

is given. Combining this with the previous result will demonstrate how to construct

a [2 · ∆ + Cycle′]-pulser. Since Cycle′ > ∆, the technique constructs a [Cycle]-

pulser, for any Cycle > 3 · ∆. In Subsection 5.6.2 this requirement is eliminated,

and the objective of building [Cycle]-pulser is achieved for any Cycle > 0.

5.6.1 [φ, ψ]-pulser to [φ+ ψ]-pulser

Given a [φ, ψ]-pulser A, the following algorithm B uses A as a black-box:

Algorithm [φ+ ψ]-pulser /* executed at each beat */

1. execute a single round of A;

2. if A pulsed at the current beat and A did not pulse at the previous
beat, then B pulses at the current beat.

Figure 5.2: An algorithm that transforms a [φ, ψ]-pulser into a [φ+ ψ]-pulser.

Note that the above algorithm B does not rely on anything other than the output

of A in the current and previous beats. Hence, if A is self-stabilizing, so is B.

Theorem 5.6.1. The algorithm B is a [φ+ ψ]-pulser.

Proof. A is a [φ, ψ]-pulser, hence, it pulses in a pattern of φ pulses, then ψ quite

rounds. Therefore, once every φ + ψ beats, there is a transition from not pulseing

to pulseing. Thus, the pulseing output of A, implies that exactly once every φ+ψ

beats it holds that A pulsed at the current beat, and did not pulse at the previous

beat. This is continuously true (as long as A continues to pulse), which implies that

the proposed algorithm B will pulse exactly once every φ+ ψ beats, in a pattern of

a single pulse, and then φ+ ψ − 1 beats of quite rounds.

Since A is a [φ, ψ]-pulser, starting from an arbitrary state, it eventually starts

pulseing in the required pattern, and continues so as long as the system is coherent.

Hence, the above algorithm B will eventually start pulseing in the expected pattern,

and will continue so as long as the system is coherent. Hence it is a [φ+ψ]-pulser.



40 Pulse Synchronization

Using the above, the previously built [∆,∆ + Cycle′]-pulser A is transformed

it into a [2 · ∆ + Cycle′]-pulser B. Since A required that Cycle′ > ∆ we actually

constructed a [Cycle]-pulser for any Cycle > 3 ·∆.

In the next subsection this limitation will be removed.

5.6.2 Eliminating the Cycle > 3 ·∆ Requirement

Building upon the [2 ·∆+Cycle′]-pulser, B, from the previous subsection, a [Cycle]-

pulser, C, for any Cycle ≤ 3 ·∆ is created.

Algorithm [Cycle ≤ 3 ·∆]-pulser /* executed at each beat */

/* set Cycle′ > ∆ to be such that Cycle′ + 2 ·∆ is divisible by Cycle */

1. execute B;

2. if B pulsed at the current beat then
Counter := Cycle′ + 2 ·∆;

3. if Counter is divisible by Cycle then
C pulses at the current beat;

4. Counter := Counter − 1.

Figure 5.3: A [Cycle]-pulser algorithm for 1 ≤ Cycle ≤ 3 ·∆.

Theorem 5.6.2. The algorithm C is a [Cycle]-pulser for any 1 ≤ Cycle ≤ 3 ·∆.

Proof. Since B is a [Cycle′+2·∆]-pulser, starting from an arbitrary state, eventually

it starts pulseing in a pattern of a single pulse, and then Cycle′ +2 ·∆− 1 beats of

quite (and continues so as long as the system is coherent). Therefore, eventually, all

correct nodes will see the same pulseing output from B. Hence, each time B pulses,

all correct nodes set Counter to Cycle′ + 2 ·∆, and have the same value of Counter

at each beat (because they all set it together, and decrease it together). Hence, each

time a correct node enters line 3, all correct nodes do the same. Therefore, all correct

nodes have C pulse together. Lastly, since each Cycle beats Counter will be divisible

by Cycle, C pulses once every Cycle beats.

Therefore, for each pulse of B we have 2·∆+Cycle′

Cycle
pulses of C. Due to the choice

of Cycle′ such that 2 ·∆ +Cycle′ is divisible by Cycle, the pulses are nicely aligned

with the pulses of B; and therefore, the above algorithm C is a [Cycle]-pulser.

Remark 5.6.3. Setting Cycle′ such that 2 ·∆+Cycle′ is divisible by Cycle is crucial.

Otherwise, the pulseing pattern would not be of a [Cycle]-pulser.
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Theorem 5.6.4. For any Cycle > 0 a [Cycle]-pulser can be constructed.

Proof. If Cycle > 3 ·∆, then set Cycle′ := Cycle−2 ·∆. By Theorem 5.5.8, construct

a [∆,∆ +Cycle′]-pulser and by Theorem 5.6.1 construct a [2 ·∆ +Cycle′]-pulser.

According to the choice of Cycle′ the required [Cycle]-pulser is constructed.

If Cycle ≤ 3 ·∆, calculate Cycle′ such that Cycle′ > ∆ and 2·∆+Cycle′

Cycle
is an integer

number. Now, by Theorem 5.5.8 build a [∆,∆+Cycle′]-pulser. From Theorem 5.6.1

construct a [2 ·∆ + Cycle′]-pulser. Finally, from the above algorithm construct an

algorithm that is a [Cycle]-pulser, as required.

5.7 Network Connectivity

The above discussion did not assume anything about the network connectivity. More

precisely, the only connectivity assumption was about the behavior of the BBB proto-

col. That is, whatever connectivity BBB requires to operate properly, is the required

connectivity in order for the [Cycle]-pulser construction to work properly.

In [20] it is shown that Byzantine agreement is achievable if and only if:

1. f is less than one-third of the total number of nodes in the system.

2. f is less than one-half of the connectivity of the system (that is, between any

two nodes there are at least 2 · f + 1 distinct paths).

Therefore, since BBB is implemented by executing Byzantine Agreement for each

node’s input value, BBB can be tolerant up to n−1
3

Byzantine faults. In addition BBB
can work properly even if the connectivity graph is not fully connected, but rather

there are at least 2 · f + 1 distinct paths between any two non-faulty nodes.

Remark 5.7.1. As noted in [20], the nodes are required to know the connectivity

graph while executing the algorithm. This implies, due to self-stabilization, that each

node has the network connectivity as incorruptible data.

Since the pulseing algorithm presented in this chapter depends solely on BBB
for communication with other nodes, it is tolerant up to n−1

3
Byzantine faults and

can operate in a network where there are at least 2 · f +1 distinct paths between any

two nodes, and it is optimal with respect to these two parameters.

Previous algorithms do not easily extend to operated in a network that is not

fully connected. This is a result of their dependency of their “current state” on
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messages received in the “current round”; in a network that is not fully connected,

such messages are received D rounds later, where D is the diameter of the network.

For example, in [10], the DigiClock value depends on the values sent in the

current round. Therefore, if the network is not fully connected, node p does not

receive messages from node p′ that is not his neighbor, in the same round. Hence, p

cannot change its current state according to the algorithm’s definition. This does not

mean that previous algorithms cannot be transformed to operate in such a setting,

just that it is not straightforward.

5.8 Complexity Analysis

Using pulseing for clock synchronization leads to use a Cycle that is in the order

of ∆. Hence, the pulseing algorithm presented in the previous sections converges in

O(∆) beats. If the system is fully connected, then ∆ = 2 · (f + 1), because executing

Byzantine agreement takes 2 · (f + 1) rounds (for example, see [19]). Therefore,

convergence is reached in O(f) beats.

If the system is not fully connected, as discussed in the previous section, and the

diameter is D, then ∆ = D · 2 · (f + 1). Therefore, convergence is reached in O(D · f)

beats.

5.9 Discussion

5.9.1 Byzantine Firing Squad

Three synchronization problems are discussed herein. Two are self-stabilizing and

tolerant to Byzantine faults: the pulseing problem and the digital clock synchro-

nization problem. The third one is the Byzantine firing squad problem, which is not

self-stabilizing.

As was see in Section 3.4, the Digital Clock synchronization problem is equivalent

to the pulse synchronization problem.

In the (strict) Byzantine firing squad problem, at each beat the nodes might

receive a “START” message from “the outside”. If f +1 non-Byzantine nodes receive

a “START” message then eventually all non-Byzantine nodes fire. If a non-Byzantine

node fires, then at least one non-Byzantine node received a “START” message. Lastly,
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all non-Byzantine nodes fire together. A detailed discussion of this problem is given

in [21].

The solution in this chapter was inspired by the solution to the Byzantine firing

squad problem given in [21]. The BBB protocol is essentially the same protocol used

in [21] to solve the firing squad problem. Thus, the “non self-stabilizing”, Byzantine

firing squad problem can be seen as a basic synchronization element, which is a

building block for self-stabilizing, Byzantine tolerant synchronization problems, the

pulseing problem and the digital clock synchronization problem.

The self-stabilization property is “added” to the Byzantine firing squad solution

by repeatedly executing the protocol that solves the firing squad problem. In this way,

new instances of the firing squad algorithm (the BBB instances), that are “clean” of

memory faults, are continuously produced.

This tactic of re-executing a sub-solution to some Byzantine problem in order

to solve a self-stabilizing and Byzantine tolerant problem should be explored more

thoroughly, as it has already produced two solutions to previously unsolved problems:

the current problem, and the problem presented in Chapter 4 (see also [10]).

5.9.2 Byzantine Tolerant Stabilizer

We now present briefly how a stabilizer can be built using the pulseing algorithm

provided in the above sections. The stabilizer will stabilize a Byzantine tolerant algo-

rithm A0. That is, given a Byzantine tolerant algorithm A0 that is not self-stabilizing,

the stabilizer will transform it into a self stabilizing version of A0 (preserving the

Byzantine tolerance).

Clearly, not all algorithms can be viewed as self-stabilizing. E.g. an algorithm that

is allowed to do some action Act only once, cannot be a self-stabilizing algorithm. We

do not discuss here the requirements of an algorithm A0 so that it can be stabilized.

For a more in depth discussion of such requirements, refer to [17] and [18]. In the

following, it is assumed that the Byzantine tolerant algorithm A0 has a meaning as a

self-stabilizing algorithm.

Intuitively, every so often, all nodes will collect a global snapshot S of the local

states of all nodes. Then, all nodes inspect S for any inconsistencies. If any are found,

all nodes reset their local state to some consistent state.

Given a general Byzantine tolerant algorithm A0, we construct an algorithm

Byz-State-Check. Byz-State-Check gathers a global snapshot of the local states at
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each node and ensures that the local states are consistent. In addition if the states

were consistent to start with, then Byz-State-Check does not alter them. That is,

Byz-State-Check alters the local states to a consistent state, only if required. Fig-

ure 5.4 present the algorithm Byz-State-Check.

Algorithm Byz-State-Check /* executed at node p*/

1. execute a Byzantine agreement on local state of A0;

2. after all correct nodes see the same global snapshot S:

(a) if S represents a legal state
repair local state if it is inconsistent with S;

(b) otherwise
reset local state.

Figure 5.4: A Byzantine tolerant state validation and reset.

Given a general Byzantine tolerant algorithm A0, a [f + 1]-pulser P and a

Byz-State-Check algorithm C, the algorithm SS-Byz-Stabilizer is constructed, as in

Figure 5.5.

Algorithm SS-Byz-Stabilizer /* executed at each beat */

1. execute a single round of A0;

2. execute a single round of C;

3. execute a single beat of P;

4. if P pulsed this beat re-initialize C.

Figure 5.5: A Self-stabilizing Byzantine tolerant Stabilizer.

Theorem 5.9.1. SS-Byz-Stabilizer transforms a Byzantine tolerant algorithm A0 into

Self-stabilizing Byzantine tolerant algorithm.

Proof. P is a [f +1]-pulser. Hence, eventually it starts pulseing f +1 beats apart.

When this happens, C is re-executed periodically, and terminates between such 2

executions (executing Byzantine agreement takes f + 1 rounds). Hence, C performs

correctly. This means that the local states of A0 will be consistent. And we have

that starting from any initial state of A0’s local states, eventually A0’s local states

are consistent.
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Conclusions and Future Work

6.1 Self-stabilization by “Rotating” Sub-problems

The described solutions in this thesis surface a more general scheme for “rotating”

X instances; where in the digital clock problem, X is Byzantine consensus, and for

the pulse problem X is Byzantine firing squad. This allows all non-faulty nodes

to have a valid termination of X each beat. This mechanism is self-stabilizing and

tolerates the permanent presence of Byzantine nodes. In addition, this mechanism

ensures that all non-faulty nodes decide on their next step at the next round, based

on the termination of the same instance.

By re-executing the sub-solution to some Byzantine problem X , the property of

self-stabilization is “added” to it. Each sub-problem requires its own consideration,

since it is not enough to execute many sub-problems simultaneously. A careful ex-

amination of the transformation between the state at some round r to the next state

at round r + 1 is required.

In this thesis two different such sub-problems are given, and it is shown how

to use them to solve “real” problems. This produces a “general” tactic of creating

self-stabilization and Byzantine tolerant algorithms, by executing multiple instances

of some Byzantine tolerant instance (that is not self-stabilizing) and connecting the

results from each beat in an intelligent way. The success of this tactic, as applied in

the thesis, leads us to believe that additional problems may be solved with it.
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6.2 Future Work

We consider four main points to be of interest for future research.

1. How would an algorithm that solves the digital clock synchronization problem

directly, with f < n
3
, look like?

2. What happens if the global beats are received at intervals that are less than

the message delay, i.e. common clock ticks. Is there an easy solution to achieve

synchronization? If yes, can it attain optimal precision like the above clock

synchronization solution? If no, is the only option then to synchronize the

clocks in a fashion similar to [13, 11, 1]? i.e. by executing an underlying

distributed pulse primitive with pulses that are far enough apart in order to be

able to terminate agreement in between. In that case, is there any advantage

in having a common source of the clock ticks or is it simply a replacement for

the local timers of the nodes?

3. Currently, the only solution for a self-stabilizing Byzantine tolerant pulseing

algorithm in a system without a global beat was given by [13]. However, that

solution is very complicated. This leaves the following question open: can the

above simple scheme of pulsing be transferred into a bounded-delay network?

4. When the communication network is not fully connected, it was shown above

that the pulseing algorithm converges linearly in ∆, were ∆ = O(f ·D) (where

D is the diameter of the graph). Can the convergence time be reduced to be

linear in O(f +D)?
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Appendix: Proofs for BC Protocol

We now present the proof for the protocol Byz-Consensus presented in Section 4.3

along with the proofs for the correctness of the broadcast primitive. We start with

the proof of the properties of the broadcast primitive; In the following subsection we

prove the correctness of the Byz-Consensus algorithm.

7.1 Proof of the Properties of the broadcast Prim-

itive

The proofs are very similar to the proofs given in [19]. Where the proofs are identical,

we refer the reader to the original proofs in [19].

Claim 7.1.1. The Correctness property holds.

Proof. We consider Broadcast operations for some p ∈ P . Since I0 /∈ P , and I0 does

not send or receive any messages, the behavior of the Broadcast primitive regarding

p ∈ P is the same as in [19]. Hence, the proof of the Correctness property holds, as

in [19].

Claim 7.1.2. The Unforgeability property holds.

Proof. The same considerations of the Correctness property hold here too and this

property is proven the same as in [19].

Claim 7.1.3. The Relay property holds.
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Proof. For p ∈ P , the proof from [19] holds. We consider p = I0. Hence, we need to

show that if a correct node p accepts (I0,m, 1) at round r, then every other correct

node accepts (I0,m, 1) in round r + 1 or earlier.

If p accepted (I0,m, 1) in round 1, then p received more than n−f (echo, I0,m, 1)

messages. Hence, more than n−2·f were sent by correct nodes, which implies that all

correct nodes received n−2 ·f such messages by the end of the second phase of round

1. Therefore, at the first phase of round 2, all correct nodes will send (init′, I0,m, 1)

to all nodes. Hence, at the second phase of round 2, all correct nodes will receive at

least n − f (init′, I0,m, 1) messages, and they will all send (echo′, I0,m, 1) message

to all. Hence, at the end of the second phase of round 2 every correct node received

n− f (echo′, I0,m, 1) messages, and therefore it accepts (I0,m, 1) at round 2.

If p accepted (I0,m, 1) in round 2, then p received n−f (echo′, I0,m, 1) messages.

Hence, at least n − 2 · f such messages were sent by correct nodes in the previous

phase of the that round. Therefore, at the first phase of round 3, all correct nodes

will receive n − 2 · f (echo′, I0,m, 1) messages and will all send (echo′, I0,m, 1) (if

they haven’t send such a message yet). Therefore, at the second phase of round 3, all

correct nodes will receive n− f (echo′, I0,m, 1) messages, and will accept (I0,m, 1).

If p accepted (I0,m, 1) in round r ≥ 3 or above, then some correct node received

n− f (echo′, I0,m, 1) messages. Hence, at least n− 2 · f such messages were sent by

correct nodes in previous rounds. Therefore, at round r, all correct nodes will receive

n− 2 · f (echo′, I0,m, 1) messages and will all send (echo′, I0,m, 1) at the first phase

of round r + 1 (if they haven’t send such a message yet). Therefore, at the second

phase of round r + 1, all correct nodes will receive n − f (echo′, I0,m, 1) messages,

and will accept (I0,m, 1).

And we have shown that for every round r, if a correct node accepts (I0,m, 1),

then all correct nodes accept (I0,m, 1) at round r + 1 or earlier.

Claim 7.1.4. The Detection of broadcasters property holds.

Proof. For p ∈ P , the proof from [19] holds. We consider p = I0. Hence, we need to

show that if a correct node p accepts (I0,m, 1) at round 1 or later, then every correct

node has I0 ∈ broadcasters at the end of round 2.

We consider the first correct node p to accept (I0,m, 1) at some round r. If r = 1

then p received n−f (echo, I0,m, 1) messages at the second phase of round 1. Hence,

all correct nodes received n − 2 · f such messages by the first phase of round 2, and
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therefore all correct nodes sent (init′, I0,m, 1) at that phase. Hence, at the second

phase of round 2, all correct nodes add I0 to broadcasters.

If r = 2, then p received n − f (echo′, I0,m, 1) messages at phase 2 of round 2.

Hence, it received at least one such message from a correct node p′, and therefore, p′

received n− f (init′, I0,m, 1) messages at phase 1 of round 2. Hence n− 2 · f correct

nodes sent (init′, I0,m, 1). Therefore, all correct nodes received n−2·f (init′, I0,m, 1)

messages at phase 1 of round 2, and all correct nodes add I0 to broadcasters.

If r ≥ 3, then p received (echo′, I0,m, 1) from some correct node p′ at some round.

We consider the first such p′. p′ must have received n− f (init′, I0,m, 1) messages at

phase 1 of round 2 (otherwise, it received n− 2 · f echo′ messages at phase 1 of round

r′ ≥ 3 which means it received an echo′ message from a correct node from a round

before r′, in contradiction to p′ being the first node to send echo′ message). Hence,

all correct nodes received n−2 ·f (init′, I0,m, 1) messages at phase 1 of round 2, and

therefore, all correct nodes have I0 ∈ broadcasters at the end of round 2.

And we have shown that if a correct node accepts (I0,m, 1), then all correct nodes

have I0 ∈ broadcasters at the end of round 2.

7.2 Byz-Consensus – Proof of Correctness

Lemma 7.2.1. The “Agreement” condition holds for Byz-Consensus.

Proof. First we show that messages sent as part of the broadcast primitive, by correct

nodes, contain a single value v. That is, echo, init′ and echo′ are all sent with m = v.

Messages can be sent either due to a broadcast executed, or due to line 3.a. If a

message is sent due to a broadcast, then it is sent since v 6=⊥, hence it is sent due

to v = v′ in line 3.b or in line 4.b. In the later case, it can be sent only if (I0, v
′, 1)

was accepted, which means that an (echo, I0, v
′, 1) was sent by some correct node. If

it is due to v = v′ in line 3.a it also means that an (echo, I0, v
′, 1) was sent by some

correct node.

We assume by contradiction that there are two different correct nodes, one sent

(echo, I0, v1, 1) and the other sent (echo, I0, v2, 1). We note that in order for a correct

node to send (echo, I0, v
′, 1), it must have received n− f message in the first phase of

round 1, with the same value v′. Hence, there must have been n − 2 · f > n
2

correct

nodes with the same initial value. Therefore, more than half of the nodes had v1 as

their initial value, and more than half of the nodes had v2 as their initial value. And
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we reached a contradiction.

An immediate conclusion from the above, is that if all correct nodes return a value

other than ⊥, then they all return the same value. Hence, all we need to show is,

that either all correct nodes return ⊥, or they all return some value other than ⊥.

If all correct nodes return ⊥, we’re done. Otherwise, there is some correct node

p, that returned some value w 6=⊥. We examine the node p that was first to return a

value 6=⊥. In order for node p to return a value 6=⊥, it must have set v = v′ at some

stage. We consider 2 options: v was set due to line 3.b, or it was set later.

If v was set by line 3.b, then p received n − f (echo, I0, w, 1) messages at round

1. Therefore, according to the broadcast primitive, p accepts (I0, w, 1). Therefore,

according to the Relay property of the broadcast primitive, we have that all correct

nodes accept (I0, w, 1) in round 2. Moreover, p executed broadcast (p, w, 2), and due to

the Correctness property, all correct nodes accept (p, w, 2) by round 2. Hence, when

executing line 4.b, all correct nodes have accepted (I0, w, 1) and (p, w, 2), therefore

they all set v := w, and in the following loop step, they will all enter line 4.a, decide

on w and stop.

We now consider the case where p set v = w after line 3.b. Since w 6=⊥, v

must have been updated by line 4.b (note that this update can only be done once

on p, since afterwards (in the next loop step) p stops executing the protocol). We

consider 2 options: v was updated on some round r < f + 2, or v was update on

round r = f + 2. In the first case, v was update at node p on round r ≤ f + 1.

Therefore, p had accepted (I0, w, 1) and another r − 1 messages of the form (pi, w, i)

for all i, 2 ≤ i ≤ r. Therefore, due to the Relay property, all correct nodes will accept

(I0, w, 1) and (pi, w, i) for all i, 2 ≤ i ≤ r by next round. Also, since next round v 6=⊥
at p, p will enter line 4.a, and will broadcast (p, w, r+ 1), and due to the Correctness

property, all correct nodes accept (p, w, r + 1) at round r + 1. Therefore, at round

r + 1, all correct nodes have accepted (I0, w, 1) and (pi, w, i) for all i, 2 ≤ i ≤ r + 1,

and therefore, all correct nodes set v := w. Note that all correct nodes don’t stop on

line 4.c, due to the Detection of broadcasters property. That is, because p accepted

r− 1 ( , w, i) for all 1 ≤ i ≤ r− 1, then each correct node has at least r′ − 1 nodes in

broadcasters by round r′ for all 1 ≤ r′ ≤ r. Therefore, no correct node stopped due

to line 4.c.

We now consider the last option, that is, that p updated v := w 6=⊥ at round

f + 2. Therefore, p accepted (I0, w, 1) and (pi, w, i) for all i, 2 ≤ i ≤ f + 2. Because

there are no more than f Byzantine nodes, we have that one of the pi = p′ is a correct
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node. Due to the Unforgeability property, p′ broadcasted (p′, w, j) at some round j.

In order for p′ to broadcast, it must have set v := w at some round. We choose p to

be the first node to set v := w, and hence, p′ cannot set v := w at round j < f + 1,

and we reach a contradiction. Hence, either the first correct node to set its value

v := w does so in a round r ≤ f + 1, or it doesn’t do so at all.

And we have shown that if some node returned w 6=⊥ then all correct nodes return

w, otherwise, all correct nodes return ⊥.

Lemma 7.2.2. The “Validity” condition holds for Byz-Consensus.

Proof. If all correct nodes have the same initial value v0, then in phase 1, all correct

nodes send (v0). Therefore, at the end of phase 1, all correct nodes received n −
f distinct messages of the form (v0). Hence, at phase 2, all correct nodes send

(echo, I0, v0, 1) to everyone. Therefore, at the end of phase 2, all correct nodes receive

n−f distinct messages of the form (echo, I0, v0, 1). Hence, according to line 3.b, they

all set v = v0, and at the beginning of line 4.a, they stop and return the agreed value

v0.

And we have shown that if all correct nodes have the same initial value v0 6=⊥
then that is their output value.

Lemma 7.2.3. The “Termination” condition holds for Byz-Consensus.

Proof. Define ∆ = 2 · (f + 2). Clearly, within ∆ phases, all correct nodes terminate.

This is because each round consists of two phases, and the main loop executes no

more than f + 1 times, in addition to the 2 phases executed outside of the loop.

Lemma 7.2.4. The “Solidarity” condition holds for Byz-Consensus.

Proof. There are two locations in which the output can be changed such that it is

not ⊥. Either in line 3.b, or in line 4.b. If at least one correct node returned a value

v′ due to execution of line 3.b, then it received n−f (echo, I0, v
′, 1) messages. Hence,

it received at least one such echo message from a correct node p′. Therefore, in the

previous round, p′ received at least n− f (v′) messages. Therefore, at least n− 2 · f
correct nodes send (v′) which means that at least n−2 ·f had v′ as their initial value.

And “Solidarity” holds.

If all correct nodes returned v′ due to executing line 4.b, then it means that a

correct node accepted (I0, v
′, 1). Therefore, it either received n − f (echo′, I0, v

′, 1)

messages, or n − f (echo, I0, v
′, 1) messages. In the first case, at least one correct



52 Appendix: Proofs for BC Protocol

node had to send (echo′, I0, v
′, 1) message, which means that it received at least one

(init′, I0, v
′, 1) message from a correct node, which means that this node received at

least one (echo, I0, v
′, 1) message from a correct node. And we have that in order for a

correct node to accept (I0, v
′, 1), some correct node must have sent (echo, I0, v

′, 1) at

some time. This message can be sent (by a correct node) only at line 3.a. Therefore,

the correct node that sent it, received at least n− f messages of the form (v′). This

means that at least n−2·f correct nodes had v′ as their initial value. And “Solidarity”

holds.
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