
Robustness of Distributed Systems Inspired
by Biological Processes

Thesis for the degree of

DOCTOR of PHILOSOPHY

by

Ariel Daliot

SUBMITTED TO THE SENATE OF

THE HEBREW UNIVERSITY OF JERUSALEM

November 2006

i

This work was carried out under the supervision of
Prof. Hanna Parnas and Prof. Danny Dolev

ii

Acknowledgements

Should I list all the people that have to some extent or the other affected (or been affected..)
by my thesis then it would have to comprise a chapter of its own. I will keep it short. I first wish
to thank my family for being so patient and for not renouncing me altogether. I wish to thank all
the good and smart people that have contributed ideas, corrections, moral support, time and belief.
Among them are Oren Schuldiner, Rami Tzafriri, Noam Shoresh, Erez Ezrachi, Yonathan Livny.
I wish to thank my advisors. Prof. Hanna Parnas for always believing in this work, for always
being there when needed, for saving me much work during the years through her sharp intuitions
and for seeing the good of the student before anything else. I wish to thank Prof. Danny Dolev
for teaching me that if it looks hopelessly complicated and almost intractable that’s when it starts
to get interesting and for teaching me that you always carry on you whatever you need to get out
of any hopelessly complicated and almost intractable situation. Last but certainly not least I wish
to thank all the great friends from the Parnasia lab and the DANSS lab whom without, doing this
thesis would have been much more difficult and definitely less fun.

iii

Abstract
Synchronization in distributed computer networks has been extensively studied in the last decades.
Nevertheless, robustness and fault tolerance still remain major challenges. Biological systems have
evolved to operate successfully in exceptionally noisy and fault-prone environments. The subject
of this work is robustness of distributed computer systems and specifically the potential of biolog-
ical synchronization models to inspire novel synchronization algorithms in distributed computer
system. Prior to this work, only two algorithms existed in the field of distributed computing that
were both self-stabilizing and resilient to permanent Byzantine failures, both with exponential con-
vergence times. Several biological models seem to operate in extreme fault models. In this thesis,
we pursued to algorithmically imitate such a model and derived the first practical self-stabilizing
and Byzantine algorithm .

A self-stabilizing and arbitrary-fault tolerant (Byzantine) algorithm for synchronization of
pulses is derived from generalizing a model of the cardiac pacemaker in lobsters. It assumes no
prior synchronization besides bounded message delay and it converges in linear time. The synchro-
nization achieved is very tight. Pulse synchronization, which resembles clock synchronization, has
not previously been formally defined in the settings of distributed computer systems.

Executing on top of pulse synchronization, an algorithm to transform general Byzantine al-
gorithms into their self-stabilizing counterparts is developed, with only a linear-time additional
overhead. Then, an optimized scheme for stabilizing a subset of the class of general Byzantine
algorithms is suggested. Following the lines of this scheme, an efficient linear-time self-stabilizing
Byzantine solution for the fundamental clock synchronization problem is presented, that has an
exceptionally low (constant) overhead during steady-state. An efficient linear-time self-stabilizing
Byzantine solution for token circulation and for graph coloring and general resource allocation
problems is also shown.

A self-stabilizing Byzantine agreement algorithm is presented. It does not assume synchro-
nized pulses, only bounded message delay and it converges in linear time. The lack of synchrony
is overcome, by developing a self-stabilizing Byzantine version of the reliable broadcast primitive.

A second pulse synchronization algorithm is then developed that executes on top of the self-
stabilizing Byzantine agreement algorithm. It is fundamentally different from the biologically-
inspired one. It converges faster and also achieves very tight synchronization.

All the algorithms need to address the particular lack of any synchronization assumptions as
is posed by the confluence of the self-stabilization and Byzantine fault models. They face the
problem of creating synchrony and agreement among nodes from a point of no synchrony and
with malicious nodes that incessantly hamper stabilization. The timing model is that of semi-
synchronous networks.

All but one of the results are the first solutions for their respective problem in the combined
self-stabilizing and Byzantine fault domains. The algorithm for self-stabilizing Byzantine clock
synchronization, is not the first of its kind but the only one that is linear-time and not exponential.

Contents

Contents iv

1 Introduction 1
1.1 Background and Related Work . 2

1.1.1 Timing Models . 2
1.1.2 Byzantine Fault Tolerance . 3
1.1.3 Self-stabilization . 5
1.1.4 Self-stabilization with Byzantine Fault Tolerance 5
1.1.5 Transforming non-stabilizing Algorithms into Stabilizing ones 7
1.1.6 Clock Synchronization . 8
1.1.7 Pulse Synchronization . 9
1.1.8 From a Biological Model to a Pulse Synchronization Algorithm 11

1.2 Model and General Definitions . 12
1.3 Dissertation Overview . 16

1.3.1 SS. Byz. Pulse Synchronization Inspired by Biological Networks 16
1.3.2 Stabilization of General Byz. Algorithms using Pulse Synchronization . . . 17
1.3.3 SS. Byz. Clock Synchronization using Pulse Synchronization 18
1.3.4 SS. Byz. Token Circulation using Pulse Synchronization 18
1.3.5 SS. Byz. Agreement without using Pulse Synchronization 19
1.3.6 SS. Byz. Pulse Synchronization using SS. Byz. Agreement 20

2 Pulse Synchronization Inspired by Biological Pacemaker Networks 22
2.1 Specific Definitions . 22
2.2 The “Pulse Synchronization” Algorithm . 23
2.3 Proof of Correctness of BIO-PULSE-SYNCH . 31
2.4 Analysis of the Algorithms . 45
2.5 Discussion . 46
2.6 Proofs . 47

3 Stabilization of General Byzantine Algorithms using Pulse Synchronization 52
3.1 Specific Definitions . 52
3.2 A Byzantine Stabilizer . 53
3.3 Example of Stabilizing a Non-stabilizing Algorithm 60
3.4 Analysis . 61
3.5 The BYZ_AGREEMENT algorithm . 62

iv

CONTENTS v

4 Self-stabilizing Byzantine Clock Synchronization using Pulse Synchronization 65
4.1 Specific Definitions . 65
4.2 Self-stabilizing Byzantine Clock Synchronization 66
4.3 Analysis and Comparison to other Clock Synchronization Algorithms 75
4.4 The Consensus and Broadcast Primitives . 77

5 Self-stabilizing Byzantine Token Circulation using Pulse Synchronization 86
5.1 Specific Definitions . 86
5.2 Self-stabilizing Byzantine Token Circulation . 87
5.3 An Extended Scheme for General Resource Allocation 89

6 Self-stabilizing Byzantine Agreement without using Pulse Synchronization 91
6.1 Specific Definitions . 91
6.2 The SS-BYZ-AGREE algorithm . 91
6.3 The INITIATOR-ACCEPT Primitive . 94
6.4 The MSGD-BROADCAST Primitive . 96
6.5 Proofs . 98

7 Self-stabilizing Byzantine Pulse Synchronization using SS. Byz. Agreement 106
7.1 Specific Definitions . 106
7.2 Self-stabilizing Byzantine Pulse-Synchronization 106

8 Conclusions and Discussion 121

Bibliography 123

1

Chapter 1

Introduction

This thesis addresses the problem of synchronizing the elements that comprise a distributed sys-
tem in the face of extreme failures. The only synchrony assumed is that of eventual bounded-delay
message delivery. The best way to give some initial intuition to the difficulties of this problem, as
well as the motivation behind our solution, is through an illustrative example: It is a well known
phenomenon that after a good performance the clapping by the audience is frequently followed by
distinct synchronized clapping by most of the people. This synchronized clapping occurs with no
prior coordination. Should a conductor initially instruct the audience when to clap following which
they only need to maintain the rhythm, then this would intuitively be a much simpler task. In dis-
tributed computer systems, the lack of prior coordination is addressed by the self-stabilization fault
model. Distinct synchronized clapping is typically also achieved in-spite of a certain fraction of the
audience that are reluctant to cooperate and even intentionally clap in their own pace. Intuitively,
it would be a much simpler task to attain synchronized clapping without this fraction of sceptics.
In distributed computer systems, a bounded fraction of ill-behaved or even malicious behavior is
addressed by the Byzantine fault model. This thesis deals with attaining synchronization in the
confluence of both the Byzantine and self-stabilization fault models. It is notoriously difficult to
achieve results in this fault model, as can be indicated by the surprisingly few prior algorithms
developed in this model. Within the current Introduction chapter, we postulate and elaborate on
the reasons for this difficulty.

Our work begins and is motivated by the fact that in biology very robust synchronization is
frequently achieved surprisingly fast and efficient, while attaining very robust synchronization in
distributed computer systems is surprisingly slow and inefficient, if it exists at all.

The phenomenon of robust synchronization is displayed by many biological systems [72] and
presumably plays an important role in these systems. For example, the heart of the lobster is regu-
larly activated by the synchronized firing of four neurons in the cardiac pacemaker network [40,41].
It has been concluded in [70] that the organism cannot survive if all four interneurons fire out of
synchrony for prolonged times. That system inspired the present work. Other examples of bio-
logical synchronization include the malaccae fireflies in Southeast Asia, where thousands of male
fireflies congregate in mangrove trees, flashing in synchrony [15]; oscillations of the neurons in
the circadian pacemaker, determining the day-night rhythm; crickets that chirp in unison [74];
coordinated mass spawning in corals and of course an audience clapping together after a “good”
performance [63]. Synchronization in these systems is typically attained despite the inherent vari-
ations among the participating elements, failures, or the presence of noise from external sources or

2 Introduction

from participating elements. A generic mathematical model for synchronous firing of biological
oscillators based on a model of the human cardiac pacemaker is given in [61]. This model does not
account for noise or for the inherent differences among biological elements.

In computer science, synchronization is both a goal by itself and an essential building block for
algorithms that solve other problems.

In general, it is desired for algorithms to guarantee correct behavior of the system in face of
faults or failing elements, without strong assumptions on the initial state of the system. It has been
suggested in [70] that similar fault considerations may have been involved in the evolution of dis-
tributed biological systems. In the example of the cardiac pacemaker network of the lobster, it was
concluded that at least four neurons are needed in order to overcome the presence of one faulty neu-
ron, though supposedly one neuron suffices to activate the heart. The cardiac pacemaker network
must be able to adjust the pace of the synchronized firing according to the required heartbeat, up
to a certain bound, without losing the synchrony (e.g. while escaping a predator a higher heartbeat
is required - though not too high). Due to the vitality of this network, it is presumably optimized
for fault tolerance, self-stabilization, tight synchronization and for fast re-synchronization.

The apparent resemblance of the synchronization and fault tolerance requirements of biologi-
cal networks and distributed computer networks makes it very appealing to infer from models of
biological systems onto the design of distributed algorithms in computer science. Especially when
assuming that distributed biological networks have evolved over time to particularly tolerate inher-
ent heterogeneity of the cells, noise and cell death. In the current thesis, we show that in spite of
obvious differences, a biological fault tolerant synchronization model ([70]) can inspire a novel
solution to an apparently similar problem in computer science.

1.1 Background and Related Work

1.1.1 Timing Models
This subsection introduces the timing models. A comprehensive description of the model and the
definitions that are used throughout the thesis is given in Subsection 1.2.

A “synchronous” timing model (the one with the least uncertainty) is one in which the system
works in lock-step. All nodes communicate and compute in synchronous rounds. A rounds starts
and ends at exactly the same moment at all nodes. Between non-faulty nodes, messages are sent
and received at the same moments respectively.

In the “asynchronous” timing model there is no bound on message arrival and processing time.
The nodes interleave their steps in arbitrary order.

In a “bounded-delay” timing model the processing times and message delivery times are be-
tween some upper and lower bounds.

The more realistic “partially synchronous” or “semi-synchronous” timing model lies between
the synchronous and asynchronous models. It is a bounded-delay timing model and in addition it
is frequently assumed that nodes have some knowledge of time, for example access to approximate
real-time or some type of facility to measure the progress of time intervals.

See [57] for a comprehensive description of these timing models.
Coordination and synchronization are among the most fundamental elements of a distributed

task, and are particularly pivotal in order to withstand severe faults. The details of the timing model

1.1 Background and Related Work 3

assumed is crucial for being able to achieve coordination and synchronization. In the classic asyn-
chronous network model, although nothing is assumed on the time taken for message delivery, it
is typically assumed that nodes have a controlled and common initialization phase [57]. Nodes
typically infer about the state of the other correct nodes from their own internal states. Thus it is
assumed that the global state is at least partially consistent so that correct nodes have a common
notion as to when the system last initialized. This greatly facilitates the progression of the algo-
rithm in “asynchronous rounds” in which a node knows that if it has commenced some specific
round r then all other correct nodes have progressed to at least some lesser round. This is a “state-
machine replication” approach as a general framework to address the consistency in a distributed
environment (see [69]). The asynchronous model prohibits dealing deterministically with most
node failures [38], as it might not be possible to distinguish between a late or lost message and a
faulty sender. Thus for fault tolerant deterministic computing at least bounded message delivery
must be assumed [12]. The minimal extent of synchrony or consistency required for fault toler-
ance is also discussed in [24]. However, randomized fault-tolerant algorithms in the asynchronous
model do exist [13].

In the partially synchronous network model, nodes typically assume bounded time for message
delivery in addition to assuming that nodes have a common initialization phase. These two as-
sumptions allow nodes to use timing criteria to deduce whether certain actions should already have
taken place. This allows for resilience to permanent faults and plays a pivotal role in the ability
to tolerate Byzantine nodes. Synchronization enables correct nodes to determine whether a certain
message received at a certain time or with a certain value at this certain time does not agree with
the node’s perception of the global progress of the algorithm. In order for all correct nodes to view
symmetrically whether a node does not behave according to the protocol, it is required to assume
that nodes have similar perceptions of the progress of the algorithm.

Since partially synchronous systems have less uncertainty than asynchronous systems, it is
tempting to think that they are easier to program. However, there are extra complications that arise
from the timing assumptions, for example, algorithms are often designed so that their correctness
depends crucially on the timings. Thus algorithms and proofs in the partially synchronous setting
are often more complicated than those for the asynchronous and synchronous models.

All the algorithms in this thesis operate in the (eventual) bounded-delay timing model and the
nodes only possess a hardware facility to measure the progress of time intervals, denoted as the
physical timer of the node, but not necessarily any access to real-time. Thus we only assume that
eventually the network satisfies the minimal amount of consistency required for fault-tolerance.

1.1.2 Byzantine Fault Tolerance
Being immune to arbitrary/malicious failures (Byzantine faults) may seem like an overly pes-
simistic requirement. In reality, this is the most practical methodology to overcome a bounded
number of faults whose nature is not predictable in advance or a way to seal off unexpected behav-
ior. Bugs in the code, network failures, arbitrary initial values held by a bounded fraction of the
nodes in the system and malicious behavior all fall naturally into this category. The “optimistic”
approach is to specify what exactly can go wrong and design algorithms that are immune specif-
ically to these problems. This approach is prone to yield unreliable and unsafe algorithms, as in
practice it can become very tricky to correctly characterize the faults to be faced with. Moreover,
it is frequently the rare “unanticipated” faults that tend to be the catastrophic ones. A “Byzantine

4 Introduction

fault” is one that might be arbitrary, malicious or represent an adversary. Subject to the limitation
that it cannot corrupt portions of the system to which it has no access, such as changing the code
of a non-faulty node. It can display two-faced behavior, i.e. send different messages to different
nodes. Byzantine nodes may cooperate with each other.

The “Byzantine Agreement” (Byzantine Generals) problem was first introduced in 1980 by
Pease, Shostak and Lamport [68], and is now considered as one of the most fundamental problems
in fault-tolerant distributed computing. The task is to reach agreement in a network of n nodes in
which up-to f nodes may be faulty. A distinguished node (the General or the initiator) broadcasts
a value m, following which all nodes exchange messages until the non-faulty nodes agree upon the
same value. If the initiator is non-faulty then all non-faulty nodes are required to agree on the same
value that the initiator sent. In the related problem of “Byzantine Consensus”, all nodes already
initialize with value to be agreed upon. This is essentially equivalent to Byzantine agreement, as
the latter may be reduced to the stage at which all nodes received the initiator’s value (or did not
receive, in case the initiator is faulty).

Traditionally, a Byzantine algorithm focuses on preventing Byzantine faults from shifting the
state of the system away from a correct state and thus implicitly assumes that the system initializes
in a correct and coherent state (cf. the very first polynomial Byzantine agreement algorithm [28]
through many others like [73]). As an example, a traditional algorithm for Byzantine clock syn-
chronization will typically assume that all non-faulty nodes already have all their clocks synchro-
nized [6, 26, 75]; the task is then to prevent the Byzantine nodes from de-synchronizing the clocks
of the non-faulty nodes. This assumption enables algorithms to execute in synchronized “rounds”,
in which the nodes have more or less the same notion as to when a certain round begins and ends.
Generally speaking, we can say that Byzantine algorithms assume the existence of at least some
sort of basic synchronization or coordination, such as rounds, and then focus on either maintaining
or attaining some sort of higher synchronization, such as clock synchronization, agreement, firing
squad, pulse synchronization, etc. We elaborate on these types of synchronizations further on.

Toueg, Perry, and Srikanth introduced the “Reliable Broadcast” primitive for solving Byzantine
agreement [73]. It encapsulates the task of broadcasting a message to a set of receiving nodes in
the presence of faults. In particular, the sender and any other node might fail at any time. A reliable
broadcast protocol typically organizes the system into a sending node and a set of receiving nodes,
which may include the sender itself. A node is called “correct” if it does not fail at any point
during its execution. The goal of the protocol is to transfer any message from a correct sender to
the set of receiving correct nodes within a time bound. Moreover, the protocol must guarantee that
if a correct node receives a message then all other correct nodes receive the exact same message
as well, and only that message (in case a faulty node sends a message to some correct node only
or ambivalent messages). Reliable broadcast is used in the following manner as a building block
for Byzantine agreement: The initiator of Byzantine agreement broadcasts it’s value using reliable
broadcast at round(0). Recall that it is guaranteed that if a single correct node receives the initiator’s
value then all correct nodes receive it within bounded time. Every correct node then re-broadcasts
the initiator’s value, again using reliable broadcast. Thus, within bounded time, if at least one
correct node received the initiator’s value then all correct nodes re-broadcast it and every correct
node will receive at least n − f such re-broadcasts. This is a sufficient condition for accepting
the initiator’s value. In case the initiator did not send any value to any correct node then within a
specific number of rounds all correct nodes may conclude that the initiator is faulty.

A well-known result for Byzantine agreement algorithms that are tolerant of f concurrent

1.1 Background and Related Work 5

Byzantine faults is the requirement of at least f + 1 rounds of execution [36]. With respect to
the bounds on the number of correct nodes, the Byzantine agreement problem has been shown to
have no deterministic solution (without authentication) if n ≤ 3f, where n is the number of nodes
in the network [54, 68]. See [37] for impossibility results on many consensus related problems
such as clock synchronization, Byzantine agreement, etc. When using authentication, this ratio
is not necessarily required, see [26] that in a network of n nodes can tolerate n − 1 Byzantine
faults. Authentication on the other hand does not change the requirement of at least f + 1 rounds
of execution for Byzantine agreement [29].

Another relevant problem with a Byzantine tolerant solution is the Byzantine Firing Squad,
which is described in [18] (although it was proposed already in about 1957 by John Myhill). If one
or more nodes receive a command to start a firing squad synchronization then at some future time
(or round) all correct nodes must “fire” (i.e. enter a special state) at exactly the same round.

1.1.3 Self-stabilization
A system may face transient failures that throw the system out of the assumption boundaries.
For example, resulting in more than one third of the nodes being Byzantine or messages of non-
faulty nodes getting lost or altered or that messages arrive within unbounded time. This will
render the whole system practically unworkable. Eventually the system is assumed to experience a
tolerable level of permanent faults for a sufficiently long period of time. Otherwise it would remain
unworkable forever. When the system eventually returns to behave according to the presumed
assumptions, each node may be in an arbitrary state. It makes sense to require a system to resume
operation after such a major failure without the need for an outside intervention to restart the
whole system from scratch or to correct it. A self-stabilizing algorithm overcomes this limitation
by converging within finite time to a correct state from any initial state. Self-stabilizing problems
are usually stated in the structure of Convergence, the property that the solution reaches the goal
(correct state) within finite time from any initial state, and Closure, the property that the state of the
system does not stray away from the goal (remains in a correct state) once this has been realized.
Self-stabilizing algorithms typically have a high cost in the convergence time. It is very favorable
for a self-stabilizing algorithm to have a lower time and message complexity cost for maintaining
the correct state during steady-state (Closure). For a short survey of self-stabilization see [14], for
an extensive study see [31]. The field was sparked by Dijkstra’s seminal paper on mutual exclusion
which is invariant to the initial state of the nodes [23].

A typical self-stabilizing algorithm makes almost no assumptions on the character, number and
extent of the faults but assumes that following a finite period of time the system is in a state with
no faults whatsoever. This state is arbitrary with respect to the state of the memory and registers
(besides a minimal amount of incorruptible code [39]).

Note that in order to be self-stabilizing an algorithm cannot suffer from communication dead-
lock, as can happen in message-driven algorithms [14]. The algorithms in this thesis overcome this
as the nodes have a time-dependent state change,

1.1.4 Self-stabilization with Byzantine Fault Tolerance
Awareness of the need for robustness in distributed systems increases as distributed systems be-
come integral parts of day-to-day systems. Self-stabilizing while tolerating ongoing Byzantine

6 Introduction

faults are wishful properties of a distributed system as such a system will be reliable in spite of
a constant presence of arbitrary faults and in spite of temporary catastrophic events. This can
be underlined by the recent interest in this combined, extreme fault model, see for example [58].
Many distributed tasks (e.g. clock synchronization) have numerous efficient non-stabilizing so-
lutions tolerating Byzantine faults or conversely non-Byzantine but self-stabilizing solutions. In
contrast, solutions combining self-stabilization and Byzantine fault tolerance are rare and pose a
special challenge. The difficulty stems from the apparent cyclic paradox of the pivotal role of
synchronization for containing the faulty nodes combined with the fact that a self-stabilizing al-
gorithm cannot assume any sort of synchronization or inference of the global state from the local
state. This difficulty may be indicated by the remarkably few algorithms that are resilient to both
fault models. Observe that assuming a fully synchronous model in which nodes progress in perfect
lock-step does not ease this problem (cf. [34]).

In this combined fault model correct nodes cannot assume a common reference to time or even
to any common anchor in time and they cannot assume that any procedure or primitive has ini-
tialized concurrently at all nodes (such as reliable broadcast for example). This is the result of
the possible loss of synchronization following transient faults that might corrupt any agreement or
coordination among the correct nodes and alter their internal states (such as the notion as to how
long ago the system or algorithm was initialized or a common notion of rounds). Thus even ba-
sic synchronization or coordination must be restored from an arbitrary state while facing on-going
Byzantine failures. This is a very tricky task considering that all classic tools for containing Byzan-
tine failures, such as [18, 73], assume that synchronization already exists and are thus preempted
for use. The protocols in this thesis achieve self-stabilizing Byzantine synchronization without
the assumption of any existing synchrony besides eventual bounded message delivery. In [12] it is
proven to be impossible to combine self-stabilization with even crash faults without the assumption
of bounded message delivery.

In the case of self-stabilizing Byzantine agreement the problem is not relaxed even in the case
of a one-shot agreement, i.e. in case that it is known that the General will initiate agreement only
once throughout the life of the system. Even if the General is correct and even if agreement is
initiated after the system has returned to its coherent behavior following transient failures, then
the correct nodes might hold corrupted variable values that might prevent the possibility to reach
agreement. The nodes have no knowledge as to when the system returns to coherent behavior or
when the General will initiate agreement and thus cannot target to reset their memory exactly at this
critical time period. Recurrent agreement initialization by the General allows for recurrent reset
of memory with the assumption that eventually all correct nodes reset their memory in a coherent
state of the system and before the General initializes agreement. This introduces the problem of
how nodes can know when to reset their memory in case of many ongoing concurrent invocations
of the algorithm, such as in the case of a faulty General disseminating several values all the time.
In such a case correct nodes might hold different sets of messages that were sent by other correct
nodes as they might reset their memory at different times.

In [35] consensus is reached assuming eventual synchrony. Following an unstable period with
unbounded failures and message delays, eventually no node fails and messages are delivered within
bounded time. At this point there is no synchrony among the correct nodes and they might hold
copies of obsolete messages. This is seemingly similar to our model but the solution is not truly
self-stabilizing since the nodes do not initialize with arbitrary values. Furthermore, the solution
only tolerates stopping failures and no new nodes fail subsequent to stabilization. That paper also

1.1 Background and Related Work 7

argues that in their model, although with Byzantine failures, consensus cannot be reached within
less than O(f ′) time, where f ′ is the actual number of faults. This is essentially identical to the
time complexity of our self-stabilizing Byzantine agreement. Our solution operates in a more
severe fault model and thus converges with optimal time complexity.

There are very few specific protocols that tolerate both transient failures as well as permanent
Byzantine faults. In this section we survey most of them.

The concept of multitolerance is coined by Kulkarni and Arora [9, 51] to describe the prop-
erty of a system to tolerate multiple fault-classes. They present a component based method for
designing multitolerant programs. It is shown how to step-wise add tolerance to the different
fault-classes separately. They design as an example a repetitive agreement protocol tolerant to
Byzantine failures and to transient failures. Similarly, mutual exclusions for transient and perma-
nent (non Byzantine) faults is designed. In [52] a multitolerant program for distributed reset is
designed that tolerates transient and permanent crash failures. It is not shown how the method
can be utilized for designing arbitrary algorithms, rather, particular problems are addressed and
protocols are specifically designed for these problems using the method.

Nesterenko and Arora [65] define and formalize the notion of local tolerance in a multitolerant
fault model of unbounded Byzantine faults that eventually comply with the 3f < n ratio. Local
tolerance refers to the property of faults being contained within a certain distance of the faulty
nodes so that nodes outside this containment radius are able to eventually attain correct behavior.
They present two locally tolerant Byzantine self-stabilizing protocols for the particular problems
of graph coloring and the dining philosophers problem.

Another example is the two randomized self-stabilizing Byzantine clock synchronization al-
gorithms by Dolev and Welch [34], both with exponential convergence times. Our deterministic
self-stabilizing Byzantine clock synchronization algorithm in Chapter 4 converges in linear time.

1.1.5 Transforming non-stabilizing Algorithms into Stabilizing ones
Many papers present universal techniques for converting an arbitrary asynchronous protocol into
a self-stabilizing equivalent. The asynchrony allows very limited tolerance of faults besides the
transient faults. The concept of a self-stabilizing extension of a non-stabilizing protocol is brought
by Katz and Perry [47]. They show how to compile an arbitrary asynchronous protocol into a self-
stabilizing equivalent by centralized predicate evaluation. A self-stabilizing version of Chandy-
Lamport snapshots that is recurrently executed is developed. The snapshot is evaluated for a global
inconsistency and a distributed reset is done if necessary. This is improved by the local checking
method of Awerbuch et al. [11]. Kutten and Patt-Shamir [53] present a time-adaptive transformer
which stabilizes any non-stabilizing protocol in O(f ′) time but on the expense of the space and
communication complexities. A stabilizer that takes any off-line or on-line algorithm and “com-
piles” a self-stabilizing version of it is presented by Afek and Dolev [1]. The stabilizer has the
advantage of being local, whereby local it is meant that as soon as the system enters a corrupt
state, that fact is detected and second that the expected computation time lost in recovering from
the corrupted state is proportional to the size of the corrupted part of the network. “Distributed re-
set” has been suggested in the context of self-stabilization . E.g. in [8] a distributed reset protocol
for shared memory is presented which tolerates fail-stop failures. Note that the fail-stop failure as-
sumption (as opposed to the sudden crash faults) makes the protocol non-masking and thus doesn’t
truly tolerate permanent faults. Moreover it has a relatively costly convergence time.

8 Introduction

Gopal and Perry [44] present a framework for unifying process faults and systemic failures,
i.e. ongoing faults and self-stabilization. Their scheme works in a fully synchronous system and
is a “compiler” that creates a self-stabilizing version of any fault-tolerant fully synchronous al-
gorithm. They assume the non-stabilizing algorithm works in synchronous rounds. Assuming a
fully synchronous system is a strong assumption as it obliterates the need to consider the loss of
synchronization of the rounds following a transient failure. Their scheme only assumes the loss of
agreement on the round number itself. To overcome this following a systemic (transient) failure,
at each round some sort of “agreement” is done on the round number. They assume the register
holding the round number is unbounded, which is not a realistic assumption. In a self-stabilizing
scheme a transient failure can cause the register to reach its upper limit. Thus they do not handle
the overflow and wrap-around of the round number which is a major flaw. The permanent faults
that the framework tolerates are any corruption of process code. This may seem very similar to
Byzantine faults but the difference hinges on a subtle but significant dissimilarity. It is assumed
that corruption of process code cannot result in malicious or two-faced behavior whereas Byzan-
tine failures allow for any adversary behavior. This difference results in the impossibility result for
Byzantine behavior, in which at least 3f + 1 nodes are required to mask f failures [54, 68]. Con-
versely, corruption of process code imposes no such bound on the number of concurrent failures.

Note that being in an illegal global state is a stable predicate of the system state of a non-
stabilizing program as otherwise it would either be self-stabilizing or not have the closure property
that is required of any “rational” non-stabilizing algorithm (i.e. if in a legal state then stay in a
legal state). A more general way of presenting the stabilizer scheme is as a method for detection
of stable predicates (in semi-synchronous networks in our case, see [71] for non fault-tolerant
predicate detection in semi-synchronous networks). Distributed reset is just one particular action
that can be done upon the detection of a certain predicate. Examples of other predicate detection
uses are deadlock detection, threshold detection, progress detection, termination detection, state
variance detection (e.g. clock synchronization), among others.

1.1.6 Clock Synchronization
Clock synchronization is a very fundamental task in a distributed system. The vast majority of
distributed tasks require some sort of synchronization and clock synchronization is a very straight-
forward tool for supplying this. It thus makes sense to require an underlying clock synchronization
mechanism to be highly fault-tolerant. Clock synchronization aims at giving all the network nodes
an approximately common clock reading which also targets as being a good estimation of real time.
There are several efficient algorithms for self-stabilizing clock synchronization withstanding crash
faults (see [33,66,30], for other variants of the problem see [7,45]). There are many efficient classic
Byzantine clock synchronization algorithms, for a performance evaluation of clock synchroniza-
tion algorithms see [6]. However, strong assumptions on the initial state of the nodes are typically
made, usually assuming all clocks are initially synchronized ([6, 26, 75]) and thus these are not
self-stabilizing solutions. On the other hand, self-stabilizing clock synchronization algorithms al-
low initialization with arbitrary clock values, but typically have a cost in the convergence times
and do not tolerate permanent faults. Evidently, there are very few self-stabilizing solutions facing
Byzantine faults ([34]), all with unpractical convergence times. The clock synchronization proto-
cols of Dolev and Welch in [34] are to the best of our knowledge the first self-stabilizing protocols
that are tolerant to Byzantine faults. A special challenge in self-stabilizing clock synchronization

1.1 Background and Related Work 9

is the clock wrap around. In non-stabilizing algorithms having a large enough integer eliminates
the problem for any practical concern. In self-stabilizing schemes a transient failure can cause
clocks to hold arbitrary large values, surfacing the issue of clock bounds. Hence self-stabilizing
clock synchronization has an inherent difficulty in estimating real-time without an external time
reference due to the fact that non-faulty nodes may initialize with arbitrary clock values. Thus,
self-stabilizing clock synchronization aims at reaching a legal state from which clocks proceed
synchronously at the rate of real-time (assuming that nodes have access to a physical timer whose
rate is close to real-time) and not necessarily at estimating real-time. Many applications utilizing
the synchronization of clocks do not really require the exact real-time notion (see [55]). In such ap-
plications, agreeing on a common clock reading is sufficient as long as the clocks progress within
a linear envelope of any real-time interval.

1.1.7 Pulse Synchronization

Pulses, pulse-coupling and pulse synchronization are terms that have been used for a long time in
the context of neurobiological networks, as well as laser optics and electronics. To the best of our
knowledge the problem of “Pulse Synchronization” has not previously been formally defined in
the context of distributed computer systems. In [10] an algorithm for self-stabilizing synchronized
pulses for asynchronous networks is developed. The idea is to attach a pulse number to asyn-
chronous rounds such that any message sent at local pulse i is received at the other endpoint before
local pulse i+1. The problem is fundamentally different from our semi-synchronous pulses since it
does not target for the co-occurrences of the pulses, rather as an asynchronous phase synchronizer.
In [34] pulses are mentioned as some external event that occurs at all nodes.

In Subsection 1.2 we define the “Pulse Synchronization”. It mimics the goal of the cardiac
pacemaker neuronal network in the lobster, in which the neurons are required to invoke a regular
pulse in tight synchrony, but allows to deviate from exact regularity. The analogous problem in
the settings of distributed computer systems is for the nodes to perform a regular “task” or “event”
synchronously. This target becomes surprisingly subtle and difficult to achieve when facing both
transient and permanent failures. In this thesis we present two very different algorithms for pulse
synchronization that self-stabilize while at the same time tolerate a permanent presence of Byzan-
tine faults. Transient failures might throw the system into an arbitrary state in which correct nodes
have no common notion what-so-ever, such as time or round numbers, and can thus not infer any-
thing from their own local states upon the state of other correct nodes. The problem in general
is to return to a consistent global state from a corrupted global state. The problem as stated in
terms of pulse synchronization, is to attain a consistent global state with respect to the pulse event
only. I.e. that a correct node can infer that other correct nodes will have invoked their pulse within
a very small time window of its own pulse invocation. The Byzantine nodes might incessantly
try to de-synchronize the correct nodes. The faulty nodes must not be able to ruin an already
attained synchronization, during steady-state; in the worst case, they can slow down the conver-
gence towards synchronization. Interestingly enough, this type of synchronization is sufficient for
eventually attaining a consistent general global state from any corrupted general global state. See
Chapter 3, where it shown how, by assuming synchronized pulses, almost any Byzantine algorithm
can be converted to its self-stabilizing Byzantine counterpart. To the best of our knowledge there
is sofar no alternative method besides relying on pulse synchronization for this. A large part of

10 Introduction

this thesis presents specific self-stabilizing Byzantine solutions to classical problems such as clock
synchronization and token circulation, based on self-stabilizing Byzantine pulse synchronization.

It is important to observe that Byzantine (non-stabilizing) pulse synchronization can be triv-
ially derived from Byzantine clock synchronization. Self-stabilizing (non-Byzantine) pulse syn-
chronization can be easily achieved by following any node that invokes a pulse. Self-stabilizing
Byzantine pulse synchronization on the other hand is a surprisingly subtle and difficult problem.
No practical self-stabilizing Byzantine clock synchronization algorithm that does not assume the
existence of synchronized pulses exists. Thus there is no immediate way to yield a practical self-
stabilizing Byzantine pulse synchronization algorithm. The lower bound on clock synchronization
in completely connected, fault-free networks is d(1− 1/n) [56], where d is the bound on the mes-
sage delay, which is thus also a lower bound for self-stabilizing Byzantine pulse synchronization.

Note that pulse synchronization resembles a firing squad [18] in which the nodes are instructed
to “fire” regularly. To date there is no self-stabilizing Byzantine firing squad algorithm which could
be used for solving self-stabilizing Byzantine pulse synchronization. It is no straightforward task
to make existing Byzantine firing squad algorithms be self-stabilizing. Originally, the firing squad
problem was designed for synchronous networks and the goal was for the nodes to fire at exactly
the same round. Our model is the semi-synchronous network model. Thus the equivalent problem
is for the nodes to “fire” within some time interval of each other. This is more suitably seen as
pulse synchronization. Our self-stabilizing Byzantine pulse synchronization results can be seen as
self-stabilizing Byzantine firing squad algorithms for the semi-synchronous network model.

In [76] it is shown how to initialize Byzantine clock synchronization among correct nodes that
boot at different times. Thus eventually they can also produce synchronized Byzantine pulses (by
using the synchronized clocks). That solution is not self-stabilizing as nodes are booted and thus do
not initialize with arbitrary values in the memory. It has, on the other hand, a constant convergence
time with respect to the required rounds of communication, whereas the solution in this thesis has
a dependency on f, which is due to the self-stabilization requirement.

To elucidate the difficulties in trying to solve the pulse synchronization problem it may be
instructive to outline a flaw1 in an early attempt to solve this problem [21, 59]: Non-stabilizing
Byzantine algorithms assume that all correct nodes have symmetric views on the other correct
nodes. E.g. if a node received a message from a correct node then its assumed all correct nodes did
so to. Following transient failures though, a node might initialize in a spurious state reflecting some
spurious messages from correct nodes. With the pulse synchronization problem, this spurious state
may be enough to trigger a pulse at the node. In order to synchronize their pulses nodes need
to broadcast that they have invoked a pulse or that they are about to do so. Correct nodes need
to observe such messages until a certain threshold for invoking a pulse is reached. When nodes
invoke their pulses this threshold will be reached again subsequent to invoking the pulse, causing
a correct node to immediately invoke a pulse again and again.

To prevent incessant pulse invocations, a straightforward solution to this problem is to have a
large enough period subsequent to the pulse invocation in which a node does not consider received
messages towards the threshold. This is exactly where the pitfall lies, since some correct nodes
may initialize in a state that causes them to invoke a pulse based on spurious messages from correct
nodes. The consequent pulse message might then arrive at other correct nodes that initialize in a
period in which they do not consider received messages. Byzantine nodes can, by sending carefully

1The flaw was pointed out by Mahyar Malekpour from NASA LaRC and Radu Siminiceanu from NIA, see [59].

1.1 Background and Related Work 11

timed messages, cause correct nodes to invoke their pulses in perfect anti-synchrony forever. It is
no trivial task to circumvent these difficulties.

In Subsection 1.2 we prove that pulse synchronization requires n > 3f.

1.1.8 From a Biological Model to a Pulse Synchronization Algorithm
The motivation for this thesis grew from the many spectacular examples of very high robustness
displayed by many biological networks, as specified in the beginning of this chapter. The work in
[70] provided the novel idea of characterizing and quantifying measures of robustness of a biologi-
cal network using measures and tools from distributed systems. As an example, in distributed com-
puter networks it is known that the various incarnations of consensus, such as Byzantine agreement,
Byzantine clock synchronization, etc. cannot be solved if the number of participating network el-
ements, n, is less than 3f + 1, if f faults may occur concurrently. In [70] it has been concluded
that in the cardiac pacemaker network of the lobster, at least four neurons are needed in order to
overcome the presence of one faulty neuron, though supposedly one neuron suffices to activate
the heart. Thus for one “biological fault” that may occur, such as neuron death, neuron’s arbitrary
firing pattern, etc., the number of neurons in the network must be at least four. Specifically, the
actual number of neurons in the cardiac ganglion of the lobster is exactly four, which settles with
the conjectured minimal redundancy required for fault tolerance in this biological network.

The cardiac pacemaker network must be able to adjust the pace of the synchronized firing
according to the required heartbeat, up to a certain bound, without losing the synchrony (e.g.
while escaping a predator a higher heartbeat is required – though not too high). Due to the vitality
of this network, it is presumably optimized for its task.

A study of the model of the lobster cardiac pacemaker network in [70, 40, 41] showed that
neurons might fail and display highly irregular firing patterns or might also cease to function alto-
gether. Not all the neurons are connected directly to each other, thus an arbitrary firing pattern will
be perceived differently by the other functioning neurons. An additional interesting characteristic
of this neuronal network is the fact that the four neurons that are required to keep tight synchro-
nization may actually de-synchronize into an arbitrary synchronization pattern for a short period
of time due to faults, hormones or even temperature change. The neurons can re-synchronize from
a pattern where they fire completely out of synchrony of each other or any other intermediate syn-
chronization pattern. It is pretentious to map noise or malfunctioning elements of a biological
entity onto well-defined faults in distributed computer systems. Yet it is suggestive to put forward
that the cardiac pacemaker network overcomes failures or situations that seem more extensive than
what falls into the Byzantine framework, such as tolerating seemingly arbitrary behavior by a sin-
gle neuron, and at the same time be able to synchronize from an apparently arbitrary firing pattern
of the neural network.

The first task of this thesis is engineering a “Pulse Synchronization” algorithm for distributed
computer networks, that mimics the behavior of the cardiac pacemaker model, facing faults similar
in nature to the faults tolerated by the neural network. The most suggestive fault model to define
for this algorithm is a combination of the Byzantine and self-stabilization fault models.

12 Introduction

1.2 Model and General Definitions
A description of the timing model is given in Subsection 1.2, due to its importance in understanding
the subtleties of fault-tolerance, as discussed throughout the Introduction.

In the current section we give the full description of the model and all the definitions that
are used throughout the thesis. Definitions that are specific to a certain chapter are given in the
beginning of that chapter. There are constant values that are defined in the current section but hold
different values in the different chapters. These values are defined in the current chapter but get
their specific value in the respective chapter.

The environment is a network of n nodes, that communicate by exchanging messages, out of
which at most f are faulty nodes. The actual number of concurrent faults is denoted f ′ ≤ f. We
assume that the message passing allows for an authenticated identity of the direct senders only.
The communication network does not guarantee any order on messages among different nodes.
When the system is not coherent then there can be an unbounded number of concurrent Byzantine
faulty nodes, the turnover rate between faulty and non-faulty nodes can be arbitrarily large and the
communication network may behave arbitrarily. Eventually the system settles down in a coherent
state in which there at most f < 3n permanent Byzantine faulty nodes, which is the minimal
requirement of redundancy of algorithms for tolerating Byzantine faults, without authentication.
Eventually there is also bounded message delay, which is the minimal timing requirement of a
self-stabilizing algorithm for tolerating any permanent fault. Individual nodes have no access to a
central clock and there is no external pulse system. The hardware clock (referred to as the physical
timer) rate of a correct node has a bounded drift, ρ, from real-time rate. We denote ‘physical
timer’(u,v) the amount of clock ticks of the physical timer in a real-time interval [u, v].

DEFINITION 1.2.1 A node is non-faulty at times that it complies with the following:
1. (Bounded Drift) Obeys a global constant 0 < ρ << 1 (typically ρ ≈ 10−6), such that for

every real-time interval [u, v] :

(1− ρ)(v − u) ≤ ‘physical timer’(u, v) ≤ (1 + ρ)(v − u).

2. (Obedience) Operates according to the protocol.

3. (Bounded Processing Time) Processes any message of the protocol within π real-time units
of arrival time.

A node is considered faulty if it violates any of the above conditions. A Byzantine node may
recover from its faulty behavior once it resumes obeying the conditions of a non-faulty node. In
order to keep the definitions consistent the “correction” is not immediate but rather takes a certain
amount of time during which the non-faulty node is still not counted as a correct node, although
it supposedly behaves “correctly”2. We later specify the time-length of continuous non-faulty
behavior required of a recovering node to be considered correct.

DEFINITION 1.2.2 The communication network is non-faulty at periods that it complies with the
following:

2For example, a node may recover with arbitrary variables, which may violate the validity condition if considered
correct immediately.

1.2 Model and General Definitions 13

• (Bounded Transmission Delay) Any message sent by a non-faulty node will arrive at every
non-faulty node within δ real-time units.

Thus, our communication network model (timing model) is an “eventual bounded-delay” com-
munication network.

Basic definitions and notations:

We use the following notations though nodes do not need to maintain all of them as variables.

• d ≡ δ + π. Thus, when the communication network is non-faulty, d is the upper bound on
the elapsed real-time from the sending of a message by a non-faulty node until it is received
and processed by every correct node.

• A pulse is an internal event targeted to happen in “tight”3 synchrony at all correct nodes. A
Cycle is the “ideal” time interval length between two successive pulses that a node invokes,
as given by the user. The actual cycle length, denoted in regular caption, has upper and lower
bounds as a result of faulty nodes and the physical clock skew.

• σ represents the upper bound on the real-time window within which all correct nodes invoke
a pulse (tightness of pulse synchronization). The solution in Chapter 2 achieves σ = 2d
(σ = d in broadcast networks) whereas the solution in Chapter 7 achieves σ = 3d. We
assume that Cycle À σ.

• φi(t) ∈ R+ ∪ {∞}, 0 ≤ i ≤ n, denotes, at real-time t, the elapsed real-time since the last
pulse invocation of pi. It is also denoted as the “φ of node pi”. We occasionally omit the
reference to the time in case it is clear out of the context. For a node, pj, that has not fired
since initialization of the system, φj ≡ ∞.

• cyclemin and cyclemax are values that define the bounds on the actual cycle length during
correct behavior. The solution in Chapter 2 achieves

cyclemin =
n− 2f

n− f
· Cycle · (1− ρ) ≤ cycle ≤ Cycle · (1 + ρ) = cyclemax ,

whereas the solution in Chapter 7 achieves cyclemin = Cycle−11d ≤ cycle ≤ Cycle+9d =
cyclemax .

• pulse_conv represents the convergence time of the underlying pulse synchronization module.
The pulse procedure in Chapter 7 converges within 6·cycle. The pulse procedure in Chapter 2
converges within O(f) · cycle.

• agreement_duration represents the maximum real-time required for the chosen Byzantine
consensus/agreement procedure to terminate4.

3We consider c · d, for some small constant c, as tight.
4We differentiate between consensus on an initial value held by all nodes and agreement on an initial value sent by

a specific possibly faulty node.

14 Introduction

Note that the protocol parameters n, f and Cycle (as well as the system characteristics d and
ρ) are fixed constants and thus considered part of the incorruptible correct code5. Thus we assume
that non-faulty nodes do not hold arbitrary values of these constants.

A recovering node should be considered correct only once it has been continuously non-faulty
for enough time to enable it to have decayed old messages and to have exchanged information with
the other nodes through at least a cycle.

DEFINITION 1.2.3 The communication network is correct following ∆net
6 real-time of continuous

non-faulty behavior.

DEFINITION 1.2.4 A node is correct following ∆node
7 real-time of continuous non-faulty behavior

during a period that the communication network is correct.

DEFINITION 1.2.5 (System Coherence) The system is said to be coherent at times that it complies
with the following:

1. (Quorum) There are at least n− f correct nodes, where f is the upper bound on the number
of potentially non-correct nodes, at steady state.

2. (Network Correctness) The communication network is correct.

Hence, if the system is not coherent then there can be an arbitrary number of concurrent faulty
nodes; the turnover rate between the faulty and non-faulty nodes can be arbitrarily large and the
communication network may deliver messages with unbounded delays, if at all. The system is
considered coherent, once the communication network and a sufficient fraction of the nodes have
been non-faulty for a sufficiently long time period for the pre-conditions for convergence of the
protocol to hold. The assumption in this thesis, as underlies any other self-stabilizing algorithm, is
that the system eventually becomes coherent.

All the lemmata, theorems, corollaries and definitions hold as long as the system is coherent.

In the algorithms all the correct nodes execute an identical algorithm.
We now seek to give an accurate and formal definition of the notion of pulse synchronization.

We start by defining a subset of the system states, which we call pulse_states, that are determined
only by the elapsed real-time since each individual node invoked a pulse (the φ’s). We then identify
a subset of the pulse_states in which some set of correct nodes have ”tight“ or ”close“ φ’s. We refer
to such a set as a synchronized set of nodes. To complete the definition of synchrony there is a need
to address the recurring brief time period in which a correct node in a synchronized set of nodes
has just fired while others are about to fire. This is addressed by adding to the definition nodes
whose φ’s are almost a Cycle apart.

If all correct nodes in the system comprise a synchronized set of nodes then we say that the
pulse_state is a synchronized_pulse_states of the system. The objective of the algorithm is hence
to reach a synchronized_pulse_state of the system and to stay in such a state.

5A system cannot self-stabilize if the entire code space can be perturbed, see [39].
6This constant is defined specifically in every chapter.
7This constant is defined specifically in every chapter.

1.2 Model and General Definitions 15

• The pulse_state of the system at real-time t is given by:

pulse_state(t) ≡ (φ0(t), . . . , φn−1(t)) .

• Let G be the set of all possible pulse_states of a system.

• A set of nodes, S, is called synchronized at real-time t if
∀pi, pj ∈ S, φi(t), φj(t) ≤ cyclemax, and one of the following is true:

1. |φi(t)− φj(t)| ≤ σ, or

2. cyclemin − σ ≤ |φi(t)− φj(t)| ≤ cyclemax and |φi(t− σ)− φj(t− σ)| ≤ σ.

• s ∈ G is a synchronized_pulse_state of the system at real-time t if the set of correct nodes
is synchronized at real-time t.

DEFINITION 1.2.6 The Self-Stabilizing Pulse Synchronization Problem

Convergence: Starting from an arbitrary system state, the system reaches a synchronized_pulse_state
after a finite time.

Closure: If s is a synchronized_pulse_state of the system at real-time t0 then ∀ real-time t, t ≥ t0,

1. pulse_state(t) is a synchronized_pulse_state,

2. In the real-time interval [t0, t] every correct node will invoke at most a single pulse if
t− t0 ≥ cyclemin and will invoke at least a single pulse if t− t0 ≥ cyclemax.

The second Closure condition intends to tightly bound the effective pulse invocation frequency
within a priori bounds. This is in order to defy any trivial solution that could synchronize the
nodes, but be completely unusable, such as instructing the nodes to invoke a pulse every σ time
units. Note that this is a stronger requirement than the “linear envelope progression rate” typically
required by clock synchronization algorithms, in which it is only required that clock time progress
as a linear function of real-time.

We now prove the lower bound of n > 3f for the Byzantine pulse synchronization problem.

Theorem 1.2.1 The “Self-stabilizing Byzantine Pulse Synchronization Problem” requires n > 3f .

Proof: This lower bound is derived by reduction to non-stabilizing Byzantine clock synchroniza-
tion. In [37] it is proven that n > 3f is required for clock synchronization. The proof is done by
reducing a slightly simplified variation of the algorithm in Figure 4.1 to an algorithm for Byzantine
clock synchronization, in an environment with no transient failures only Byzantine failures. The
reduction is done as follows: A pulse synchronization procedure that does not require n > 3f,
with some value of Cycle, is executed in the background. The clock synchronization algorithm is
initialized, at a time that the pulses are already synchronized (there are no transient failures) and by
setting clock = 0. The only difference from the original protocol in Figure 4.1 is that subsequent
to each pulse every node sets the next expected time, Next_ET as a function of the last expected
time at pulse, ET, as follows: Next_ET := ET + Cycle. This is essentially the same algorithm

16 Introduction

only without executing Byzantine Consensus on the next expected time, which is not needed since
the clock synchronization algorithm is initialized with synchronized clocks. Thus all correct nodes
will always set the next expected time to identical values. Following the same arguments as the
original protocol it can be easily seen that this results in a clock synchronization algorithm which
does not require n > 3f. A contradiction to the proven required bound for clock synchronization.

1.3 Dissertation Overview
A brief description of the algorithms and their relationship is given below. In the subsections that
follow we review and elaborate on the main results.

First, a biologically-inspired self-stabilizing Byzantine pulse synchronization algorithm is de-
veloped in Chapter 2. It assumes no prior coordination or synchronization besides eventual bounded
message delay.

In Chapter 3, it shown how, by assuming synchronized pulses, almost any Byzantine algorithm
can be converted to its self-stabilizing Byzantine counterpart. This “Byzantine Stabilizer” adds
only a linear time complexity overhead to the Byzantine algorithm to be stabilized.

In Chapter 4 a linear-time self-stabilizing Byzantine clock synchronization algorithm is devel-
oped, on top of synchronized pulses. This algorithm is highly optimized so that it is significantly
faster than if taking an arbitrary existing non-stabilizing Byzantine clock synchronization algo-
rithm and then use the stabilizer scheme of Chapter 3.

In Chapter 5 we do the same for the token circulation problem. This is the first self-stabilizing
Byzantine token circulation algorithm, to the best of our knowledge. Like the clock synchro-
nization algorithm, this algorithm is also highly optimized so that it is significantly faster than if
taking an arbitrary existing non-stabilizing Byzantine token circulation algorithm and then use the
stabilizer scheme of Chapter 3.

In Chapter 6 we develop a self-stabilizing Byzantine agreement algorithm, which does not
execute on top of pulse synchronization. It only assumes eventual bounded message delay. It is
also faster than if using the stabilizer scheme of Chapter 3.

In Chapter 7 we present a self-stabilizing Byzantine pulse synchronization algorithm that is
executed on top of the self-stabilizing Byzantine agreement algorithm presented in Chapter 6. It is
fundamentally different than the biologically-inspired one presented in Chapter 2 but in compari-
son, is more complicated but faster.

For brevity we will use the following shorthand notations in the titles of the chapters: “SS.”
will denote ”self-stabilizing“ and “Byz.” will denote ”Byzantine“.

1.3.1 SS. Byz. Pulse Synchronization Inspired by Biological Networks
This result is described in Chapter 2 and has been published in [22]. The algorithm we devise to
solve the “Pulse Synchronization” problem resembles non-linear physical/biological pulse-coupled
synchronization models [61]. It may have some similarities to simulated annealing in its iterative
convergence but our algorithms does not do random mutations to achieve a better local minimum
rather converges deterministically, whereas annealing models and algorithms converge probabilis-
tically to a minimum.

1.3 Dissertation Overview 17

We denote Cycle the targeted time-interval between pulse invocations. The convergence time is
2(2f +1) cycles, where each cycle is O(f 2) communication rounds. The synchronization tightness
of the pulses is near-optimal to within d real-time, in case of a broadcast network, in which any
message from a Byzantine node eventually reaches every node. We show in Subsection 2.2 how
the algorithm can be executed in a non-broadcast network, in which Byzantine node may display
two-faced behavior, achieving synchronization of the pulses to within 3d real-time.

The message complexity is at most n messages per cycle, thus to reach synchronization from
any arbitrary state its at most 2n(2f + 1) messages.

The faulty nodes cannot ruin an already attained synchronization; in the worst case, they can
slow down the convergence towards synchronization and speed up the synchronized firing fre-
quency up to twice the original frequency. Thus the synchronization accuracy (deviation from
real-time rate), is 0.5 Cycle.

In comparison to the pulse synchronization algorithm of Chapter 7, the current algorithm is
simpler, uses significantly shorter messages; it has a much smaller message complexity and can
utilize broadcast network to obtain near-optimal synchronization tightness. Note that although the
current algorithm has worse accuracy than the one of Chapter 7, we show in Chapter 4, a method
where this has no significance for the clock synchronization algorithm that executes on top. This
is also true for the scheme developed in Chapter 3, as long as the effective cycle is longer than the
required minimum. In addition the current algorithm introduces novel and interesting elements to
distributed computing.

1.3.2 Stabilization of General Byz. Algorithms using Pulse Synchronization

We present a scheme that takes a general Byzantine algorithm and produces its self-stabilizing
Byzantine counterpart. This result is described in Chapter 3 and has been published in [19].
The algorithm operates in the semi-synchronous network model typical of Byzantine protocols,
though the scheme will also transform any asynchronous algorithm into its self-stabilizing semi-
synchronous counterpart. The algorithm has a relatively low overhead of O(f ′) communication
rounds, in addition to the inherent time complexity of the algorithm to be stabilized. The protocol
assumes synchronized pulses that are used as events for initializing (non-stabilizing) Byzantine
agreement on every node’s local state. This ensures that following some bounded time there is
consensus on the local state of every node (inclusive of faulty nodes). All correct nodes then
evaluate whether this global application snapshot corresponds to a legal state of the Byzantine al-
gorithm and, if required, collectively reset it to a consistent state at the next pulse. We utilize a
non-stabilizing Byzantine consensus protocol that works in a time-driven manner that is presented
in Chapter 4, which makes the agreement procedure progress as a function of the actual message
transmission times and not the upper bound on the message transmission time. Consequently, the
additional overhead can in effect be very low.

We also suggest an alternative scheme which may yield for certain algorithms a minimal O(1)
overhead during steady-state. In Chapter 4 and Chapter 5 we develop several algorithms along the
lines of this scheme.

18 Introduction

1.3.3 SS. Byz. Clock Synchronization using Pulse Synchronization
This result is described in Chapter 4 and has been published in [21]. We present a self-stabilizing
Byzantine clock synchronization protocol with the following property: should the system initialize
or recover from any transient faults with arbitrary clock values then the clocks of the correct nodes
proceed synchronously at real-time rate. Should the clocks of the correct nodes hold values that
are close to real-time, then the correct clocks proceed synchronously with high real-time accuracy.
The protocol significantly improves upon existing self-stabilizing Byzantine clock synchroniza-
tion algorithms by reducing the time complexity from expected exponential ([34]) to deterministic
O(f ′). The protocol improves upon existing non-stabilizing Byzantine clock synchronization al-
gorithms by providing self-stabilization while performing with similar complexity.

This deterministic clock synchronization algorithm is based on the observation that all clock
synchronization algorithms require events for exchanging clock values and re-synchronizing the
clocks to within safe bounds. These events usually need to happen synchronously at the different
nodes. In classic Byzantine algorithms this is fulfilled or aided by having the clocks initially close
to each other and thus the actual clock values can be used for synchronizing the events. This
implies that clock values cannot differ arbitrarily, which necessarily renders these solutions to be
non-stabilizing. Our scheme assumes an underlying distributed pulse synchronization module,
which is uncorrelated to any clock values. The synchronized pulses are used as the events for
re-synchronizing the clock values by triggering a consensus algorithm on the expected clock value
at the next pulse. The algorithm is very efficient and attains and maintains high precision of the
clocks. It converges with linear time complexity has a strong advantage that after all clocks are
synchronized the algorithm’s overhead is minimal. This is due to the fortuitous property of the
consensus algorithm used (see Subsection 4.4), that terminates in two rounds, despite the presence
of f permanent Byzantine nodes, should all correct nodes hold the the same initial consensus
value. In comparison, taking the classic non-stabilizing Byzantine clock synchronization algorithm
and devising its self-stabilizing counterpart using our Byzantine stabilizer scheme, will yield an
algorithm which has O(f ′) communication rounds overhead during steady-state.

The attained clock precision and accuracy is 11d + O(ρ) real-time units, though we present
an additional scheme that can attain clock precision and accuracy of 3d + O(ρ). The convergence
time is O(f ′) communication rounds and O(1) during steady-state. It is interesting to note that the
time complexity, precision and accuracy of this clock synchronization algorithm is as good as the
best non-stabilizing Byzantine clock synchronization algorithms [6].

An additional advantage of our algorithm is the use of a Byzantine consensus protocol in Sub-
section 4.4 that works in a message driven manner. The basic protocol follows closely the early
stopping Byzantine agreement protocol of Toueg, Perry and Srikanth [73] but is stated as a con-
sensus algorithm. The main difference is that our protocol rounds progress at the rate of the actual
time of information exchange among the correctly operating nodes. This, typically, is much faster
than progression with rounds whose time lengths are functions of the upper bound on message
delivery time between correct nodes.

1.3.4 SS. Byz. Token Circulation using Pulse Synchronization
This result is described in Chapter 5. Much work has been devoted in the last decades to the token
circulation (or leader election) problem. Some papers focus on resilience to permanent faults. To

1.3 Dissertation Overview 19

the best of our knowledge, there is no self-stabilizing token circulation algorithm that tolerates
Byzantine faults.

The problem with handling failures in token circulation is how to maintain the circulation of the
token, despite the failure of the node holding the token. Token circulation (as well as leader election
and mutual exclusion) has been extensively studied in the context of self-stabilization [46,32,3,43].
There are several non-stabilizing protocols that are tolerant to permanent failures, e.g. [42, 2, 62],
and very few that self-stabilize while tolerating permanent failures [48,16,9]. Note that the protocol
in [16] is a self-stabilizing mutual exclusion algorithm that tolerates permanent arbitrary faults.
These may resemble Byzantine faults but it is assumed that correct nodes can identify faulty nodes
which thus makes it a much stronger fault model than Byzantine faults. In [5] it is shown that
no self-stabilizing Byzantine token circulation protocol can exist in asynchronous systems, even if
randomized.

The protocol assumes pulse synchronization. The synchronized pulses are used as events for
initializing Byzantine consensus on the proposition of the identity of the next node to hold the
token. Once the pulse is invoked, the correct nodes exchange the id of the expected next token
holder. If all correct nodes hold the same proposition when invoking the agreement, then the
additional overhead to agree on the next token holder is minimal, merely two communication
rounds. Otherwise, the nodes initiate consensus on the id of the next token holder and henceforth,
as long as the network performs coherently, they will all have the same proposition of the next
token holder. Every node holds the token about 1/nth part of the time, where n is the number of
nodes in the network. It thus achieves optimal fairness despite the presence of up-to f < n/3
Byzantine nodes. Following a transient chaotic situation, the system converges to a desired state
within O(f ′) communication rounds. We also show how to use this scheme to efficiently solve a
general resource allocation problem as well as distributed graph coloring.

During steady-state there is only a constant O(1) time complexity overhead. Using the stabi-
lizer scheme in Chapter 3 would yield an algorithm with O(f ′) communication rounds overhead
during steady-state.

1.3.5 SS. Byz. Agreement without using Pulse Synchronization
It is not clear whether agreement is a stronger form of synchronization than pulse synchronization.
In practice though, using the building blocks of this thesis, self-stabilizing Byzantine agreement
can be realized easily using a pulse synchronization procedure: the pulse invocation can serve
as the initialization event for round zero of the agreement protocol. Thus any existing Byzantine
agreement protocol may be used, on top of the pulse synchronization procedure, to attain self-
stabilizing Byzantine agreement. Such a scheme though has the additional overhead for conver-
gence of a self-stabilizing Byzantine pulse synchronization procedure, in addition to at least O(f ′)
communication rounds of the existing non-stabilizing Byzantine agreement. Chapter 6 presents
self-stabilizing Byzantine agreement without assuming synchronized pulses which converges in
O(f ′) communication rounds and is thus much faster. It reaches agreement among the correct
nodes in optimal time, and by using only the assumption of bounded message transmission delay.
In the process of solving the problem, two additional important and challenging building blocks
were developed: a unique self-stabilizing protocol for assigning consistent relative times to proto-
col initialization and a reliable broadcast primitive that progresses at the speed of actual message
delivery time.

20 Introduction

The protocol can be executed in a one-shot mode by a single General or by infinite recurrent
agreement initializations and by different Generals every time.

For ease of following the arguments and proofs, the structure and logic of our self-stabilizing
Byzantine agreement algorithm is modeled on that of [73]. The rounds in that protocol progress
following elapsed time. Each round spans a constant predefined time interval. Our protocol,
besides being self-stabilizing, has the additional advantage of having a message-driven rounds
structure and not time-driven rounds structure. Thus the actual time for terminating the protocol
depends on the actual communication network speed and not on the worst possible bound on
message delivery time.

1.3.6 SS. Byz. Pulse Synchronization using SS. Byz. Agreement

In Chapter 7 an alternative self-stabilizing pulse synchronization algorithm is presented, which is
fundamentally different to that in Chapter 2.

Realizing self-stabilizing Byzantine pulse synchronization through the use of self-stabilizing
Byzantine agreement only, seems very complicated. This may indicate that agreement is proba-
bly a weaker form of synchronization than pulse synchronization. Intuitively, achieving synchro-
nized pulses on top of a classic (non-stabilizing) Byzantine agreement should supposedly be rather
straightforward: Execute non-stabilizing Byzantine agreement on the elapsed time remaining until
the next pulse invocation. This scheme requires the correct nodes to terminate agreement within
a short time of each other. The major issue is that, unfortunately, when facing transient failures,
the system may end up in a state in which any common reference to time or even common an-
chor in time might be lost. This preempts the use of classic (non-stabilizing) Byzantine agreement
and or non-stabilizing reliable broadcast, as these classic tools typically assume initialization with
a common reference to time or common reference to a round number. Thus, a common anchor
in time is required to execute agreement which aims at attaining and maintaining a common an-
chor in time, the synchronized pulses. Thus, what is required, is an agreement algorithm that is
both self-stabilizing and Byzantine. This apparent “cyclic paradox” is resolved by utilizing the
self-stabilizing Byzantine agreement protocol in Chapter 6. Achieving synchronized pulses is still
not trivial since merely using self-stabilizing Byzantine agreement to agree on the elapsed time
remaining until the next pulse invocation does not prevent the nodes from initializing multiple
concurrent agreements, which may result in an arbitrary effective pulse frequency. This is solved
by a procedure which aims at first agreeing on a timing event for initialization of agreement on the
elapsed time until the next pulse invocation.

The attained pulse synchronization tightness is 3d. The bound on the effective length of the
cycle (the targeted time between successive pulses) attained is within O(d) of the targeted length of
Cycle. This equals the synchronization accuracy (deviation from real-time rate). The convergence
time is 6 cycles, each containing O(f) communication rounds.

In comparison to the pulse synchronization algorithm in Chapter 2, the current solution has
a much higher message complexity and much larger message size, and cannot utilize broadcast
networks to obtain a near-optimal pulse tightness. The algorithm is also more complicated but
converges very fast, whereas that solution converges in about 4f cycles with O(f 2) communication
rounds each. Moreover the accuracy is much better than the algorithm in Chapter 2 although this
has no significance for the algorithms in this thesis that assume an underlying pulse mechanism.

1.3 Dissertation Overview 21

Summary of the Algorithms Relationships and their Complexities

Algorithm Chapter Synchronization Precision Accuracy Convergence Messages
Type that is Assumed Time (d units) per cycle
Pulse Synch Ch. 2 Bounded Delay d and 3d 0.5 Cycle O(f3) n and O(n3)
Pulse Synch Ch. 7 SS. Byz. Agreement 3d O(d) 6f O(n3)
Stabilizer Ch. 3 Pulse Synch that of pulse that of pulse O(f ′) O(f ′ · n2)
Clock Ch. 4 Pulse Synch 11d + O(ρ) 11d + O(ρ) 3(2f ′ + 5) O(nf ′2)
Approx Clock Ch. 4 Pulse Synch 3d + O(ρ) 3d + O(ρ) O(f ′) O(nf ′2)
Token Ch. 5 Pulse Synch that of pulse that of pulse 3(2f ′ + 5) O(nf ′2)
Agreement Ch. 6 Bounded Delay termination 3d NA O(f ′) O(n3)

Table 1.1: Comparison of the complexities of the different algorithms developed in the thesis
and their relationships. It shows for each algorithm its assumed prior synchronization. E.g. the
clock synchronization algorithm assumes that there are synchronized pulses whereas the agree-
ment algorithm assumes nothing beyond the minimal requirement of a bounded delay network.
The convergence time and message complexities are not inclusive of the underlying synchroniza-
tion primitives that are assumed. E.g. the stated message complexity of the clock synchronization
does not include the messages of the pulse synchronization as it can use any pulse synchroniza-
tion procedure. On the other hand, the specific precision and accuracy presented for the clock
synchronization is derived from using one of the pulse synchronization algorithms in this thesis.

22 Pulse Synchronization Inspired by Biological Pacemaker Networks

Chapter 2

Self-stabilizing Byzantine Pulse
Synchronization Inspired by Biological
Pacemaker Networks

We present a novel algorithm in the settings of self-stabilizing distributed algorithms, instructing
the nodes how and when to invoke a pulse in order to meet the synchronization requirements of
“Pulse Synchronization”. The core elements of the algorithm are analogous to the neurobiological
principles of endogenous (self generated) periodic spiking, summation and time dependent refrac-
toriness. The basic algorithm is quite simple: every node invokes a pulse regularly and sends a
message upon invoking it (endogenous periodic spiking). The node sums messages received from
other nodes in some “window of time” (summation) and compares this to the continuously decreas-
ing time dependent firing threshold for invoking a new pulse (time dependent refractory function).
The node fires when the count of the summed messages crosses the current threshold level, and
then resets its cycle. For in-depth explanations of these neurobiological terms see [50].

2.1 Specific Definitions
The nodes regularly invoke “pulses”, ideally every Cycle real-time units. The invocation of the
pulse is expressed by sending a message to all the nodes; this is also referred to as firing.

Basic definitions and notations:

We use the following notations though nodes do not need to maintain all of them as variables.
• message_decay represents the maximal real-time a non-faulty node will keep a message or

a reference to it, before deleting it1.

DEFINITION 2.1.1 A node is correct following ∆node = cyclemax + σ + message_decay real-time
of continuous non-faulty behavior.

DEFINITION 2.1.2 The communication network is correct following ∆net = cyclemax + σ +
message_decay real-time of continuous non-faulty behavior.

1The exact elapsed time until deleting a messages is specified in the PRUNE procedure in Fig. 2.2.

2.2 The “Pulse Synchronization” Algorithm 23

In accordance with Definition 1.2.2, the network model in this thesis is such that every message
sent or received by a non-faulty node arrives within bounded time, δ, at all non-faulty nodes.
The algorithm and its respective proofs are specified in a stronger network model in which every
message received by a non-faulty node arrives within δ time at all non-faulty nodes. The subtle
difference in the latter definition equals the assumption that every message received by a non-
faulty node, even a message from a Byzantine node, will eventually reach every non-faulty node.
This weakens the possibility for two-faced behavior by Byzantine nodes. The algorithm is able
to utilize this fact so that if executed in such a network environment, then it can attain a very
tight pulse synchronization of d real-time units. We show in Subsection 2.2 how to execute in the
background a self-stabilizing Byzantine reliable-broadcast-like primitive, which executes in the
network model of Definition 1.2.2. This primitive effectively relays every message received by a
non-faulty node so that the latter network model is satisfied. In such a case the algorithm can be
executed in the network model of Definition 1.2.2 and achieves synchronization of the pulses to
within 3d real-time.

2.2 The “Pulse Synchronization” Algorithm

We now present the BIO-PULSE-SYNCH algorithm that solves the “Pulse Synchronization” prob-
lem defined in Definition 1.2.6, inspired by and following a neurobiological analog. The refrac-
tory function describes the time dependency of the firing threshold. At threshold level 0 the node
invokes a pulse (fires) endogenously. The algorithm uses several sub-procedures. With the help
of the SUMMATION procedure, each node sums the pulses that it learns about during a recent time
window. If this sum (called the Counter) crosses the current (time-dependent) threshold for firing,
then the node will fire, i.e broadcasts its Counter value at the firing time. The exact properties of
the time window for summing messages is determined by the message decay time in the PRUNE

procedure (see Fig. 2.2).

We now show in greater detail the elements and procedures described above.

The refractory function
The Cycle is the predefined time a correct node will count on its timer before invoking an endoge-
nous pulse. The refractory function, REF (t) : t → {0..n+1}, determines at every moment the
threshold for invoking a new pulse. The refractory function is determined by the parameters Cycle
n, f , d and ρ. All correct nodes execute the same protocol with the same parameters and have the
same refractory function. The refractory function is shaped as a monotonously decreasing step
function comprised of n + 2 steps, REF ≡ (Rn+1, Rn, ..., R0), where step Ri ∈ R+ is the time
length on the node’s timer of threshold level i. The refractory function REF, starts at threshold
level n + 1 and decreases with time towards threshold level 0. The time length of each threshold
step is formulated in Eq. 2.1:

24 Pulse Synchronization Inspired by Biological Pacemaker Networks

Ri =

1
1−ρ

Cycle

n−f
i = 1 . . . n− f − 1

R1−Rn+1− ρ
1−ρ

Cycle

f+1
i = n− f . . . n

2d(1 + ρ) · (1+ρ
1−ρ

)n+3−1

(1+ρ
1−ρ

)−1
i = n + 1.

(2.1)

Subsequent to a pulse invocation the refractory function is restarted at REF = n+1. The node
will then commence threshold level n only after measuring Rn+1 time units on its timer. Threshold
level 0 (REF = 0) is reached only if exactly Cycle time units have elapsed on a node’s timer since
the last pulse invocation, following which threshold level n + 1 is reached immediately. Hence, by
definition,

∑n+1
i=1 Ri ≡ Cycle. It is proven later in Lemma 2.3.2 that REF in Eq. 2.1 is consistent

with this.
The special step Rn+1 is called the absolute refractory period of the cycle. Following the

neurobiological analogue with the same name, this is the first period after a node fires, during which
its threshold level is in practice “infinitely high”; thus a node can never fire within its absolute
refractory period.

See Fig. 2.7 for a graphical presentation of the refractory function and its role in the main
algorithm.

The message sent when firing
The content of a message Mp sent by a node p, is the Counter, which represents the number of
messages received within a certain time window (whose exact properties are described in the proof
section in Section 2.6) that triggered p to fire. We use the notation Counterp to mark the local
Counter at node p and CounterMp to mark the Counter contained in a received message Mp sent
by node p.

The SUMMATION procedure
A full account of the proof of correctness of the SUMMATION procedure is provided in Section 2.6.
The SUMMATION procedure is executed upon the arrival of a new message. Its purpose is to decide
whether this message is eligible for being counted. It is comprised of the following sub-procedures:

Upon arrival of the new message, the TIMELINESS procedure determines if the Counter con-
tained in the message seems “plausible” (timely) with respect to the number of other messages
received recently (it also waits a short time for such messages to possibly arrive). The bound on
message transmission and processing time among correct nodes allows a node to estimate whether
the content of a message it receives is plausible and therefore timely. For example, it does not
make sense to consider an arrived message that states that it was sent as a result of receiving 2f
messages, if less than f messages have been received during a recent time window. Such a message
is clearly seen as a faulty node by all correct nodes. On the other, a message that states that it was
sent as a result of receiving 2f messages, when 2f−1 messages have been received during a recent
time window does not bear enough information to decide whether it is faulty or not, as other cor-
rect nodes may have decided that this message is timely, due to receiving a faulty message. Such
a message needs to be temporarily tabled so that it can be reconsidered for being counted in case
some correct node sends a message within a short time, and which has counted that faulty message.
Thus, intuitively, a message will be timely if the Counter in that messages is less or equal to the

2.2 The “Pulse Synchronization” Algorithm 25

total number of tabled or timely messages that were received within a short recent time window.
The exact length of the “recent” time window is a crucial factor in the algorithm. There is no fixed
time after which a message is too old to be timely. The time for message exchange between correct
nodes is never delayed beyond the network and processing delay. Thus, the fire of a correct node,
as a consequence of a message that it received, adds a bounded amount of relay time. This is the
basis for the time window within which a specific Counter of a message is checked for plausibility.
Hence, a particular Counter of a message is plausible only if there is a sufficient number of other
messages (tabled or not) that were received within a sufficiently small time window to have been
relayed from one to the other within the bound on relaying between correct nodes. As an example,
consider that the bound on the allowed relay interval of messages is taken to be 2d time units.
Suppose that a correct node receives a message with Counter that equals k. That message will only
be considered as timely if there are at least k + 1 messages that were received (including the last
one) in the last k · 2d time window. This is the main criterion for being timely. On termination of
the procedure the message is said to have been assessed.

If a message is assessed as timely then the MAKE-ACCOUNTABLE procedure determines by
how much to increment the Counter. It does so by considering the minimal number of recently
tabled messages that were needed in order to assess the message as timely. This number is the
amount by which the Counter is incremented by. A tabled message is marked as “uncounted” be-
cause the node’s Counter does not reflect this message. Tabled messages that are used for assessing
a message as timely become marked as “counted” because the node’s Counter now reflect these
message as if they were initially timely. A node’s Counter at every moment is exactly the number
of messages that are marked as “counted” at that moment.

The PRUNE procedure is responsible for the tabling of messages. A correct node wishes to
mark as counted, only those messages which considering the elapsed time since their arrival, will
together pass the criterion for being timely at any correct nodes receiving the consequent Counter
to be sent. Thus, messages that were initially assessed as timely are tabled after a short while.
This is what causes the Counter to dissipate. After a certain time messages are deleted altogether
(decayed).

SUMMATION(a new message Mp arrived at time tarr) /* at node q */

if (TIMELINESS(Mp, tarr) == “Mp is timely”) then
MAKE-ACCOUNTABLE(Mp); /* possibly increment Counterq */
PRUNE(t);

Figure 2.1: The SUMMATION procedure

The target of the SUMMATION procedure is formulated in the following two properties:

Summation Properties: Following the arrival of a message from a correct node:

P1: The message is assessed within d real-time units.

P2: Following assessment of the message the receiving node’s Counter is incremented to hold a
value greater than the Counter in the message.

The SUMMATION procedure satisfies the Summation Properties by the following heuristics:

26 Pulse Synchronization Inspired by Biological Pacemaker Networks

• When the Counter crosses the threshold level, either due to a sufficient counter increment or
a threshold decrement, then the node sends a message (fires). The message sent holds the
value of Counter at sending time.

• The TIMELINESS procedure is employed at the receiving node to assess the credibility (time-
liness) of the value of the Counter contained in this message. This procedure ensures that
messages sent by correct nodes with Counter less than n will always be assessed as timely
by other correct nodes receiving this message.

• When a received message is declared timely and therefore accounted for it is stored in a
“counted” message buffer (“Counted Set”). The receiving node’s Counter is then updated to
hold a value greater than the Counter in the message by the MAKE-ACCOUNTABLE proce-
dure.

• If a message received is declared untimely then it is temporarily stored in an “uncounted”
message buffer (“Uncounted Set”) and will not be accounted for at this stage. Over time, the
timeliness test of previously stored timely messages may not hold any more. In this case,
such messages will be moved from the Counted Set to the Uncounted Set by the PRUNE

procedure.

• All messages are deleted after a certain time-period (message decay time) by the PRUNE

procedure.

Definitions and state variables:

Counter: an integer representing the node’s estimation of the number of timely firing events re-
ceived from distinct nodes within a certain time window. Counter is updated upon receiving a
timely message. The node’s Counter is checked against the refractory function whenever one of
them changes. The value of Counter is bounded and changes non-monotonously; the arrival of
timely events may increase it and the decay/untimeliness of old events may decrease it.

Stored message: is a basic data structure represented as (Sp, tarr) and created upon arrival of a
message Mp. Sp is the id (or signature) of the sending node p and tarr is the local arrival time of
the message. We say that two stored messages, (Sp, t1) and (Sq, t2), are distinct if p 6= q.

Counted Set (CS): is a set of distinct stored messages that determine the current value of Counter.
The Counter reflects the number of stored messages in the Counted Set. A stored message is ac-
counted for in Counter, if it was in CS when the current value of Counter was determined.

Uncounted Set (UCS): is a set of stored messages, not necessarily distinct, that have not been
accounted for in the current value of Counter and that are not yet due to decay. A stored message is
placed (tabled) in the UCS when its message clearly reflects a faulty sending node (such as when
multiple messages from the same node are received) or because it is not timely anymore.

Retired UCS (RUCS): is a set of distinct stored messages not accounted for in the current value
of Counter due to the elapsed local time since their arrival. These stored messages are awaiting

2.2 The “Pulse Synchronization” Algorithm 27

deletion (decaying).

The CS and UCS are mutually exclusive and together reflect the messages received from other
nodes in the preceding time window. Their union is denoted the node’s Message_Pool.

tsend Mp: denotes the local-time at which a node p sent a message Mp. An equivalent definition of
tsend Mp is the local-time at which a receiving node p is ready to assess whether to send a message
consequent to the arrival and processing of some other message.

MessageAge(t, q, p): is the elapsed time, at time t, on a node q’s clock since the most recent
arrival of a message from node p, which arrived at local-time tarr. Thus, its value at node q at
current local-time t is given by t− tarr, where Mp is the most recent message that arrived from p.
If no stored message is held at q for p then MessageAge(t, q, p) = ∞.

CSAge(t): denotes, at local-time t, the largest MessageAge(t, q, . . .) among the stored mes-
sages in CS of node q.

τ : denotes the function τ(k) ≡ 2d(1 + ρ)
(1+ρ
1−ρ

)k+1−1

(1+ρ
1−ρ

)−1
.

The set of procedures used by the SUMMATION procedure (at node q):

The following procedure moves and deletes obsolete stored
messages. It prunes the CS to hold only stored messages such
that a message sent holding the resultant Counter will be
assessed as timely at any correct receiving node.

PRUNE (t) /* at node q */

• Delete from RUCS all entries (Sp, t) whose
MessageAge(t, q, p) > τ(n + 2);

• Move to RUCS, from the Message_Pool, all stored
messages (Sp, t) whose MessageAge(t, q, p) > τ(n + 1);

• Move to UCS, from CS, stored messages, beginning with
the oldest, until: CSAge(t) ≤ τ(k−1), where k = max[1, ‖CS‖];

• Set Counter := ‖CS‖;

Figure 2.2: The PRUNE procedure

28 Pulse Synchronization Inspired by Biological Pacemaker Networks

We say that Mp has been assessed by q, once the following procedure
is completed. A message Mp, is timely at local-time tarr at node q
once it is declared timely by the procedure, i.e. 1: whether the
Counter in the message is within its valid range; 2: whether
the sending node has recently sent a message, in which only
the latest is considered; 3: whether enough messages have been
received recently to support the credibility of the Counter in
the message.

TIMELINESS (Mp, tarr) /* at node q */
/* check if Counter is valid */

Timeliness Condition 1:
If (0 ≤ CounterMp

≤ n− 1) Then
Create a new stored message (Sp, tarr) and insert it into UCS;

Else
return “Mp is not timely”;

/* if an older message from same node already exists then must be
a faulty node. Delete all its entries but the latest. */

Timeliness Condition 2:
If (∃(Sp, t), s.t. t 6= tarr, in Message_Pool ∪ RUCS) Thena

delete from Message_Pool all (Sp, t
′), where t′ 6= tarr;

return “Mp is not timely”;

/* check if CounterMp seems credible with respect to the
Message_Pool */

Timeliness Condition 3:
Let k denote CounterMp .
If (at some local-time t in the interval [tarr, tarr + d(1 + ρ)] :
‖{(Sr, t

′)|(Sr, t
′) ∈ Message_Pool,MessageAge(t, q, r) ≤ τ(k+1)}‖ ≥ k +1) Thenb

return “Mp is timely”;
Else
return “Mp is not timely”;

aWe assume no concomitant messages are stamped with the exact same arrival times at a correct
node. We assume that one can uniquely identify messages.

bWe assume the implementation can assess these conditions within the time window.

Figure 2.3: The TIMELINESS procedure

This procedure moves stored messages from UCS into CS and updates
the value of Counter. This is done in case the arrival of a new
timely message Mp, has made previously uncounted stored messages
eligible for being counted.

MAKE-ACCOUNTABLE (Mp) /* at node q */

• Move the max[1, (CounterMp − Counterq + 1)] most recent distinct
stored messages from UCS to CS;

• Set Counter := ‖CS‖;

Figure 2.4: The MAKE-ACCOUNTABLE procedure

2.2 The “Pulse Synchronization” Algorithm 29

This procedure causes the effective cycle of the node to
be reset, meaning that the REF function starts the cycle
from the highest threshold level again and down to threshold
level 0.

CYCLE-RESET () /* at node q */

• Restart REF at REF := n+1;

Figure 2.5: The CYCLE-RESET procedure

We now cite the main theorems of the SUMMATION procedure. The proofs are given in Sec-
tion 2.6.

Theorem 2.2.1 Any message, Mp, sent by a correct node p will be assessed as timely by every
correct node q.

Lemma 2.2.1 Following the arrival of a timely message Mp, at a node q, then at time tsend Mq ,
Counterq > CounterMp .

Theorem 2.2.2 The SUMMATION procedure satisfies the Summation Properties.

Proof: Let p denote a correct node that sends Mp. Theorem 2.2.1 ensures that Mp is assessed as
timely at every correct node. Lemma 2.2.1 ensures that the value of Counter will not decrease
below CounterMp + 1 until local-time tsend Mp , thereby satisfying the Summation Properties.

30 Pulse Synchronization Inspired by Biological Pacemaker Networks

The event driven “pulse synchronization” algorithm
Fig. 2.6 shows the main algorithm. Fig. 2.7 illustrates the mode of operation of the main algorithm.

BIO-PULSE-SYNCH(n, f, Cycle) /* at node q */

• It is assumed that all the parameters and variables
are verified to be within their range of validity.
• t is the local-time at the moment of executing the
respective statement.

if (a new message Mp arrives at time tarr) then
SUMMATION((Mp, tarr));
if (Counterq ≥ REF (t)) then
Broadcast Counterq to all nodes; /* invocation of the

Pulse */
CYCLE-RESET();

if (change in threshold level according to REF) then
PRUNE(t);
if (Counterq ≥ REF (t)) then
Broadcast Counterq to all nodes; /* invocation of the

Pulse */
CYCLE-RESET();

Figure 2.6: The event driven BIO-PULSE-SYNCH algorithm

Counter

“Pulse” -
Message Sending

a.

end of cycle

n+1 b.

cycle reset

time

Refractory function

th
re

sh
ol

d

Figure 2.7: Schematic example of the mode of operation of BIO-PULSE-SYNCH: (a.) The node’s Counter (the
summed messages) does not cross the threshold during the cycle, letting the refractory function reach zero and conse-
quently the node fires endogenously. (b.) Sufficient messages from other nodes are received in time window for the
Counter to surpass the current threshold, consequently the node fires early and resets its cycle.

A Reliable-Broadcast Primitive
In the current subsection we show that the BIO-PULSE-SYNCH algorithm can also operate in net-
works in which Byzantine nodes may exhibit true two-faced behavior. This is done by executing
in the background a self-stabilizing Byzantine reliable-broadcast-like primitive, which assumes no

2.3 Proof of Correctness of BIO-PULSE-SYNCH 31

synchronicity whatsoever among the nodes. It has the property of relaying any message received
by a correct node. Hence, this primitive satisfies the broadcast assumption of Definition 1.2.2 by
supplying a property similar to the relay property of the reliable-broadcast primitive in [73]. That
latter primitive assumes a synchronous initialization and can thus not be used as a building block
for a self-stabilizing algorithm.

In Chapter 6 we present the INITIATOR-ACCEPT primitive. We say that a node does an I-accept
of a message m sent by some node p (denoted 〈p,m〉) if it accepts that this message was sent by
node p.

The INITIATOR-ACCEPT primitive essentially satisfies the following two properties (rephrased
for our purposes):

IA-1A (Correctness) If all correct nodes invoke INITIATOR-ACCEPT 〈p,m〉 within d real-time of
each other then all correct nodes I-accept〈p, m〉 within 2d real-time units of the time the last
correct node invokes the primitive INITIATOR-ACCEPT 〈p,m〉.

IA-3A (Relay) If a correct node q I-accepts 〈p,m〉 at real-time t, then every correct node q′ I-accepts
〈p, m〉, at some real-time t′, with |t− t′| ≤ 2d.

The INITIATOR-ACCEPT primitive requires a correct node not to send two successive messages
within less than 6d real-time of each other. Following the BIO-PULSE-SYNCH algorithm (see
Timeliness Condition 2, in the TIMELINESS procedure), non-faulty nodes cannot fire more than
once in every 2d(1 + ρ) · n > 6d real-time interval even if the system is not coherent, which thus
satisfies this requirement.

The use of the INITIATOR-ACCEPT primitive in our algorithm is by executing it in the back-
ground. When a correct node wishes to send a message it does so through the primitive, which has
certain conditions for I-accepting a message. Nodes may also I-accept messages that where not
sent or received through the primitive, if the conditions are satisfied. In our algorithm nodes will
deliver messages only after they have been I-accepted (also for the node’s own message). From
[IA-1A] we get that all messages from correct nodes are delivered within 3d real-time units subse-
quent to sending. From [IA-3A] we have that all messages are delivered within 2d real-time units
of each other at all correct nodes, even if the sender is faulty. Thus, we get that the new network
delay d̃ = 3d. Hence, the cost of using the INITIATOR-ACCEPT primitive is an added 2d real-time
units to the achieved pulse synchronization tightness which hence becomes σ = d̃ = 3d.

2.3 Proof of Correctness of BIO-PULSE-SYNCH

In this section we prove Closure and Convergence of the BIO-PULSE-SYNCH algorithm. The proof
that BIO-PULSE-SYNCH satisfies the pulse synchronization problem follows the steps below:

Subsection 2.3.1.1 introduces some notations and procedures that are for proof purposes only.
One such procedure partitions the correct nodes into disjoint sets of synchronized nodes (“syn-
chronized clusters”).

In Subsection 2.3.1.2 (Lemma 2.3.4), we prove that “synchronized clusters” once formed stay
as synchronized sets of nodes, this implies that once the system is in a synchronized_pulse_state it
remains as such (Closure).

32 Pulse Synchronization Inspired by Biological Pacemaker Networks

In Subsection 2.3.1.3 (Theorem 2.3.3), we prove that within a finite number of cycles, the
synchronized clusters repeatedly absorb to form ever larger synchronized sets of nodes, until a
synchronized_pulse_state of the system is reached (Convergence).

Note that the the synchronization tightness, σ, of our algorithm, equals d.
It may ease following the proofs by thinking of the algorithm in the terms of non-liner dynam-

ics, though this is not necessary for the understanding of any part of the protocol or its proofs. We
show that the state space can be divided into a small number of stable fixed points (“synchronized
sets”) such that the state of each individual node is attracted to one of the stable fixed points. We
show that there are always at least two of these fixed points that are situated in the basins of attrac-
tion (“absorbance distance”) of each other. Following the dynamics of these attractors, we show
that eventually the states of all nodes settle in a limit cycle in the basin of one attractor.

2.3.1.1 Notations, procedures and properties used in the proofs

First node in a synchronized set of nodes S, is a node of the subset of nodes that “fire first” in S
that satisfies:

“First node in S” =

{
min{i|i ∈ max{φi(t)|node i ∈ S, φi(t) ≤ σ}} ∃i ∈ S s.t. φi(t) ≤ σ
min{i|i ∈ max{φi(t)|node i ∈ S}} otherwise.

Equivalently, we define last node:

“Last node in S” =

{
max{i|i ∈ min{φi(t)|node i ∈ S, φi(t) > σ}} ∃i ∈ S s.t. φi(t) > σ
max{i|i ∈ min{φi(t)|node i ∈ S}} otherwise.

The second cases in both definitions serve to identify the First and Last nodes in case t falls
in-between the fire of the nodes of the set.

Synchronized Clusters
At a given time t the nodes are divided into disjoint synchronized clusters in the following way:

1. Assign the maximal synchronized set of nodes at time t as a synchronized cluster. In case
there are several maximal sets choose the set that is harboring the first node of the unified set
of all these maximal sets.

2. Assign the second maximal synchronized set of nodes that are not part of the first synchro-
nized cluster as a synchronized cluster.

3. Continue until all nodes are exclusively assigned to a synchronized cluster.

The synchronized cluster harboring the node with the largest (necessarily finite) φ among all
the nodes is designated C1. The rest of the synchronized clusters are enumerated inversely to the
φ of their first node, thus if there are m synchronized clusters then Cm is the synchronized cluster
whose first node has the lowest φ (besides perhaps C1). Note that at most one synchronized cluster
may have nodes whose actual φ differences is larger than σ, as it can contain nodes that have
just fired and nodes just about to fire. The definition of C1 implies that at the time the nodes are
partitioned into synchronized clusters (time t above) it may be the only synchronized cluster in
such a state.

2.3 Proof of Correctness of BIO-PULSE-SYNCH 33

The clustering is an external observation done only for illustrative purposes of the proof. It does
not actually affect the protocol or the behavior of the nodes. In the proof we “assign” the nodes
to synchronized clusters at some time t. From that time on we consider the synchronized clusters
as a constant partitioning of the nodes into disjoint synchronized sets of nodes and then observe
how these clusters evolve as the system moves from one state to the other. Thus, once a node
is exclusively assigned to some synchronized cluster it will stay a member of that synchronized
cluster. We aim at showing that eventually all synchronized clusters become one synchronized set
of nodes. Once such a clustering is fixated we ignore nodes that happen to fail and forthcoming
recovering nodes. Our proof is based on the observation that eventually we reach a time window
within which the permanent number of non-correct nodes at every time is bounded by f and during
that window the whole system converges.

OBSERVATION 2.3.1 The synchronized clustering procedure assigns every correct node to exactly
one synchronized set of nodes.

OBSERVATION 2.3.2 Immediately following the synchronized clustering procedure no two distinct
synchronized clusters comprise one synchronized set of nodes.

We use the following definitions and notations:

• Ci − synchronized cluster number i.
• ni − cardinality of Ci (i.e. number of correct nodes associated with synchronized cluster Ci).
• c − current number of synchronized clusters in the current state; c ≥ 1.
• dist(a, b, t) ≡ |φa(t)−φb(t)| is the distance (φ difference) between nodes a and b at real-time t.
• φci

(t) − is the φ(t) of the first node in synchronized cluster Ci.
• dist(Ci, Cj, t) ≡ dist(φci

(t), φcj
(t), t) at real-time t.

If at real-time t there exists no other synchronized cluster Cr, such that φci
(t) ≥ φcr(t) ≥

φcj
(t), then we say that the synchronized clusters Ci and Cj are adjacent at real-time t.
We say that two synchronized clusters, Ci and Cj, have absorbed if their union comprises a

synchronized set of nodes. If a node in Cj fires due to a message received from a node in Ci,
then, as will be shown in Lemma 2.3.7, the inevitable result is that their two synchronized clusters
absorb. The course of action from the arrival of the message at a node in Cj until Cj has absorbed
with Ci is referred to as the absorbance of Cj by Ci.

We refer throughout the chapter to the fire of a synchronized cluster instead of referring to
the sum of the fires of the individual nodes in the synchronized cluster. In Lemma 2.6.8 we prove
that these two notations are equivalent.

In Theorem 2.3.1 we show that we can explicitly determine a threshold value, ad(Ci), that
has the property that if for two synchronized clusters Ci and Cj, dist(Ci, Cj, t) ≤ ad(Ci) then Ci

absorbs Cj. We will call that value the “absorbance distance” of Ci.

DEFINITION 2.3.1 The absorbance distance, ad(Ci), of a synchronized cluster Ci, is

ad(Ci) ≡
f+ni∑

g=f+1

Rg

real-time units.

34 Pulse Synchronization Inspired by Biological Pacemaker Networks

Properties used for the proofs

We identify and prove several properties; one property of the SUMMATION procedure (Property
1) and several properties of REF (Properties 2-7). These are later used to prove the correctness of
the algorithm.

Property 1: See the Summation Properties in Subsection 2.2.
Property 2: Ri is a monotonic decreasing function of i, Ri ≥ Ri+1, for i = 1 . . . n− 1.

Property 3: Ri > 3d + 2ρ
1−ρ2

∑n+1
j=1 Rj, for i = 1 . . . n− f − 1.

Property 4: Ri > σ(1− ρ) + 2ρ
1+ρ

∑n+1
j=1 Rj, for i = 1 . . . n.

Property 5: Rn+1 ≥ 2d(1 + ρ)
(1+ρ
1−ρ

)n+3−1

(1+ρ
1−ρ

)−1
.

Property 6: R1 + · · ·+ Rn+1 = Cycle.

Consider any clustering of n − f correct nodes into c > 1 synchronized clusters, in which
j′ denotes the largest synchronized. Thus nj′ is the number of nodes in the largest synchronized
cluster and is less or equal to n− f − 1. The number of nodes in the second largest cluster is less
or equal to b (n−f)

2
c.

Property 7:

c∑

j=1,j 6=j′

f+nj∑

g=f+1

Rg +

nj′∑
g=1

Rg ≥ 1

1− ρ
Cycle , where

c∑
j=1

nj = n− f . (2.2)

We require the following restriction on the relationship between Cycle, d, n and f in order to
prove that Properties 3-4 hold:

Restriction 1:

Cycle > d ·
(1− ρ2)[(1− ρ)(f + 1) + 2(1 + ρ) · (1+ρ

1−ρ
)n+3−1

(1+ρ
1−ρ

)−1
]

1−ρ
n−f

− 3ρ + ρ2
. (2.3)

We now prove that Properties 2-7 are properties of REF :

Lemma 2.3.1 Properties 2-5 are properties of REF under Restriction 1.

Proof: The proof for Properties 2 and 5 follows immediately from the definition of REF in
Eq. 2.1.

Note that Ri > Rj, for 1 ≤ i ≤ n−f −1 and n−f ≤ j ≤ n. Moreover, for σ = d, Property 4
is more restrictive than Property 3. Hence, for showing that Properties 3 and 4 are properties of
REF it is sufficient to show that Rj (where n− f ≤ j ≤ n) satisfies Property 4:

2.3 Proof of Correctness of BIO-PULSE-SYNCH 35

Rj =
R1 −Rn+1 − ρ

1−ρ
Cycle

f + 1
> σ(1− ρ) +

2ρ

1 + ρ

n+1∑
j=1

Rj ⇒

1
1−ρ

Cycle

n− f
− 2d(1 + ρ) ·

(1+ρ
1−ρ

)n+3 − 1

(1+ρ
1−ρ

)− 1
− ρ

1− ρ
Cycle > [d(1− ρ) +

2ρ

1 + ρ
Cycle](f + 1) ⇒

1

1− ρ
Cycle− ρ

1− ρ
(n− f)Cycle− 2ρ

1 + ρ
(n− f)Cycle

> [d(1− ρ)(f + 1) + 2d(1 + ρ) ·
(1+ρ

1−ρ
)n+3 − 1

(1+ρ
1−ρ

)− 1
](n− f) ⇒

[
1− ρ(n− f)

1− ρ
− 2ρ

1 + ρ
(n− f)]Cycle

> d[(1− ρ)(f + 1) + 2(1 + ρ) ·
(1+ρ

1−ρ
)n+3 − 1

(1+ρ
1−ρ

)− 1
](n− f) ⇒

[
(1

n−f
− ρ)(1 + ρ)− 2ρ(1− ρ)

1− ρ2
]Cycle > d[(1− ρ)(f + 1) + 2(1 + ρ) ·

(1+ρ
1−ρ

)n+3 − 1

(1+ρ
1−ρ

)− 1
] ⇒

1−ρ
n−f

− 3ρ + ρ2

1− ρ2
Cycle > d[(1− ρ)(f + 1) + 2(1 + ρ) ·

(1+ρ
1−ρ

)n+3 − 1

(1+ρ
1−ρ

)− 1
] ⇒

Cycle > d ·
(1− ρ2)[(1− ρ)(f + 1) + 2(1 + ρ) · (1+ρ

1−ρ
)n+3−1

(1+ρ
1−ρ

)−1
]

1−ρ
n−f

− 3ρ + ρ2
. (2.4)

This inequality is exactly satisfied by Restriction 1 and thus Eq. 2.1 satisfies Properties 3 and
4.

Note that for ρ = 0, the inequality becomes Cycle > d · (f + 1)(n− f).

Lemma 2.3.2 Property 6 is a property of REF.

Proof:

R1 + · · ·+ Rn+1 = (R1 + · · ·+ Rn−f−1) + (Rn−f + · · ·+ Rn) + Rn+1

= (n− f − 1) ·
1

1−ρ
Cycle

n− f
+ (f + 1) ·

R1 −Rn+1 − ρ
1−ρ

Cycle

f + 1
+ Rn+1

=
1

1− ρ
Cycle−

1
1−ρ

Cycle

n− f
+ R1 −Rn+1 − ρ

1− ρ
Cycle + Rn+1 = Cycle .

Lemma 2.3.3 Property 7 is a property of REF .

36 Pulse Synchronization Inspired by Biological Pacemaker Networks

Proof: We will prove that the constraint in Eq. 2.2 is always satisfied by the refractory function
in Eq. 2.1.

Note that Eq. 2.2 is a linear equation of the Ri values of REF . We denoted nj′ to be the
number of nodes in the largest synchronized cluster, following some partitioning of the correct
nodes into synchronized clusters. We want to find what is the largest value of i such that Ri is
a value with a non-zero coefficient in the linear equation Eq. 2.2. This value is determined by
either the largest possible cluster, which may be of size n − f − 1 (in case all but one of the
correct nodes are in one synchronized cluster2), or by the second-largest possible cluster, which
may be of size b (n−f)

2
c (in case all correct nodes are in two possibly equally sized synchronized

clusters). Thus the largest value of i such that Ri is a value with a non-zero coefficient equals
max[f + b (n−f)

2
c, n− f − 1] = n− f − 1, for n ≥ 3f + 1.

Thus, following Eq. 2.1, each of these Ri values equals
1

1−ρ
Cycle
n−f

. There are exactly n − f
(not necessarily different) Ri values in Eq. 2.2. Hence, incorporating Eq. 2.1 into Eq. 2.2 reduces
Eq. 2.2 to the linear equation: (n − f) · Ri ≥ 1

1−ρ
Cycle, where 1 ≤ i ≤ n − f − 1. It remains to

show that Eq. 2.1 satisfies this constraint:

(n− f) ·Ri = (n− f) ·
1

1−ρ
Cycle

n− f
=

1

1− ρ
Cycle.

2.3.1.2 Proving the Closure

We now show that a synchronized set of nodes stays synchronized. This also implies that the
constituent nodes of a synchronized clusters stay as a synchronized set of nodes, as a synchronized
cluster is in particular a synchronized set of nodes. This proves the first Closure requirement of the
“Pulse Synchronization” problem in Definition 1.2.6.

Lemma 2.3.4 A set of correct nodes that is a synchronized set at real-time t′, remains synchronized
∀t, t ≥ t′.

Proof: Let there be a synchronized set of nodes at real-time t′. From the definition of a synchro-
nized set of nodes, this set of nodes will stay synchronized as long as no node in the set fires. This
is because the φ difference between nodes (in real-time units) does not change as long as none of
them fires. We therefore turn our attention to the first occasion after t′ at which a node from the set
fires. Let us examine the extreme case of a synchronized set consisting of at least two nodes at the
maximal allowed φ difference; that is to say that at time t′, dist(first_node, last_node, t′) = σ.
Further assume that the first node in the set fires with a Counter=k, (0 ≤ k ≤ n− 1), at some time
t ≥ t′ at the very beginning of its threshold level k, and without loss of generality is also the first
node in the set to fire after time t′. We will show that the rest of the nodes in the set will fire within
the interval [t, t + σ] and thus remains a synchronized set.

Property 1 ensures that the last node’s Counter will read at least k+1 subsequently to the arrival
and assessment of the first node’s fire, since its Counter should be at least the first node’s Counter

2The case in which the n− f correct nodes are in one synchronized cluster implies the objective has been reached.

2.3 Proof of Correctness of BIO-PULSE-SYNCH 37

plus 1. The proof of the lemma will be done by showing that right after the assessment of the first
node’s fire, the last node cannot be at a threshold higher than k + 1 and thus will necessarily fire.

The proof is divided into the following steps:

1. Show that when the first node is at threshold level k then the last node is at threshold level
k + 1 or lower.

2. Show that if the first node fires with a Counter=k then due to Property 1 and Step 1 the last
node will fire consequently.

3. Show that the last node fires within a d real-time window of the first node, and as a result,
the new distance between the first and last node is less than or equal to σ.

Observe that the extreme case considered is a worst case since if the largest φ difference in
the set is less than σ then the threshold level of the last node may only be lower. The same
argument also holds if the first node fires after its beginning of its threshold level k. Thus the steps
of the proofs also apply to any intermediate node in the synchronized set and thus remains as a
synchronized set of nodes.

Step 1: In this step we aim at calculating the amount of time on the last node’s clock remaining un-
til it commences its threshold level k, counting from the event in which the first nodes commences
its threshold level k. By showing that this remaining time is less than the length of threshold level
k + 1, as counted on the clock of the last and slowest node we conclude that this node must be at
most at threshold level k + 1. The calculations are done on the slow node’s clock.

Assume the first node to be the fastest permissible node and the last one the slowest. Hence,
when the first node’s threshold level k commences,

1

1 + ρ

n+1∑

i=k+1

Ri (2.5)

real-time units actually passed since it last fired. The last node “counted” this period as:

1− ρ

1 + ρ

n+1∑

i=k+1

Ri . (2.6)

The last node has to count on its clock, from the time that the first node fired, at most σ(1− ρ)
local-time units (max. φ difference of correct nodes in a synchronized set as counted by the slowest
node), and

n+1∑

i=k+1

Ri (2.7)

in order to reach its own threshold level k. As a result, the maximum local-time difference
between the time the first node starts its threshold level k till the last node starts its own threshold
level k as counted by the last node is therefore σ(1+ρ) plus the difference Eq. 2.7 – Eq. 2.6, which
yields

38 Pulse Synchronization Inspired by Biological Pacemaker Networks

σ(1− ρ) +
1 + ρ

1 + ρ

n+1∑

i=k+1

Ri − 1− ρ

1 + ρ

n+1∑

i=k+1

Ri = σ(1− ρ) +
2ρ

1 + ρ

n+1∑

i=k+1

Ri . (2.8)

Property 4 ensures that Rk+1 is greater than Eq. 2.8 for 0 ≤ k ≤ n − 1; thus when the first
node commences threshold level k the last node must be at a threshold level that is less or equal to
k + 1.

Step 2: Let the first node fire as a result of its Counter equalling k at time t at threshold level k.
In case that the last node receives almost immediately the first node’s fire (and thus increments its
Counter to at least k + 1 following Property 1), it must be at a threshold level that is less or equal
to k +1 (following Step 1) and will therefore fire. All the more so if the first node’s fire is received
later, since the threshold level can only decrease in time before a node fires.

Step 3: We now need to estimate the new distance between the first and last node in order to show
that they still comprise a synchronized set. The last node assesses the first node’s fire within d
real-time units after the first node sent its message (per definition of d). This yields a distance of
d(1 − ρ) as seen by the last node, which equals the maximal allowed real-time distance, d (= σ),
between correct nodes in a synchronized set at real-time t′, and thus they stay a synchronized set
at time t′.

Corollary 2.3.5 (Closure 1) Lemma 2.3.4 implies the first Closure condition.

Lemma 2.3.6 (Closure 2) As long as the system state is in a
synchronized_pulse_state then the second Closure condition holds.

Proof: Due to Lemma 2.3.4 the first node to fire in the synchronized set following its previous
pulse, may do so only if it receives the fire from faulty nodes or if it fires endogenously. This
may happen the earliest if it receives the fire from exactly f distinct faulty nodes. Thus following
Eq. 2.1 its cycle might have been shortened by at most f · Cycle

n−f
real-time units. Hence, in case the

first node to fire is also a fast node, it follows that cyclemin = Cycle ·(1−ρ)− f
n−f

·Cycle ·(1−ρ) =
n−2f
n−f

· Cycle · (1 − ρ) real-time units. A node may fire at the latest if it fires endogenously. If in
addition it is a slow node then it follows that cyclemax = Cycle · (1 + ρ) real-time units.

Thus in any real-time interval that is less or equal to cyclemin any correct node will fire at most
once. In any real-time interval that is greater or equal to cyclemax any correct node will fire at least
once. This concludes the second closure condition.

2.3.1.3 Proving the Convergence

The proof of Convergence is done through several lemmata. We begin by presenting sufficient con-
ditions for two synchronized clusters to absorb. In Subsection 2.3.1.4, we show that the refractory
function REF ensures the continuous existence of a pair of synchronized clusters whose unified
set of nodes is not synchronized, but are within an absorbance distance and hence absorb. Thus,
iteratively, all synchronized clusters will eventually absorb to form a unified synchronized set of
nodes.

2.3 Proof of Correctness of BIO-PULSE-SYNCH 39

Lemma 2.3.7 (Conditions for Absorbance) Given two synchronized clusters, Ci preceding Cj, if:

1. Ci fires with Counter=k, at real-time tci_fires, where 0 ≤ k ≤ f

2. dist(Ci, Cj, tci_fires) ≤ 1
1−ρ

∑k+ni

g=k+1 Rg − 2ρ
1−ρ2

∑n+1
g=k+1 Rg

then Ci will absorb Cj.

Proof: The proof is divided into the following steps:

1. (a) If Ci fires before Cj, then Cj consequently fires.

(b) Subsequent to the previous step: dist(Ci, Cj, ..) ≤ 3d.

2. Following the previous step, within one cycle the constituent nodes of the two synchronized
clusters comprise a synchronized set of nodes.

Step 1a: Let us examine the case in which Ci fires first at some real-time denoted tci_fires, and in
the worst case that Cj doesn’t fire before it receives all of Ci’s fire. All the calculations assume
that at tci_fires, φci

(tci_fires) has still not been reset to 0. Specifically, assume that the first node in
Ci fired due to incrementing its Counter to k (0 ≤ k ≤ f) at the beginning of its threshold level
k. Following Property 1 and Lemma 2.6.8 the nodes of Cj increment their Counters to k + ni after
receiving the fire of Ci. Additionally, in the worst case, assume that the first node in Cj receives
the fire of Ci almost immediately. We will now show that this fire is received at a threshold level
≤ k + ni.

We will calculate the upper-bound on the φ of the first node in Cj at real-time tci_fires, and
hence deduce the upper-bound on its threshold level. Assume the nodes of Ci are fast and the
nodes of Cj are slow. Should the nodes of Cj be faster, then the threshold level may only be lower.

40 Pulse Synchronization Inspired by Biological Pacemaker Networks

φcj
(tci_fires) =

= φci
(tci_fires)− [

1

1− ρ

k+ni∑

g=k+1

Rg − 2ρ

1− ρ2

n+1∑

g=k+1

Rg]

=
1

1 + ρ

n+1∑

g=k+1

Rg − [
1

1− ρ

k+ni∑

g=k+1

Rg − 2ρ

1− ρ2

n+1∑

g=k+1

Rg]

=
1

1 + ρ

n+1∑

g=k+1

Rg − [
1

1− ρ

k+ni∑

g=k+1

Rg + (
1

1 + ρ
− 1

1− ρ
)

n+1∑

g=k+1

Rg]

=
1

1 + ρ

n+1∑

g=k+1

Rg − [(
1

1 + ρ
− (

1

1 + ρ
− 1

1− ρ
))

k+ni∑

g=k+1

Rg + (
1

1 + ρ
− 1

1− ρ
)

n+1∑

g=k+1

Rg]

=
1

1 + ρ

n+1∑

g=k+1

Rg − [
1

1 + ρ

k+ni∑

g=k+1

Rg + (
1

1 + ρ
− 1

1− ρ
)

n+1∑

g=k+1+ni

Rg]

=
1

1 + ρ

n+1∑

g=k+1

Rg − [
1

1 + ρ

n+1∑

g=k+1

Rg − 1

1− ρ

n+1∑

g=k+1+ni

Rg]

=
1

1− ρ

n+1∑

g=k+1+ni

Rg .

(2.9)

We now seek to deduce the bound on Cj’s threshold level at the time of Ci’s fire. Thus, fol-
lowing Eq. 2.9, at real-time tci_fires the φ of the first node in Cj is at most 1

1−ρ

∑n+1
g=k+1+ni

Rg. We
assumed the worst case in which the constituent correct nodes of Cj are slow, thus these nodes have
counted on their timers at least (1− ρ) · 1

1−ρ

∑n+1
g=k+1+ni

Rg =
∑n+1

g=k+1+ni
Rg time units since their

last pulse. Hence, the correct nodes of Cj are at real-time tci_fires at most in threshold level k +ni.
Should k < f or the fire of Ci be received at a delay, then this may only cause the threshold level at
time of assessment of the fire from Ci to be equal or even smaller than k + ni. Thus, Lemma 2.3.4
and Property 1 guarantee that the first node in Cj will thus fire and that the rest of the nodes in both
synchronized clusters will follow their respective first ones within σ real-time units.

Step 1b: We seek to estimate the maximum distance between the two synchronized clusters fol-
lowing the fire of Cj. The first node in Cj will fire at the latest upon receiving and assessing the
message of the last node in Ci. More precisely, fire at the latest d real-time units following the fire
of the last node in Ci, yielding a new dist(Ci, Cj, ..) of at most 2d real-time units regardless of the
previous dist(Ci, Cj, ..), ni, k and nj. The last node of Cj is at most at a distance of d from the
first node of Cj therefore making the maximal distance between the first node of Ci and the last
node of Cj, at the moment it fires, equal 3d real-time units.

Step 2: We will complete the proof by showing that after Ci causes Cj to fire, the two syn-
chronized clusters actually absorb. We need to show that in the cycle subsequent to Step 1, the
nodes that constituted Ci and Cj become a synchronized set. Examine the case in which follow-

2.3 Proof of Correctness of BIO-PULSE-SYNCH 41

ing Step 1, either one of the two synchronized clusters increment its Counter to k′ and fires at
the beginning of threshold level k′. We will observe the φ of the first node to fire, denoted by
φfirst_node−2nd−cycle. Following the same arguments as in Step 1, all other nodes increment their
Counters to k′ + 1 after receiving this node’s fire. Consider that this happens at the moment that
this first node incremented its Counter to k′ and fired, denoted t2nd−cycle−fire. Below we compute,
using Property 3, the lower bound on the φ of the rest of the nodes at real-time t2nd−cycle−fire,
denoted φother−nodes(t2nd−cycle−fire).

φother−nodes(t2nd−cycle−fire) ≥ φfirst_node−2nd−cycle(t2nd−cycle−fire)− 3d

=
1

1 + ρ

n+1∑

g=k′+1

Rg − 3d =
1

1 + ρ

n+1∑

g=k′+2

Rg + Rk′+1 − 3d

>
1

1 + ρ

n+1∑

g=k′+2

Rg +
2ρ

1− ρ2

n+1∑
g=1

Rg . (2.10)

In the worst case, the rest of the constituent nodes that were in Ci and Cj are slow nodes and
thus, at real-time t2nd−cycle−fire, counted:

(1− ρ) · (1

1 + ρ

n+1∑

g=k′+2

Rg +
2ρ

1− ρ2

n+1∑
g=1

Rg) =
1− ρ

1 + ρ

n+1∑

g=k′+2

Rg +
2ρ

1 + ρ

n+1∑
g=1

Rg

=
1− ρ

1 + ρ

n+1∑

g=k′+2

Rg +
2ρ

1 + ρ

n+1∑

g=k′+2

Rg +
2ρ

1 + ρ

k′+1∑
g=1

Rg

=
n+1∑

g=k′+2

Rg +
2ρ

1 + ρ

k′+1∑
g=1

Rg >

n+1∑

g=k′+2

Rg . (2.11)

time units since their last pulse. Due to Property 3 all these correct nodes receive the fire and
increment their Counters to k′ + 1 in a threshold level which is less or equal to k′ + 1 and will fire
as well within d real-time units of the first node in the second cycle.

Theorem 2.3.1 (Conditions for Absorbance) Given two synchronized clusters, Ci preceding Cj,
if:

1. Ci fires with Counter=k, at real-time tci_fires, where 0 ≤ k ≤ f, and

2. ∃ t, tprev_cj_fired ≤ t ≤ tci_fires, for which dist(Ci, Cj, t) ≤ ad(Ci)

then Ci will absorb Cj.

Proof: Denote tprev_cj_fired the real-time at which Cj previously fired before time tci_fires. Given
that at some time t, where tprev_cj_fired ≤ t ≤ tci_fires, dist(Ci, Cj, t) ≤ ad(Ci), we wish to calcu-
late the maximal possible distance between the two synchronized clusters at real-time tci_fires, the
time at which Ci fires with Counter=k, where 0 ≤ k ≤ f.

42 Pulse Synchronization Inspired by Biological Pacemaker Networks

Under the above assumptions, the maximal possible distance at real-time tci_fires is obtained
when k = f and when at time tprev_cj_fired the distance between Ci and Cj was exactly ad(Ci), i.e
dist(Ci, Cj, tprev_cj_fired) = ad(Ci). The upper bound on dist(Ci, Cj, tci_fires) takes into account
that from C ′

is previous real-time firing time, tprev_ci_fired, and until real-time tci_fires, the nodes
of Ci were fast and that from real-time tprev_cj_fired and until tci_fires, the nodes of Cj were slow.
Thus the bound on dist(Ci, Cj, tci_fires) becomes the real-time difference between these:

dist(Ci, Cj, tci_fires) = φci
(tci_fires)− φcj

(tci_fires) =

1

1 + ρ

n+1∑

g=k+1

Rg − 1

1− ρ

n+1∑

g=k+1+ni

Rg =
1

1 + ρ

k+ni∑

g=k+1

Rg + (
1

1 + ρ
− 1

1− ρ
)

n+1∑

g=k+1+ni

Rg =

(
1

1 + ρ
− (

1

1 + ρ
− 1

1− ρ
))

k+ni∑

g=k+1

Rg + (
1

1 + ρ
− 1

1− ρ
)

n+1∑

g=k+1

Rg =

1

1− ρ

k+ni∑

g=k+1

Rg + (
1

1 + ρ
− 1

1− ρ
)

n+1∑

g=k+1

Rg =

1

1− ρ

k+ni∑

g=k+1

Rg − 2ρ

1− ρ2

n+1∑

g=k+1

Rg . (2.12)

Eq. 2.12 is the upper bound on the distance between the two synchronized clusters at real-time
tci_fires, thus following Lemma 2.3.7, the two synchronized clusters absorb.

2.3.1.4 Convergence of the Synchronized Clusters

In the coming subsection we look at the correct nodes as partitioned into synchronized clusters
(at some specific time). Observation 2.3.2 ensures that no two of these synchronized clusters
comprise one synchronized set of nodes. The objective of Theorem 2.3.2 is to show that within
finite time, at least two of these synchronized clusters will comprise one synchronized set of nodes.
Specifically, we show that in any state that is not a synchronized_pulse_state of the system, there
are at least two synchronized clusters whose unified set of nodes is not a synchronized set but that
are within absorbance distance of each other, and consequently they absorb. Thus, eventually all
synchronized clusters will comprise a synchronized set of nodes.

We claim that if the following relationship between REF and Cycle is satisfied, then ab-
sorbance (of two synchronized clusters whose unified set is not a synchronized set), is ensured
irrespective of the states of the synchronized clusters. Let Cj′ denote the largest synchronized
cluster. The theorem below, Theorem 2.3.2, shows that for a given clustering of n − f correct
nodes into c > 1 synchronized clusters and for n, f, Cycle and REF that satisfy

c∑

j=1,j 6=j′
ad(Cj) +

1

1− ρ

nj′∑
g=1

Rg ≥ 1

1− ρ
· Cycle (2.13)

there exist at least two synchronized clusters, whose unified set is not a synchronized set of nodes,
that will eventually undergo absorbance.

2.3 Proof of Correctness of BIO-PULSE-SYNCH 43

Note that Eq. 2.13 is derived from Property 7 (Eq. 2.2):
Eq. 2.2 derives the following equation (since the Rg values are non-negative),

c∑

j=1,j 6=j′

f+nj∑

g=f+1

Rg +
1

1− ρ

nj′∑
g=1

Rg ≥ 1

1− ρ
· Cycle . (2.14)

Incorporating the absorbance distance of Definition 2.3.1 into Eq. 2.14 yields exactly Eq. 2.13.
We use Eq. 2.13 in Theorem 2.3.2 instead of Eq. 2.2 (Property 7) for readability of the proof.

Theorem 2.3.2 (Absorbance) Assume a clustering of n− f correct nodes into c > 1 synchronized
clusters at real-time t0. Further assume that Eq. 2.13 holds for the resulting clustering. Then
there will be at least one synchronized cluster that will absorb some other synchronized cluster by
real-time t0 + 2 · cycle.

Proof: Note that following the synchronized cluster procedure, the unified set of the two syn-
chronized clusters that will be shown to absorb, are not necessarily a synchronized set of nodes
at time t0. Assume without loss of generality that Cj′ is the synchronized cluster with the largest
number of nodes, consequent to running the clustering procedure. Exactly one out of the following
two possibilities takes place at t0:

1. ∃i (1 ≤ i ≤ c), such that dist(Ci, C(i+1)(mod c), t0) ≤ ad(Ci).

2. ∀i (1 ≤ i ≤ c, i 6= j′), dist(Ci, C(i+1)(mod c), t0) > ad(Ci).

Consider case 1. Following the protocol, Ci must fire within Cycle local-time units of t0. Ob-
serve the first real-time, denoted ti, at which Ci fires subsequent to real-time t0. Assume that k ≥ 0
is the number of distinct inputs that causes the Counter of at least one node in Ci to reach the
threshold and fire (not counting the fire from nodes in Ci itself). If k > f then at least one correct
node outside of Ci caused some node in Ci to fire. This correct node must belong to some synchro-
nized cluster which is not Ci. We denote this synchronized cluster Cx as its identity is irrelevant for
the sake of the argument. We assumed that at least one node in Ci fired due to a node in Cx. Fol-
lowing Lemma 2.3.4 the rest of the nodes in Ci. will follow as well, as a synchronized cluster is in
particular a synchronized set of nodes. This yields a new dist(Cx, Ci, ..) of at most 3d. Following
the same arguments as in Step 2 of Lemma 2.3.7, Cx and Ci hence absorb. Therefore the objective
is reached. Hence assume that k ≤ f and that Ci did not absorb with any preceding synchronized
cluster. Thus, the last real-time that C(i+1)(mod c) fired, denoted tCi+1−fired, was before or equal to
real-time t0, i.e. tCi+1−fired ≤ t0 ≤ ti and dist(Ci, C(i+1)(mod c), t0) ≤ ad(Ci). By Theorem 2.3.1,
Ci will absorb C(i+1)(mod c).

Consider case 2. We do not assume that dist(Cj′ , C(j′+1)(mod c), t0) > ad(Cj′). Assume that
there is no absorbance until Cj′ fires (otherwise the claim is proven). Let tj′ denote the real-time
at which the first node in Cj′ fires, at which φcj′ (tj′) = 0. There are two possibilities at tj′:

2a. ∃i(1 ≤ i ≤ c), such that at tj′ , dist(Ci, C(i+1)(mod c), tj′) ≤ ad(Ci).

2b. ∀i(1 ≤ i ≤ c, i 6= j′), dist(Ci, C(i+1)(mod c), tj′) > ad(Ci).

44 Pulse Synchronization Inspired by Biological Pacemaker Networks

Consider case 2a. This case is equivalent to case 1. The last real-time that C(i+1)(mod c) fired,
denoted tCi+1−fired, was before or equal to real-time tj′ . Denote ti the real-time at which the first
node of Ci fires. Thus, tCi+1−fired ≤ tj′ ≤ ti and dist(Ci, C(i+1)(mod c), t0) ≤ ad(Ci). By Theo-
rem 2.3.1, Ci will absorb C(i+1)(mod c).

Consider case 2b. We wish to calculate φcj′+1
(tj′) and from this deduce the upper bound on the

threshold level of the first node in C(j′+1)(mod c) at real-time tj′ . We first want to point out that

φcj′+1
(tj′) >

c∑

j=1,j 6=j′
ad(Cj) . (2.15)

This stems from the fact that Cj′ has just fired and that Cj′ and C(j′+1)(mod c) are adjacent synchro-
nized clusters which implies that

∀i(1 ≤ i ≤ c, i 6= j′+1), φcj′+1
(tj′) > φci

(tj′).

Recall that φcj′ (tj′) = 0. From the case considered in 2b we have that

∀i(1 ≤ i ≤ c, i 6= j′), dist(Ci, C(i+1) (mod c), tj′) > ad(Ci).

Thus Eq. 2.15 follows. Following Eq. 2.13 and Eq. 2.15 we get:

φcj′+1
(tj′) >

c∑

j=1,j 6=j′
ad(Cj) ≥ 1

1− ρ
· Cycle − 1

1− ρ

nj′∑
g=1

Rg . (2.16)

In the worst case the nodes of C(j′+1)(mod c) are slow. Thus at real-time tj′ they have measured,
from their last pulse, at least (1−ρ)·φcj′+1

(tj′) = (1−ρ)·[1
1−ρ
·Cycle − 1

1−ρ

∑nj′
g=1Rg] =

∑n+1
g=nj′+1

Rg

local-time units. Thus, following Property 1, the first node in C(j′+1)(mod c) receives the fire from
Cj′ and increment its Counter to at least nj′ in a threshold level which is less or equal to nj′ and
will thus fire as well. Following Lemma 2.3.4 the rest of the synchronized cluster will follow as
well. This yields a new dist(Cj′ , C(j′+1)(mod c), ..) of at most 3d. Following the same arguments
as in Step 2 of Lemma 2.3.7, Cj′ and C(j′+1)(mod c) hence absorb.

Thus at least two synchronized clusters will absorb within 2 · cycle of t0 which concludes the
proof.

The following theorem assumes the worst case of n = 3f + 1.

Theorem 2.3.3 (Convergence) Within at most 2(2f + 1)· cycle real-time units the system reaches
a synchronized_pulse_state.

Proof: Assume that n = 3f + 1. Thus, the maximal number of synchronized clusters is 2f + 1,
and since following Theorem 2.3.2 at least two synchronized clusters absorb in every two cycles
we obtain the bound.

2.4 Analysis of the Algorithms 45

2.4 Analysis of the Algorithms

The protocol operates in two epochs: In the first epoch there is no limitations on the number of
failures and faulty nodes. In this epoch the system might be in any state. In the second epoch
there are at most f nodes that may behave arbitrarily at the same time, from which the protocol
may start to converge. Nodes may fail and recover and nodes that have just recovered need time
to synchronize. Therefore, we assume that eventually we have a window of time within which
the turnover between faulty and non-faulty nodes is sufficiently low and within which the system
inevitably converges (Theorem 2.3.2).

Authentication and fault ratio: The algorithm does not require the power of unforgeable sig-
natures, only an equivalence to an authenticated channel is required. Note that the shared memory
model [34] has an implicit assumption that is equivalent to an authenticated channel, since a node
“knows” the identity of the node that wrote to the memory it reads from. A similar assumption is
also implicit in many message passing models by assuming a direct link among neighbors, and as
a result, a node “knows” the identity of the sender of a message it receives.

Many fundamental problems in distributed networks have been proven to require 3f + 1 nodes
to overcome f concurrent Byzantine faults in order to reach a deterministic solution without au-
thentication [37,57,26,25]. We have not shown this relationship to be a necessary requirement for
solving the “Pulse Synchronization” problem but the results for related problems lead us to believe
that a similar result should exist for the “Pulse Synchronization” problem.

There are algorithms that have no lower bound on the number of nodes required to handle
f Byzantine faults, but unforgeable signatures are required as all the signatures in the message
are validated by the receiver [26]. This is costly time-wise, it increases the message size, and
it introduces other limitations, which our algorithm does not have. Moreover, within the self-
stabilizing paradigm, using digital signatures to counter Byzantine nodes exposes the protocols to
“replay-attack” which might empty its usefulness.

Convergence time: We have shown in Chapter 1 that self-stabilizing Byzantine clock syn-
chronization and self-stabilizing Byzantine pulse synchronization are supposedly equally hard.
The only self-stabilizing Byzantine clock synchronization algorithms besides the one in Chapter 4
are found in [34]. The randomized self-stabilizing Byzantine clock synchronization algorithm pub-
lished there synchronizes in M ·22(n−f) steps, where M is the upper bound on the clock values held
by individual processors. The algorithm uses message passing, it allows transient and permanent
faults during convergence, requires at least 3f+1 processors, but utilizes a global pulse system. An
additional algorithm in [34], does not use a global pulse system and is thus partially synchronous
similar to our model. The convergence time of the latter algorithm is O((n − f)n6(n−f)). This is
drastically higher than our result, which has a cycle length of O(f 2) · d time units and converges
within 2(2f + 1) cycles. The convergence time of the only other correct self-stabilizing Byzantine
pulse synchronization algorithm (Chapter 7) has a cycle length of O(f) ·d time units and converges
within 6 cycles.

Message and space complexity: The size of each message is O(logn) bits. Each correct node
multicasts exactly one message per cycle. This yields a message complexity of at most n messages
per cycle. The system’s message complexity to reach synchronization from any arbitrary state
is at most 2n(2f + 1) messages per synchronization from any arbitrary initial state. The faulty
nodes cannot cause the correct nodes to fire more messages during a cycle. Comparatively, the

46 Pulse Synchronization Inspired by Biological Pacemaker Networks

self-stabilizing clock synchronization algorithm in [34] sends n messages during a pulse and thus
has a message complexity of O(n(n − f)n6(n−f)). This is significantly larger than our message
complexity irrespective of the time interval between the pulses. The message complexity of the
self-stabilizing Byzantine pulse synchronization in equals O(n3) per cycle.

The space complexity is O(n) since the variables maintained by the processors keep only a
linear number of messages recently received and various other small range variables. The number
of possible states of a node is linear in n and the node does not need to keep a configuration table.

The message broadcast assumptions, in which every message, even from a faulty node, even-
tually arrives at all correct nodes, still leaves the faulty nodes with certain powers of multifaced
behavior since we assume nothing on the order of arrival of the messages. Consecutive messages
received from the same source within a short time window are ignored, thus, a faulty node can
send two concomitant messages with differing values such that two correct nodes might receive
and relate to different values from the same faulty node.

Tightness of synchronization: In the presented algorithm, the invocation of the pulses of the
nodes will be synchronized to within the bound on the relay time of messages sent and received by
correct nodes. In the broadcast version, this bound on the relay time equals d real-time units. Note
that the lower bound on clock synchronization in completely connected, fault-free networks [56] is
d(1−1/n). We have shown in Section 2.2 how the algorithm can be executed in non-broadcast net-
works to achieve a synchronization tightness of σ = 3d. Comparatively, the clock synchronization
algorithm of [26] reaches a synchronization tightness typical of clock synchronization algorithms
of d(1 + ρ) + 2ρ(1 + ρ) ·R, where R is the time between re-synchronizations. The second Byzan-
tine clock synchronization algorithm in [34] reaches a synchronization tightness which is in the
magnitude of (n− f) · d(1 + ρ). This is significantly less tight than our result. The tightness of the
self-stabilizing Byzantine pulse synchronization in Chapter 7 equals 3d real-time units.

Firing frequency bound: The firing frequency upper bound during normal steady-state be-
havior is around twice that of the endogenous firing frequency of the nodes. This is because
cyclemin ≥ Cycle

2
. This bound is influenced by the fraction of faulty nodes (the sum of the first f

threshold steps relative to Cycle). For n = 3f + 1 this translates to ≈ 1
2
Cycle. Thus, if required,

the firing frequency bound can be closer to the endogenous firing frequency of 1 ·Cycle if the frac-
tion of faulty nodes is assumed to be lower. For example, for a fraction of fault nodes of f = n

10
,

the lower bound on the cycle length, cyclemin, becomes approximately 8/9 that of the endogenous
cycle length. cyclemax = Cycle · (1 + ρ) real-time units.

2.5 Discussion

We developed and presented the “Pulse Synchronization” problem in general, and an efficient
linear-time self-stabilizing Byzantine pulse synchronization algorithm, BIO-PULSE-SYNCH, as a
solution in particular. The pulse synchronization problem poses the nodes with the challenge of
invoking regular events synchronously. The system may be in an arbitrary state in which there
can be an unbounded number of Byzantine faults. The problem requires the pulses to eventually
synchronize from any initial state once the bound on the permanent number of Byzantine failures
is less than a third of the network. The problem resembles the clock synchronization problem
though there is no “value” (e.g. clock time) to agree on, rather an event in time. Furthermore,

2.6 Proofs 47

to the best of our knowledge, the only efficient self-stabilizing Byzantine clock synchronization
algorithm assumes a background pulse synchronization module.

The algorithm developed is inspired by and shares properties with the lobster cardiac pace-
maker network; the network elements (the neurons) fire in tight synchrony within each other,
whereas the synchronized firing pace can vary, up to a certain extent, within a linear envelope of a
completely regular firing pattern.

The neural network simulator SONN ([67]) was used in early stages of developing the algo-
rithm for verification of the protocol in the face of probabilistic faults and random initial states.
A natural next step should be to undergo simulation and mechanical verification of the current
protocol that can mimic a true distributed system facing transient and Byzantine faults.

2.6 Proofs
Proof of correctness of the SUMMATION procedure:

Lemma 2.6.1 For k ∈ N, k ≥ 0,

τ(k) · 1 + ρ

1− ρ
+ 2d(1 + ρ) = τ(k + 1) .

Proof:

τ(k) · 1 + ρ

1− ρ
+ 2d(1 + ρ) = [2d(1 + ρ)

(1+ρ
1−ρ

)k+1 − 1

(1+ρ
1−ρ

)− 1
] · 1 + ρ

1− ρ
+ 2d(1 + ρ)

= [2d(1 + ρ)
k∑

i=0

(
1 + ρ

1− ρ
)i] · 1 + ρ

1− ρ
+ 2d(1 + ρ) = [2d(1 + ρ)

k+1∑
i=1

(
1 + ρ

1− ρ
)i] + 2d(1 + ρ)

= 2d(1 + ρ)
k+1∑
i=0

(
1 + ρ

1− ρ
)i = 2d(1 + ρ)

(1+ρ
1−ρ

)k+2 − 1

(1+ρ
1−ρ

)− 1
= τ(k + 1) .

Lemma 2.6.2 Let a correct node q receive a message Mp from a correct node p at local-time tarr.
For every one of p’s stored messages (Sr, t

′) that is accounted for in CounterMp , then at q, from
some time t in the local-time interval [tarr, tarr +d(1+ρ)] and at least until the end of the interval:

MessageAge(t, q, r) ≤ τ(CounterMp + 1) .

Proof: Following the PRUNE procedure at p, the oldest of its stored messages accounted for in
CounterMp was at most τ(CounterMp) time units old on p’s clock at the time it sent Mp. This
oldest stored message could have arrived at q, δ(1 + ρ) local-time units on q’s clock, prior to its
arrival at p. Within this time p should also have received all the messages accounted for in Mp.
Another π(1+ρ) local-time units could then have passed on q’s clock until Mp was sent. Mp could

48 Pulse Synchronization Inspired by Biological Pacemaker Networks

have arrived at q, δ(1 + ρ) time units on q’s clock after it was sent by p. By this time q would also
have received all the messages that are accounted for in Mp, irrespective if q had previous messages
from the same nodes. Another π(1+ρ) time units can then pass on q’s clock until all messages are
processed. Thus, in the worst case that node p is slow and node q is fast and by Lemma 2.6.1, for
every stored message accounted for in CounterMp ,∃t ∈ [tarr + d(1 + ρ)], we have:

MessageAge(t, q, r) ≤ MessageAge(tarr + d(1 + ρ), q, r)

≤ τ(CounterMp) ·
1 + ρ

1− ρ
+ δ(1 + ρ) + π(1 + ρ) + δ(1 + ρ) + π(1 + ρ)

= τ(CounterMp) ·
1 + ρ

1− ρ
+ 2d(1 + ρ) = τ(CounterMp + 1) .

Lemma 2.6.3 The Counter of a correct node cannot exceed n and a correct node will not send a
Counter that exceeds n− 1.

Proof: There can be at most n distinct stored messages in the CS of a correct node hereby
bounding the Counter by n.

For a correct node to have a Counter that equals exactly n it needs its own stored message
to be in its CS, as a consequence of a message it sent. Consider the moment after it sent this
message, say before the node’s Counter reached n, that is accounted for in its CS. This message
was concomitant to its pulse invocation and cycle reset. The node assesses its own message at
most d(1+ρ) local-time units after sending it thus, following the PRUNE procedure, its own stored
message will decay at most τ(n + 2) + d(1 + ρ) < τ(n + 3)) = Rn+1 local-time units after it was
sent. Thus at the moment the node reaches threshold level Rn its own message will already have
decayed and the Counter will decrease and will be at most n− 1, implying that any message sent
by the node can carry a Counter of at most n− 1.

Lemma 2.6.4 A stored message, (Sr, t
′), that has been moved to the RUCS of a correct node q up

to d(1 + ρ) local-time units subsequent to the event of sending a message Mp by p, (or was moved
at an earlier time) cannot have been accounted for in CounterMp .

Proof: Assume that the stored message (Sr, t
′) was moved to the RUCS of node q at a local-time

t, d(1+ρ) local-time units subsequent to the event tsend Mp at node p, (or it was moved at an earlier
time). Thus at q at local-time t, MessageAge(t, q, r) > τ(n+1). Therefore at node p at local-time
tsend Mp , MessageAge(tsend Mp , p, r) > τ(n+1)−2d(1+ρ) > τ(n). This is because p could have
received the message Mr up to d(1+ρ) local-time units later than q did, and q could have received
Mp up to d(1 + ρ) local-time units after it was sent.

Following the PRUNE procedure at p, (Sr, t”) would have been accounted for at the sending
time of Mp only if CounterMp ≥ n + 1. Therefore by Lemma 2.6.3 node p did not account for the
stored message of r in CounterMp .

Corollary 2.6.5 A stored message, (Sr, t
′), that has decayed at a correct node q prior to the event

of sending a message Mp by p, cannot have been accounted for in CounterMp .

2.6 Proofs 49

Proof: Corollary 2.6.5 is an immediate corollary of Lemma 2.6.4.

Corollary 2.6.6 Let a correct node q receive a message Mp from a correct node p at local-time
tarr. Then, at q, from some time t in the local-time interval [tarr, tarr + d(1 + ρ)] and at least until
the end of the interval:

‖Message_Pool‖ ≥ CounterMp + 1 .

Proof: Corollary 2.6.6 is an immediate corollary of Lemma 2.6.2 and Lemma 2.6.4.

Thus, as a consequence to the lemmata, we can say informally, that when the system is coher-
ent all correct nodes relate to the same set of messages sent and received.

Proof of Theorem 2.2.1
Recall the statement of Theorem 2.2.1:

Any message, Mp, sent by a correct node p will be assessed as timely by every correct node q.

Proof: Let Mp be sent by a correct node p, and received by a correct node q at local-time tarr. We
show that the timeliness conditions hold:
Timeliness Condition 1: 0 ≤ CounterMp ≤ n− 1 as implied by Lemma 2.6.3 and by the fact that
the CS cannot hold a negative number of stored messages.

Timeliness Condition 2: Following Lemma 2.6.3 a correct node will not fire during the absolute
refractory period. Property 5 therefore implies that a correct node cannot count less than τ(n + 3)
local-time units between its consecutive firings. A previous message from a correct node will
therefore be at least τ(n+2) local-time units old at any other correct node before it will receive an
additional message from that same node. Following the PRUNE procedure, the former message will
therefore have decayed at all correct nodes and therefore cannot be present in the Message_Pool at
the arrival time of the subsequent message from the same sender.

Timeliness Condition 3: This timeliness condition validates CounterMp . The validation crite-
rion relies on the relation imposed at the sending node by the PRUNE procedure, between the
MessageAge(t, p, ..) of its accounted stored messages and its current Counter.

By Lemma 2.6.2, for all stored messages (Sr, t
′) accounted for in Mp,

MessageAge(t, q, r) ≤ τ(CounterMp + 1) from some local-time t ∈ [tarr, tarr + d(1 + ρ)] and
until the end of the interval.

By Corollary 2.6.6, ‖Message_Pool‖ ≥ CounterMp +1, from some local-time t′′ ∈ [tarr, tarr+
d(1 + ρ)] and until the end of the interval.

We therefore proved that Timeliness Condition 3 holds for any 0 ≤ k < n at the latest at
local-time tarr + d(1 + ρ).

The message Mp is therefore assessed as timely by q.

50 Pulse Synchronization Inspired by Biological Pacemaker Networks

Lemma 2.6.7 Following the arrival and assessment of a timely message Mp at node q, the subse-
quent execution of the MAKE-ACCOUNTABLE procedure yields Counterq > CounterMp .

Proof: We first show that at time t, the time of execution of the MAKE-ACCOUNTABLE procedure,
max[1, (CounterMp − Counterq + 1)] ≤ ‖UCS‖, ensuring the existence of a sufficient number
of stored messages in UCS to be moved to CS.

Mp is assessed as timely at q, therefore, by Timeliness Condition 3 and Lemma 2.6.4, at time
t,

CounterMp < ‖Message_Pool‖ = ‖CS‖+ ‖UCS‖ = Counterq + ‖UCS‖ =

CounterMp −max[1, (CounterMp − Counterq + 1)] + 1 + ‖UCS‖
⇒ 0 < −max[1, (CounterMp − Counterq + 1)] + 1 + ‖UCS‖
⇒ max[1, (CounterMp − Counterq + 1)]− 1 < ‖UCS‖
⇒ max[1, (CounterMp − Counterq + 1)] ≤ ‖UCS‖ .

There are two possibilities at the instant prior to the execution of the MAKE-ACCOUNTABLE

procedure. At this instant Counterq = ‖CS‖:

1. CounterMp ≤ Counterq, then max[1, (CounterMp −Counterq + 1)] = 1, meaning ‖CS‖
will increase by 1.

2. CounterMp > Counterq, then ‖CS‖will be Counterq+max[1, (CounterMp−Counterq+
1)] = Counterq + CounterMp − Counterq + 1 = CounterMp + 1.

In either case, immediately subsequent to the execution of the procedure we get: ‖CS‖ > CounterMp

and therefore the updated Counterq > CounterMp .

Proof of Lemma 2.2.1

Recall the statement of Lemma 2.2.1:
Following the arrival of a timely message Mp, at a node q, then at time tsend Mq , Counterq >

CounterMp .

Proof: Let tarr denote the local-time of arrival of Mp at q. Recall that tsend Mq is the local-time
at which q is ready to assess whether to send a message consequent to the arrival and processing
of Mp. In the local-time interval [tarr, tsend Mq] at least one PRUNE procedure is executed at q, the
one which is triggered by the arrival of Mp. Following Lemma 2.6.7, Counterq > CounterMp

subsequent to the execution of the MAKE-ACCOUNTABLE procedure. Note that tarr ≤ tsend Mq ≤
tarr + d(1 + ρ). By Lemma 2.6.4 all stored messages accounted for in CounterMp will not be
moved out of the Message_Pool by any PRUNE procedure executed up to local-time tsend Mq , thus,
Counterq must stay with a value greater than CounterMp up to time tsend Mq .

2.6 Proofs 51

Lemma 2.6.8
Lemma 2.6.8 Let p, q ∈ Ci and r ∈ Cj, denote three correct nodes belonging to two different
synchronized clusters. Following the arrival and assessment of p’s and q’s fires, both will be
accounted for in the Counter of r.

Proof: Without loss of generality, assume that p fires before node q. Following Lemma 2.3.4 node
q will fire within σ of p (d(1 + ρ) on r’s clock). Node r will receive and assess q’s fire at a time tq
at most d(1+ ρ)+ d(1+ ρ) = 2d(1+ ρ) after p fired. Summation Property [P2] ensures that r will
account for each one after their arrival and assessments. Furthermore, MessageAge(tq, q, p) ≤
2d(1 + ρ) = τ(0) and therefore node r did not decay or move Mp to RUCS by time tq. Therefore,
Mp is still accounted for by node r at time tq and thus, both p and q are accounted for in Counterr

at time tq.

52 Stabilization of General Byzantine Algorithms using Pulse Synchronization

Chapter 3

Stabilization of General Byzantine
Algorithms using Pulse Synchronization

3.1 Specific Definitions

DEFINITION 3.1.1 A node is correct following ∆node = pulse_conv + 2 · cycle + σ real-time of
continuous non-faulty behavior.

DEFINITION 3.1.2 The communication network is correct following ∆net = pulse_conv + 2 ·
cycle + σ real-time of continuous non-faulty behavior.

The self-stabilization paradigm assumes that all variables and program registers are volatile
and thus prone to corruption or can initialize with arbitrary assignments. Conversely, it assumes
that the code (the instructed protocol) is not dynamic and can thus be stored on non-volatile or
non-corruptible storage. Furthermore, it is assumed in the paradigm that any access to an external
module utilized by the system is eventually restored. E.g., any dependency on continuous time
correlated to real-time without access to an external time source, can not be handled in the context
of self-stabilization as no algorithm can restore the reference to external time without access to the
external time source.

A local state of a node is comprised of the program counter and an assignment of values to the
local variables. A node switches from one local state to another through a computation step. A
global state of a system of nodes is the set of local states of its constituents nodes and the contents
of the FIFO communication channels. A local application state is a subset of the variables of
the local state that are relevant for the application. Two local states are said to be distinct if
they represent local states on different nodes. A global application state is a collection of all the
distinct constituent local application states at a certain moment. A global application snapshot is
any collection of distinct local application states. An execution of a program P is a possibly infinite
sequence of global states in which each element follows from its predecessor by the execution of
a single computation step of P. We define E to be the set of all possible execution sequences of a
program P.

DEFINITION 3.1.3 An initial state is said to be normal if the program counter of each correct node
is 0 and the communication channels are empty.

3.2 A Byzantine Stabilizer 53

DEFINITION 3.1.4 A normal execution is an execution whose initial state is normal and has en-
tirely occurred while the system is coherent.

DEFINITION 3.1.5 A global application state is said to be legal if it could occur in a normal
execution.

DEFINITION 3.1.6 A legal execution is an execution that is a non-empty suffix of a normal execu-
tion.

We define NE, (NE ⊂ E), to be the set of normal executions of P (also denoted NE(P)).
Equivalently, we define LE, (LE ⊂ E), to be the set of legal executions of P (denoted LE(P)
respectively). The legal global states and the set of legal executions are determined by the particular
task in the specific system and its respective normal executions. This cannot be characterized in
general terms regardless of the actual problem definition that program P seeks to solve.

The self-stabilization of a system is informally defined by the requirement that every execution
in E has a non-empty suffix in LE. We adopt the definitions of a self-stabilizing extension of a
non-stabilizing program from [47]:

DEFINITION 3.1.7 A projection of a global state onto a subset of the variables and the messages
on the channels is the value of the state for those variables and messages.

DEFINITION 3.1.8 Program Q is an extension of program P if for each global state in NE(Q)
there is a projection onto all variables and messages of P such that the resulting set of sequences
is identical to NE(P), up to stuttering1.

Note that when one considers only those portions of Q’s global state that correspond to P’s
variables and messages and if repetitions of states are ignored, then the legal executions of P and
Q are identical. Thus, a state of Q is a legal state of Q iff the projection onto P is a legal state of P.
The program P to be extended is called the basic program.

DEFINITION 3.1.9 Program Q is a self-stabilizing extension of a program P if Q is an extension
of P and any execution in E(Q) has a non-empty suffix whose projection onto P is in LE(P).

Thus, informally, if Q is a self-stabilizing extension of P then the projection of Q onto P is
self-stabilizing. Therefore we refer to Q as a stabilizer of P.

3.2 A Byzantine Stabilizer
Intuitively, the task of stabilizing a program should supposedly be rather straightforward: Every
period of time, make all nodes report their internal states, then sift through the collected states
and search for a possibly global inconsistency in the algorithm as emerges from the global snap-
shot. Upon such an inconsistency make all nodes reset to a consistent state. Below we display a
conceptual view of the scheme:

1When comparing sequences, adjacent identical states are eliminated; this is called the elimination of stuttering
in [47].

54 Stabilization of General Byzantine Algorithms using Pulse Synchronization

At “time− to− exchange− states” do
1. Send local state to all nodes and Byzantine Agree on every node’s state;
2. All correct nodes now see the same global snapshot;
3. Check if global snapshot represents a legal state;
4. If not then reset the basic program;
5. If yes but your state is corrupt then repair state;

This greatly simplified scheme does not address the many subtle problems that surface when
facing transient faults and permanent Byzantine faults: How do you synchronize the point in time
for reporting the internal states? How do you ensure that the global snapshot is concurrent enough
to be meaningful? How do you prevent Byzantine nodes from causing correct nodes to see differing
global snapshots? How does the predicate detection mask Byzantine values?

We address the synchronization issue by employing an underlying Byzantine self-stabilizing
pulse synchronization procedure. The pulse is essentially used as the event that helps to deter-
mine when to report the local state. The “meaningfulness” of the global snapshot is addressed
by the observation that many algorithms have identifiable events in their executions. In a semi-
synchronous protocol different nodes should execute the same events within a small bounded time
of each other. If all correct nodes report their local states and clock time2 at such an event (denoted
sampling point) then the combination of clock time and the emergent global snapshot can be used
for deducing whether the protocol is in a legal state. As an example, consider that the events are
the beginning of a round, in case the basic program works in rounds. Thus all correct nodes should,
whenever the system is in a legal state, reach the event of a specific round within bounded clock
time of each other. By instructing the nodes to report their state (round number) and clock time at
the specific round, it can be deduced whether this event indeed happened within the legal bounded
time. If so, then that implies that the global snapshot taken carries meaningful information about
the global state of the system. By evaluating this global predicate a decision can be made as of the
legality of the global state and a reset can be done, if required. If the reported clock times are “too
far” from each other then this is a sufficient indication that the system is not in a legal state and
thus should be reset.

The issue of Byzantine nodes and values are tackled by initiating Byzantine agreement on the
reported states. This ensures that all correct nodes have identical views of the global snapshot.

Our scheme stabilizes any Byzantine protocol that has such events (sampling points) during
the execution, which can be identified by checking the program counter and local state. Otherwise,
it is required that the basic program signals when to read and report the local state. We argue that
this definition covers an extensive set of protocols. Programs that work in round structure is just
a specific and easily identifiable example of such protocols. We assume for simplicity that the
sampling points are taken at least 4σ apart on the same node in order to be able to differentiate be-
tween adjacent sampling points due to the synchronization uncertainties. It remains open whether
this bound is really required. In Section 3.3 we give a detailed example of how to extend a specific
clock synchronization algorithm that does not operate in a round structure.

Note that we do not aim at achieving a consistent global snapshot in the Chandy-Lamport sense
(see [17]), which is not clearly defined in the Byzantine fault model. For our purposes a projection

2Note that the clock time can be the elapsed time on a node’s timer since the pulse. The synchronization of the
pulses implies synchronization of these clocks.

3.2 A Byzantine Stabilizer 55

of the local state to the application state suffices in order to detect states that violate the assumptions
of the basic program on its initial states, which rendered it non-stabilizing in the first place.

Generally, the extension of the basic program is established through a user-supplied wrapper
function, so called because it “wraps” the basic program and functions as an interface between
the basic program and the stabilizer. Note that the wrapper procedures must be supplied by the
implementor. This is because it is a semantic matter to determine whether the global application
state predicate indicates an illegal state that violates the assumptions of the basic program. For the
sake of modularity and readability the wrapper is divided into two distinct modules according to
its two main functions. The GETSTATE_WRAPPER() module interprets the local state of the basic
program and returns the local state at the sampling points. The EVALSTATE_WRAPPER() module
evaluates the agreed global application snapshot and determines whether it is legal with respect to
the application. It also instructs a node how to repair its local application state as a function of the
global application snapshot, should a node detect that its local application state is inconsistent with
the legal global application snapshot.

Restrictions on the basic program:

R1: The basic program at all correct nodes can be initialize within at least σ real-time units apart.
The procedure INIT_BASIC_PROGRAM initializes it.

R2: The basic program can tolerate that up to f of the nodes can choose to keep values from
previous incarnations of the basic program (e.g. for replay of digital signatures).

R3: Has repeated sampling points during execution that can be identified through the local state.
The sampling points are such that if all correct nodes report their state at the same corre-
sponding sampling point then the global application snapshot is “meaningful” with respect
to the application.

R4: During a legal execution all the correct nodes’ sampling points are within ∆ real-time units
of each other. The background pulse algorithm implies that ∆ ≥ σ, because the pulse skew
may cause the nodes to reach the sampling points up to σ real-time units of each other.

R5: There exists a value Σ, such that in every time-window that is at least some Σ real-time
units long every correct node has at least one sampling point. This value also covers the
initialization period of the basic program.

R6: The set of legal application states of the basic program can be determined by evaluating a
predicate on the application state variables. An additional requirement is that if up to f non-
faulty nodes detect that their own local state is inconsistent with a legal global application
snapshot then it can be repaired without needing a global reset3.

R7: The basic program has a closure property with regards to the legal global states. I.e. if the
system is in a legal state and the system is coherent then it stays in a legal state as long as
the system stays coherent.

To formalize the intuition we give a more refined presentation of the algorithm:

3A basic program that lacks this property might not converge to a legal state.

56 Stabilization of General Byzantine Algorithms using Pulse Synchronization

At “pulse” event Do /* received the internal pulse event */
1. Revoke possible other instances of the algorithm and clear the data structures;
2. If (reset) then Do invoke INIT_BASIC_PROGRAM; /* reset the Basic Program */

/* Lines 3,4 are executed by the GETSTATE_WRAPPER() procedure */
3. Upon a sampling point Do
4. Set Timer := elapsed time since pulse;
5. Record app_state & invoke BYZ_AGREEMENT on (app_state, Timer);

/* Line 6 is executed about agreement_duration time after the f+1st agreement */
6. Sift through agreed values for a cluster of ≥ n− f values whose Timers within

2∆ of each other, thus comprising a meaningful global application snapshot;
7. If no such cluster exists then Do reset := true;

/* Lines 8,9,10 are executed by the EVALSTATE_WRAPPER() procedure */
8. Else Do predicate evaluation on the global application snapshot;
9. If global application snapshot is not legal Do reset:=true;

10. Else If you are not part of the cluster Do Repair your application state;

The complete algorithm, denoted BYZSTABILIZER, is given below in Figure ??.
The internal pulse event is delivered by the pulse synchronization procedure (presented in

Chapter 2 or Chapter 7). The synchronization of the pulses ensures that the BYZSTABILIZER

procedure is invoked within σ real-time units of its invocation at all other correct nodes. Note that
we do not assume any correlation between the pulse cycle and any internal cycles or rounds of
the basic program. Hence at the time of the pulse, the basic program may be in any of its states.
The Byzantine agreement procedure used, BYZ_AGREEMENT, is presented in Section 3.5. It is
essentially the agreement equivalent of the consensus procedure of Section 4.4 in Chapter 4.

Line 1: Following the pulse any possible on-going invocation of BYZSTABILIZER (and thus
any on-going BYZ_AGREEMENT or instance of the wrappers, but not the execution of the basic
program) is revoked and all data structures that are not used by the basic program are cleared. The
exception is the “reset” variable that is not cleared. Note that the application state, as it belongs to
the basic program, remains intact.

Line 2-3: Each node p initializes a Timer that holds the elapsed clock time since the last pulse
invocation, before possibly doing a reset of the basic program.

Lines 4-7: When the GETSTATE_WRAPPER() wrapper procedure encounters a sampling point
subsequent to the pulse, at elapsed time = Timer, then it records the local application state into
the RecState variable. Agreement is then invoked on (p, RecState, T imer). The procedure
GETSTATE_WRAPPER() sanity checks the state recorded at line 6, thus if it detects that the local
application state is invalid or corrupt it will return ⊥.

Lines 8-15: Target at identifying the f + 1st (time-wise) distinct node whose value has been
agreed upon, denoted the pivot node. Note that after a bounded time all correct nodes will identify
the same pivot node. The time appearing in the agreed value of the pivot node is denoted Tpivot.
The variable AS holds the set of agreed states. The variable Agr_nodes holds the set of nodes

3.2 A Byzantine Stabilizer 57

Algorithm 1 BYZSTABILIZER /* executed at node q */
At “pulse” event Do /* received the internal pulse event */
Begin
1. Revoke possible other instances of BYZSTABILIZER and clear the data structures;
2. Timer := 0; Tpivot := 0;
3. If (reset) then Do invoke INIT_BASIC_PROGRAM; /* reset the Basic Program */
4. Wait until Timer = σ · (1 + ρ) time units;

/* read&agree state at sampl. point; collect f+1 agreed states in window */
5. Do
6. Invoke in the background RecState := GETSTATE_WRAPPER();
7. If RecState 6=⊥ then Do invoke BYZ_AGREEMENT(q, RecState, T imer);
8. AS := {(p, S, T) | BYZ_AGREEMENT returned S 6=⊥}; /* add agreed state */
9. Agr_nodes := {pi | (pi, _, Ti) ∈ AS, σ + ∆ ≤ Ti ≤ Σ + ∆}; /* minimal Ti */

10. Until (‖ Agr_nodes ‖≥ f + 1 or Timer > Σ + ∆ + agreement_duration);

/* collect agreed states, until no more possible states from correct nodes */
11. Do
12. AS := {(p, S, T) | BYZ_AGREEMENT returned S 6=⊥}; /* add agreed state */
13. Agr_nodes := {pi | (pi, _, Ti) ∈ AS, σ + ∆ ≤ Ti ≤ Σ + ∆}; /* minimal Ti */
14. Let pivot be the f+1st node in Agr_nodes, in ascending order by their min. Ti;
15. Until Timer ≥ Tpivot + (σ + ∆ + agreement_duration) · (1 + ρ) time units;

/* seek cluster of ≥n−f values whose Timers within 2∆ of each other */
16. AS ′ := {(p, S, T) ∈ AS | σ + ∆ ≤ T ≤ Tpivot + ∆ · (1 + ρ)};
17. Cluster_rep := {(pc, Sc, Tc) ∈ AS ′ |

‖ {p′ | (p′, S ′, T ′) ∈ AS & Tc ≤ T ′ ≤ Tc + 2∆ & Sc ∼ S ′} ‖≥ n− f};

/* if no cluster do reset, otherwise evaluate snapshot of earliest cluster */
18. If ‖ Cluster_rep ‖ = 0 then Do reset := true; /* if no n-f sized cluster found */
19. Else Do (pc, Sc, Tc):=minT{(p, S, T) ∈ Cluster_rep}; /* else seek earliest cluster */
20. globAppSnapshot := {(p′, S ′, T ′) ∈ AS | Tc ≤ T ′ ≤ Tc + 2∆ & Sc ∼ S ′};
21. reset := EVALSTATE_WRAPPER(globAppSnapshot); /*reset,repair or nothing*/
End

whose values have been agreed on.
Lines 16-17: A bounded period of time subsequent to Tpivot, all correct nodes must have ter-

minated agreement on all nodes’ values. It is then, that a cluster of at least n− f agreed values is
searched for, such that their Timers are within 2∆ of each other.

Line 18: Such a cluster, if exists, comprises a meaningful global application snapshot. Other-
wise, the global application state must be in an illegal state.

Lines 19-21: If a cluster is detected, then the EVALSTATE_WRAPPER procedure evaluates
the global application snapshot. It determines whether the node must repair its local application
state; whether a global reset should be scheduled at the next pulse invocation or whether the global

58 Stabilization of General Byzantine Algorithms using Pulse Synchronization

application state is assumed to be legal and thus nothing is done. The ∼ notation denotes equality
between cluster identifiers.

Lemma 3.2.1 If the system is in an arbitrary global state then, within finite time, subsequent to
line 17 of the BYZSTABILIZER algorithm there is agreement on the set Cluster_rep.

Proof: Since the system is coherent, all correct nodes invoked the last pulse synchronously. Fol-
lowing the protocol, every correct node reads and then initiates agreement on its application state
upon reaching its first occurring sampling point after the pulse. There are two cases to consider:
if the agreement is initiated by a correct node, then this happens at least σ real-time units sub-
sequent to it’s pulse. Thus all correct nodes will receive this node’s initialization message as all
correct nodes will already have invoked their pulse and will thus participate immediately in the
agreement. In the other case consider that the agreement is initiated by a faulty node. Assume that
a correct node receives the initialization message from the faulty node immediately following its
pulse and that the other correct nodes receive it before their pulse and thus clear the message buffers
at their pulse. This scenario can only happen if the faulty message is received before σ(1+ ρ) time
units have passed on the correct receiver’s timer. Following the protocol in Section 3.5, the re-
ceiving node waits until the end of the σ · (1 + ρ) interval following its pulse, before processing
the initialization message. By the time it will send an echo message, following the broadcast pro-
tocol (presented in Section 4.4), all correct nodes will have invoked their pulses and will receive
every correct node’s echo messages. This reduces to the case in which the faulty node sent its
initialization message to a subset of the correct nodes, a situation which is handled by-design by
the reliable broadcast protocol. Thus all the conditions of reliable broadcast are satisfied. Thus,
eventually agreement is reached on every node that initiates agreement on its application state.

The agreement on any node’s application state initiated with a certain Ti will terminate at all
correct nodes within Ti + (agreement_duration + σ) · (1 + ρ) local-time units of their pulse. Thus,
subsequent to measuring Ti + (agreement_duration + σ) · (1 + ρ) local-time units after their pulse,
no correct node will decide on a message with Tj < Ti. All correct nodes initialize agreement on
their application state within Σ of their pulse or within (σ+Σ) ·(1+ρ) local-time units of the pulse
of other correct nodes. Thus, within (σ + ∆ + Σ + agreement_duration) · (1 + ρ) local-time units
of their pulse, no new agreements can terminate for Tj < ∆ + Σ. Thus, all correct nodes agree on
the value Tpivot. Among the f + 1 first terminated agreements there must be at least one correct
node, and all correct nodes have initialized agreement on their application state within σ + ∆ of
Tpivot. Thus, subsequent to measuring Tpivot + (σ + ∆ + agreement_duration) · (1 + ρ) local-time
units after the pulse, no correct node will decide on a message with Tj < ∆ + Σ and there will be
agreement on the application state of every node and hence there will be agreement on the set AS,
the global application state whose recording times are less or equal to ∆ + σ. Hence, any action
derived from the set AS, such as in Lines 16 and 17, will have the exact same outcome at all correct
nodes. Thus, subsequent to line 17 of the BYZSTABILIZER algorithm there is agreement on the set
Cluster_rep, which thus completes the proof.

Note that this is irrespective whether a subset of the correct nodes did a reset of the basic
program subsequent to the pulse and irrespective of the legality of the state of the basic program.
Note that not all correct nodes might necessarily be represented with a valid application state in the
agreed set AS. E.g. as a result of the case in which the basic program is in an illegal state such that
the sampling points of different nodes are far from each other. Another case occurs if the pulses are

3.2 A Byzantine Stabilizer 59

invoked in between correct nodes sampling points such that some correct nodes initiate agreement
on their application state and some don’t. This case also occurs only if the basic program is in an
illegal state so that the sampling points are far from each other.

Theorem 3.2.1 BYZSTABILIZER is a self-stabilizing extension of any algorithm that complies
with restrictions R1-R7.

Proof:
Convergence: Let the system be coherent but in an arbitrary global state, s, with the nodes holding
arbitrary local application states. The pulse synchronization procedure is self-stabilizing, thus, in-
dependent of the system’s initial state within a finite time the pulses are invoked regularly and
synchronously with a tightness of σ real-time units. At the pulse invocation all remnants of
previously invoked BYZSTABILIZER, inclusive of its sub-procedures such as the agreement and
wrappers, are flushed by all the correct nodes. Following Lemma 3.2.1, subsequent to line 17 of
BYZSTABILIZER there is consensus on the selected cluster (including of the empty cluster). At
line 18 there may be one of two possibilities:

1. ‖ Cluster_rep ‖ = 0: This necessarily implies the basic program is in an illegal state. In
this case all correct nodes will do reset :=true. At the next pulse all correct nodes will reset
the basic program and thus converge to a legal state.

2. A cluster was detected: In this case subsequent to line 20 the variable globAppSnapshot,
which holds the cluster whose states are the earliest agreed on since the pulse, will be gen-
erated at all correct nodes. Again, there are two cases to consider:

(a) The sampling points are within ∆ real-time of each other:
Thus all correct nodes have initiated an agreement on their state within ∆ real-time
units of time Tpivot at the pivot node. Hence all correct nodes are represented in the
cluster. The reset variable will be set at line 21 by the EVALSTATE_WRAPPER pred-
icate detection procedure. If the procedure returns that the globAppSnapshot is legal
then all correct nodes do nothing. Otherwise all correct nodes will reset the basic pro-
gram at the next pulse and thus the system converges to a legal global state.

(b) The sampling points are not within ∆ real-time of each other: There are two cases to
consider:

i. All correct nodes are represented in the cluster:
Thus the basic program is unsynchronized within the uncertainty window. If the
EVALSTATE_WRAPPER procedure detects the illegality of the global state then all
correct nodes will reset at next pulse, otherwise the illegality will not be detected
and all correct nodes will not reset the basic program at the next pulse.

ii. At least one correct nodes is not represented in the cluster: Again there are two
cases:
A. The EVALSTATE_WRAPPER procedure evaluates in line 21 the application

snapshot as illegal: Then all correct nodes reset at the next pulse and the
system attains a legal global state.

60 Stabilization of General Byzantine Algorithms using Pulse Synchronization

B. The EVALSTATE_WRAPPER procedure evaluates in line 21 the application
snapshot as legal: This is due to faulty nodes that “fill-in” for the lacking
correct values, then these correct nodes that are not represented will detect so
and must repair their local states. Thus no correct node does a reset at the
next pulse. By restriction R6, a repair is done by the EVALSTATE_WRAPPER

procedure as a function of the global application snapshot such that the new
global state will be legal.

Closure: Following Lemma 3.2.1 the closure proof reduces to case (2.a.) in the proof of con-
vergence, for the case in which the global state is legal. Thus, following restriction R4 the
EVALSTATE_WRAPPER procedure evaluates correctly that the global snapshot is legal and thus
all correct nodes do reset :=false.

This concludes the proof of the theorem.

3.3 Example of Stabilizing a Non-stabilizing Algorithm
To illustrate our method and to elucidate its generality we will provide a specific example of the
conversion of a well known non-stabilizing algorithms to its stabilizing counterpart.

To stabilize the protocol using our scheme the following needs to be identified: the application
state, the sampling points, the bound ∆ on the real-time skew between correct nodes’ sampling
points in a legal state, the GETSTATE_WRAPPER procedure, the EVALSTATE_WRAPPER proce-
dure and how it characterizes the legal states and how it does a repair, the initialization of the basic
program following a global reset, the required minimal length of the cycle.

Consider the Byzantine clock synchronization algorithm in [26]. Informally that algorithm
operates as follows: The processes resynchronize their clocks every PER time period. A process
expects the time at the next resynchronization to equal ET . When a process’s local time reaches
ET it broadcasts a (signed) message stating “the time is ET ”. Alternatively, when a process
receives such a message from f +1 distinct nodes it knows that at least one correct node advanced
its local time to ET and thus it resets its clock to ET . Note that this algorithm does not utilize a
rounds structure.

It is interesting to note that the candidate protocol above uses signed messages in a way that
does not comply with R2, because replay of signed messages from previous incarnations of the
protocol can destroy the synchronization of the clocks of the correct nodes. One can transform the
protocol to conform with R2, by using Byzantine Agreement instead of sending signed messages.
The difficulty above is inherent in stabilizing protocols that use digital signatures.

• The application state will be comprised of the ET variable only.

• Practically any point throughout the inter-PER period avoiding the vicinity of the resynchro-
nization events is safe for sampling. For illustrative purposes we will define a sampling point
at every time that equals ET + PER/2. It is clear that the ET variable is quiescent around
this point when the algorithm is in a legal global state.

• The algorithm can be initialized with the required bound of σ real-time units between the
different nodes. This will not affect the precision of the algorithm which will stay d. That

3.4 Analysis 61

will yield a real-time skew between correct nodes’ sampling points in a legal state of ∆ =
d + PER · (1 + ρ).

• The sampling point is identified by the GETSTATE_WRAPPER procedure through the local
state event of clocktime = ET + PER/2, at which the ET value is read into the localApp-
State variable.

• The EVALSTATE_WRAPPER procedure identifies the legal application states as those in
which there are at least n − f identical ET values. A repair is done by a node by set-
ting its ET value to equal the other n− f or more ET values in the application snapshot if
it was evaluated as legal.

• Following a reset a node should initialize the algorithm by setting its ET variable to some
pre-defined value, e.g. ET = 0. As mentioned before, the initial skew of σ will affect the
accuracy but not the precision, as early and fast nodes will reach their subsequent ET before
the others, but the others late and slow nodes will set their clock accordingly upon receiving
f + 1 messages which is uncorrelated to the initialization skew.

• The required minimal cycle length equals PER/2 in case the pulse correlates with the reading
of the sampling point and some correct nodes will have to wait until the next sampling point.
The protocol then needs to allow for a full Byzantine agreement to terminate, in addition to
a few round-trip rounds. Thus the required minimal cycle length equals PER/2 + (2f + 3)
rounds.

3.4 Analysis
We require cycle to be chosen s.t. cyclemin > σ + Σ + agreement_duration.

From an arbitrary state in which the system is coherent it can take up to pulse_conv real-
time until the pulses synchronize. Subsequent to the pulses it can take in the order of Σ +
agreement_duratione real-time to reach a decision on a reset. The steady-state time complexity
equals the time overhead from the pulse until the EVALSTATE_WRAPPER procedure terminates.
Again this equals about Σ + agreement_duration time. With few faults and/or a fast network this
becomes in the order of Σ, which is largely determined by the user and can be as low as 4d if
the basic program allows for frequent sampling points. The message complexity is expressed in
point-to-point messages. The message complexity of the steady state is roughly n2 messages for
the pulse synchronization procedure, and f ′ · n2 for the agreement algorithm.

Note that the agreement instances initiated by correct nodes will always terminate within 2
communication rounds, this is due to the early stopping property of the consensus algorithm which
terminates within 2 rounds if all correct nodes hold the same initial agreement value. Thus the
communication complexity is that of the actual number of faulty nodes.

The algorithm is fault-containing, in the sense that if faulty nodes behave “correctly” such that
a correct node detects that it is not in synch with a legal global snapshot then the node can “repair”
itself. Thus even though we present a reset-based protocol, repair is done up to a certain amount
of concurrent faults. This is because our protocol is Byzantine resilient, thus a non-Byzantine fault
or inconsistency will be masked by the protocol while the affected non-faulty node can perform

62 Stabilization of General Byzantine Algorithms using Pulse Synchronization

a repair. Only if there should be more than f faults and inconsistencies would a system reset be
performed.

The algorithm is also time-adaptive, the number of rounds executed in every cycle equals the
number of actual faults, f ′. This is due to the early-stopping feature of the agreement algorithm
which terminates within f ′ ≤ f rounds.

Note that if solving a certain Byzantine problem can be reduced to consensus (or agreement)
on the future value of the global state at the next pulse, (e.g. clock synchronization, see Chapter 4),
as opposed to reaching agreement on the current value of every node, then the agreement algorithm
presented can be used to achieve 2-round early stopping subsequent to every pulse. Thus based on
the global application snapshot at the last pulse, it can be calculated what the global state should
be at this pulse. Thus if all correct nodes previously agreed on the state of every other node, which
comprises the global snapshot, then they can enter agreement with consensus on the expected states
for all nodes. The early stopping feature of the consensus algorithm in Chapter 4 ensures that if
all correct nodes hold the same initial value to be agreed on then consensus is reached within two
rounds. This makes the steady-state case extremely cost-efficient with a minimal overhead of 2
rounds. Only following a transient failure might full agreement be executed on the values of the
faulty nodes, since different correct nodes may then hold different values for the same nodes.

3.5 The BYZ_AGREEMENT algorithm
The Byzantine agreement algorithm used here extends the consensus approach taken in Chapter 4,
Section 4.4 in using explicit time bounds in order to address the variety of potential problems that
may arise when the system is stabilizing.

We assume that timers of correct nodes are always within σ̄ of each other. More specifically,
we assume that nodes have timers that reset periodically, say at intervals ≤ cycle′. Let Tp(t) be the
reading of the timer at node p at real-time t. We thus assume that there exists a bound such that for
every real-time t, when the system is coherent,

∀p, q if σ̄ < Tp(t), Tq(t) < cycle′ − σ̄ then |Tp(t)− Tq(t)| < σ̄ .

The bound σ̄ includes all drift factors that may occur among the timers of correct nodes during that
period. When the timers are reset to zero it might be, that for a short period of time, the timers may
be further apart. The pulse synchronization algorithm in Chapter 7 satisfies the above assumptions
and implies that σ̄ > d.

We use the following notations in the description of the agreement procedure:

• Let d̄ be the duration of time equal to (σ̄ + d) · (1 + ρ) time units on a correct node’s timer.
Intuitively, d̄ can be assumed to be a duration of a “phase” on a correct node’s timer.

The consensus-broadcast and the broadcast primitives are defined in 4.4. Note that an accept
is issued within the broadcast primitive.

It is assumed that the BROADCAST and CONSENSUS-BROADCAST primitives are implicitly
initiated when a corresponding message arrives. A correct node participates in these primitives
only after the σ · (1 + ρ) interval following its pulse. Any corresponding message received in this
interval is held and processed only at the end of this interval.

3.5 The BYZ_AGREEMENT algorithm 63

The BYZ_AGREEMENT algorithm is presented in a somewhat different style. Each step has
a condition attached to it, if the condition holds and the timer value assumption holds, then the
step is to be executed. Notice that only the step needs to take place at a specific timer value. It is
assumed that the internal procedures invoked as a result of the BYZ_AGREEMENT algorithm are
implicitly associated with the agreement procedure.

Algorithm BYZ_AGREEMENT on (p, V al, T) /* invoked at node q */

broadcasters := ∅; value :=⊥;
if p = q then send (initialize, q, V al, T + d̄, 1) to all; /* the General */
by time (T + d̄) :

if received (initialize, p, V al, T + d̄, 1) then
consensus-broadcast(p, V al, T + d̄, 1);

by time (T + 3d̄) :
if accepted (p, v, T + d̄, 1) then

value := v;
by time (T + (2f + 3)d̄) :

if value 6=⊥ then
broadcast (q, value, T + d̄, bTq−T−d̄

2d̄
c+ 1);

stop and return value.
at time (T + (2r + 1)d̄) :

if (|broadcasters| < r − 1) then
stop and return value.

by time (T + (2r + 1)d̄) :
if accepted (p, v′, T + d̄, 1) and r − 1 distinct messages (pi, v

′, T + d̄, i)
where ∀i, j 2 ≤ i ≤ r, and pi 6= pj 6= p then

value := v′;

Figure 3.1: The BYZ_AGREEMENT algorithm

The BYZ_AGREEMENT algorithm satisfies the following typical properties:

Termination: The protocol terminates in a finite time;
Agreement: The protocol returns the same value at all correct nodes;
Validity: If the initiator is correct, then the protocol returns the intiator’s value;

Nodes stop participating in the BYZ_AGREEMENT protocol when they are instructed to do so.
They stop participating in the broadcast primitive 2d̄ after they terminate BYZ_AGREEMENT.

DEFINITION 3.5.1 We say:

A node returns a value m if it has stopped and returned value = m.

A node p decides if it stops at that timer time and returns a value 6=⊥ .

A node p aborts if it stops and returns ⊥ .

Theorem 3.5.1 The BYZ_AGREEMENT satisfies the Termination property. When n > 3f , it also
satisfies the Agreement and Validity properties.

Proof: The proof follows very closely to the proof of the algorithm in 4.4. Notice, that there is
a difference of one d̄ resulting from the initiation of the protocol by a specific node, followed by a
consensus. Another difference is that the General itself is one of the nodes, so if it is faulty there
are only f − 1 potential faults left.

64 Stabilization of General Byzantine Algorithms using Pulse Synchronization

Lemma 3.5.1 If a correct node aborts at time T + (2r + 1)d̄ on its timer, then no correct node
decides at a time T + (2r′ + 1)d̄ ≥ T + (2r + 1)d̄ on its timer.

Lemma 3.5.2 If a correct node decides by time T +(2r +1)d̄ on its timer, then every correct node
decides by time T + (2r + 3)d̄ on its timer.

Termination: Lemma 3.5.2 implies that if any correct node decides, all decide and stop. Assume
that no correct node decides. In this case, no correct node ever invokes a broadcast (p, v, T +
d̄, _). By the consensus-broadcast properties in 4.4, no correct node will ever be considered as
broadcaster. Therefore, by time T + (2f + 3)d̄ on their timers, all correct nodes will have at most
f broadcasters and will abort and stop.
Agreement: If no correct node decides, then all abort, and return to the same value. Otherwise, let
q be the first correct node to decide. Therefore, no correct node aborts. The value returned by q is
the value v of the accepted (p, v, T + d̄, 1) message. By the consensus-broadcast properties in 4.4,
all correct nodes accept (p, v, T + d̄, 1) and no correct node accepts (p, v′, T + d̄, 1) for v 6= v′.
Thus all correct nodes return the same value.
Validity: If the initiator q is correct, all the correct nodes invoke the consensus-broadcast with the
same value v′ and invoke the protocol with the same timer time (T+d̄). By the consensus-broadcast
properties in 4.4, all correct nodes will stop and return v′.

Thus the proof of the theorem is concluded.

65

Chapter 4

Self-stabilizing Byzantine Clock
Synchronization using Pulse
Synchronization

4.1 Specific Definitions

Basic notations:
We use the following notations though nodes do not need to maintain all of them as variables.
• Clocki, the clock of node i, is a real value in the range 0 to M−1. Thus M−1 is the maximal

value a clock can hold. Its progression rate is a function of node pi’s physical timer. The
clock is incremented every time unit. Clocki(t) denotes the value of the clock of node pi at
real-time t.

• γ is the target upper bound on the difference of clock readings of any two correct clocks at
any real-time. Our protocol achieves γ = 3d + O(ρ).

• Let a, b, g, h ∈ R+ be constants that define the linear envelope bound of the correct clock
progression rate during any real-time interval.

• Ψi(t1, t2) is the amount of clock time elapsed on the clock of node pi during a real-time
interval [t1, t2] within which pi was continuously correct. The value of Ψ is not affected by
any wrap around of clocki during that period.

• agreement_duration represents the maximum real-time required to complete the chosen Byzan-
tine consensus procedure used in Section 4.2. We assume
σ ≤ σ + agreement_duration < cycle ≤ Cycle + agreement_duration. For simplicity of
our arguments we also assume that M > agreement_duration but this is not a necessary
assumption.

Basic definitions:

DEFINITION 4.1.1 The communication network is correct following
∆net = pulse_conv + agreement_duration + σ real-time of continuous non-faulty behavior.

66 Self-stabilizing Byzantine Clock Synchronization using Pulse Synchronization

DEFINITION 4.1.2 A node is correct following ∆node = pulse_conv + agreement_duration + σ
real-time of continuous non-faulty behavior.

• The clock_state of the system at real-time t is given by:

clock_state(t) ≡ (clock0(t), . . . , clockn−1(t)) .

• The systems is in a synchronized clock_state at real-time t if ∀ correct pi, pj,

(|clocki(t)− clockj(t)| ≤ γ) ∨ (|clocki(t)− clockj(t)| ≥ M − γ) .1

DEFINITION 4.1.3 The “Self-stabilizing Byzantine Clock Synchronization Problem”

Convergence: Starting from an arbitrary system state, s, the system reaches a synchronized
clock_state after a finite time.

Closure: If s is a synchronized clock_state of the system at real-time t0 then ∀ real time t ≥ t0,

1. clock_state(t) is a synchronized clock_state,

2. “Linear Envelope”: for every correct node, pi,

a · [t− t0] + b ≤ Ψi(t0, t) ≤ g · [t− t0] + h .

The second Closure condition intends to bound the effective clock progression rate in order to
defy a trivial solution.

4.2 Self-stabilizing Byzantine Clock Synchronization
A major challenge of self-stabilizing clock synchronization is to ensure clock synchronization even
when nodes may initialize with arbitrary clock values. This, as mentioned before, requires han-
dling the wrap around of clock values. The algorithm we present employs as a building block an
underlying self-stabilizing Byzantine pulse synchronization procedure (e.g. Chapter 7 or Chap-
ter 2). In the pulse synchronization problem nodes invoke pulses regularly, ideally every Cycle
time units. The goal is for the different correct nodes to do so in tight synchrony of each other.
To synchronize their clocks, nodes execute at every pulse Byzantine consensus on the clock value
to be associated with the next pulse event2. When pulses are synchronized, then the consensus
results in synchronized clocks. The basic algorithm uses strong consensus to ensure that once
correct clocks are synchronized at a certain pulse, and thus enter the consensus procedure with
identical values, then they terminate with the same identical values and keep the progression of
clocks continuous and synchronized3.

1The second condition is a result of dealing with bounded clock variables.
2It is assumed that the time between successive pulses is sufficient for a Byzantine consensus algorithm to initiate

and terminate in between.
3The pulse synchronization building block does not use the value of the clock to determine its progress, but rather

intervals measured on the physical timer.

4.2 Self-stabilizing Byzantine Clock Synchronization 67

The Basic Clock Synchronization Algorithm
The basic clock synchronization algorithm is essentially a self-stabilizing version of the Byzantine
clock synchronization algorithm in [26].

We call it PBSS-CLOCK-SYNCH (for Pulse-based Byzantine Self-stabilizing Clock Synchro-
nization). The agreed clock time to be associated with the next pulse (next “time for synchro-
nization” in [26]) is denoted by ET (for Expected Time, as in [26]). Synchronization of clocks is
targeted to happen every Cycle time units, unless the pulse is invoked earlier (or later)4.

Algorithm PBSS-CLOCK-SYNCH

at “pulse” event /* received the internal pulse event */
begin
1. Clock := ET ;
2. Revoke possible other instances of PBSS-CLOCK-SYNCH and

clear all data structures besides ET and Clock;
3. Wait until σ(1 + ρ) time units have elapsed since pulse;
4. Next_ET := BYZ_CONSENSUS((ET + Cycle) mod M, σ);
5. Clock := (Clock + Next_ET − (ET + Cycle)) mod M ; /* posterior adjust. */
6. ET := Next_ET ;

end

Figure 4.1: The self-stabilizing Byzantine clock synchronization algorithm

The internal pulse event is delivered by the pulse synchronization procedure. Any pulse syn-
chronization algorithm that delivers synchronized pulses by solving the “Self-stabilizing Pulse
Synchronization Problem”, in the presence of at most f Byzantine nodes, where n ≥ 3f + 1, such
as the pulse procedures in Chapter 7 or Chapter 2, can be executed in the background.

The pulse event aborts any possible on-going invocation of PBSS-CLOCK-SYNCH (and thus
any on-going instant of BYZ_CONSENSUS) and resets all buffers. The synchronization of the
pulses ensures that the PBSS-CLOCK-SYNCH procedure is invoked within σ real-time units of its
invocation at all other correct nodes.

Line 1 sets the local clock to the pre-agreed time associated with the current pulse event. Line
3 intends to make sure that all correct nodes invoke BYZ_CONSENSUS only after the pulse has
been invoked at all others, without remnants of past invocations, which are revoked at Line 2.
Past remnants may exist only during or immediately following periods in which the system is not
coherent.

In Line 4 BYZ_CONSENSUS intends to reach consensus on the next value of ET. One can use
a synchronous consensus algorithm with rounds of size (σ + d)(1 + 2ρ) or asynchronous style
consensus in which a node waits to get n − f messages of the previous round before moving to
the next round. We assume the use of a Byzantine consensus procedure tolerating f faults when
n ≥ 3f + 1. A correct node joins BYZ_CONSENSUS only concomitant to an internal pulse event,
as instructed by the PBSS-CLOCK-SYNCH. This contains the possibility of faulty nodes to initiate
consensus at arbitrary times.

Line 5 is a posterior clock adjustment. It increments the clock value with the difference be-
tween the agreed time associated with the next pulse and the node’s pre-consensus estimate for

4Cycle has the same function as PER in [26].

68 Self-stabilizing Byzantine Clock Synchronization using Pulse Synchronization

the time associated with the next pulse (the value which it entered the consensus with). This is
equivalent to incrementing the value of ET that the node was supposed to hold at the pulse ac-
cording to the agreed Next_ET with the elapsed time from the pulse and until the termination of
BYZ_CONSENSUS. This intends to expedite the time to reach synchronization of the clocks. In
case that the clock_state before Line 5 was not a synchronized clock_state then a synchronized
clock_state is attained following termination of BYZ_CONSENSUS at all correct nodes, rather than
at the next pulse event. Note that in the case that all correct nodes hold the same ET value at the
pulse, then the posterior clock adjustment adds a zero increment to the clock value.

Note that when the system is not yet coherent, following a chaotic state, pulses may arrive to
different nodes at arbitrary times, and the ET values and the clocks of different nodes may dif-
fer arbitrarily. At that time not all correct nodes will join BYZ_CONSENSUS and no consistent
resultant value can be guaranteed. Once the pulses synchronize (guaranteed by the pulse synchro-
nization procedure to happen within a single cycle) all correct nodes will join the same instant of
BYZ_CONSENSUS and will agree on the clock value associated with the next pulse. From that
time on, as long as the system stays coherent the clock_state remains a synchronized clock_state.

The use of Byzantine consensus tackles the clock wrap-around in a trivial manner at all correct
nodes.

Note that instead of simply setting the clock value to ET we could use some Clock-Adjustment
procedure (cf. [26]), which receives a parameter indicating the target value of the clock. The
procedure runs in the background, it speeds up or slows down the clock rate to smoothly reach the
adjusted value within a specified period of time. This procedure should also handle the clock wrap
around.

Theorem 4.2.1 PBSS-CLOCK-SYNCH solves the “Self-stabilizing Byzantine Clock Synchroniza-
tion Problem”.

Proof:
Convergence: Let the system be coherent but in an arbitrary state s, with the nodes holding arbi-
trary clock values. Consider the first correct node that completed line 3 of the PBSS-CLOCK-SYNCH

algorithm. Since the system is coherent, all correct nodes invoked the preceding pulse within σ of
each other. At the last pulse all remnants of previously invoked instances of BYZ_CONSENSUS

were flushed by all the correct nodes. A correct node does not initiate or join BYZ_CONSENSUS

before waiting σ(1+ ρ) time units subsequent to the pulse, hence not before all correct nodes have
invoked a pulse and subsequently flushed their buffers. Thus all correct nodes will eventually join
BYZ_CONSENSUS, thus BYZ_CONSENSUS will initiate and terminate successfully.

At termination of the first instance of BYZ_CONSENSUS following the synchronization of the
pulses, all correct nodes agree on the clock value to be associated with the next pulse invocation.
Subsequently, all correct nodes adjust their clocks, post factum, according to the agreed ET. Note
that this posterior adjustment of the clocks does not affect the time span until the invocation of the
next pulse but rather updates the clocks concomitantly to and in accordance with the newly agreed
ET. This has an effect only if the correct nodes joined BYZ_CONSENSUS with differing values.
Hence if all correct nodes join BYZ_CONSENSUS with the same ET then the adjustment equals
zero. Since all correct pulses arrived within σ real-time units of each other, after the posterior clock
adjustment of the last correct node, all correct clocks values are within

γ1 = σ(1 + ρ) + (σ + agreement_duration) · 2ρ

4.2 Self-stabilizing Byzantine Clock Synchronization 69

of each other. The 2ρ is the maximal drift rate between any two correct clocks (whereas ρ is their
drift with respect to real-time). Observe that γ1 ≤ γ and therefore the state of the system is a
synchronized clock_state. This concludes the Convergence condition.

Closure: Recall that system coherence is defined as a continuous non-faulty behavior of the com-
munication network and a large enough fraction of the nodes for at least some minimal period of
time. The proof of the Closure condition assumes the correct nodes have synchronized their ET
values, thus setting this minimal time to be at least cyclemax + agreement_duration time, ensuring
synchronization of the variables.

Let the system be in a synchronized clock_state and w.l.o.g. assume all correct nodes hold
synchronized and identical ET values. Observe that although the correct nodes have synchronized
their ET values this does not necessarily imply all correct nodes hold the same ET value at every
point in time. At a brief time subsequent to the termination of BYZ_CONSENSUS, only a part of
the correct nodes may have set the ET to the new agreed value while the rest of the correct nodes
currently holding the old ET value will set ET to the new value in a brief time. We first prove the
first Closure condition (precision). In this case, each correct node adjusts its clock immediately
subsequent to the pulse, but the posterior clock adjustment has no effect since the consensus value
equals the value it joined BYZ_CONSENSUS with. To simplify the discussion assume for now that
no wrap around of any correct clock takes place during the time that the pulse arrives at the first
correct node and until the pulse is invoked at the last correct node. Immediately after the pulse is
invoked at the last correct node and its subsequent clock adjustment, all correct clocks are within
γ0 = σ(1 + ρ) of each other.

From that point on, clocks of correct nodes drift apart at a rate of 2ρ of each other. As long as
no wrap around of the clocks takes place and no pulse arrives at any correct node, the clocks are at
most γ0 + ∆T · 2ρ apart, where ∆T is the real-time elapsed since the invocation of the pulse at the
first correct node. To estimate the maximal clock difference, γ, at any time, we will consider the
following complementary cases:

P1) Prior to the next pulse event at the first correct node.

P2) When a pulse arrives at some correct node.

P3) Immediately after the last node invokes its next pulse event.

Note that in this case we do not need to consider the posterior adjustment of the clocks at Line
5.

Case P1 cannot last more than ∆T = cyclemax, since by the end of that time interval all
correct nodes will have invoked the pulse, reducing to case P2 or P3. The discussion above implies
γ = γ0 + cyclemax · 2ρ.

Case P3 implies that clock readings are at most γ0 apart, since all nodes invoke the pulses
within σ.

To analyze case P2 consider that the next pulse event has been invoked at some node, p. The
following situations may take place:

P2a) Following its clock adjustment, the clock of p holds the maximal clock value among all
correct clocks at that moment.

70 Self-stabilizing Byzantine Clock Synchronization using Pulse Synchronization

P2b) Following its clock adjustment, the clock of p holds the minimal clock value among all
correct clocks at that moment.

P2c) Neither of the above.

In case P2a, since p holds the maximal clock value, we claim that no other clock reading can
read less than ETlastpulse + cyclemin · (1 − ρ). Assume by contradiction the existence of a correct
node q whose clock reading is less than this value. Further assume that node q received the same
set of messages from the same sources and at the same time as node p. These events caused node p
to invoke its pulse and would necessarily cause node q to also invoke a pulse. The elapsed time on
the clock of node q between the current pulse and the previous is thus less than cyclemin · (1 − ρ)
which is less than cyclemin real-time after its previous pulse. A contradiction to the definition of
cyclemin. Node p just adjusted its clock which thus reads ET = ETlastpulse +Cycle. Due to the clock
skew the clock difference may increase an additional 2ρσ until the node invokes its pulse and the
case reduces to P3. The discussion above implies γ = (ETlastpulse +Cycle)− (ETlastpulse +cyclemin ·
(1− ρ)) + 2ρσ = Cycle− cyclemin · (1− ρ) + 2ρσ.

In case P2b, the clock readings of all other nodes that have invoked a pulse can not be more
than γ0 apart (case P3). The clock reading of any node that has not invoked a pulse yet should be
less than cyclemax following similar reasoning as in case P2a. Node p just adjusted its clock which
thus reads ET = ETlastpulse + Cycle. Due to the clock skew the clock difference may increase an
additional 2ρσ until the node invokes its pulse and the case reduces to P3. The discussion above
implies γ = (ETlastpulse + cyclemax · (1 + ρ))− (ETlastpulse + Cycle) + 2ρσ = cyclemax · (1 + ρ)−
Cycle + 2ρσ.

For case P2c, if the nodes holding the minimal clock reading and maximal clock reading al-
ready invoked pulses, then the clock difference reduces to case P3.

If neither of the nodes holding the minimal and maximal clock values have not invoked their
pulses yet, then the clock difference reduces to case P1.

Otherwise, if either the node holding the minimal or the maximal clock value already invoked
its pulse then one of the bounds of P2a or P2b hold until the other node invokes its pulse.

We now consider the case that a clock wrap around takes place at some ∆T real-time after the
last pulse is invoked in the synchronized cycle. From the discussion earlier we learn that at the
moment prior to the first correct clock wraps around, the correct clocks are at most γ apart. There-
fore, all correct clocks will wrap around within at most another γ time. During the intermediate
time, any two correct clocks, i, j, for which one has wrapped around and the other not, satisfy
|clocki(t) − clockj(t)| ≥ M − γ. Thus we proved that the maximal clock difference will remain
less than γ or greater than M − γ, which completes the first Closure condition.

Henceforth, the bound on the clock differences of correct nodes will equal the maximal of
the three values calculated above. Formally this yields γ = max[cyclemax · (1 + ρ) − Cycle +
2ρσ, Cycle− cyclemin · (1− ρ) + 2ρσ, σ(1 + ρ) + cyclemax · 2ρ]. The explicit value is dependent
on the relationship between cyclemax, cyclemin and Cycle, which is determined by the pulse syn-
chronization procedure. The explicit value of γ is presented in Section 4.3. This concludes the first
Closure condition.

For the second Closure condition, note that Ψi, as defined in Section 4.1, represents the actual
deviation of an individual correct clock (pi) from the real-time interval during which it progresses.
This is equivalent to the maximal actual difference between the clock value and real-time during

4.2 Self-stabilizing Byzantine Clock Synchronization 71

a real-time interval in which real-time and the clock value were equal at the beginning of the
interval. The accuracy of the clocks is the bound on the actual deviation of correct clocks from any
finite real-time interval or rate of deviation from the progression of real-time. Thus it suffices to
show that correct clocks progress with an accuracy that is a linear function of every finite real-time
interval to satisfy the second Closure condition.

The clock progression has an inherent deviation from any real-time interval due to the physical
clock skew. In addition, the clocks are repeatedly adjusted at every pulse in order to tighten the
precision, which can further deviate the clocks progression from the progression of the real-time
during the interval. In Chapter 7 it is shown that the pulses progress with a linear envelope of
any real time interval. The accuracy in a cycle equals the bound on the clock adjustment |tpulse −
ETpulse|, where tpulse is the clock value at the pulse at the moment prior to the adjustment of the
clock to ETpulse. Under perfect conditions, i.e. no clock skew and zero clock adjustment tpulse =
ETpulse. This would further equal real-time should the clocks have initiated with real-time values.
Thus it suffices to show that the adjustment to the clocks at every pulse is a linear function of the
length of the cycle. The upper and lower bounds on the value tpulse is determined by the bound on
the effective cycle length and accounts for the clock skew and the accuracy of the pulses (bound
on the deviation of the pulses from perfect regularity). Let cyclemin and cyclemax denote the lower
bound and upper bound respectively on the cycle length in real-time units. Hence,

ETprev-pulse + cyclemin · (1− ρ) ≤ tpulse ≤ ETprev-pulse + cyclemax · (1 + ρ) .

The adjustment to the correct clocks, ADJ, is thus bounded by

ETpulse − [ETprev-pulse + cyclemax · (1 + ρ)] ≤ 0 ≤ ADJ

and
ADJ ≤ 0 ≤ ETpulse − [ETprev-pulse + cyclemin · (1− ρ)] ,

which translates to

ETprev-pulse + Cycle− [ETprev-pulse + cyclemax · (1 + ρ)] ≤ ADJ

and
ADJ ≤ ETprev-pulse + Cycle− [ETprev-pulse + cyclemin · (1− ρ)] ,

which translates to

Cycle− cyclemax · (1 + ρ) ≤ ADJ ≤ Cycle− cyclemin · (1− ρ) .

As can be seen, the bound on the adjustment to the clock is linear in the effective cycle length.
The bounds on the effective cycle length are guaranteed by the pulse synchronization procedure to
be linear in the default cycle length. Thus the accuracy of the clocks are within a linear envelope
of any real-time interval. The actual values of cyclemin and cyclemax are determined by the specific
pulse synchronization procedure used. This concludes the Closure condition.

Thus the algorithm is self-stabilizing and performs correctly with f Byzantine nodes for n ≥
3f + 1.

72 Self-stabilizing Byzantine Clock Synchronization using Pulse Synchronization

A Clock Synchronization Algorithm without Consensus
We suggest a simple additional Byzantine self-stabilizing clock synchronization algorithm using
pulse synchronization as a building block that does not use consensus.

Our second algorithm resets the clock at every pulse5. This approach has the advantage that
the nodes never need to exchange and synchronize their clock values and thus do not need to use
consensus. This version is useful for example when M, the upper-bound on the clock value, is rel-
atively small. The algorithm has the disadvantage that for a large value of M, a large Cycle value is
required. This enhances the effect of the clock skew, thus negatively affecting the precision and the
accuracy at the end of the cycle. Note that the precision and accuracy of CYCLE-WRAP-CS equals
that of PBSS-CLOCK-SYNCH.

Algorithm CYCLE-WRAP-CS
at “pulse” event /* received the internal pulse event */
begin

Clock := 0;
end

Figure 4.2: Additional CS algorithm in which the clock wraps-around every cycle

A Clock Synchronization Algorithm using an Approximate Agreement Ap-
proach
We suggest an additional self-stabilizing Byzantine clock synchronization algorithm using pulse
synchronization as a building block, denoted APPROX-CS.

The algorithm uses an approximate agreement approach in order to get continuous clocks with
high precision and accuracy on expense of the message complexities and early-stopping property.
The precision and the accuracy are 2σ+O(ρ) and thus improve on those of PBSS-CLOCK-SYNCH.

Algorithm APPROX-CS
at “pulse” event /* received the internal pulse event */
begin
1. Clock-at-pulse := Clock;
2. Revoke possible other instances of APPROX-CS and

clear all data structures besides Clock-at-pulse;
3. Wait until σ(1 + ρ) time units have elapsed since pulse;
4. ClockConsensus := APPROX_BYZ_AGREE(Clock-at-pulse);
5. Clock := (ClockConsensus + elapsed-time-since-pulse) mod M ;

end

Figure 4.3: Self-stabilizing Byzantine Approximate Clock Synchronization algorithm

In Line 4 of APPROX-CS the nodes invoke approximate-like agreement on their local clock
value at the time of the last pulse, denoted Clock-at-pulse. In case that the system state was a

5This approach has been suggested by Shlomi Dolev as well.

4.2 Self-stabilizing Byzantine Clock Synchronization 73

synchronized clock_state then the resultant value ClockConsensus is guaranteed by
APPROX_BYZ_AGREE to be in the range of the initial clock values of the correct nodes. If the
clocks were not synchronized then the resultant agreed value may be in any range. In Line 5
every correct node sets its clock to equal the agreed clock value associated with the last pulse,
ClockConsensus, incremented with the time that has elapsed on its local timer since the pulse.

Algorithm APPROX_BYZ_AGREE(value)
begin
1. Invoke SS-BYZ-AGREE () on value;
2. After termination of all SS-BYZ-AGREE instances (substitute missing values with 0)

Do:
3. Find largest set of values within γ+σ of each other (if several, choose set harboring

smallest value ≥ 0);
4. Find median of the set, identify its antipode := (median + bM/2c) mod M ;
5. Discard the f immediate values from each side of the antipode;
6. Return the median of the remaining values;

end

Figure 4.4: Self-stabilizing Byzantine Approximate Agreement

In order to be self-contained we bring the definition of Approximate Agreement, defined in [27].
Formally, the goal of ε-Approximate Agreement is to reach the following: let there be n pro-

cesses p1, ..., pn, each starts with an initial value vi ∈ R and may decide on a value di ∈ R.

1. (Approximate Agreement) If pi and pj are correct and have decided then |di − dj| ≤ ε.

2. (Validity) If pi is correct and has decided then there exists two correct nodes pj, pk such that
vj ≤ di ≤ vk, (the decision value of every correct node is in the range of the initial values of
the correct nodes).

3. (Termination) All correct nodes eventually decide.

The approximate agreement protocol in [27] cannot be used as-is in the self-stabilization model
as the notions of “highest” value and “lowest” value are not defined when nodes can initialize with
values reaching their bounds, M. Faulty nodes can in this case cause different correct nodes to
view the extremes of the values as complete opposites. To overcome the lack of total order relation
introduced by the self-stabilization model, APPROX_BYZ_AGREE thus combines the approximate
agreement algorithm of [27] with Byzantine agreement as follows: run separate Byzantine agree-
ments in parallel on every node’s value in order to agree on the value of each node. Thus all correct
nodes will hold identical multisets and henceforth the heuristics of [27] will be executed on exactly
the same values at all correct nodes. The APPROX_BYZ_AGREE procedure satisfies the conditions
for classic approximate agreement, while being self-stabilizing.

74 Self-stabilizing Byzantine Clock Synchronization using Pulse Synchronization

The SS-BYZ-AGREE procedure used is the Byzantine agreement of [73], though using our
BROADCAST primitive presented in Section 4.4 in order to overcome the lack of any common
reference to clock time among the correct nodes.

In Line 1 of APPROX_BYZ_AGREE, every node invokes Byzantine agreement on its value,
within σ real-time of each other. Every instance of APPROX_BYZ_AGREE must terminate within
some bounded time, thus all correct nodes can calculate a time when all the agreement instances
have terminated at all correct nodes. In Line 3, after all the agreement instances have terminated
and missing values are substituted with a 0, a set of supposedly synchronized values is searched for.
Note that if not all instances of APPROX_BYZ_AGREE have terminated within the pre-calculated
time-bound then the system must have been in a non-coherent state. Synchronized clock values
can be up-to γ + σ apart in the values agreed subsequent to Line2, due to the pulse uncertainty.
In Line 4 the median of the set is identified, and will serve as an anchor for determining the order
relation among the different values. In Line 5, the antipode (in the range 1..M) of the median is
identified; the f first values on each side of this antipode are then discarded. If the system is in a
synchronized clock_state then all values that are outside of the values in the set identified earlier
are discarded. Thus the median of the remaining values, returned in Line 6, is in the range of the
initial values of the correct nodes.

Lemma 4.2.1 The APPROX_BYZ_AGREE procedure satisfies all the conditions for ε-Approximate
Agreement, for ε = 0, when the system is in a synchronized clock_state6.

Proof: Note the validity of SS-BYZ-AGREE guarantees that the value decided by all correct
nodes for node i is i’s actual input value.

1. Approximate_Agreement: All correct nodes hold the same multiset of values following all
terminations of the instances of SS-BYZ-AGREE , thus they all find the same set in Line 3
and hence do the exact same operations in lines 3-5, and thus return the same value in Line
6.

2. Validity: Let the system be in a synchronized clock_state. Thus the agreed clock values for
all correct nodes subsequent to executing Line 2 are at most γ + σ apart. Hence, the largest
set found in Line 3 includes at least n − f values. We now seek to prove that the decision
value is in the range of the initial values of the correct nodes. Since f < n/3 it follows that
all values that are not in the range (at most f) of this set are discarded in Line 5. Thus all
remaining values must be in the range of the initial values of the correct nodes. In particular,
the median of the remaining values is in the range of the initial values. This completes the
proof of the validity condition.

3. Termination: Follows from the termination of SS-BYZ-AGREE .

The precision γ, is the bound on the clock differences of all correct nodes at any time.

Lemma 4.2.2 The precision of APPROX_BYZ_AGREE is 2σ + O(ρ).

6The notion “in the range of” remains undefined if the system is not in a synchronized clock_state. Thus the
validity condition remains undefined for this case.

4.3 Analysis and Comparison to other Clock Synchronization Algorithms 75

Proof: At the moment after all correct nodes have executed Line 5 in APPROX-CS their clocks
differ by at most σ +O(ρ), thus the clock differences are at most σ +O(ρ) also at the forthcoming
pulse invocation. The precision γ, is maximized at the moment that a correct node has set its clock
subsequent to its execution of Line 5 in APPROX_BYZ_AGREE, while some other node has yet to
execute this line. Following the validity condition, the agreed clock value ClockConsensus, is within
the initial clock values that was held by the correct nodes at their last pulse. As the system is in a
synchronized clock_state thus these initial values were within 2σ + O(ρ) of each other. Thus the
node that has just adjusted its clock, set it to a value that is within 2σ + O(ρ) of its clock at the
moment before the adjustment. In particular this adjusted clock value is also within 2σ + O(ρ) of
the clock value of any other correct node. This observation yields a precision of γ = 2σ + O(ρ).

The accuracy equals the maximal clock adjustment which for the same arguments as above
yields an accuracy of 2σ + O(ρ).

A self-stabilizing Byzantine approximate agreement algorithm that knows how to handle bounded,
wrapping values and thus does not need to reach exact agreement on every node’s value, will sup-
posedly yield a clock synchronization algorithm with time and message complexity comparable to
PBSS-CLOCK-SYNCH with precision and accuracy of APPROX-CS. To the best of our knowledge
no such approximate agreement algorithm exists.

4.3 Analysis and Comparison to other Clock Synchronization
Algorithms

Our clock synchronization algorithm PBSS-CLOCK-SYNCH requires reaching consensus in every
cycle. This implies that the cycle should be long enough to allow for the consensus procedure to
terminate at all correct nodes. This implies having cyclemin ≥ 2σ + 3(2f + 4)d, assuming that the
BYZ_CONSENSUS procedure takes (f+2) rounds of 3d each. The algorithm has the advantage that
it uses the full time to reach consensus only following a catastrophic state in which correct nodes
hold differing ET values. Once in a synchronized clock_state, all correct nodes participate in the
consensus with the same initial consensus value which thus terminates within 2 communication
rounds only, due to its early-stopping property. Hence, during steady state, in which the system is
in a legal state, the time and message complexity overhead of PBSS-CLOCK-SYNCH is minimal.

For simplicity we also assume M to be large enough so that it takes at least a cycle for the
clocks to wrap around.

Note that Ψi, defined in Section 4.1, represents the actual deviation of an individual correct
clock, pi, from a given real-time interval. The accuracy of the clocks is the bound on this devia-
tion of correct clocks from any real-time interval. The clocks are repeatedly adjusted in order to
minimize the accuracy. Following a synchronization of the clock values, that is targeted to occur
once every Cycle time units, correct clocks can be adjusted by at most ADJ, where following
Theorem 4.2.1,

Cycle− cyclemax · (1 + ρ) ≤ ADJ ≤ Cycle− cyclemin · (1− ρ) ,

which, following cyclemin and cyclemax determined by the pulse synchronization procedure of
Chapter 7 to equal Cycle− 11d and Cycle + 9d respectively, translates to

76 Self-stabilizing Byzantine Clock Synchronization using Pulse Synchronization

Algorithm Self- Precision Accuracy Convergence Messages
stabilizing γ Time
/Byzantine

PBSS-CLOCK-SYNCH SS+BYZ 11d + O(ρ) 11d + O(ρ) cyclemax + O(nf2)
3(2f + 5)d

CYCLE-WRAP-CS SS+BYZ 11d + O(ρ) 11d + O(ρ) cyclemax O(n2)
APPROX-CS SS+BYZ 3d + O(ρ) 3d + O(ρ) cyclemax O(nf)2

DHSS [26] BYZ d + O(ρ) (f + 1)d + O(ρ) 2(f + 1)d O(n2)
LL-APPROX [75] BYZ 5ε + O(ρ) ε + O(ρ) d + O(ε) O(n2)
DW-SYNCH [34]* SS+BYZ 0 0 M22(n−f) n2M22(n−f)

DW-BYZ-SS [34] SS+BYZ 4(n− f)ε + O(ρ) (n− f)ε + O(ρ) O(n)O(n) O(n)O(n)

PT-SYNC [66]* SS 0 0 4n2 O(n2)

Table 4.1: Comparison of clock synchronization algorithms (ε is the uncertainty of the message
delay). The convergence time is in pulses for the algorithms utilizing a global pulse system and
in rounds for the other semi-synchronous protocols. PT-SYNC assumes the use of shared memory
and thus the “message complexity” is of the “equivalent messages”. The ’*’ denotes the use of a
global pulse or global clock tick system.

−9d(1 + ρ)− ρ · Cycle ≤ ADJ ≤ 11d(1− ρ) + ρ · Cycle .

The accuracy is thus 11d+O(ρ) real-time units. Should the initial clock values reflect real-time
then this determines the accuracy of the clocks with respect to real-time (and not only with respect
to real-time progression rate), as long as the system is coherent and clocks do not wrap around.

Recall that the precision γ, is the bound on the difference between correct clock values at any
time. This bound is largely determined by the maximal clock value difference at the time in which
a correct node has just set its clock and some other correct node is about to do it in a short time. It
is guaranteed by Theorem 4.2.1 and the pulse synchronization tightness σ = 3d of Chapter 7, to
be:

γ = max[cyclemax · (1 + ρ)− Cycle + 2ρσ,

Cycle− cyclemin · (1− ρ) + 2ρσ, σ(1 + ρ) + cyclemax · 2ρ]

= max[9d(1 + ρ) + ρ · Cycle + 2ρσ, 11d(1− ρ) + ρ · Cycle + 2ρσ,

3d(1 + ρ) + (Cycle + 9d) · 2ρ]

= 11d(1− ρ) + ρ · Cycle + 2ρσ = 11d + O(ρ) .

The bound on the difference between correct clock values immediately after all correct nodes
have synchronized their clock value (at Line 1 or Line 5) is σ.

The only self-stabilizing Byzantine clock synchronization algorithms, to the best of our knowl-
edge, are published in [31, 34]. Two randomized self-stabilizing Byzantine clock synchronization
algorithms are presented, designed for fully connected communication graphs, use message pass-
ing which allow faulty nodes to send differing values to different nodes, allow transient and per-
manent faults during convergence and require at least 3f + 1 processors. The clocks wrap around,

4.4 The Consensus and Broadcast Primitives 77

where M is the upper bound on the clock values held by individual processors. The first algorithm
assumes a common global pulse system and synchronizes in expected M · 22(n−f) global pulses.
The second algorithm in [34] does not use a global pulse system and is thus partially synchronous
similar to our model. The convergence time of the latter algorithm is in expected O((n−f)n6(n−f))
time. Both algorithms thus have drastically higher convergence times than ours.

In Table 1 we compare the parameters of our protocols to previous classic Byzantine clock
synchronization algorithms, to non-Byzantine self-stabilizing clock synchronization algorithms
and to the prior Byzantine self-stabilizing clock synchronization algorithms. It shows that our
algorithm achieves precision, accuracy, message complexity and convergence time similar to non-
stabilizing algorithms, while being self-stabilizing.

The message complexity of PBSS-CLOCK-SYNCH is solely based on the underlying Pulse and
Consensus procedures. Its inherent convergence time is cyclemax. The O(nf 2) message complexity
as well as the +3(2f + 5)d additive in the convergence time come from BYZ_CONSENSUS, the
specific Byzantine consensus procedure we use. The pulse synchronization procedure we use
from Chapter 7 has a message complexity of O(n2) and 6 · cycle convergence time. Note that
BYZ_CONSENSUS has two early-stopping features: It stops in a number of rounds dependent on
the actual number of faults and if nodes initiate with the same values (same ET values) then it
stops within 2 rounds.

Note that some of the algorithms cited in Table 1 refer to ε, the uncertainty in message delivery,
rather than d, the end-to-end communication network delay.

The DW-SYNCH and PT-SYNCH algorithms cited in Table 1 make use of global clock ticks
(common physical timer). Note that this does not make the clock synchronization problem trivial
as such clock ticks can not be used to invoke agreement procedures and the nodes still need to agree
on the clock values. The benefit of utilizing a global pulse systems is in the optimal precision and
accuracy acquired (see [34]).

4.4 The Consensus and Broadcast Primitives

The BYZ_CONSENSUS Procedure
The BYZ_CONSENSUS procedure can implement many of the classical Byzantine consensus algo-
rithms. It assumes that timers of correct nodes are always within σ̄ of each other. More specifically,
we assume that nodes have timers that reset periodically, say at intervals ≤ cycle′. Let Ti(t) be the
reading of the timer at node pi at real time t. We thus assume that there exists a bound such that
for every time t, when the system is coherent,

∀i, j if σ̄ < Ti(t), Tj(t) < cycle′ − σ̄ then |Ti(t)− Tj(t)| < σ̄ .

The bound σ̄ includes all drift factors that may occur among the timers of correct nodes during that
period. When the timers are reset to zero it might be that, for a short period of time, the timers may
be further apart. The pulse synchronization algorithm in Chapter 7 satisfies the above assumptions
and implies σ̄ ≥ d.

The self-stabilization requirement and the deviation that may arise from any synchronization
assumption imply that any consensus protocol must be carefully specified. The consensus algo-
rithm will function properly if it is invoked when the timers of correct nodes are within σ̄ of each

78 Self-stabilizing Byzantine Clock Synchronization using Pulse Synchronization

other. The subtle point is to make sure that an arbitrary initialization of the procedure cannot cause
the nodes to block or deadlock. Below we show how to update the early stopping Byzantine Agree-
ment algorithm of Toueg, Perry and Srikanth [73] to become self-stabilization and to make it into
a general consensus (vs. agreement) procedure.

The procedure does not assume any reference to real-time and no complete synchronization of
the rounds, as is assumed in [73]. Rather it resets the local timers of correct nodes at each pulse
which thus makes the timers within bounds of each other. The node invokes the procedure with
the value to agree on and the local timer value. In the procedure nodes also consider all messages
accumulated in their buffers that were accepted prior to the invocation, if they are relevant.

We use the following notations in the description of the consensus procedure:

• Let d̄ be the duration of time equal to (σ̄ + d) · (1 + ρ) time units on a correct node’s timer.
Intuitively, d̄ can be assumed to be a duration of a “phase” on a correct node’s timer.

• The BROADCAST primitive is the primitive defined in Section 4.4 and is an adaptation of
the one described in [73]. Note that an accept is issued within the BROADCAST primitive.

The main differences from the original protocol of [73] are:

• Instead of the General in the original protocol we use a virtual (faulty) “General” notion of
a virtual node whose value is the assumed value of all correct nodes at a correct execution.
It is the value with which the individual nodes invoke the procedure. Thus, every correct
node does a CONSENSUS-BROADCAST of its initial V al in contrast to the original protocol
in which only the General does this. If all correct nodes initiate with the same value and at
the same timer time this will be the agreed value.

• The CONSENSUS-BROADCAST primitive has been modified by omitting the code dealing
with the init messages. All correct nodes send an echo of their initial values as though they
previously received the init message from the virtual General.

• It is assumed that the BROADCAST and CONSENSUS-BROADCAST primitives are implicitly
initiated when a corresponding message arrives.

• The eventual termination is a function of the actual message exchange time among correct
nodes and not the upper possible time a “round” may take.

BYZ_CONSENSUS is presented in a somewhat different style. Each step has a condition at-
tached to it, if the condition holds and the timer value assumption holds, then the step is to be
executed. Notice that only the step needs to take place at a specific timer value.

The BYZ_CONSENSUS procedure satisfies the following typical properties:

Termination: The protocol terminates in a finite time;

Agreement: The protocol returns the same value at all correct nodes;

Validity: If all correct nodes invoke the protocol with the same value and time, then the protocol
returns that value;

It also satisfies the following early stopping properties:

4.4 The Consensus and Broadcast Primitives 79

Procedure BYZ_CONSENSUS(V al, T) /* invoked at p with timer T */

broadcasters := ∅; value =⊥;

Do CONSENSUS-BROADCAST (General, V al, T, 1);

by time (T + 2d̄) :
if accepted (General, v, T, 1) then

value := v;

by time (T + (2f + 4)d̄) :
if value 6=⊥ then

BROADCAST (p, value, T, bTi−T
2d̄

c+ 1);
stop and return value.

at time (T + 2rd̄) :
if (|broadcasters| < r − 1) then

stop and return value.

by time (T + 2rd̄) :
if accepted (General, v′, T, 1) and r − 1 distinct messages (qi, v

′, T, i)
where ∀i, j 2 ≤ i ≤ r, and qi 6= qj then

value := v′;

Figure 4.5: The BYZ_CONSENSUS procedure

ES-1 If all correct nodes invoke the protocol with the same consensus value and with the same
timer value, then they all stop within two “rounds” of information exchange among correct
nodes.

ES-2 If the actual number of faults is f ′ ≤ f then the algorithm terminates by
min[T + (2f ′ + 6)d̄, T + (2f + 4)d̄] on the timer of each correct node.

Notice that [ES-1] takes in practice significantly less time than the specified upper bound on
the message delivery time.

We first prove the properties of the CONSENSUS-BROADCAST primitive and later we prove the
correctness of the BYZ_CONSENSUS procedure.
The CONSENSUS-BROADCAST primitive and the BROADCAST primitive (defined in Section 4.4)
satisfy the following [TPS-*] properties of Toueg, Perry and Srikanth [73], which are phrased in
our system model.

TPS-1 (Correctness) If a correct node p does BROADCAST (p,m, τ, k) by τ +(2k−2)d̄ on its timer,
then every correct node accepts (p,m, τ, k) by τ + 2kd̄ on its timer.

TPS-2 (Unforgeability) If no correct node p does a BROADCAST (p,m, τ, k), then no correct node
accepts (p,m, τ, k).

TPS-3 (Relay) If a correct node accepts (p,m, τ, k) by τ + 2rd̄, for r ≥ k, on its timer then every
other correct node accepts (p,m, τ, k) by τ + (2r + 2)d̄ on its timer.

TPS-4 (Detection of broadcasters) If a correct node accepts (p,m, τ, k) by τ + 2rd̄, on its timer
then every correct node has p ∈ broadcasters by τ + (2k + 1)d̄ on its timer. Furthermore,

80 Self-stabilizing Byzantine Clock Synchronization using Pulse Synchronization

Procedure CONSENSUS-BROADCAST (General, v, τ, 1)
/* invoking a broadcast simulating the General */

/* nodes send specific message with the same τ only once */
/* multiple messages sent by an individual node are ignored*/

send (echo,General, v, τ, 1) to all;

by time (τ + d̄) :
if received (echo,General, v, τ, 1) from ≥ n− 2f distinct nodes then

broadcasters := broadcasters
⋃{General} ;

if received (echo,General, v, τ, 1) from ≥ n− f distinct nodes q then
send (echo′, General, v, τ, 1) to all;

at any time:
if received (echo′, General, v, τ, 1) from ≥ n− 2f distinct nodes then

send (echo′, General, v, τ, 1) to all;
if received (echo′, General, v, τ, 1) from ≥ n− f distinct nodes then

accept (General, v, τ, 1);

Figure 4.6: CONSENSUS-BROADCAST

if a correct node p does not BROADCAST any message, then a correct node can never have
p ∈ broadcasters.

Additionally, the CONSENSUS-BROADCAST primitive also satisfies:

TPS-5 (Uniqueness) If a correct node accepts (General, m, τ, 1), then no correct node ever accepts
(General,m′, τ, 1) with m′ 6= m.

Notice the differences from the original properties. The detection property does not require
having r ≥ k. In general, the relay property holds even earlier than r ≥ k. The condition r ≥ k of
when the property can be guaranteed is used to simplify the possible cases. At r < k, if an accept
takes place as a result of getting n − f echo messages, the adversary may cause the relay to take
3d̄ by rushing messages to one correct node and delay messages to and from others.

Theorem 4.4.1 The CONSENSUS-BROADCAST primitive satisfies the five [TPS-*] properties.

Proof:
Correctness: If all correct nodes send (echo,General, v, τ, 1) at time τ on their timers, then by
Lemma 4.4.3 every correct node accepts (General, v, τ, 1) from n − f correct nodes by τ + d̄
on its timer. Thus each correct node sends (echo,General, v, τ, 1) by that time and will accept
(General, v, τ, 1) by τ + 2d̄ on their timers.

Unforgeability: If all correct nodes hold the same initial value v then no correct node will send
(echo,General, v′, 1), thus no correct node will receive n− f distinct (echo,General, v′, 1) mes-
sages. Therefore, no correct node will send (echo′, General, v′, 1), and no correct node will ever
receive n−2f or n−f distinct (echo′, General, v′, 1) messages. Thus, no correct node can accept
(General, v′, 1).

4.4 The Consensus and Broadcast Primitives 81

Relay: If a correct node accepts (General, v, τ, 1) by τ +2rd̄ on its timer, then it received n−f dis-
tinct (echo′, General, v, τ, 1) message by that time. n−2f of these were sent by correct nodes and
by Lemma 4.4.3 all of them will reach all correct nodes by τ + (2r + 1)d̄. As a result, all such cor-
rect nodes will send (echo′, General, v, τ, 1), which will be received by all correct nodes. Hence,
by τ +(2r +2)d̄ on their timers, all correct nodes will hold n− f distinct (echo′, General, v, τ, 1)
messages and will thus accept (General, v, τ, 1).

Detection of broadcasters: If a correct node q′ accepts (General, v, τ, 1) by time τ + 2rd̄ on its
timer, then node q′ should have received at least n− f distinct (echo′, General, v, τ, 1) messages,
at least n − 2f of which are from correct nodes. Let q be the first correct node to ever send
(echo′, General, v, τ, 1). If q sent it as a result of receiving n− f such messages, then q is not the
first to send. Therefore, it should have sent it as a result of receiving n− f (echo,General, v, τ, 1)
messages by time τ + d̄. Thus, at least n− 2f such messages were sent by correct nodes by time τ
on their timers and would arrive at all correct nodes by time τ + d̄ on their timers. As a result, all
will have General ∈ broadcasters.

Uniqueness: Notice that if a correct node sends (echo′, General, v, τ, 1) by time τ + d̄, then no
correct node sends (echo′, General, v′, 1) at any later time. Otherwise, similarly to the arguments
in proving the previous property we get that at least n− f nodes sent (echo,General, v, τ, 1) and
n − f nodes sent (echo,General, v′, 1). Since n > 3f, this implies that at least one correct node
sent both (echo,General, v, τ, 1) and (echo,General, v′, 1), and this is not allowed.

Also note that if a correct node accepts (General, v, τ, 1), then at least one correct node sends
(echo′, General, v, τ, 1), which yields the proof of the Uniqueness property.

Nodes stop participating in BYZ_CONSENSUS when they are instructed to do so. They stop
participating in the BROADCAST primitive 2d̄ after they terminate BYZ_CONSENSUS.

DEFINITION 4.4.1

A node returned a value m if it has stopped and returned value = m.

A node p decides if it stops at that timer time and returns a value 6=⊥ .

A node p aborts if it stops and returns ⊥ .

Theorem 4.4.2 The BYZ_CONSENSUS procedure satisfies the Termination property. When n >
3f, it also satisfies Agreement, Validity and the two early stopping conditions.

Proof: We prove the five properties of the theorem. We build up the proof through the following
arguments.

Lemma 4.4.1 If a correct node aborts at time T + 2rd̄ on its timer, then no correct node decides
at a time T + 2r′d̄ ≥ T + 2rd̄ on its timer.

Proof: Let p be a correct node that aborts at time T + 2rd̄. In this case it should have identified
exactly r − 2 broadcasters by that time. By the detection of broadcasters property [TPS-4] no
correct node will ever accept (General, v, T, 1) and r − 2 distinct messages (qi, v, T, i) for 2 ≤

82 Self-stabilizing Byzantine Clock Synchronization using Pulse Synchronization

i ≤ r − 1, since that would have caused all correct nodes to hold r − 1 broadcasters by time
T +(2r− 1)d̄ on their timers. Thus, no correct node can decide at local-time T +2r′d̄ ≥ T +2rd̄.

Lemma 4.4.2 If a correct node decides by time T + 2rd̄ on its timer, then every correct node
decides by time T + 2(r + 1)d̄ on its timer.

Proof:
Let p be a correct node that decides by time T + 2rd̄ on its timer. We consider the following

cases:

1. r = 1 : No correct node can abort by time T + 2d̄, since the inequality will not hold.
Node p must have accepted (General, v, T, 1) by T + 2d̄. By the relay property [TPS-3] all
correct nodes will accept (General, v, T, 1) by T + 4d̄ on their timers. Moreover, p invokes
BROADCAST (p, v, T, 2), by which the correctness property [TPS-1] will be accepted by all
correct nodes by time T + 4d̄ on their timers. Thus, all correct nodes will have value 6=⊥
and will BROADCAST and stop by time T + 4d̄ on their timers.

2. 2 ≤ r ≤ f + 1. Node p must have accepted (General, v, T, 1) and also accepted r −
1 distinct (qi, v, T, i) messages for all i, 2 ≤ i ≤ r, by time T + 2rd̄ on its timer. By
Lemma 4.4.1, no correct aborts by that time. By Relay property [TPS-3] each (qi, v, T, i)
message will be accepted by all correct nodes by time T +(2r +2)d̄ on their timers. Node p
does BROADCAST (p, v, T, r+1) before stopping. By the correctness property, this message
will be accepted by all correct nodes by time T + (2r + 2)d̄ on their timers. Thus, no correct
node will abort by T + (2r + 2)d̄ and all correct nodes will have value 6=⊥ and will decide
and stop by that time.

3. r = f + 2. Node p must have accepted (qi, v, T, i) messages for all i, 2 ≤ i ≤ f + 2,
by T + (2f + 4)d̄ on its timer, where the f + 1 qi’s are distinct. At least one of these
f + 1 nodes, say qj, must be correct. By the Unforgeability property [TPS-2] qj, invoked
BROADCAST (qj, v, T, j) by time T + (2j)d̄ on its timer, and decided. Since j ≤ f + 1 the
above arguments imply that by T + (2f + 4)d̄ on their timers all correct will decide.

Lemma 4.4.2 implies that if a correct node decides at time T + 2rd̄ on its timer, then no correct
node aborts at round T + 2r′d̄. Lemma 4.4.1 implies the other direction.

Termination: Lemma 4.4.2 implies that if any correct node decides, all decide and stop. Assume
that no correct node decides. In this case, no correct node ever invokes a BROADCAST (q, v, T, _).
By detection of broadcasters property [TPS-4], no correct node will ever be considered as broad-
caster. Therefore, by time T + ((2f + 4)d̄ on their timers, all correct nodes will have at most f
broadcasters and will abort and stop.

Agreement: If no correct node decides, then all abort, and return to the same value. Otherwise,
let p be the first correct node to decide. Therefore, no correct node aborts. The value returned by
p is the value v of the accepted (General, v, 1) message. By Properties [TPS-3] and [TPS-5] all

4.4 The Consensus and Broadcast Primitives 83

correct nodes accept (General, v, T, 1) and no correct node accepts (General, v′, T, 1) for v 6= v′.
Thus all correct nodes return the same value.

Validity: Let all the correct nodes begin with the same value v′ and invoke the protocol with
the same timer time (T). Then, by time T + d̄ on their timers, all correct nodes receive at least
n − 2f distinct (echo, General, v′, T, 1) messages via the CONSENSUS-BROADCAST primitive
and send (echo′, General, v′, T, 1) messages to all. Hence, all nodes receive at least n− f distinct
(echo′, General, v′, T, 1) messages by T + 2d̄ on their timers and thus accept (General, v′, T, 1).
Hence in the BYZ_CONSENSUS procedure all correct nodes set their value to v′. By T + 2d̄ on
their timers, all correct nodes will stop and return v′.

Early-stopping: The first early stopping property [ES-1] is directly implied from the proof of
the validity property. Correct nodes proceed once they receive messages from n − f nodes, thus
it is enough to receive messages from all correct nodes. The proof of the second early stopping
property [ES-2] is identical to the proof of the termination property. By time T + (2f ′ + 4)d̄ all
will abort unless any correct node invokes BROADCAST by that time on its timer. This implies that
by T + (2f ′ + 6)d̄ on their timers all correct nodes will always terminate, if the actual number of
faults f ′ is less than f.

Thus the proof of the theorem is concluded.

The BROADCAST Primitive
This section presents the Broadcast (and accept) primitive that is used by the BYZ_CONSENSUS

procedure presented earlier, in Section 4.4. The primitive follows the primitive of of Toueg, Perry,
and Srikanth [73], though here it is presented in a real-time model.

In the original synchronous model, nodes advance according to phases. This intuitive lock-step
process clarifies the presentation and simplifies the proofs. In this section, the discussion carefully
considers the various time consideration and proves that nodes can rush through the protocol and
do not to need to wait for a completion of a “phase” in order to move to the next step of the
protocol.

Note that when a node invokes the procedure it evaluates all the messages in its buffer that are
relevant to the procedure.

The BROADCAST primitive satisfies the four [TPS-*] properties, under the assumption that
n > 3f. The proofs below follow closely to the original proofs of [73], in order to make it easier
for readers that are familiar with the original proofs.

Lemma 4.4.3 If a correct node pi sends a message at timer time Ti ≤ τ + rd̄ on pi’s timer it will
be recieved by each correct node pj by timer time τ + (r + 1)d̄ on pj’s timer.

Proof: Assume that node pi sends a message at real time t with timer time Ti(t) ≤ τ + rd̄. Thus,
Ti(t) ≤ τ + r(σ̄ + d)(1 + ρ). It should arrive at every correct timer pj within d(1 + ρ) on any
correct node’s timer. Recall that |Ti(t)− Tj(t)| < σ̄(1 + ρ). If Tj ≥ Ti we are done. Otherwise,

Tj(t) ≤ Ti(t) + σ̄(1 + ρ) ≤ τ + r(σ̄ + d)(1 + ρ) + σ̄(1 + ρ) .

By the time (say t′) that the message arrives to pj we get Tj(t
′) ≤ τ + r(σ̄ + d)(1 + ρ) + σ̄(1 +

ρ) + d(1 + ρ) ≤ τ + (r + 1)d̄ .

84 Self-stabilizing Byzantine Clock Synchronization using Pulse Synchronization

Procedure BROADCAST (p,m, τ, k)
/* executed per such quadruple */

/* nodes send specific message with the same τ only once */
/* multiple messages sent by an individual node are ignored */

node p sends (init, p, m, τ, k) to all nodes;

by time (τ + (2k − 1)d̄) :
if (received (init, p, m, τ, k) from p then

send (echo, p, m, τ, k) to all;

by time (τ + 2kd̄) :
if (received (echo, p, m, τ, k) from ≥ n− 2f distinct nodes q then

send (init′, p,m, τ, k) to all;
if (received (echo, p, m, τ, k) msgs from ≥ n− f distinct nodes then

accept (p,m, τ, k);

by time (τ + (2k + 1)d̄) :
if (received (init′, p,m, τ, k) from ≥ n− 2f then

broadcasters := broadcasters
⋃{p};

if (received (init′, p,m, τ, k) from ≥ n− f distinct nodes then
send (echo′, p, m, τ, k) to all;

at any time:
if (received (echo′, p, m, τ, k) from ≥ n− 2f distinct nodes then

send (echo′, p, m, τ, k) to all;
if (received (echo′, p, m, τ, k) from ≥ n− f distinct nodes) then

accept (p,m, τ, k);
end

Figure 4.7: BROADCAST primitive

Lemma 4.4.4 If a correct node ever sends (echo′, p,m, τ, k) then at least one correct node must
have sent (echo′, p, m, τ, k) by timer time τ + (2k + 1)d̄.

Proof: Let t be the earliest timer time by which any correct node q sends the message (echo′, p, m, τ, k).
If t > τ + (2k + 1)d̄, node q should have received (echo′, p, m, τ, k) from n − 2f distinct nodes,
at least one of which from a correct node that was sent prior to timer time τ + (2k + 1)d̄.

Lemma 4.4.5 If a correct node ever sends (echo′, p, m, τ, k) then p’s (init, p, m, τ, k) must have
been received by at least one correct node by time τ + (2k − 1)d̄.

Proof: By Lemma 4.4.4, if a correct node ever sends (echo′, p,m, τ, k), then some correct node q
should send it by time timer τ +(2k+1)d̄. By the procedure, q have received (init′, p, m, τ, k) from
at least n− f nodes by timer time τ +(2k +1)d̄. At least one of them is correct who have received
n−2f (echo, p,m, τ, k) by timer time τ +2kd̄. One of which was sent by correct node that should
have received (init, p, m, τ, k) before sending (echo, p, m, τ, k) by timer time τ + (2k − 1)d̄.

Theorem 4.4.3 The BROADCAST primitive presented in Figure 4.7 satisfies properties [TPS-1]
through [TPS-4].

4.4 The Consensus and Broadcast Primitives 85

Proof:
Correctness: Assume that a correct node p sends (p,m, τ, k) by τ + (2k − 2)d̄ on its timer.

Every correct node receives (init, p, m, τ, k) and sends (echo, p, m, τ, k) by τ + (2k − 1)d̄ on its
timer. Thus, every correct node receives n−f (echo, p, m, τ, k) from distinct nodes by τ+(2k−1)d̄
on its timer and accepts (p,m, τ, k).

Unforgeability: If no correct node p does a BROADCAST (p,m, τ, k), it does not send
(init, p, m, τ, k), and no correct node will send (echo, p, m, τ, k) by τ + (2k − 1)d̄ on its timer.
Thus, no correct node accepts (p,m, τ, k) by τ + 2kd̄ on its timer. If a correct node would have
accepted (p,m, τ, k) at a later time it can be only as a result of receiving n − f (echo′, p,m, τ, k)
distinct messages, some of which must be from correct nodes. By Lemma 4.4.5, p should have
sent (init, p, m, τ, k), a contradiction.

Relay: Notice that r ≥ k, thus even if nodes issue an accept at earlier time, the claim holds for
the specified times.

The subtle point is when a correct node issues an accept as a result of getting echo messages. If
r = k and the correct node, say q, have received (echo, p, m, τ, k) from n− f nodes by τ +2kd̄ on
its timer. At least n−2f of them were sent by correct nodes. Since every correct node among these
has sent its message by τ +(2k−1)d̄, all those messages should have arrived to every correct node
by τ + 2kd̄ on its timer. Thus, every correct node should have sent (init′, p, m, τ, k) by τ + 2kd̄
on its timer. As a result, every correct node will receive n− f such messages by τ + (2k + 1)d̄ on
its timer and will send (echo′, p,m, τ, k) by that time, which will lead all correct nodes to accept
(p,m, τ, k) by τ + (2r + 2)d̄ on its timer.

Otherwise, the correct node, say q, accepts (p,m, τ, k) by τ + 2rd̄ on its timer as a result of
receiving n− f (echo′, p, m, τ, k) by that time. Since n− f of these are from correct nodes, they
should arrive at any correct node by τ +(2r +1)d̄ on their timers. As a result, by τ +(2r +1)d̄, all
correct nodes send (echo′, p, m, τ, k) and by τ + (2r + 2)d̄ on their timers will accept (p,m, τ, k).

Detection of broadcasters: As in the original proof, we first argue the second part. Assume
that a correct node q adds node p to broadcasters. It should have received n−2f (init′, p,m, τ, k)
messages. Thus, at least one correct node has sent (init′, p, m, τ, k) as a result of receiving n− 2f
(echo, p, m, τ, k) messages. One of these should be from a correct node that has received the
original BROADCAST message of p.

To prove the first part, we consider two similar cases to support the Relay property. If r = k
and the correct node, say q, accepts (p,m, τ, k) as a result of receiving n− f (echo, p, m, τ, k) by
τ + 2kd̄ on its timer. At least n− 2f of them were sent by correct nodes. Since every correct node
among these has sent its message by τ +(2k−1)d̄, all those messages should have arrived at every
correct node by τ + 2kd̄ on its timer. Thus, every correct node should have sent (init′, p,m, τ, k)
by τ + 2kd̄ on its timer. Consequently, all correct nodes will receive n− f such messages by time
τ + (2k + 1)d̄ and will add p to broadcasters.

Otherwise, q accepts (p,m, τ, k) as a result of receiving (echo′, p,m, τ, k) from n − f nodes
by τ + 2rd̄ (for r ≥ k) on its timer. By Lemma 4.4.4 a correct node sent (echo′, p,m, τ, k) by
τ + (2k + 1)d̄. It should have received n − f (init′, p,m, τ, k) messages by that time. All such
messages that were sent by correct nodes were sent by τ + 2kd̄ on their timers and should arrive
at every correct node by τ + (2k + 1)d̄ on its timer. Since there are at least n− 2f such messages,
all will add p to broadcasters by τ + (2k + 1)d̄ on their timers.

This completes the proof of Theorem 4.4.2.

86 Self-stabilizing Byzantine Token Circulation using Pulse Synchronization

Chapter 5

Self-stabilizing Byzantine Token Circulation
using Pulse Synchronization

5.1 Specific Definitions

Basic notations:
• agreement_duration represents the maximum real-time required to complete the chosen Byzan-

tine consensus procedure used by the algorithm 5.1. We assume the use of the consensus
procedure presented in Section 4.4. We assume σ ≤ σ + agreement_duration < cycle ≤
Cycle + agreement_duration.

Basic definitions:

DEFINITION 5.1.1 The communication network is correct following
∆net = pulse_conv + agreement_duration + σ real-time of continuous non-faulty behavior.

DEFINITION 5.1.2 A node is correct following ∆node = pulse_conv + agreement_duration + σ
real-time of continuous non-faulty behavior.

• tokenq(t) ∈ {pi}n−1
i=0 is the node holding the token according to node q’s view at real-time

t.

• The token_state of the system at real-time t is given by:
token_state(t) ≡ (tokenp0(t), . . . , tokenpn−1(t)).

• A system is in an agreed token_state at real-time t if
∀ correct pi, pj, tokenpi

(t) = tokenpj
(t).

• Let G be the set of all possible token_states of a system S.

• s ∈ G is an eventually-agreed token_state of the system at real-time t if the system is in an
agreed token_state at some real-time tagree in the interval [t, t + σ̂], where σ̂ is some small
constant.

5.2 Self-stabilizing Byzantine Token Circulation 87

In the context of this chapter we achieve σ̂ := σ.
The “Self-stabilizing Byzantine Token Circulation Problem” is defined as follows:

DEFINITION 5.1.3 The Self-stabilizing Token Circulation Problem
As long as the systems is coherent:

Convergence: Starting from an arbitrary state, s, the system reaches an eventually-agreed to-
ken_state after a finite time.
Closure: If s is an eventually-agreed token_state of the system at real-time t0 then ∀ real time t ≥
t0,

1. token_state(t) is an eventually-agreed token_state,

2. “Fairness”: if t −→∞ then ∀i, pi holds the token an infinite number of times.

The fairness validity requirement is used as a method for defying triviality such as setting
Token := q for all value of time t.

5.2 Self-stabilizing Byzantine Token Circulation
The token circulation concept addresses the problem of determining which node holds the token at
any given time. The definition of the token circulation problem in our model addresses the issue of
loss of synchronization and the potential existence of faulty nodes. Since there is no assumption of
synchronized clocks or any external method to synchronize the nodes, the token circulation needs
to be driven by the local timers of the nodes and by the messages they exchange. Since there are
limits on how close nodes can be synchronized, and there are uncertainties concerning message
delivery time, the definition cannot assume instantaneous transfer of the token responsibility.

Self-stabilizing protocols have inherent recurrence or infinite execution in them. This is due to
the fact that there is never an agreed t0 at which all the correct nodes could check the system state
concurrently and decide whether to perform a system-wide operation or a reset. This is because
the system could enter a brief illegal state just before time t0 which could render a disagreement
on t0, thus the system would never be able to exit the illegal state. This is especially severe when
facing Byzantine faults as otherwise it could be possible for every node to send a “system-state
verification” message every time period which could be marked as some t0. Byzantine nodes can
cause such a protocol to continuously reset itself. The recurrence raises the issue of consistency on
who holds the token during the time period when one correct node has decided on the new token
while the other correct nodes have not yet done so and still hold the value of the previous tokens.
At this brief period there is an alleged violation of agreement. This is addressed by the definition
of the eventually-agreed token_state. Whereas a non-stabilizing protocol could stay in an agreed
token_state forever, stabilizing protocols will always have to address the issue of agreement state
change and the consequent short-lived violation of agreement.

Note that when one considers a different type of fault, the consensus primitive can either be
used as is, or can be replaced by a similar one that is better optimized to the specific fault model.
The early stopping property can be maintained in other schemes, as well.

Intuitively, once a pulse arrives, the node resets all variables, other than the index to the next
token holder. It starts a timer and waits some time to make sure that all nodes have received the

88 Self-stabilizing Byzantine Token Circulation using Pulse Synchronization

pulse. Notice that the pulse synchronization implies that this takes at most σ(1 + ρ) time units on
its clock. The (1 + ρ) factor counts for the drift between the local timer readings and real time.

After that pause the nodes invoke BYZ_CONSENSUSto agree on the index of the token holder
in the following round. When the system is coherent, this results in the index each correct node
expects. If the resulting index differs from what a node expects it will adjust its index. Note that
the BYZ_CONSENSUSprocedure may return ⊥ . We identify that value with the default value, say
p0.

When the system is coherent, the BYZ_CONSENSUScompletes after two rounds of information
exchange among the correct nodes, which may be completed extremely fast as the actual time it
takes for messages to travel may be much faster than the expected upper bound d. The protocol
presents an option to invoke the next pulse after a period of time when the current node holds the
token, resulting in a pretty fast token exchange. Otherwise, the token holder changes every cycle.

Algorithm SS-BYZ-TOKEN
at “pulse” event /* received the internal pulse event */
begin
1. Token := pnext; /* next is the index of the next token holder*/
2. Revoke possible other instances of SS-BYZ-TOKEN and

clear all data structures besides Token and pnext;
3. Wait until σ(1 + ρ) time units have elapsed since pulse;
4. pnext := BYZ_CONSENSUS(p(next+1) mod n, σ);
5. Token := p(next−1) mod n; /* posterior adj. */
6. Option: Wait a predefined time and invoke the next pulse.

end

Figure 5.1: The self stabilizing token circulation protocol

Theorem 5.2.1 SS-BYZ-TOKEN solves the “Self-stabilizing Byzantine Token Circulation Prob-
lem”.

Proof: Convergence: Let the system be coherent but in an arbitrary state s, with the nodes hold-
ing arbitrary tokens. Consider the first correct node that completed Line 3 of the SS-BYZ-TOKEN

algorithm. Since the system is coherent, all correct nodes invoked the preceding pulse within σ of
each other. At the last pulse all remnants of previously invoked instances of BYZ_CONSENSUS

were flushed by all the correct nodes. A correct node does not initiate or join BYZ_CONSENSUS

before waiting σ(1 + ρ) time units subsequent to the pulse, hence not before all correct nodes
have invoked a pulse and subsequently flushed their buffers. Thus all correct nodes will even-
tually join BYZ_CONSENSUS which thus will terminate successfully. Following termination of
BYZ_CONSENSUS by which all correct nodes have decided on the same value, the token is ad-
justed again in order to get immediate token agreement (instead of waiting until the next pulse
invocation). This has an effect only if the correct nodes initiated BYZ_CONSENSUS with different
token values (can only happen following system initialization or following a catastrophic state).
Hence, subsequent to Line 5 all correct nodes hold the same Token and thus the system is in an
agreed token_state. Note that by the early stopping property [ES-2] of BYZ_CONSENSUS, the
time complexity to reach consensus is that of the actual number of faults.

Closure: If σ̂ = σ, then when the first node to execute a pulse sets its new token holder, there is a
time period, bounded by σ, until the last node to execute its pulse will also set its token to the same

5.3 An Extended Scheme for General Resource Allocation 89

value. Therefore, for up to σ real-time units, the system will not be in agreed token_state but rather
be in an eventually-agreed token_state, following which it will return to an agreed token_state.
Note that when all correct nodes enter the BYZ_CONSENSUSalgorithm with identical values then
the posterior adjustment makes no change. The faulty nodes cannot affect the choice of the next
token holder and, therefore, the fairness also holds. Note that by the early stopping property [ES-1]
of BYZ_CONSENSUS, the overhead is only two communication rounds.

Complexity Analysis of SS-BYZ-TOKEN

The time complexity is the sum of the convergence time of the pulse synchronization proce-
dure and the time complexity of the BYZ_CONSENSUSprocedure. The pulse tightness σ, is of
the order of 3d and d̄ is of order 4d. Therefore, the convergence time is always bounded by
O(f ′) · cycle + 3d + 3(2f ′ + 6)d from any arbitrary state, where f ′ ≤ f is the actual number
of faulty nodes. The O(f ′) is contributed by the convergence of the pulse synchronization module.
The accuracy, or the time at which correct nodes are not in an agreed token_state, equals σ(= 3d).
The BYZ_CONSENSUSprocedure has the two early-stopping features presented above. Thus, the
time complexity when the network performs correctly is less than 2d, the upper bound on the time
it takes to have two rounds of information exchange among the correct nodes. The message com-
plexity is O(nf 2). Token circulation/leader election algorithms have a proven message complexity,
lower bounds, of Ω(nlogn) and typically have a time complexity of o(n). Self-stabilizing proto-
cols usually have a higher convergence time. SS-BYZ-TOKEN is of comparable complexity to
non-stabilizing or non-fault tolerant token circulation/leader election algorithms while being much
more robust.

5.3 An Extended Scheme for General Resource Allocation

The presented scheme can be extended to solve a general resource allocation problem in an efficient
way that is self-stabilizing and resilient to permanent Byzantine faults.

Let there be k different types of resources; we assume they are numbered and totally ordered.
Every process wants to have access to each one of the k resources, one resource at a time. Processes
cannot allocate the same type of resource at the same time. Thus there is a finite discrete number
of legal states, L ⊂ S, where S is the set of all system states, in which there is exactly one process
that is allocated to each one of the resource and the process has no additional resource allocated
to it at the same time. We now need to ensure fairness so that in every infinite execution every
process gets every type of resource allocated infinitely often.

Let Ri(j) denote that resource i is allocated to node pj. We define the set of legal allocation
states LA ⊂ L, as follows:

LA = {s ∈ L|∃j ∈ 1..n s.t. R1(j), ..., Rk(j + k) (mod n)}.
Thus, informally, the set of legal states are all system states in which the k consecutive re-

sources are allocated to k consecutive processes. We associate each legal allocation state with
some unique integer. We number the legal allocation states according to the index of the process
that allocates the resource that is numbered as “1”. Every node holds a variable number corre-
sponding to its current proposition on the legal allocation state. In every pulse the “next” legal

90 Self-stabilizing Byzantine Token Circulation using Pulse Synchronization

allocation state is imposed. The table of legal allocation states is precalculated and stored at every
process in non-volatile memory.

The algorithm becomes essentially identical to SS-BYZ-TOKEN though instead of agreeing
on the index of the next token holder, the agreement is on the index of the next legal allocation
state. The Closure and Convergence follows from the proof of SS-BYZ-TOKEN . The fairness
follows trivially from the legal allocation state transition rule.

The same scheme also solves the graph coloring problem, and thus the dining philosophers,
which are two of the few distributed problems that have self-stabilizing Byzantine solutions (see
[65,64,60]). In these problems it is required to alternate between different colorings of the network
graph. The dining philosophers problem is a particular case that can alternate between two legal
states.

91

Chapter 6

Self-stabilizing Byzantine Agreement
without using Pulse Synchronization

6.1 Specific Definitions

DEFINITION 6.1.1 The communication network is correct following ∆net ≥ d real-time of con-
tinuous non-faulty behavior.

DEFINITION 6.1.2 A node is correct following ∆node ≥ 14(2f +3)d+10d real-time of continuous
non-faulty behavior during a period that the communication network is correct.

It is assumed that each node has a local timer that proceeds at the rate of real-time. The actual
reading of the various timers may be arbitrarily apart, but their relative rate is bounded in our
model. To simplify the presentation we will ignore the drift factor of hardware clocks. Since nodes
measure only periods of time that span several d, we will assume that d is an upper bound on
the sending time of messages among correct nodes, measured by each local timer. To distinguish
between a real-time value and a node’s local-time reading we use t for the former and τ for the
latter. The function rt(τp) represents the real-time when the timer of p reads τp at the current
execution.

6.2 The SS-BYZ-AGREE algorithm

We consider the Byzantine agreement problem in which a General broadcasts a value and the
correct nodes agree on the value broadcasted. In our model any node can be a General. An instance
of the protocol is executed per General, and a correct General is expected to send one value at a
time1. The target is for the correct nodes to associate a local-time with the protocol initiation by
the General and to agree on a specific value associated with that initiation, if they agree that such
an initiation actually took place. We bound the frequency by which correct Generals may initiate
agreements, though Byzantine nodes might trigger agreements on their values as frequent as they
wish.

1One can expand the protocol to a number of concurrent invocations by using an index to differentiate among the
concurrent invocations.

92 Self-stabilizing Byzantine Agreement without using Pulse Synchronization

Protocol SS-BYZ-AGREE on (G,m) /* Executed at node q. τq is the
local-time at q. */

/* Block Q is executed only when (and if) invoked. */
/* Each block is executed at most once, when the precondition holds. */
/* Executed as a result of I-accept at Line R1, or when τG

q is defined.
*/

/* Invoked at node q upon arrival of a message (Initiator, G, m) from
node G. */

Q. INITIATOR-ACCEPT(G,m). /* determines τG
q and a value m′ for node G */

R1. if I-accept 〈G,m′, τG
q 〉 and τq − τG

q ≤ 4d then
R2. value := 〈G,m′〉;
R3. MSGD-BROADCAST(q, value, 1);
R4. stop and return 〈value, τG

q 〉.
S1. if by τq (where τq ≤ τG

q + (2r + 1)·Φ)
accepted r distinct messages (pi, 〈G,m′′〉, τi, i)
where ∀i, j 1 ≤ i ≤ r, and pi 6= pj 6= G then

S2. value := 〈G,m′′〉;
S3. MSGD-BROADCAST(q, value, r + 1);
S4. stop and return 〈value, τG

q 〉.
T1. if by τq (where τq > τG

q + (2r + 1)·Φ) |broadcasters| < r − 1 then
T2. stop and return 〈⊥, τG

q 〉.
U1. if τq > τG

q + (2f + 3)·Φ then
U2. stop and return 〈⊥, τG

q 〉.
cleanup:

3d after returning a value reset the related INITIATOR-ACCEPT and
MSGD-BROADCAST;
Remove any value or message older than (2f + 3)·Φ + 3d time units.

Figure 6.1: The SS-BYZ-AGREE protocol

The General initiates agreement by disseminating a message (Initiator,G,m) to all nodes.
Upon receiving the General’s message, each node invokes the SS-BYZ-AGREE protocol, which
in turn invokes the INITIATOR-ACCEPT primitive. Alternatively, if a correct node concludes that
enough nodes have invoked the protocol (or the primitive) it will participate by executing the
various parts of the INITIATOR-ACCEPT primitive, but will not invoke it. If all correct nodes
invoke the protocol within a “small” time-window, as will happen if the General is a correct node,
then it is ensured that the correct nodes agree on a value for the General. If all correct nodes do not
invoke the SS-BYZ-AGREE protocol within a small time-window, as can happen if the General is
faulty, then if any correct node accepts a non-null value, all correct nodes will accept and agree on
that value.

For ease of following the arguments and the logic of our SS-BYZ-AGREE protocol, we chose to
follow the building-block structure of [73]. The equivalent of the broadcast primitive that simulates
authentication in [73] is the primitive MSGD-BROADCAST presented in Section 6.4. The main dif-
ferences between the original synchronous broadcast primitive and MSGD-BROADCAST are two-
folds: first, the latter executes rounds that are anchored at some agreed event whose local-time is
supplied to the primitive through a parameter; second, the conditions to be satisfied at each round
at the latter, need to be satisfied by some time span that is a function of the round number and need

6.2 The SS-BYZ-AGREE algorithm 93

not be executed only during the round itself. This allows nodes to rush through the protocol in the
typical case when messages happen to be delivered faster than the worse case round span.

The SS-BYZ-AGREE protocol needs to take into consideration that correct nodes may invoke
the agreement procedure at arbitrary times and with no knowledge as to when other correct nodes
may have invoked the procedure. A mechanism is thus needed to make all correct nodes attain
some common notion as to when and what value the General has sent. The differences of the
real-time representations of the different nodes’ estimations should be bounded. This mechanism
is satisfied by the INITIATOR-ACCEPT primitive defined in Section 6.3.

We use the following notations in the description of the agreement procedure:

• Let Φ be the duration of time equal to (τG
skew +2d) local-time units on a correct node’s timer,

where τG
skew = 5d in the context of this result. Intuitively, Φ is the duration of a “phase” on

a correct node’s timer.

• ∆ will be equal to (2f + 3) ·Φ, the upper bound on the time it takes to run the agreement
protocol.

• ⊥ denotes a null value.

• In the INITIATOR-ACCEPT primitive:

– A I-accept2 is issued on values sent by G.
– τG

q denotes the local-time estimate, at node q, as to when the General have sent a value
that has been I-accept in INITIATOR-ACCEPT by node q.

In the context of this chapter we assume that a correct node will not initiate agreement on a
new value at least 6d time units subsequent to termination of its previous agreement.

DEFINITION 6.2.1 We say:

A node p decides at time τ if it stops at that local-time and returns value 6=⊥ .

A node p aborts if it stops and returns ⊥ .

A node p returns a value if it either aborts or decides.

The SS-BYZ-AGREE protocol is presented (see Figure 6.1) in a somewhat different style than
the original protocol in [73]. Each round has a precondition associated with it: if the local timer
value associated with the initialization by the General is defined and the precondition holds then
the step is to be executed. It is assumed that the primitives instances invoked as a result of the
SS-BYZ-AGREE protocol are implicitly associated with the agreement instance that invoked them.
A node stops participating in the procedures and the invoked primitives 3d time units after it returns
a value.

The SS-BYZ-AGREE protocol satisfies the following typical properties:
Agreement: The protocol returns the same value (6=⊥) at all correct nodes;
Validity: If all correct nodes are triggered to invoke the SS-BYZ-AGREE protocol by a value sent
by a correct General G, then the all correct nodes return that value;

2An accept is issued within MSGD-BROADCAST.

94 Self-stabilizing Byzantine Agreement without using Pulse Synchronization

Termination: The protocol terminates in a finite time.

It also satisfies the following properties:

Timeliness:
1. (agreement) For every two correct nodes q and q′ that decide on (G, m) at τq and τq′ , respec-

tively:

(a) |rt(τq)− rt(τq′)| ≤ 3d, and if validity holds, then |rt(τq)− rt(τq′)| ≤ 2d.

(b) |rt(τG
q)− rt(τG

q′)| ≤ 5d.

(c) rt(τG
q), rt(τG

q′) ∈ [t1 − 2d, t2], where [t1, t2] is the interval within which all correct
nodes that actually invoked the SS-BYZ-AGREE (G,m) did so.

(d) rt(τG
q) ≤ rt(τq) and rt(τq)− rt(τG

q) ≤ ∆ for every correct node q.

2. (validity) If all correct nodes invoked the protocol in an interval [t0, t0 + d], as a result of
some value m sent by a correct General G that spaced the sending by at least 6d from the
completion of the last agreement on its value, then for every correct node q, the decision
time τq, satisfies t0 − d ≤ rt(τG

q) ≤ rt(τq) ≤ t0 + 3d.

3. (termination) The protocol terminates within ∆ time units of invocation, and within ∆ + 7d
in case it was not invoked explicitly.

4. (separation) Let q be any correct node that decided on any two agreements regarding p, then
t2+5d < t̄1 and rt(τq)+5d < t̄1 < rt(τ̄q), where t2 is the latest time at which a correct node
invoked SS-BYZ-AGREE in the earlier agreement and t̄1 is the earliest SS-BYZ-AGREE

invoked by a correct node in the later agreement.

Note that the bounds in the above property is with respect to d, the bound on message trans-
mission time among correct nodes and not the worse case deviation represented by Φ.

Observe that since there is no prior notion of the possibility that a value may be sent, it might
be that some nodes associate a ⊥ with a faulty sending and others may not notice the sending at
all.

The proof that the SS-BYZ-AGREE protocol meets its properties appears in Section 6.5.

6.3 The INITIATOR-ACCEPT Primitive
In the protocol in [73] a General that wants to send some value broadcasts it in a specific round
(round 0 of the protocol). From the various assumptions on synchrony all correct nodes can check
whether a value was indeed sent at the specified round and whether multiple (faulty) values were
sent. In the transient fault model no such round number can be automatically adjoined with the
broadcast. Thus a faulty General has more power in trying to fool the correct nodes by sending its
values at completely different times to whichever nodes it decides.

The INITIATOR-ACCEPT primitive aims at making the correct nodes associate a relative time
to the invocation of the protocol by (the possibly faulty) General, and to converge to a single
candidate value for the agreement to come. Since the full invocation of the protocol by a faulty

6.3 The INITIATOR-ACCEPT Primitive 95

Primitive INITIATOR-ACCEPT(G,m)
/* Executed at node q. τq is the local-time at q. */

/* Lines L1 and L2 are repeatedly executed until I-accept. */
/* The rest are executed at most once, when the precondition holds. */
/* Block K is executed only when (and if) the primitive is explicitly

invoked. */

K1. if τq − last_τq > 7d and if at τq − d initiator[G,_] =⊥ then /* allow recent
entries */
K2. send (support,G, m) to all; /* for a single m ever */
K3. set initiator[G,m] := τq − d; /* recording time */

L1. if received (support, G, m) from ≥ n− 2f distinct nodes
within a window of α ≤ 4d time units of each other then

L2. initiator[G,m] := max[initiator[G,m], (τq − α− 2d)]; /* recording time */
L3. if received (support, G, m) from ≥ n− f distinct nodes

within a window of 2d time units of each other then
L4. send (ready,G, m) to all;

M1. if received (ready, G, m) from ≥ n− 2f distinct nodes then
M2. send (ready,G, m) to all;
M3. if received (ready, G, m) from ≥ n− f distinct nodes then
M4. τG

q := initiator[G,m]; I-accept 〈G,m, τG
q 〉; last_τq := τq;

cleanup:
Remove any value or message older than ∆ + 7d time units.
If last_τq > τq then last_τq :=⊥ .

Figure 6.2: The INITIATOR-ACCEPT primitive that yields a common notion of protocol invocation

General might be questionable, there may be cases in which some correct nodes will return a ⊥
value and others will not identify the invocation as valid. If any correct node returns a value 6=⊥,
all will return the same value.

Each correct node records the local-time at which it first received messages associated with
the invocation of the protocol and produces an estimate to its (relative) local-time at which the
protocol may have been invoked. The primitive guarantees that all correct nodes’ estimates are
within bounded real-time of each other.

We say that a node does an I-accept of a value sent by the General if it accepts this value as
the General’s initial value, and τG

q is the estimated local-time at q associated with the invocation of
the protocol by the General.

The nodes maintain a vector initiator[G, _] for the possible values sent by the General G, where
each non-empty entry is a local-time associated with the entry value. We will consider the data
structures of a node fresh if up to d units of time ago initiator[G, _] did not contain any value and
latest_accept was ⊥.

Nodes decay old messages and reset the data structures shortly after completion of the prim-
itive, as defined below. It is assumed that correct nodes will not invoke the INITIATOR-ACCEPT

primitive when the data structures are not fresh.
The INITIATOR-ACCEPT primitive satisfies the following properties:

IA-1 (Correctness) If all correct nodes invoke
INITIATOR-ACCEPT (G,m), with fresh data structures, within some real-time interval [t0, t0+
d], then:

96 Self-stabilizing Byzantine Agreement without using Pulse Synchronization

1A All correct nodes I-accept 〈G,m, τG〉 within 2d time units of the time the last correct
node invokes the primitive INITIATOR-ACCEPT(G,m).

1B All correct nodes I-accept 〈G,m, τG〉 within 2d time units of each other.

1C For every pair of correct nodes q and q′ that
I-accepts 〈G,m, τG

q 〉 and 〈G,m, τG
q′ 〉, respectively: |rt(τG

q′)− rt(τG
q)| ≤ d.

1D For each correct node q that I-accepts 〈G,m, τG
q 〉 at τq, t0 − d ≤ rt(τG

q) ≤ rt(τq) ≤
t0 + 3d.

IA-2 (Unforgeability) If no correct node invokes
INITIATOR-ACCEPT (G,m), then no correct node
I-accepts 〈G,m, τG〉.

IA-3 (∆-Relay) If a correct node q I-accepts 〈G,m, τG
q 〉 at real-time t, such that 0 ≤ t− rt(τG

q) ≤
∆, then:

3A Every correct node q′ I-accepts 〈G,m, τG
q′ 〉, at some real-time t′, with |t− t′| ≤ 2d and

|rt(τG
q)− rt(τG

q′)| ≤ 5d.

3B Moreover, rt(τG
q), rt(τG

q′)∈ [t1 − 2d, t2], where [t1, t2] is the interval within which all
correct nodes that actually invoked SS-BYZ-AGREE (G,m) did so.

3C For every correct node q′, rt(τG
q′) ≤ rt(τq′) and rt(τq′)− rt(τG

q′) ≤ ∆ + 7d.

IA-4 (Uniqueness) If a correct node q I-accepts 〈G,m, τG
q 〉, then no correct node I-accepts 〈G,m′, τG

p 〉
for m 6= m′, for |rt(τG

q)− rt(τG
p)| ≤ 5d.

Each node maintains in addition to initiator[G, _] a data structure in which the latest message
from each partner regarding a possible value sent by the General is kept. The data structure records
as a time stamp the local-time at which each message is received. If the data structure contains
illegal values or future time stamps (due to transient faults) the messages are removed. The protocol
also requires the knowledge of the state of the vector initiator[G, _] d time units in the past. It is
assumed that the data structure reflects that information.

When the primitive is explicitly invoked the node executes block K. A node may receive mes-
sages related to the primitive, even in case that it did not explicitly invoke the primitive. In this
case it executes the rest of the blocks of the primitive, if the appropriate preconditions hold. A
correct node repeatedly executes Line L1 and Line L2, whenever the precondition holds. The rest
are executed at most once, when the precondition holds for the first time.

Following the completion of SS-BYZ-AGREE, the data structures of the related
INITIATOR-ACCEPT instance are reset.

The proof that the INITIATOR-ACCEPT primitive satisfies the [IA-*] properties, under the as-
sumption that n > 3f, appears in Section 6.5.

6.4 The MSGD-BROADCAST Primitive
This section presents the MSGD-BROADCAST (a message driven broadcast) primitive, which ac-
cepts messages being broadcasted by executing it. The primitive is invoked by the SS-BYZ-AGREE

6.4 The MSGD-BROADCAST Primitive 97

Primitive MSGD-BROADCAST(p,m, k)
/* Executed per such triplet at node q. */

/* Nodes send specific messages only once. */
/* Nodes execute the blocks only when τG is defined. */

/* Nodes log messages until they are able to process them. */
/* Multiple messages sent by an individual node are ignored. */

At node q = p: /* if node q is node p that invoked the primitive */
V. node p sends (init, p,m, k) to all nodes;

W1. At time τq : τq ≤ τG
q + 2k ·Φ

W2. if received (init, p,m, k) from p then
W3. send (echo, p,m, k) to all;

X1. At time τq : τq ≤ τG
q + (2k − 1)·Φ

X2. if received (echo, p,m, k) from ≥ n− 2f distinct nodes then
X3. send (init′, p,m, k) to all;
X4. if received (echo, p,m, k) messages from ≥ n− f distinct nodes then
X5. accept (p,m, k);

Y1. At time τq : τq ≤ τG
q + (2k + 2)·Φ

Y2. if received (init′, p,m, k) from ≥ n− 2f then
Y3. broadcasters := broadcasters ∪ {p};
Y4. if received (init′, p,m, k) from ≥ n− f distinct nodes then
Y5. send (echo′, p, m, k) to all;

Z1. At any time:
Z2. if received (echo′, p, m, k) from ≥ n− 2f distinct nodes then
Z3. send (echo′, p, m, k) to all;
Z4. if received (echo′, p, m, k) from ≥ n− f distinct nodes then
Z5. accept (p,m, k); /* accept only once */

cleanup:
Remove any value or message older than (2f + 3)·Φ time units.

Figure 6.3: The MSGD-BROADCAST primitive with message-driven round structure

protocol presented in Section 6.2. The primitive follows the broadcast primitive of Toueg, Perry,
and Srikanth [73]. In the original synchronous model, nodes advance according to rounds that are
divided into phases. This intuitive lock-step process clarifies the presentation and simplifies the
proofs. The primitive MSGD-BROADCAST is presented without any explicit or implicit reference
to time, rather an anchor to the potential initialization point of the protocol is passed as a param-
eter by the calling procedure. The properties of the INITIATOR-ACCEPT primitive guarantee a
bound between the real-time of the anchors of the correct nodes. Thus a general notion of a com-
mon round structure can be implemented by measuring the elapsed time units since the local-time
represented by the passed anchor.

In the broadcast primitive of [73] messages associated with a certain round must be sent by
correct nodes at that round and will be received, the latest, at the end of that round by all correct
nodes. In MSGD-BROADCAST, on the other hand, the rounds progress with the arrival of the
anticipated messages. Thus for example, if a node receives some required messages before the end
of the round it may send next round’s messages. The length of a round only imposes an upper
bound on the acceptance criteria. Thus the protocol can progress at the speed of message delivery,
which may be significantly faster than that of the protocol in [73].

98 Self-stabilizing Byzantine Agreement without using Pulse Synchronization

Note that when a node invokes the primitive it evaluates all the messages in its buffer that are
relevant to the primitive. The MSGD-BROADCAST primitive is executed in the context of some
initiator G that invoked SS-BYZ-AGREE, which makes use of the
MSGD-BROADCAST primitive. No correct node will execute the MSGD-BROADCAST primitive
without first producing the reference (anchor), τG, on its local timer to the time estimate at which G
supposedly invoked the original agreement. By IA-3A this happens within 2d of the other correct
nodes.

The synchronous Reliable Broadcast procedure of [73] assumes a round model in which within
each phase all message exchange among correct nodes take place. The equivalent notion of a round
in our context will be Φ defined to be: Φ := tGskew + 2d.

The MSGD-BROADCAST primitive satisfies the following [TPS-*] properties of Toueg, Perry
and Srikanth [73], which are phrased in our system model.

TPS-1 (Correctness) If a correct node p
MSGD-BROADCAST(p, m, k) at τp, τp ≤ τG

p +(2k−1)·Φ, on its timer, then each correct node
q accepts (p, m, k) at some τq, τq ≤ τG

q +(2k +1)·Φ, on its timer and |rt(τp)− rt(τq)| ≤ 3d.

TPS-2 (Unforgeability) If a correct node p does not
MSGD-BROADCAST(p, m, k), then no correct node accepts (p, m, k).

TPS-3 (Relay) If a correct node q1 accepts (p,m, k) at τ1, τ1 ≤ τG
1 + r·Φ on its timer then any other

correct node q2 accepts (p,m, k) at some τ2, τ2 ≤ τG
2 + (r + 2)·Φ, on its timer.

TPS-4 (Detection of broadcasters) If a correct node accepts (p,m, k) then every correct node q
has p ∈ broadcasters at some τq, τq ≤ τG

q + (2k + 2) ·Φ, on its timer. Furthermore, if
a correct node p does not MSGD-BROADCAST any message, then a correct node can never
have p ∈ broadcasters.

Note that the bounds in [TPS-1] are with respect to d, the bound on message transmission time
among correct nodes.

The MSGD-BROADCAST primitive satisfies the [TPS-*] properties, under the assumption that
n > 3f. The proofs that appear in Section 6.5 follow closely the original proofs of [73], in order
to make it easier for readers that are familiar with the original proofs.

6.5 Proofs

Proof of the INITIATOR-ACCEPT Properties
Theorem 6.5.1 The INITIATOR-ACCEPT primitive presented in Figure 6.2 satisfies properties [IA-
1] through [IA-4], assuming that a correct node that invokes the primitive invokes it with fresh data
structures.

Proof:
Correctness: Assume that within d of each other all correct nodes invoke INITIATOR-ACCEPT (G,m).
Let t1 be the real-time at which the first correct node invokes the INITIATOR-ACCEPT and t2 be
the time the last one did so. Since all data structures are fresh, then no value {G, m′} appeared in

6.5 Proofs 99

broadcasters d time units before that, thus Line K1 will hold for all correct nodes. Therefore, every
correct node sends (support, G,m). Each such message reaches all other correct nodes within d.
Thus, between t1 and t2 +d every correct node receives (support,G, m) from n−f distinct nodes
and sends (ready,G, m) and by t2 + 2d I-accepts 〈G,m, τ ′〉, for some τ ′, thus, proving [IA-1A].

To prove [IA-1B], let q be the first to I-accept after executing Line M4. Within d all correct
nodes will execute Line M2, and within 2d all will I-accept.

Note that for every pair of correct nodes q and q′, the associated initial recording times τ and
τ ′ satisfy |τ − τ ′| ≤ d. Line K3 implies that the recording times of correct nodes can not be earlier
than t1− d. Some correct node may see n− 2f, with the help of faulty nodes as late as t2 +2d. All
such windows should contain a support from a correct node, so should include real-time t2 + d,
resulting in a recording time of t2 − d. Recall that t2 ≤ t1 + d, proving [IA-1C].

To prove [IA-1D] notice that the fastest node may set τ ′ to be t1 − d, but may I-accept only by
t2 + 2d ≤ t1 + 3d.

Unforgeability:
If no correct node invokes INITIATOR-ACCEPT and will not send (support,G, m), then no correct
node will ever execute L4 and will not send (ready, G, m). Thus, no correct node can accumulate
n− f (ready, G, m) messages and therefore will not I-accept 〈G,m〉.

∆-Relay:
Let q be a correct node that I-accepts 〈G,m, τG

q 〉 at real-time t, such that 0 ≤ t − rt(τG
q) ≤ ∆. It

did so as a result of executing Line M4. Let X be the set of correct nodes whose (ready, G,m)
were used by q in executing Line M4. Either there exists in X a correct node sending it as a result
of executing Line L4, or at least one of the nodes in X have heard from such a node (otherwise, it
heard from other f + 1 distinct nodes and there will be at least n− f + f + 1 > n distinct nodes
in total, a contradiction).

Let q̄ be the first correct node to execute Line L4, and assume it took place at some real-time
t′′. Note that t′′ ≤ t. Node q̄ collected n− f support messages, with at least n− 2f from correct
nodes3. Let t1 be the time at which the (n − 2f)th support message sent by a correct node was
received. Since q̄ executed Line L4, all these messages should have been received in the interval
[t1 − 2d, t1]. Node q̄ should have set a recording time τ ≥ t1 − 4d as a result of (maybe repeating)
the execution of Line L2.

Every other correct node should have received this set of (n − 2f) support messages sent by
correct nodes in the interval [t1 − 3d, t1 + d] and should have set the recording time after (maybe
repeatedly) executing Line L2, since this window satisfies the precondition of Line L1. Thus,
eventually all recording times are ≥ t1 − 5d.

Some correct node may send a support message, by executing Line K2, at most d time units
later (just before receiving these n−2f messages). This can not take place later than t1+d, resulting
in a recording time of t1, though earlier than its time of sending the support message. This support
message (with the possible help of faulty nodes) can cause some correct node to execute Line L2 at
some later time. The window within which the support messages at that node are collected should
include the real-time t1 + 2d, the latest time any support from any correct node could have been

3Ignore for a moment decaying of messages (we will prove below that no correct node decays these messages at
that stage).

100 Self-stabilizing Byzantine Agreement without using Pulse Synchronization

received. Any such execution will result in a recording time that is ≤ t1 + 2d − 2d = t1. Thus
the range of recording times for all correct nodes (including q) are [t1− 5d, t1]. Proving the second
part of [IA-3A].

Since we assumed that 0 ≤ t − rt(τG
q) ≤ ∆, all messages above are within the decaying

window of all correct nodes and none of these messages will be decayed, proving that the result
holds. For the same reason, all correct messages collected by q will not be decayed by other correct
nodes. By time t + d all correct nodes will be able to execute Line M2, and by t + 2d each correct
node q′ will execute Line M4 to I-accept 〈G,m, τq̄〉. Proving the first part of [IA-3A].

To prove [IA-3B] notice that any range of values in Line L2 includes a support of a correct node.
The resulting recording time will never be later than the sending time of the support message by
that correct node, and thus by some correct node. To prove the second part of [IA-3B] consider
again node q̄ from the proof of the ∆ − relay property. It collected n − 2f support messages
from correct nodes in some interval [t̄1, t1], where t̄1 ≥ t1−2d. These messages, when received by
any correct node will be within an interval of 4d, with the first message in it from a correct node.
These messages will trigger a possible update of the recording time in Line L2. Thus, the resulting
recording time of any correct node cannot be earlier than some 2d of receiving a support message
from a correct node, thus not earlier than 2d of sending such a message.

The first part of [IA-3C] is immediate from Line L2 and Line K3. For the second part observe
that for every other correct node q′, rt(τq′) ≤ rt(τq) + 2d and rt(τG

q′) ≥ rt(τG
q) − 5d. Thus,

rt(τq′)− rt(τG
q′) ≤ rt(τq)− rt(τG

q) + 7d ≤ ∆ + 7d.

To prove [IA-4] observe that each node sent a support for a single m. In order to I-accept,
some correct node needs to send ready after receiving n− f support messages. That can happen
for at most a single value of m. What is left to prove, is that future invocations of the primitive
will not violate [IA-4]. Observe that by [IA-3B], once a correct node sends a ready message, all
recording times are within 2d of the reception time of some support message from a correct node.
Moreover, by [IA-3C], this is always prior to the current time at any node that sets the recording
time. Let q be the latest correct node to I-accept, at some time τq on its clock with some last_τq

as the returned recording time. Let p be the first correct node to send a support following that, at
some local-time τ̄p. We will denote by τ timings in the former invocation and by τ̄ timings in the
later one.

Observe that τG
q ≤ last_τq and that rt(last_τq)−2d ≤ rt(last_τp). When p sends its support,

rt(τ̄p) − rt(last_τp) > 9d implying that rt(τ̄p) − rt(last_τq) > 7d. Once any correct node will
send ready in the later invocation the resulting recording time of all correct nodes, including q will
satisfy rt(τ̄G

q) ≥ rt(τ̄p)− 2d, which implies rt(τG
q) ≤ rt(last_τq) < rt(τ̄p)− 7d ≤ rt(τ̄G

q)− 5d.

Proof of the MSGD-BROADCAST Properties

For brevity we do not present all the proofs. The proofs essentially follow the arguments in the
original paper [73] though that paper is not self-stabilizing.

Lemma 6.5.1 If a correct node pi sends a message at local-time τi, τi ≤ τG
i + r·Φ on pi’s timer it

will be received and processed by each correct node pj at some local-time τj, τj ≤ τG
j +(r +1)·Φ,

on pj’s timer.

6.5 Proofs 101

Proof: Assume that node pi sends a message at real-time t with local-time τi ≤ τG
i + r·Φ. Thus,

τi ≤ τG
i + r(tGskew + 2d). It should arrive at any correct node pj within d on that node’s timer. By

IA-3A, τG
j will be defined and the message will be processed no later than another d. By IA-3A,

|rt(τG
i) − rt(τG

j)| < tGskew. If rt(τG
i) ≤ rt(τG

j) + tGskew then at time rt(τj), by which the message
arrived and processed at pj, we get

rt(τj) ≤ rt(τi) + 2d ≤ rt(τG
i) + r(tGskew + 2d) + 2d ,

and therefore

rt(τj) ≤ rt(τG
j) + tGskew + r(tGskew + 2d) + 2d ≤ rt(τG

j) + (r + 1)·Φ .

The case rt(τG
j) ≥ rt(τG

i) is simpler.

Lemma 6.5.2 If a correct node ever sends (echo′, p, m, k) then at least one correct node, say q′,
must have sent
(echo′, p, m, k) at some local-time τq′, τq′ ≤ τG

q′ + (2k + 2)·Φ.

Proof: Let t be the earliest real-time by which any correct node q sends the message (echo′, p, m, k).
If t > rt(τG

q) + (2k + 2) ·Φ, node q should have received (echo′, p,m, k) from n − 2f distinct
nodes, at least one of which from a correct node, say q′, that was sent prior to local local-time
τG
q′ + (2k + 2)·Φ.

Lemma 6.5.3 If a correct node ever sends (echo′, p, m, k) then p’s message (init, p,m, k) must
have been received by at least one correct node, say q′, at some time τq′, τq′ ≤ τG

q′ + 2k ·Φ.

Proof: By Lemma 6.5.2, if a correct node ever sends
(echo′, p, m, k), then some correct node q should send it at local-time τq, τq ≤ τG

q + (2k + 2)·Φ.
By the primitive MSGD-BROADCAST, q have received (init′, p, m, k) from at least n− f nodes by
some local-time τq, τq ≤ τG

q + (2k + 2) ·Φ. At least one of them is a correct node q′′ who have
received n− 2f (echo, p, m, k) at some local-time τq′′, τq′′ ≤ τG

q′′ + (2k + 1)·Φ. One of which was
sent by a correct node q̄ that should have received (init, p, m, k) before sending (echo, p, m, k) at
some local-time τq̄, τq̄ ≤ τG

q̄ + 2k ·Φ.

Lemma 6.5.4 If a correct node p invokes the primitive
MSGD-BROADCAST (p,m, k) at real-time tp, then each correct node q accepts (p,m, k) at some
real-time tq, such that |tp − tq)| ≤ 3d.

Proof: The init message of p sent in Line V will arrive to every node by tp + d. By IA-3A, by
tp + 2d all will have their τG defined and will process the init message. By Lemma 6.5.1, all will
execute Line W3 by that time. By tp + 3d all will execute Line X5 and will accept.

Theorem 6.5.2 The MSGD-BROADCAST primitive presented in Figure 6.3 satisfies properties [TSP-
1] through [TSP-4].

102 Self-stabilizing Byzantine Agreement without using Pulse Synchronization

Proof:
Correctness: Assume that a correct node p MSGD-BROADCASTs (p,m, k) at τp, τp ≤ τG

p +
(2k− 1)·Φ, on its timer. Any correct node, say q, receives (init, p, m, k) and sends (echo, p, m, k)
at some τq, τq ≤ τG

q +2k·Φ on its timer. Thus, any correct node, say q̄ receives n−f (echo, p, m, k)
from distinct nodes at some τq̄, τq̄ ≤ τG

q̄ +(2k+1)·Φ, on its timer and accepts (p,m, k). The second
part of the correctness is a result of Lemma 6.5.4.

Unforgeability: If a correct node p does not broadcast (p,m, k), it does not send (init, p, m, k),
and no correct node will send (echo, p, m, k) at some τ, τ ≤ τG + 2k ·Φ, on its timer. Thus, no
correct node accepts (p,m, k) by τG + (2k + 1) ·Φ on its timer. If a correct node would have
accepted (p, m, k) at a later time it can be only as a result of receiving n − f (echo′, p, m, k) dis-
tinct messages, some of which must be from correct nodes. By Lemma 6.5.3, p should have sent
(init, p, m, k), a contradiction.

Relay: The delicate point is when a correct node issues an accept as a result of getting echo
messages. So assume that q1 accepts (p,m, k) at t1 = rt(τ1) as a result of executing Line X5.
By that time it must have received (echo, p, m, k) from n − f nodes, at least n − 2f of them
sent by correct nodes. Since every correct node among these has sent its message by τG + 2k ·Φ
on its timer, by Lemma 6.5.1, all those messages should have arrived to every correct node qi by
τi ≤ τG

i + (2k + 1)·Φ on its timer. Thus, every correct node qi should have sent (init′, p, m, k) at
some τi, τi ≤ τG

i +(2k +1)·Φ, on its timer. As a result, every correct node will receive n− f such
messages by some τ̄ , τ̄ ≤ τG + (2k + 2) ·Φ on its timer and will send (echo′, p, m, k) at that time,
which will lead each correct node to accept (p, m, k) at a local-time τi.

Now observe that all n − 2f (echo, p, m, k) were sent before time t1. By t1 + d they arrive
to all correct nodes. By t1 + 2d all will have their τG defined and will process them. By t1 +
3d their (init′, p, m, k) will arrive to all correct nodes, which will lead all correct nodes to send
(echo′, p, m, k). Thus, all correct nodes will accept (p,m, k) at time τi ≤ t1 + 4d.

By assumption, t1 = rt(τ1) ≤ rt(τG
1)+r·Φ. By IA-3A, rt(τG

1) ≤ rt(τG
i)+ tGskew. Therefore we

conclude: rt(τi) ≤ rt(τ1)+4d ≤ rt(τG
1)+r·Φ+4d ≤ rt(τG

i)+tGskew+r·Φ+4d ≤ rt(τG
i)+(r+2)·Φ.

The case that the accept is a result of executing Line Z5 is a special case of the above arguments.
Detection of broadcasters: As in the original proof, we first argue the second part. Assume

that a correct node q adds node p to broadcasters. It should have received n − 2f (init′, p, m, k)
messages. Thus, at least one correct node has sent (init′, p, m, k) as a result of receiving n − 2f
(echo, p, m, k) messages. One of these should be from a correct node that has received the original
broadcast message of p.

To prove the first part, we consider two similar cases to support the Relay property. If r = k
and the correct node, say q, accepts (p,m, k) as a result of receiving (echo, p, m, k) from n − f
nodes by some τq, τq ≤ τG

q +(2k +1)·Φ, on its timer. At least n− 2f of them were sent by correct
nodes. Since each correct node among these has sent its message at some τ, τ ≤ τG + 2k ·Φ,
by Lemma 6.5.1, all those messages should have arrived to any correct node, say qi, by some τi,
τi ≤ τG

i + (2k + 1)·Φ on its timer. Thus, each correct node, say qj should have sent (init′, p, m, k)
at some τj, τj ≤ τG

j + (2k + 1)·Φ, on its timer. As a result, by Lemma 6.5.1, each correct node,
say q′, will receive n− f such messages by some τq′, τq′ ≤ τG

q′ + (2k + 2)·Φ on its timer and will
add p to broadcasters.

Otherwise, q accepts (p,m, k) as a result of receiving from n − f nodes (echo′, p, m, k) by
some τq on its timer. By Lemma 6.5.2 a correct node, say qi, sent (echo′, p, m, k) at some τi,
τi ≤ τG

i + (2k + 2)·Φ. It should have received n − f (init′, p,m, k) messages by that time. All

6.5 Proofs 103

such messages that were sent by correct nodes were sent at some τ, τ ≤ τG + (2k + 1)·Φ, on their
timers and should arrive at each node qj, at some τj, τj ≤ τG

j +(2k+2)·Φ, on its timer. Since there
are at least n− 2f such messages, all will add p to broadcasters at some τ, τ ≤ τG + (2k + 2)·Φ,
on their timers.

Proof of the SS-BYZ-AGREE Properties
Theorem 6.5.3 (Convergence) Once the system is coherent, any invocation of SS-BYZ-AGREE

presented in Figure 6.1 satisfies the Termination property. When n > 3f , it also satisfies the
Agreement and Validity properties.

Proof:
Notice that the General G itself is one of the nodes, so if it is faulty then there are only f − 1

potentially faulty nodes. We do not use that fact in the proof since the version of SS-BYZ-AGREE

presented does not refer explicitly to the General. One can adapt the proof and reduce ∆ by 2·Φ
when specifically handling that case.

Let t̂ be the real-time by which the network is correct and there are at least n − f non-
faulty nodes. These nodes may be in an arbitrary state at that time. If G does not send any
(Initiator, G, M) message for ∆ + 7d, all spurious invocations of the primitives and the protocol
will be reset by all correct nodes. If G sends such an Initiator message, then within ∆ + 3d of
the time that any non-faulty node invokes the protocol, either a decision will take place (by all
non-faulty nodes) or all will reset the protocol and its primitives. Beyond that time, any future
invocation will happen when all data structures are reset at all non-faulty nodes. Note, that before
that time a non-faulty G will not send the Initiator message again.

Thus, by time t̂+2∆+10d, when the system becomes coherent, any invocation of the protocol
will take place with empty (fresh) data structures and will follow the protocol as stated.

Lemma 6.5.5 If a correct node p aborts at local-time τp, τp > τG
p + (2r + 1)·Φ, on its timer, then

no correct node q decides at a time τq, τq ≥ τG
q + (2r + 1)·Φ, on its timer.

Proof: Let p be a correct node that aborts at time τp, τp > τG
p + (2r + 1) ·Φ. In this case it

should have identified at most r− 2 broadcasters by that time. By the detection of the broadcasters
property [TPS-4], no correct node will ever accept 〈G,m′〉 and r − 1 distinct messages (qi,m

′, i)
for 1 ≤ i ≤ r − 1, since that would have caused each correct node, including p, to hold r − 1
broadcasters by some time τ, τ ≤ τG + (2(r − 1) + 2)·Φ on its timer. Thus, no correct node, say
q, can decide at a time τq ≥ τG

q + (2r + 1)·Φ on its timer.

Lemma 6.5.6 If a correct node p decides at time τp, τp ≤ τG
p + (2r + 1)·Φ, on its timer, then each

correct node, say q, decides by some time τq, τq ≤ τG
q + (2r + 3)·Φ on its timer.

Proof:
Let p be a correct node that decides at local-time τp, τp ≤ τG

p + (2r + 1)·Φ. We consider the
following cases:

104 Self-stabilizing Byzantine Agreement without using Pulse Synchronization

1. r = 0: No correct node can abort by a time τ, τ ≤ τG + (2r + 1)·Φ, since the inequality will
not hold. Assume that node p have accepted 〈G,m′〉 by τp ≤ τG

p +4d ≤ τG
p +Φ. By the relay

property [TPS-3] each correct node will accept 〈G,m′〉 by some time τ, τ ≤ τG + 3 ·Φ on
its timer. Moreover, p invokes MSGD-BROADCAST (p,m′, 1), by the Correctness property
[TPS-1] it will be accepted by each correct node by time τ, τ ≤ τG +3·Φ, on its timer. Thus,
all correct nodes will have value 6=⊥ and will broadcast and stop by time τG + 3·Φ on their
timers.

2. 1 ≤ r ≤ f : Node p must have accepted 〈G,m′〉 and also accepted r distinct (qi,m
′, i)

messages for all i, 2 ≤ i ≤ r, by time τ, τ ≤ τG +(2r +1)·Φ, on its timer. By Lemma 6.5.5,
no correct node aborts by that time. By Relay property [TPS-3] each (qi,m

′, i) message will
be accepted by each correct node by some time τ, τ ≤ τG +(2r +3) ·Φ, on its timer. Node p
broadcasts (p,m′, r+1) before stopping. By the Correctness property, [TPS-1], this message
will be accepted by every correct node at some time τ, τ ≤ τG + (2r + 3)·Φ, on its timer.
Thus, no correct node will abort by time τ, τ ≤ τG + (2r + 3)·Φ, and all correct nodes will
have value 6=⊥ and will thus decide by that time.

3. r = f + 1: Node p must have accepted a (qi,m
′, i) message for all i, 1 ≤ i ≤ f , by τp,

τp ≤ τG
p + (2f + 3)·Φ, on its timer, where the f + 1 qi’s are distinct. At least one of these

f +1 nodes, say qj, must be correct. By the Unforgeability property [TPS-2], node qj invoked
MSGD-BROADCAST (qj,m

′, j) by some local-time τ, τ ≤ τG + (2j + 1) ·Φ and decided.
Since j ≤ f +1 the above arguments imply that by some local-time τ, τ ≤ τG +(2f +3)·Φ,
each correct node will decide.

Lemma 6.5.6 implies that if a correct node decides at time τ, τ ≤ τG + (2r + 1)·Φ, on its timer,
then no correct node p aborts at time τp, τp > τG

p + (2r + 1) ·Φ. Lemma 6.5.5 implies the other
direction.

Termination: Each correct node either terminates the protocol by returning a value, or by time
(2f + 3)·Φ + 3d all entries will be reset, which is a termination of the protocol.

Agreement: If no correct node decides, then all correct nodes that execute the protocol abort, and
return a ⊥ value. Otherwise, let q be the first correct node to decide. Therefore, no correct node
aborts. The value returned by q is the value m′ of the accepted (p,m′, 1) message. By [IA-4] if any
correct node I-accepts, all correct nodes I-accept with a single value. Thus all correct nodes return
the same value.

Validity: Since all the correct nodes invoke the primitive SS-BYZ-AGREE as a result of a value
sent by a correct G, they will all invoke INITIATOR-ACCEPT within d of each other with fresh data
structure, hence [IA-1] implies validity.

Timeliness:

1. (agreement) For every two correct nodes q and q′ that decide on (G, m) at τq and τq′ , respec-
tively:

6.5 Proofs 105

(a) If validity hold, then |rt(τq)−rt(τq′)| ≤ 2d, by [IA-3A]; Otherwise, |rt(τq)−rt(τq′)| ≤
3d, by [TPS-1].

(b) |rt(τG
q)− rt(τG

q′)| ≤ 5d by [IA-3A].

(c) rt(τG
q), rt(τG

q′) ∈ [t1 − 2d, t2] by [IA-3B].

(d) rt(τG
r) ≤ rt(τr), by [IA-3C], and if the inequality rt(τr)− rt(τG

r) ≤ ∆ would not hold,
the node would abort right away.

2. (validity) If all correct nodes invoked the protocol in an interval [t0, t0 + d], as a result of
(Initiator, G,m) sent by a correct G that spaced the sending by 6d from its last agreement,
then for every correct node q that may have decided 3d later than G, the new invocation will
still happen with fresh data structures, since they are reset 3d after decision. By that time it
already reset the data structures (including latest_accept) of the last execution, and the new
decision time τq, satisfies t0 − d ≤ rt(τG

q) ≤ rt(τq) ≤ t0 + 3d as implied by [IA-1D].

3. (separation) By [IA-4] the real-times of the I-accepts satisfy the requirements. Since a node
will not reset its data structures before terminating the protocol, it will not send a support
before completing the previous protocol execution. Therefore, the protocol itself can only
increase the time difference between agreements. Thus, the minimal difference is achieved
when a decision takes place right after the termination of the INITIATOR-ACCEPT primitive.

106 Self-stabilizing Byzantine Pulse Synchronization using SS. Byz. Agreement

Chapter 7

Self-stabilizing Byzantine Pulse
Synchronization using SS. Byz. Agreement

7.1 Specific Definitions
The nodes regularly invoke “pulses”, ideally every Cycle real-time units. The invocation of the
pulse is preceded by the sending of a message to all the nodes stating the intention of invoking a
pulse.

• ∆BYZ represents the maximal real-time required to complete the specific self-stabilizing
Byzantine agreement protocol used. (Using SS-BYZ-AGREE in Chapter 6 it becomes 7(2f +
3)d.)

DEFINITION 7.1.1 The communication network is correct following ∆net ≥ d real-time of con-
tinuous non-faulty behavior.

DEFINITION 7.1.2 A node is correct following ∆node ≥ Cycle + cyclemax real-time of continuous
non-faulty behavior during a period that the communication network is correct.

7.2 Self-stabilizing Byzantine Pulse-Synchronization
The definitions involved in the notion of pulse synchronization start by defining a subset of the
system states, called pulse_states, that are determined only by the elapsed real-time since each
individual node invoked a pulse (the φ’s). Nodes that have “tight” or “close” φ’s will be called a
synchronized set of nodes. To complete the definition of synchrony there is a need to address the
recurring brief time periods in which a node in a synchronized set of nodes has just invoked a pulse
while others are about to invoke one. This is addressed by considering nodes whose φ’s are almost
a Cycle apart.

The Pulse Synchronization Algorithm
The self-stabilizing Byzantine pulse synchronization algorithm presented is called
AB-PULSE-SYNCH (for Agreement-based Pulse Synchronization). A cycle is the time interval

7.2 Self-stabilizing Byzantine Pulse-Synchronization 107

between two successive pulses that a node invokes. The input value Cycle is the ideal length
of the cycle. The actual real-time length of a cycle may deviate from the value Cycle in conse-
quence of the clock drifts, uncertain message delays and behavior of faulty nodes. In the proof of
Lemma 7.2.12 the extent of this deviation is explicitly presented.

The environment is one without any granted synchronization among the correct nodes besides
a bound on the message delay. Thus, it is of no use whether a sending node attaches some time
stamp or round number to its messages in order for the nodes to have a notion as to when those
messages supposedly were sent. Hence in order for all correct nodes to symmetrically relate to
any message disseminated by some node, a mechanism for agreeing on which phase of the al-
gorithm or “time” that the message relates to must be implemented. This is fulfilled by using
SS-BYZ-AGREE, a self-stabilizing Byzantine agreement protocol presented in [20]. The mode of
operation of this protocol is as follows: A node that wishes to initiate agreement on a value does so
by disseminating an initialization message to all nodes that will bring them to (explicitly) invoke
the SS-BYZ-AGREE protocol. Nodes that did not invoke the protocol may join in and execute the
protocol in case enough messages from other nodes are received during the protocol. The protocol
requires correct initiating nodes not to disseminate initialization messages too often. In the context
of the current paper, a “Support-Pulse” message serves as the initialization message.

When the protocol terminates, the protocol SS-BYZ-AGREE returns at each node q a triplet
(p,m, τ p

q), where m is the agreed value that p has sent. The value τ p
q is an estimate, on the re-

ceiving node q’s local clock, as to when node p have sent its value m. We also denote it as the
“recording time” of (p, m). Thus, a node q’s decision value is 〈p,m, τ p

q 〉 if the nodes agreed on
(p,m). If the sending node p is faulty then some correct nodes may agree on (p,⊥), where ⊥
denotes a non-value, and others may not invoke the protocol at all. The function rt(τq) repre-
sents the real-time when the local clock of q reads τq. The AB-PULSE-SYNCH algorithm uses the
SS-BYZ-AGREE protocol for a single message only (“Support-Pulse” message) and not for every
message communicated. Thus the agreement is on whether a certain node sent a “Support-Pulse”
message and when, and not on any actual value sent. Correct nodes do not send this message more
than once in a cycle.

The SS-BYZ-AGREE protocol satisfies the following typical Byzantine agreement properties:

Agreement: If the protocol returns a value (6=⊥) at a correct nodes, it returns the same value at all
correct nodes;
Validity: If all correct nodes are triggered to invoke the protocol SS-BYZ-AGREE by a value sent
by a correct node p, then all correct nodes return that value;
Termination: The protocol terminates in a finite time;

It also satisfies some specific timeliness properties that are listed in Section 7.2.

The heuristics behind AB-PULSE-SYNCH protocol are as following:

• Once the node approaches its end of Cycle, as measured on its physical timer, it sends a
“Propose-Pulse” message stating so to all nodes.

• When (n − f) distinct “Propose-Pulse” messages are collected, the node sends a “Support-
Pulse” message that states so to all nodes. This serves as the initialization message for
invoking agreement.

108 Self-stabilizing Byzantine Pulse Synchronization using SS. Byz. Agreement

• Upon receiving such a message a receiving node invokes self-stabilizing Byzantine agree-
ment ([20]) on the fact that it received such a message from the specific node. We require
that Cycle be long enough to allow the agreement instances to terminate.

• If all correct nodes invoked agreement on the same message within a short time window then
they will all agree that the sender indeed sent this “Support-Pulse” message and all will have
proximate estimates as of when that node could have sent this message.

• The time estimate is then used to reset the countdown timer for the next pulse invocation
and a consequent “reset” messages to be sent. Each new agreement termination causes a
renewed reset.

• Upon arrival of a reset message the sending node is taken off the list of nodes that have ended
their Cycle (as indicated by the earlier arrival of a “Propose-Pulse” message for that node).

• Thus, some short time after all correct nodes have done at least one reset of their cycle
countdown timer, no new agreement can be initiated by any node (faulty or correct).

• Thus, there is one agreement termination that marks a small time-window within which all
correct nodes do a last reset of the cycle countdown timer. Thus, essentially, all correct nodes
have synchronized the invocation of their next pulse.

The algorithm is executed in an “event-driven” manner. Thus, each node checks the conditions
and executes the steps (blocks) upon an event of receiving a message or a timer event. To simplify
the presentation it is assumed in the algorithm that when a correct node sends a message it receives
its own message through the communication network, like any other correct node.

The algorithm assumes a timer that measures interval of time of size Cycle. The algorithm uses
several sets of messages or references that are reset throughout the algorithm, and every message
that have arrived more than Cycle + 2d ago is erased.

The algorithm assumes the ability of nodes to estimate some time intervals, like at Line C2.
These estimates can be carried out also in a self-stabilizing environment, by tagging each event
according to the reading of the local timer. So even if the initial values are arbitrary and cause
the non-faulty node to behave inconsistently, by the time it is considered correct the values will
end up resetting to the right values. Note that the nodes do not exchange clock values, rather they
measure time locally on their own local timers. It is assumed that a non-faulty node handles the
wrap around of its local timer while estimating the time intervals.

Note that there is no real reason to keep a received message after it has been processed and its
sender been referred to in the appropriate data structures. Hence, if messages are said to be deleted
after a certain period, the meaning is to the reference of the message and not the message itself,
which can be deleted subsequent to processing.

For reasons of readability we have omitted the hardware clock skew ρ, from the constants,
equations and proofs. The introduction of ρ does not change the protocol whatsoever nor any of
the proof arguments. It only adds a small insignificant factor to many of the bounds.

We now seek to explain in further detail the blocks of the algorithm:
Block A: We assume that a background process continuously reduces cycle_countdown, in-

tended to make the node count Cycle time units on its physical timer. On reaching 0, the back-
ground process resets the value back to Cycle. It expresses its intention to synchronize its forthcom-
ing pulse invocation with the pulses of the other nodes by sending an endogenous “Propose-Pulse”

7.2 Self-stabilizing Byzantine Pulse-Synchronization 109

Algorithm AB-PULSE-SYNCH (n, f, Cycle) /* continuously executed at node q */

/* assumes a background process that continuously reduces cycle_countdown */
A1. if (cycle_countdown = 0) then
A2. cycle_countdown := Cycle;
A3. send “Propose-Pulse” message to all; /* endogenous message */
B1. if received “Propose-Pulse” message from a sender p and p 6∈ recent_resetq then
B2. add p to proposersq; C1. if q ∈ proposersq & ‖proposersq‖ ≥ n− f and
C2. did not send a “Support-Pulse” in the last Cycle− 8d then
C3. send “Support-Pulse(proposersq)” to all; /* support the forthcoming pulse */
D1. if received “Support-Pulse(proposersp)” message from a sender p and in the last Cycle− 11d

D2. did not invoke SS-BYZ-AGREE (p,“support”) or decide on 〈p,“support”,_〉 and
D3. within d of its reception ‖(proposersq ∪ recent_resetq) ∩ proposersp‖ ≥ f + 1 then
D4. SS-BYZ-AGREE (p, “support”) /* invoke agreement on the pulse supporter */ ;
E1. if decided on 〈p, “support”, τp

q 〉 at some local-time τq then /* on non ⊥ value */
E2. if τp

q ≥ latest_acceptq then
E3. latest_acceptq := τp

q ; /* the latest agreed supporter so far at q */
E4. if not invoked a pulse since local-time τq − (∆BYZ + 6d) then /* pulse separation */
E5. invoke the pulse event;
E6. cycle_countdown := Cycle− (τq − τp

q); /* reset cycle */
E7. send “Reset” message to all and remove yourself, q, from proposersq;
F1. if received “Reset” from a sender p then
F2. move p from proposersq to recent_resetq; /* recent_reset decay within 2d + ε time */

Continuously ongoing cleanup:
G1. delete an older message if a subsequent one arrives from the same sender;
G2. delete any data in recent_resetq after 2d + ε time units;
G3. reset cycle_countdown to be Cycle if cycle_countdown 6∈ [0, Cycle];
G4. reset latest_acceptq to be τ − Cycle if latest_acceptq 6∈ [τ − Cycle, τ];
G5. delete any other message or data that is older than Cycle + 2d time units;

Figure 7.1: The AB-PULSE-SYNCH Pulse Synchronization Algorithm

message to all nodes. Note that a reset is also done if cycle_countdown holds a value not between
0 and Cycle. The value of cycle_countdown is also reset once the “pulse” is invoked. Observe that
nodes typically send more than one message in a cycle, to prevent cases in which the system may
be invoked in a deadlocked state.

Block B: The “Propose-Pulse” messages are accumulated at each correct node in its proposers
set. We say that two messages are distinct if they were sent by different nodes.

Block C: These messages are accumulated until enough (at least n − f) have been collected.
If in addition the node has already proposed itself then the node will declare this event through the
sending of a “Support-Pulse” message, unless it has already sent such a message not long ago.
The message bears a reference to the nodes in the proposers set of the sender. Note that a node
that was not able to send the message because sending one not long ago, may send it later when

110 Self-stabilizing Byzantine Pulse Synchronization using SS. Byz. Agreement

the conditions will hold.

Block D: Any such “Support-Pulse” message received is then checked for credibility by veri-
fying that the history it carries has enough (at least f + 1) backing-up in the receiver’s proposers
set and that a previous message was not sent recently. It is only then that agreement is initiated,
on a credible pulse supporter. Note that a correct node would not have supported a pulse (sent a
“Support-Pulse” message) unless it received n−f propose messages and has not sent one recently.
Thus all correct nodes will receive at least f + 1 propose messages from correct nodes and will
join the agreement initiation by the pulse supporter within d real-time units.

Block E: The Byzantine agreement protocol decides whether a certain node issued a “Support-
Pulse” message. Each node q decides at some local-time τq. The agreement protocol also returns
an estimate as of when, on the deciding node’s local clock, the message was sent by the initiating
node. This time is denoted τ p

q . Correct nodes end up having bounded differences in the real-time
translation of their τ p values, for a specific agreement.

When a node decides on a value it checks whether the τ p returned by the agreement protocol
is the most recent decided on so far in the current cycle. Only then are lines E3-E7 executed.
Note that the same agrement instance may return a τ p, which is the most recent one for a certain
correct node but may not be the most recent at another correct node. This can happen because
correct nodes terminate the SS-BYZ-AGREE protocol within 3d time units of each other,1 and their
translation of the realtime of the τ p values may differ by 5d. Thus, this introduces a 3d time units
uncertainty between the execution of the subsequent lines at correct nodes.

In Line E4-E5 a pulse is invoked if no pulse has recently been invoked. In Line E6 the node
now resets the cycle so that the next pulse invocation is targeted to happen at about one Cycle later.
In Line E7 a “Reset” message is sent to all nodes to inform that a reset of the cycle has been done.
The function of this message is to make every node that resets, be taken out of the proposers set
of all other correct nodes2. To ensure that only one pulse is invoked in the minimal time span of a
cycle a pulse will not be invoked in Line E4 if done so recently.

Block F: This causes all correct nodes to eventually remove all other correct nodes from their
proposers. Thus, about 2d after all correct nodes have executed Line E7 at least once, no instance
of SS-BYZ-AGREE will be initiated by any correct node and consequently no more agreements can
terminate (beyond the currently running ones). The last agreement decision of the correct nodes,
done within a short time-window of each other, returns different but closely bounded τ p values
at the correct nodes. Consequently they all reset their cycle_countdown counters to proximate
values. This yields a quiescent window between the termination of the last agreement and the next
pulse invocation, which will be invoked within a small time window of each other.

Block G: The scheme outlined above is not sufficient to overcome the cases in which some
nodes initialize with reference to spurious messages sent by other nodes while such messages
were not actually sent. The difficulty lies in the fact that Byzantine nodes may now intervene and

1It is part of the timeliness properties of the SS-BYZ-AGREE protocol, see Section 7.2.
2Note that a node may send multiple “Reset” messages. It is done in order to simplify some of the claims in the

proof.

7.2 Self-stabilizing Byzantine Pulse-Synchronization 111

constantly keep the correct nodes with asymmetric views on the sets of messages received. To
overcome this, AB-PULSE-SYNCH has a decay process in which each data that is older than some
period is deleted.

Note that the decaying of values is carefully done so that correct nodes never need to consider
messages that arrived more than Cycle + 2d ago.

Proof of Correctness
The proof of correctness requires very careful argumentation and is not a straightforward standard
proof of the basic properties. The critical parts in the proof is showing that despite the complete
chaotic initialization of the system the correct nodes are able to produce some relation among their
local clocks and force the faulty nodes to leave a short interval of time into which no recording
time refers to, followed by an interval during which no correct node updates its latest_accept. After
such intervals we can argue about the convergence of the states of the correct nodes, proving that
stability is secured. The nontraditional values of the various constants bounding Cycle has to do
with the balance between ensuring the ability to converge and limiting the ability of the Byzantine
nodes to disturb the convergence by introducing critically timed pulse events that may disunite the
correct nodes.

The proof shows that when the constants are chosen right, no matter what the faulty nodes
will do and no matter what the initial values are, there will always be two intervals of inactivity,
concurrently at all correct nodes, after which the correct nodes restore consistency of their pulses.

The proof uses the following specific properties of the SS-BYZ-AGREE protocol ([20]):

Timeliness-Agreement Properties:
1. (agreement) For every two correct nodes q and q′ that decides 〈p, m, τ p

q 〉 and 〈p,m, τ p
q′〉 at

local times τq and τq′ , respectively:

(a) |rt(τq)− rt(τq′)| ≤ 3d, and if validity holds, then |rt(τq)− rt(τq′)| ≤ 2d.

(b) |rt(τ p
q)− rt(τ p

q′)| ≤ 5d.

(c) rt(τ p
q), rt(τ p

q′) ∈ [t1−2d, t2], where [t1, t2] is the interval within which all correct nodes
that actually invoked SS-BYZ-AGREE(p,m) did so.

(d) rt(τ p
q) ≤ rt(τq) and rt(τq)− rt(τ p

q) ≤ ∆BYZ for every correct node q.

2. (validity) If all correct nodes invoked the protocol in an interval [t0, t0 + d], as a result of
some initialization message containing m sent by a correct node p that spaced the sending by
at least 6d from the completion of the last agreement on its message, then for every correct
node q, the decision time τq, satisfies t0 − d ≤ rt(τ p

q) ≤ rt(τq) ≤ t0 + 3d.

3. (separation) Let q be any correct node that decided on any two agreements regarding p at
local times τq and τ̄q, then t2 + 5d < t̄1 and rt(τq) + 5d < t̄1 < rt(τ̄q), where t2 is the
latest real-time at which a correct node invoked SS-BYZ-AGREE in the earlier agreement
and t̄1 is the earliest real-time that SS-BYZ-AGREE was invoked by a correct node in the
later agreement.

The AB-PULSE-SYNCH requires the following bounds on the variables:

112 Self-stabilizing Byzantine Pulse Synchronization using SS. Byz. Agreement

• Cycle ≥ max[(10f + 16)d, ∆BYZ + 14d].

• ∆node ≥ Cycle + cyclemax.

• ∆net ≥ d.

The requirements above, and the definitions of correctness imply that from an arbitrary state
the system becomes coherent within 2 cycles.

Note that in all the theorems and lemmata in this paper, if not stated differently, it is assumed
that the system is coherent, and the claims hold as long as the system stays coherent.

In the proof, whenever we refer to correct nodes that decide we consider only decisions on
6=⊥ values. When the agreement returns ⊥ it is not considered a decision, and in such a case the
agreement at other correct nodes may not return anything or may end up in decaying all related
messages.

Theorem 7.2.1 (Convergence) From an arbitrary (but coherent) state a synchronized_pulse_state
is reached within 4 cycles, with σ = 3d.

Proof: A node that recovers may find itself with arbitrary input variables and in an arbitrary step
in the protocol. Within a cycle a recovered node will decay all spurious “messages” that may exist
in its data structures. Some of these might have been resulted from incorrect initial variables, such
as when invoking the SS-BYZ-AGREE protocol without the specified pre-conditions. Such effects
also die out within a cycle.

The above argument implies that by the time the node is considered correct, all messages sent
by non-faulty nodes that are reflected in its data structures were actually sent by them (at the
arbitrary state at which they are). Thus, by the time that the system becomes coherent the set of
correct nodes share the values they hold in the following sense: if a message sent by a non-faulty
node is received by a correct node, then within d it will be received by all other correct nodes; and
all future messages sent by correct nodes are based on actual messages that were received.

Once the system is coherent, then there are at least n−f correct nodes that follow the protocol,
and all messages sent among them are delivered by the communication network and processed by
the correct nodes within d real-time units.

Lemma 7.2.1 Within d real-time units of the sending of a “Propose-Pulse” message by a correct
node p, it appears in proposersq of any correct node q. Furthermore, it appears in proposersq only
if p sent a “Propose-Pulse” message within the last d units of time.

Proof: From the coherence of the system, p’s message arrives to all within d real-time. By the
Timeliness-Agreement Property (1d) and the bounds on Cycle, a node that have recently sent a
“Reset” message resets its cycle_countdown to a value that is at least Cycle−∆BYZ > 14d. Thus,
the minimum real-time between the receipt of its past “Reset” and its current “Propose-Pulse” at
any correct node is more than 2d apart, and therefore by the time its “Propose-Pulse” message
arrives it will not appear in recent_resetq at any correct node q. The second part is true because p
can be in proposersq without prior sending of a “Propose-Pulse” message only if node q recovered
in that state. But by the time node q is considered correct any reference to such a message has
already been decayed.

7.2 Self-stabilizing Byzantine Pulse-Synchronization 113

Lemma 7.2.2 In every real-time interval equal to Cycle, every correct node sends either a “Propose-
Pulse” message or a “Reset” message.

Proof: Recall that every correct node’s cycle_countdown timer is continuously running in the
background and would be reset to hold a value within Cycle if it initially held an out-of-bound
value. Thus, if the cycle_countdown is not reset to a new value when a “Reset” is invoked, then
within Cycle real-time units the cycle_countdown timer will eventually reach 0 and a “Propose-
Pulse” message will consequently be sent. Whenever a cycle_countdown is reset, its value is
always at most Cycle.

Lemma 7.2.3 Within d real-time units of sending a “Reset” message by a correct node p, that node
does not appear in proposersq of any correct node q. Furthermore, a correct node p is deleted from
proposersq only if it sent a “Reset” message.

Proof: The first part follows immediately from executing the protocol in a coherent state. The
only sensitive point arises when a “Propose-Pulse” message that was sent by p prior to the “Reset”
message arrives after the “Reset” message. This can happen only if the “Propose-Pulse” message
was sent within d of the “Reset” message. But in this case the protocol instructs node q not to add
p to proposersq. For proving the second part we need to show that a correct node is not removed
from proposersq because q decayed it. By Lemma 7.2.1 it appears in proposersq only because of
sending a “Propose-Pulse” message. By Lemma 7.2.2 it will resend a new message before q decays
the previous message, because messages are decayed (Block G) only after Cycle + d.

Lemma 7.2.4 Every correct node invokes SS-BYZ-AGREE (p, “support”) within d real-time units
of the time a correct node p sends a “Support-Pulse” message.

Proof: If a correct node p sent a “Support-Pulse” message in Line C3, then the precondi-
tions of Line D2 hold because the last reception of “Support-Pulse” and the last invocation of
SS-BYZ-AGREE (p, “support”) that followed took place at least Cycle− 8d− d ago, proving the
first condition. By the Timeliness-Agreement property (2) the last decision took place at least
Cycle − 8d − 3d ago, proving the other condition. The condition in Line D3 clearly holds for all
correct nodes. This is because within d real-time units every correct node in proposersp will appear
in proposersq and every correct node that was deleted from proposersq and is not in recent_resetq
should have been already deleted from proposersp. To prove this last claim, assume that node q
received “Reset” from a correct node v at real-time t. By t + d this message should arrive at p,
and therefore any “Propose-Pulse” message from p that contains v should be sent before that and
should be received before t + 2d, thus before removing v from recent_resetq.

Lemma 7.2.5 If a correct node p sends “Support-Pulse” at real-time t0 then every correct node q
decides 〈p,“support”,τ p

q 〉 at some local-time τq, such that t0 − d ≤ rt(τ p
q) ≤ rt(τq) ≤ t0 + 3d and

t0 ≤ rt(τq).

Proof: By Lemma 7.2.4 all correct nodes invoke SS-BYZ-AGREE (p, “support”) in the interval
[t0, t0 + d]. Thus the precondition conditions for the Timeliness-Agreement property (2) hold.
Therefore, each correct node q decides on 〈p, _, τ p

q 〉 at some real-time rt(τq) that satisfies t0− d ≤
rt(τ p

q) ≤ rt(τq) ≤ t0 + 3d.

114 Self-stabilizing Byzantine Pulse Synchronization using SS. Byz. Agreement

Lemma 7.2.6 Let [t, t + Cycle] be an interval such that for no correct node rt(latest_accept) ∈
[t, t + Cycle], then by t + Cycle + 4d all correct nodes decide.

Proof: Assume that all decisions by correct nodes resulted in rt(latest_accept) ≤ t. Thus,
since there are no updates to cycle_countdown the cycle_countdown at all correct nodes should
expire by t + Cycle. By Lemma 7.2.5, if any correct node would have sent “Support-Pulse” in
that interval, then we are done. Otherwise, by that time all should have sent a “Propose-Pulse”
message. Since no node removes old messages for Cycle + 2d, and more than Cycle − 8d real-
time passed, by t + Cycle + d at least one correct node will send a “Support-Pulse” message. By
Lemma 7.2.4, all will invoke SS-BYZ-AGREE within another d real-time units. The Timeliness-
Agreement property (2) implies that by t + Cycle + 4d all will decide.

Note that if a faulty node sends “Support-Pulse”, some correct node may join and some may
not, and the actual agreement on a value 6=⊥ and the time of such an agreement depends on the
behavior of the faulty nodes. We address that later on in the proof. We first prove a technical
lemma.

Lemma 7.2.7 Let t′, be a time by which all correct nodes decided on some values since the system
became coherent. Let B′ and B satisfy B′ ≤ B, and 3d ≤ B. If no correct node decides on a value
that causes updating latest_accept to a value in an interval [t′, t′+B], and no correct node updates
its latest_accept or resets its cycle_countdown during the real-time interval [t′ + B′, t′ + B], then
for any pair of correct nodes |cycle_countdownq(t

′′) − cycle_countdownq′(t
′′)| ≤ 5d for any t′′,

t′ + B′ ≤ t′′ ≤ t′ + B.

Proof: By assumption, the agreements prior to t′ satisfy the Timeliness-Agreement properties.
Past t′ + B′ and until t′ + B no node updates its latest_accept. Thus, for all nodes the value of
rt(latest_accept) is bounded by rt(latest_accept) ≤ t′. Let q be the correct node with the maximal
rt(latest_acceptq) that was set following a decision 〈p1, _, τ p1

1 〉 at timer τ1, where latest_acceptq =
τ p1

1 . By the Timeliness-Agreement property (1a), any correct node v will execute Line E2 following
a decision on 〈p1, _, µp1

1 〉 at some timer µ1, such that |rt(τ1) − rt(µ1)| ≤ 3d. By property (1b),
rt(τ p1

1)− rt(µp1

1) ≤ 5d. Assume first that latest_acceptv = µp1

1 .
At local-time τ1, at q:

cycle_countdownq(τ1) = Cycle− (τ1 − τ p1

1) = Cycle− (rt(τ1)− rt(τ p1

1)).

At real-time t′′, t′′ ≥ rt(τ p1

1), at q:

cycle_countdownq(t
′′) = Cycle− (rt(τ1)− rt(τ p1

1))− (t′′ − rt(τ1)) = Cycle− (t′′ − rt(τ p1

1)).

Similarly at real-time t′′, t′′ ≥ rt(µp1

1), at v:

cycle_countdownv(t
′′) = Cycle− (t′′ − rt(µp1

1)).

Thus,
|cycle_countdownq(t

′′)− cycle_countdownv(t
′′)| ≤ 5d.

Otherwise, v assigned latest_acceptv as a result of deciding on some 〈p2, _, µp2

2 〉 at some timer
µ2, rt(µ2) ≤ t′, where latest_acceptv = µp2

2 . Let τ2 be the timer at q when it decided 〈p2, _, τ p2

2 〉.

7.2 Self-stabilizing Byzantine Pulse-Synchronization 115

By the Validity and the Timeliness-Agreement properties, |rt(τ2) − rt(µ2)| ≤ 3d and |rt(τ p2

2) −
rt(µp2

2)| ≤ 5d.
By assumption,

rt(τ p1

1) ≥ rt(µp2

2) ≥ rt(µp1

1) ≥ rt(τ p1

1)− 5d.

At local-time τ1, at q:

cycle_countdownq(τ1) = Cycle− (τ1 − τ p1

1) = Cycle− (rt(τ1)− rt(τ p1

1)).

At local-time µ2, at v:

cycle_countdownv(µ2) = Cycle− (µ2 − µp2

2).

Let t′′ = rt(τ ′′1) = rt(µ′′1), then

cycle_countdownq(τ
′′
1) = Cycle− (t′′ − rt(τ p1

1)),

and
cycle_countdownv(µ

′′
2) = Cycle− (t′′ − rt(µp2

2)).

Therefore, we conclude

|cycle_countdownq(t
′′)− cycle_countdownv(t

′′)| ≤ 5d.

Lemma 7.2.8 If a correct node p sends a “Support-Pulse” at some real-time t0 then:

1. No correct node will invoke SS-BYZ-AGREE during the period [t0 + 6d, t0 + Cycle− d];

2. No correct node sends a “Support-Pulse” or “Propose-Pulse” during that period;

3. The cycle_countdown counters of all correct nodes expire within 5d of each other at some
real-time in the interval [t0 + Cycle− d, t0 + Cycle + 6d].

Proof: By Lemma 7.2.5 each correct node decides on p’s “Support-Pulse”. Each correct node that
did not update its latest_accept recently, will send a “Reset” message as a result of this decision.
Since several agreements from different nodes may be executed concurrently, we need to consider
their implication on the resulting behavior of the correct nodes.

Consider first the case that a correct node reached a decision and sent “Reset” before deciding
on p’s “Support-Pulse”. If the decision took place before t0−d then, by the Timeliness-Agreement
property (2), it will update it’s latest_accept after the decision on p’s “Support-Pulse”.

By the same Timeliness-Agreement properties, every correct node that has not sent “Reset”
already, will end up updating its latest_accept and sending “Reset” at some time during the interval
[t0−d, t0 +3d]. By t0 +4d no correct node will appear in proposers of any correct node and until it
will send again a “Propose-Pulse” message, since its “Reset” message will arrive to all non-faulty
nodes. Thus, from time t0 + 4d and until some correct node will send a new “Propose-Pulse”
message, no correct node will send “Support-Pulse” message. Moreover, past t0 + 6d no correct
node will invoke a SS-BYZ-AGREE in Line D3, because all correct nodes will not appear also

116 Self-stabilizing Byzantine Pulse Synchronization using SS. Byz. Agreement

in recent_reset. Observe that if there is a “Propose-Pulse” message in transit from some correct
node v, or if a correct node v happened to send one just before sending the “Reset” message, that
“Propose-Pulse” will arrive within d of receiving the “Reset” message, and therefore by the time
that node will be removed from recent_reset all such messages will arrive and therefore node v
will not be added to proposers as a result of that message later than t0 + 6d.

Even though different correct nodes may compute their latest_acceptq as a result of different
agreements, by the Timeliness-Agreement properties (1d) and (2), at time t0 + 6d the value of
latest_acceptq satisfies rt(latest_acceptq) ∈ [t0 − d, t0 + 6d], for every correct node q.

Past time t0 + 6d and until t0 + 6d + ∆BYZ correct nodes may still decide on values from
other agreements that were invoked in the past by faulty nodes. By the Timeliness-Agreement
property (1c) no such value result in a latest_accept later than t0 + 6d, since no correct node will
invoke SS-BYZ-AGREE until some correct node will send a future “Propose-Pulse” message.

Let tq be the latest real-time a correct node q updated the calculation of cycle_countdown
because of a latest_accept value in the interval [t0 − d, t0 + 6d]. It will send its next “Propose-
Pulse” message at tq + cycle_countdown = tq + Cycle − (tq − rt(latest_acceptq)) = Cycle +
rt(latest_acceptq) ≥ t0 +Cycle−d. Thus, the earliest real-time a correct node will send “Propose-
Pulse” message will be at t0+Cycle−d. Until that time no correct node will send a “Propose-Pulse”
or “Support-Pulse” message or invoke SS-BYZ-AGREE, proving (1) and (2).

The bound on Cycle, implies that during the real-time interval [t0 + 6d, t0 + Cycle − ∆BYZ]
there is a window of at least 14d−6d−d > 3d with no recording time that refers to it. Denote this
interval by [t′, t′ + B′], where B′ ≤ t0 + Cycle − ∆BYZ ≤ t0 + Cycle − d. The above argument
implies that in the interval [t′ + B′, t0 + Cycle − d] no correct node will update its latest_accept,
and therefore the conditions of Lemma 7.2.7 hold.

Thus, the cycle_countdown counters of all correct nodes expire within 5d past time t0+Cycle−
d. Looking back at the latest real-time, tq ∈ [t0 − d, t0 + 6d], at which a correct node q updated
the calculation of cycle_countdown the node will send its next “Propose-Pulse” message at tq +
cycle_countdown = tq + Cycle − (tq − rt(latest_acceptq)) = Cycle + rt(latest_acceptq) ≤
t0 + Cycle + 6d. Proving (3).

Lemma 7.2.6 above implies that the nodes will not deadlock, despite the arbitrary initial states
they could have recovered at. Moreover, by Lemma 7.2.8, once a correct node succeeds in send-
ing a “Support-Pulse” message, all correct nodes will converge. We are therefore left with the
need to address the possibility that the faulty nodes will use the divergence of the initial values
of correct nodes to prevent convergence by constantly causing them to decide and to update their
cycle_countdown counter without enabling a correct node to reach a point at which it sends a
“Support-Pulse” message.

By Lemma 7.2.6 within Cycle + 4d of the time the system becomes coherent all correct nodes
execute Line E1, thus within Cycle + 4d from the time the system became coherent. Let t1 be
some real-time in that period by which all non-faulty nodes executed Line E1. If any correct node
sends a “Support-Pulse” message, then we are done. Assume otherwise. Since no correct node will
invoke SS-BYZ-AGREE for any node more than once within a Cycle−11d, as we prove later, there
will be at most f decisions between t1 and t1 +Cycle−11d. Since each decision returns recording
times to nodes that range over at most a 5d real-time window, and since Cycle > (10f +16)d, there
should be a real-time interval [t2, t2 + 5d], that no recording time refers to any real-time within it.
This reasonings leads to the following lemma.

7.2 Self-stabilizing Byzantine Pulse-Synchronization 117

Lemma 7.2.9 Assume that no correct node decision results in a recording time τ p
q that refers to

real-time rt(τ p
q) in the real-time interval [t′, t′ + 5d]. Then by t′ + Cycle + 4d all correct nodes

decide, update their latest_accept and send “Reset”, within 3d real-time units of each other.

Proof: By the Timeliness-Agreement property (1b), any decision that will take place later than
t′ + ∆BYZ would result in latest_accept > t′. By Lemma 7.2.6, by t′ + Cycle + 4d all correct
nodes’ decisions lead to rt(latest_accept) > t′, and by assumption to rt(latest_accept) > t′ + 5d.
Let q be the first correct node to decide and update its latest_accept to a value larger than t′ + 5d
on some 〈p, _, τ p

q 〉 for rt(τ p
q) > t′ + 5d, at some real-time t′′ ≥ t′. By the Timeliness-Agreement

property (1d), t′′ ≥ rt(τ p
q). Moreover, since the rt(τ p) are at most 3d apart, by t′′ + 3d all correct

nodes will decide on some values and will update the latest_accept value. Therefore, in the interval
[t′′, t′′ + 3d] all correct nodes should update their latest_accept, with rt(latest_accept) ≥ t′. Thus,
all correct nodes will execute Line E7 as a result of such decisions. Therefore, all correct nodes
will send a “Reset” messages within 3d of each other.

Let t2 be a real time at which the above lemma holds. Let t3 be the real-time past t2 by which
all correct nodes send “Reset” as Lemma 7.2.9 claims. Thus, all correct nodes sent “Reset” in the
real-time interval [t3 − 3d, t3] and by t3 + d no correct node will appear in the proposers of any
other correct node.

The final stage of the proof is implied from the following lemma.

Lemma 7.2.10 If all correct nodes send a “Reset” in the period [t0, t0 + 3d] then:

1. No correct node will invoke SS-BYZ-AGREE during the period [t0 +6d, t0 +Cycle−∆BYZ];

2. No correct node sends a “Support-Pulse” or “Propose-Pulse” during that period;

3. The cycle_countdown counters of all correct nodes expire within 5d of each other at some
real-time in the interval [t0 + Cycle−∆BYZ, t0 + Cycle + 6d].

Proof: By real-time t0 + 4d all correct nodes will receive all the n − f “Reset” messages and
will remove the correct nodes from proposers. Past that time and until some correct node will send
a “Propose-Pulse” in the future, no correct node will send a “Support-Pulse” message. Similarly,
past t0 + 6d and until some correct node will send a “Propose-Pulse” in the future no correct node
will invoke a SS-BYZ-AGREE in Line D3.

At that time the range of cycle_countdown may be in [Cycle − ∆BYZ, Cycle], since, by the
Timeliness-Agreement property (1d), faulty nodes may bring the correct nodes to decide on values
that are at most ∆BYZ in the past.

Until t0 + 6d + ∆BYZ, correct nodes may still decide on values from other agreements invoked
by faulty nodes. By the Timeliness-Agreement property (1c), until some correct node will invoke
a SS-BYZ-AGREE , no correct node will happen to decide on any message with rt(τ ′) ≥ t0 + 6d
(latest possible recording time).

Let tq be the latest real-time a correct node q updated the calculation of cycle_countdown
at some time during the interval [t0, t0 + 6d]. It will send its next “Propose-Pulse” message at
tq + cycle_countdown = tq + Cycle− (tq − rt(latest_acceptq)) = Cycle + rt(latest_acceptq). By
Timeliness-Agreement property (1d), and because the computation of latest_acceptq takes place in
the interval [t0, t0 + 6d] we conclude that interval rt(latest_acceptq) ≥ t0 + Cycle−∆BYZ. Thus,

118 Self-stabilizing Byzantine Pulse Synchronization using SS. Byz. Agreement

tq + cycle_countdown ≥ t0 + Cycle − ∆BYZ. Thus, the earliest time a correct node will send a
“Propose-Pulse” message will be at t0 + Cycle−∆BYZ. Until that time no correct node will send
a “Propose-Pulse” or “Support-Pulse” message or invoke SS-BYZ-AGREE, proving (1) and (2).

The bound on Cycle, implies that during the real-time interval [t0 + 6d, t0 + Cycle − ∆BYZ]
there is a window of at least 14d − 6d − d > 3d with no recording time that refers to it. Denote
this interval by [t′, t′+B′], where B′ ≤ t0 +Cycle−∆BYZ ≤ t0 +Cycle−d. The above argument
implies that in the interval [t′ + B′, t0 + Cycle − d] no correct node will update its latest_accept,
and therefore the conditions of Lemma 7.2.7 hold.

Thus, the cycle_countdown counters of all correct nodes expire within 5d past time t0+Cycle−
d. Looking back at the latest real-time, tq, at which a correct node q updated the calculation of
cycle_countdown, since it took place in the interval [t0 − d, t0 + 6d] and that rt(latest_acceptq)
cannot be larger than the time at which it is computed, the node will send its next “Propose-
Pulse” message at tq + cycle_countdown = tq + Cycle − (tq − rt(latest_acceptq)) = Cycle +
rt(latest_acceptq) ≤ t0 + Cycle + 6d. Proving (3).

Corollary 7.2.11 In the conditions of Lemma 7.2.10, if no correct node invoked
SS-BYZ-AGREE in the interval [t0 − ∆BYZ, t0 − B] then the bound of t0 + Cycle − ∆BYZ in
Lemma 7.2.10 can be replaced by t0 + Cycle−B − 2d.

Proof: By the Timeliness-Agreement property (1c) no decision can return a recording time that is
earlier by more than 2d from an invocation of SS-BYZ-AGREE by a correct node. Therefore, in the
proof of Lemma 7.2.10 the minimal value for latest_acceptq for any correct node q can be t0−B−
2d. Let tq be the latest real-time a correct node q updated the calculation of cycle_countdown in
the interval [t0, t0 + 6d]. It will send its next “Propose-Pulse” message at tq + cycle_countdown =
tq + Cycle− (tq − rt(latest_acceptq)) = Cycle + rt(latest_acceptq) ≥ Cycle−B− 2d. Thus, the
earliest real-time a correct node will send “Propose-Pulse” message will be at t0 +Cycle−B−2d.
Until that time no correct node will send a “Propose-Pulse” or “Support-Pulse” message or invoke
SS-BYZ-AGREE. Thus the bound of t0 + Cycle − ∆BYZ in Lemma 7.2.10 can be replaced by
t0 + Cycle−B − 2d.

We can now state the “fixed-point” lemma:

Lemma 7.2.12 If the cycle_countdown counters of all correct nodes expire in the period [t0, t0 +
5d] and no correct node sent “Support-Pulse” in [t0−(Cycle−8d), t0] and no correct node invoked
SS-BYZ-AGREE in [t0 − (∆BYZ + 6d), t0] then:

1. All correct nodes invoke a pulse within 3d real-time units of each other before t0 + 9d;

2. There exists a real-time t̄0, t0 +Cycle−2d ≤ t̄0 ≤ t0 +Cycle+12d for which the conditions
of Lemma 7.2.12 hold by replacing t0 with t̄0.

Proof: Assume first that a correct node decided in [t0, t0 +6d]. Let q be the first such correct node
to do so, at some real-time tq. By the Timeliness-Agreement property (1c), and since no correct
node has invoked SS-BYZ-AGREE in [t0 − (∆BYZ + 6d), t0], the recording time needs to be in the
interval [t0−2d, tq]. By Timeliness-Agreement property (1a), in the interval [tq, tq +3d] all correct

7.2 Self-stabilizing Byzantine Pulse-Synchronization 119

nodes will decide, and the decision of all correct nodes will imply updating of latest_accept and
the conditions for invoking a pulse hold.

Moreover, in the interval [tq, tq + 3d] the preconditions of Lemma 7.2.10 holds. Using Corol-
lary 7.2.11 for B = 0 we obtain the bounds of no “Support-Pulse” in [tq + 6d, tq + Cycle− 2d], an
interval of Cycle−8d, and all cycle_countdown expire within 5d in the interval [tq+Cycle−2d, tq+
Cycle + 6d]. Since tq ∈ [t0, t0 + 6d], we conclude that for t̄0 ∈ [tq + Cycle− 2d, tq + Cycle + 12d]
the conditions of the lemma hold.

Otherwise, no correct node decided in [t0, t0 + 6d]. This implies that all correct nodes will
end up sending their “Propose-Pulse” by t0 + 5d and a correct node will send “Support-Pulse” by
t0 + 6d. Lemma 7.2.8 completes the proof in a similar way.

Observe that once Lemma 7.2.12 holds, it will hold as long as the system is coherent, since its
preconditions continuously hold. So to complete the proof of the theorem we need to show that
once the system becomes coherent, the preconditions of Lemma 7.2.12 will eventually hold.

Denote by t̃ the real-time at which the system became coherent. By Lemma 7.2.6 by t̃ +
Cycle + 4d all correct node executes Line E1. Let t1 be some real-time in that period by which
all correct nodes executed Line E1. If any correct node sends a “Support-Pulse” message, then by
Lemma 7.2.8 the precondition to Lemma 7.2.12 hold.

Assume otherwise. By the Timeliness-separation property there are no concurrent agreements
associated with the same sender of “Support-Pulse” message. Since the separation between de-
cisions is at least 5d, every correct node will be aware of a decision before invoking the next
SS-BYZ-AGREE and therefore, the test in Line D2 will eliminate having more than a single deci-
sion per sending node within Cycle − 11d. Since Cycle > (10f + 16)d, there will be at most f
decisions between t1 and t1 + Cycle − 11d. Since each decision returns recording times to nodes
that range over at most 5d real-time window, there should be a real-time interval [t2, t2 + 5d], that
no recording time of any correct node refers to any real-time within it. Note that t2 ≤ t1 + Cycle−
11d−5d ≤ t̃+2·Cycle−12d. By Lemma 7.2.9, by t̃+2·Cycle−12d+Cycle+4d ≤ t̃+3·Cycle−8d
there exist a t3 such that all correct nodes sends “Reset” in the interval [t3 − 3d, t3]. Thus, the pre-
conditions to Lemma 7.2.10 hold. Thus, by t̃+3·Cycle−8d−3d+Cycle+6d = t̃+4·Cycle−5d the
preconditions to Lemma 7.2.12 hold because either a correct node has sent “Support-Pulse” before
that or from Lemma 7.2.10.

Thus the system converges within less than 4 · Cycle from a coherent state. One can save one
Cycle in the bound by overlapping the first one with the second one when the non-faulty nodes are
not being considered correct.

From that time on, all correct nodes will invoke pulses within 3d of each other and their next
pulse will be in the range stated by Lemma 7.2.12. The Lemma immediately implies that the
bound on cyclemax is Cycle + 9d. Similarly, it claims that past t0 + 9d no “Propose-Pulse” will
be sent before t0 + Cycle− 2d, thus potentially the shortest time span between pulses at a node is
Cycle−11d. This implies that cyclemin = Cycle−11d. Moreover, the discussion also implies that:

Lemma 7.2.13 Once the conditions of Lemma 7.2.12 hold, no correct node will invoke more than
a single pulse in every cyclemin real-time interval. It will invoke at least one pulse in every cyclemax

real-time interval.

This concludes the Convergence requirement with σ = 3d, since the correct nodes will always
invoke pulses within 3d real-time units of each other. This completes the proof of Theorem 7.2.1.

120 Self-stabilizing Byzantine Pulse Synchronization using SS. Byz. Agreement

Theorem 7.2.2 (Closure) If the system is in a synchronized pulse_state at time ts, then the system
is in a synchronized pulse_state at time t, t ≥ ts.

Proof: Let the system be in a synchronized pulse_state at the time immediately following the
time the last correct node sent its “Propose-Pulse” message. Thus, all correct nodes have sent their
“Propose-Pulse” messages. As a result, all will invoke their pulses within 3d of each other, and
will reset cycle_countdown to be at least Cycle− 2d. The faulty nodes may not influence the cycle
length to be shorter than cyclemin or longer than cyclemax.

Thus we have proved the main theorem:

Theorem 7.2.3 (Convergence and Closure) The AB-PULSE-SYNCH algorithm solves the Self-
stabilizing Pulse Synchronization Problem if the system remains coherent for at least 4 cycles.

Proof: Convergence follows from Theorem 7.2.1. The first Closure condition follows from
Theorem 7.2.2. The second Closure condition follows from Lemma 7.2.13.

Since we defined non-faulty to be considered correct within 2 cycles, we conclude:

Corollary 7.2.14 From an arbitrary state, once the network become correct and n − f nodes
are non-faulty, the AB-PULSE-SYNCH algorithm solves the Self-stabilizing Pulse Synchronization
Problem if the system remains so for at least 6 cycles.

Lemma 7.2.15 (Join of recovering nodes) If the system is in synchronized state, a recovered node
becomes synchronized with all correct nodes within ∆node time.

Proof: The proof follows the arguments used in the proofs leading to Theorem 7.2.3. Within
a cycle of non-faulty behavior of the recovering node it clears its variable and data structures of
old values. Within cyclemax it will synchronize with all other correct nodes, though it might not
issue a pulse if it issued one in the first Cycle. But by the end of ∆node its cycle_countdown will
synchronize with all the correct nodes and will consequently produce the next pulse in synchrony
with them.

121

Chapter 8

Conclusions and Discussion

A number of papers have recently postulated on the similarity between elements connected with
biological robustness and design principles in engineering [4, 49]. In the current work we have
observed and understood the mechanisms for robustness in a comprehensible and vital biological
system. We have then shown how to make specific use of analogies of these elements in distributed
systems in order to attain high robustness in a practical manner. The same level of robustness has
not been practically achieved earlier in distributed systems. We postulate that our result elucidates
the feasibility and adds a solid brick to the motivation to search for and to understand biological
mechanisms for robustness that can be carried over to computer systems.

Possible implications in biology: The shape of the neurobiological refractory function is
largely perceived to be determined by the physical ionic properties in the single cell only and
not due to factors related to robustness and network topology. Our algorithm which generalizes a
neurobiological model does show dependence of the shape of the refractory function on factors re-
lated to robustness and network topology. We may thus speculate on possible new meanings of the
refractory function in the biological context. Could there possibly be some correlation between the
number of faults and their severity that the biological neuronal network must face and the network
size required to reach synchronization? Could there be some relationship between the shape of the
neuronal refractory function and the size of the biological neural network? Does the shape of the
refractory function of the neurons play a role in the networks ability to tolerate faults or noise?
Does the shape of the refractory function of the neurons play a role in the networks ability to alter
the synchronized firing pace?

Refractory-like behavior has not been suggested earlier to have a role in models for biologi-
cal synchronization. Our work may imply that it can have a pivotal role. We thus suggest that
refractory-like behavior may play a more general role in synchronization, and thus may be an
important element for synchronization in other biological systems such as in the fireflies, synchro-
nized clapping, synchronized swimming of schools of fish, etc. For example, a person may be less
reluctant to reset the clapping immediately following her clapping, but be increasingly receptive to
such a reset as the end of the interval for a new clap becomes imminent.

Possible implications in distributed systems: This work showed for the first time that practi-
cal linear-time algorithms may be developed in the confluence of the self-stabilization and Byzan-
tine fault models, without relying on any external means for synchronization. The practical impli-

122 Conclusions and Discussion

cation of this is the possibility to design highly robust algorithms for situations in which transient
incidences might temporarily corrupt the workability of the system, but leave a bounded fraction
of the system permanently corrupt. An example of this may be unmanned space missions, in which
it might not be possible to reset the whole system following severe faults or even to detect such a
situation. The motivation to develop solutions operating in this fault domain is underscored by the
recent interest of bodies such as NASA in handling such scenarios [59, 58].

To state the implications in a more generalized or “down-to-earth” manner, our results enables
to design practical algorithms without needing to a-priori characterize the severity or nature of
the faults, or for a limited period of time, the extent of the faults. We further postulate this may
simplify the model statements in which an algorithm operates, which in turn may decrease the
possibility to incorrectly comprehend the model when implementing an algorithm.

Bibliography

[1] Y. Afek, S. Dolev. Local stabilizer. Proc. of the 5th Israeli Symposium on Theory of Comput-
ing Systems (ISTCS97), Bar-Ilan, Israel, Jun 1997.

[2] D. Agrawal, A. E. Abbadi. A token-based fault-tolerant distributed mutual exclusion algo-
rithm source. Journal of Parallel and Distributed Computing archive, 24(2):164–176, Feb
1995.

[3] G. Alari, J. Beauquier, A. Datta, C. Johnen, V. Thiagarajan. Fault-tolerant token passing al-
gorithm on tree networks. IEEE International Performance Computing and Communications
Conference (IPCCC’98), 1998.

[4] U. Alon, M. Surette, N. Barkai, S. Leibler. Robustness in bacterial chemotaxis. Nature,
397(6715):168–171, Jan 1999.

[5] E. Anagnostou, V. Hadzilacos. Tolerating transient and permanent failures. Proc. of the 7th
International Workshop on Distributed Algorithms, Les Diablerets, Switzerland, Sep 1993.

[6] E. Anceaume, I. Puaut. Performance evaluation of clock synchronization algorithms. Tech-
nical Report 3526, INRIA, 1998.

[7] A. Arora, S. Dolev, , M. Gouda. Maintaining digital clocks in step. Parallel Processing
Letters, 1:11–18, 1991.

[8] A. Arora, M. Gouda. Distributed reset. In Proceedings of the 10th Conference on Founda-
tions of Software Technology and Theoretical Computer Science. Lecture Notes in Computer
Science, 1990.

[9] A. Arora, S. Kulkarni. Component based design of multitolerance. IEEE Transactions on
Software Engineering, 24(1):63–78, Jan 1998.

[10] B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, G. Varghese. Time optimal self-
stabilizing synchronization. Proc. of the 25th Symp. on Theory of Computing, 1993.

[11] B. Awerbuch, B. Patt-Shamir, G. Varghese. Self-stabilization by local checking and correc-
tion. In Proceedings of the 32nd IEEE Symp. on Foundation of Computer Science, 1991.

[12] J. Beauquier, S. Kekkonen-Moneta. Fault-tolerance and self-stabilization: Impossibility re-
sults and solutions using failure detectors. Int. J of Systems Science, 28(11):1177–1187,
1997.

123

124 BIBLIOGRAPHY

[13] M. Ben-Or. Another advantage of free choice: Completely asynchronous agreement proto-
cols. Proc. of the Second Annual ACM Symposium on Principles of Distributed Computing,
strony 27–30, Canada, Aug 1983.

[14] J. Brzeziǹski, M. Szychowiak. Self-stabilization in distributed systems - a short survey. Foun-
dations of Computing and Decision Sciences, 25(1), 2000.

[15] J. Buck, E. Buck. Synchronous fireflies. Scientific American, 234:74–85, May 1976.

[16] R. W. Buskens, R. P. Bianchini. Self-stabilizing mutual exclusion in the presence of faulty
nodes. In Proceedings of the 25th International Symposium on Fault-Tolerant Computing
Systems (FTCS’95), 1995.

[17] K. M. Chandy, L. Lamport. Distributed snapshots: Determining global states of distributed
systems. ACM Trans. on Computer Systems, 9(1):63–75, 1985.

[18] B. Coan, D. Dolev, C. Dwork, L. Stockmeyer. The distributed firing squad problem. Proc.
of the 7th Annual ACM Symposium on Theory of Computing, Providence, Rhode Island, May
1985.

[19] A. Daliot, D. Dolev. Self-stabilization of byzantine protocols. In Proc. of the 7th Symposium
on Self-Stabilizing Systems (SSS’05), Barcelona, Spain, Oct 2005.

[20] A. Daliot, D. Dolev. Self-stabilizing byzantine agreement. In Proc. of the Twenty-fifth ACM
Symposium on Principles of Distributed Computing (PODC’06), Denver, Colorado, Jul 2006.

[21] A. Daliot, D. Dolev, H. Parnas. Linear time byzantine self-stabilizing clock syn-
chronization. Proc. of 7th Int. Conference on Principles of Distributed Systems
(OPODIS’03), La Martinique, France, Dec 2003. A corrected version appears in
http://arxiv.org/abs/cs.DC/0608096.

[22] A. Daliot, D. Dolev, H. Parnas. Self-stabilizing pulse synchronization inspired by biological
pacemaker networks. In Proceedings of the Sixth Symposium on Self-Stabilizing Systems
(DSN SSS ’03), LNCS 2704, San Francisco, Jun 2003. A full and revised version appears in
http://arxiv.org/abs/0803.0241.

[23] W. Dijkstra. Self-stabilization in spite of distributed control. Commun. of the ACM, 17:643–
644, 1974.

[24] D. Dolev, C. Dwork, L. Stockmeyer. On the minimal synchronism needed for distributed
consensus. Journal of the ACM, 34(1):77–97, 1987.

[25] D. Dolev, J. Halpern, H. R. Strong. On the possibility and impossibility of achieving clock
synchronization. J. of Computer and Systems Science, 32(2):230–250, 1986.

[26] D. Dolev, J. Y. Halpern, B. Simons, R. Strong. Dynamic fault-tolerant clock synchronization.
J. Assoc. Computing Machinery, 42(1):143–185, Jan 1995.

[27] D. Dolev, N. A. Lynch, E. Stark, W. E. Weihl, S. Pinter. Reaching approximate agreement in
the presence of faults. J. of the ACM, 33:499–516, 1986.

BIBLIOGRAPHY 125

[28] D. Dolev, H. R. Strong. Polynomial algorithms for multiple processor agreement. In Proc. of
the 14th ACM SIGACT Symposium on Theory of Computing (STOC-82), May 1982.

[29] D. Dolev, H. R. Strong. Authenticated algorithms for byzantine agreement. 12(4):656–666,
1983.

[30] S. Dolev. Possible and impossible self-stabilizing digital clock synchronization in general
graphs. Journal of Real-Time Systems, 12(1):95–107, 1997.

[31] S. Dolev. Self-Stabilization. The MIT Press, 2000.

[32] S. Dolev, A. Israeli, S. Moran. Uniform dynamic self-stabilizing leader election. IEEE Trans.
Parallel and Distributed Systems, 8(4):424–440, 1997.

[33] S. Dolev, J. L. Welch. Wait-free clock synchronization. Algorithmica, 18(4):486–511, 1997.

[34] S. Dolev, J. L. Welch. Self-stabilizing clock synchronization in the presence of byzantine
faults. Journal of the ACM, 51(5):780–799, 2004.

[35] P. Dutta, R. Guerraoui, L. Lamport. How fast can eventual synchrony lead to consensus?
Proc. of the Int. Conf. on Dependable Systems and Networks (DSN’05), Yokohama, Japan, Ju
2005.

[36] M. J. Fischer, N. A. Lynch. A lower bound for the time to assure interactive consistency.
Information Processing Letters, 14(4):183–186, 1982.

[37] M. J. Fischer, N. A. Lynch, M. Merritt. Easy impossibility proofs for ddistributed consensus
problems. Distributed Computing, 1:26–39, 1986.

[38] M. J. Fischer, N. A. Lynch, M. S. Paterson. Impossibility of distributed consensus with one
faulty process. J. of the ACM, 32(2):374–382, 1985.

[39] F. C. Freiling, S. Ghosh. Code stabilization. Proc. of the 7th Symposium on Self-Stabilizing
Systems (SSS’05), Barcelona, Spain, Oct 2005.

[40] W. O. Friesen. Physiological anatomy and burst pattern in the cardiac ganglion of the spiny
lobster panulirus interuptus. J. Comp. Physiol., 101:173–189, 1975.

[41] W. O. Friesen. Synaptic interaction in the cardiac ganglion of the spiny lobster panulirus
interuptus. J. Comp. Physiol., 101:191–205, 1975.

[42] H. Garcia-Molina. Elections in a distributed computing system. IEEE TRANS. COMP., C-
13(1):48–59, 1982.

[43] S. Ghosh, A. Gupt. An exercise in fault-containment: self-stabilizing leader election. Infor-
mation Processing Letters, 59:281–288, 1996.

[44] A. S. Gopal, K. J. Perry. Unifying self-stabilization and fault-tolerance. IEEE Proceedings of
the 12th annual ACM symposium on Principles of distributed computing, Ithaca, New York,
1993.

126 BIBLIOGRAPHY

[45] T. Herman. Phase clocks for transient fault repair. IEEE Transactions on Parallel and Dis-
tributed Systems, 11(10):1048–1057, 2000.

[46] A. Israeli, M. Jalfon. Token management schemes and random walks yield self-stabilizing
mutual exclusion. Proc. of the 9th annual ACM symposium on Principles of distributed
computing (PODC’90), Quebec, Canada, 1990.

[47] S. Katz, K. J. Perry. Self-stabilizing extensions for message-passing systems. Distributed
Computing, 7(1):17–26, 1993.

[48] J. Kiniwa. Avoiding faulty privileges in self-stabilizing depth-first token passing. Proceedings
of the Eighth International Conference on Parallel and Distributed Systems (ICPADS’01),
2001.

[49] H. Kitano. Biological robustness. Nature, 5, Nov 2004.

[50] C. Koch. Biophysics Of Computation: Information Processing In Single Neurons. Oxford
University Press, 2004.

[51] S. Kulkarni, A. Arora. Compositional design of multitolerant repetitive byzantine agreement.
Proceedings of the 18th Int. Conference on the Foundations of Software Technology and
Theoretical Computer Science, India, 1997.

[52] S. Kulkarni, A. Arora. Multitolerance in distributed reset. Chicago Journal of Theoretical
Computer Science, Special Issue on Self-Stabilization, 1998.

[53] S. Kutten, B. Patt-Shamir. Time-adaptive self stabilization. Proceedings of the 16th Annual
ACM Symposium on Principles of Distributed Computing (PODC97), 1997.

[54] L. Lamport, R. Shostak, M. Pease. The byzantine generals problem. ACM Transactions on
Programming Languages and Systems, 4(3):382–301, 1982.

[55] B. Liskov. Practical use of synchronized clocks in distributed systems. Proceedings of 10th
ACM Symposium on the Principles of Distributed Computing, 1991.

[56] J. Lundelius, N. Lynch. An upper and lower bound for clock synchronization. Information
and Control, 62:190–205, 1984.

[57] N. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[58] M. R. Malekpour. A byzantine-fault tolerant self-stabilizing protocol for distributed clock
synchronization systems. Proc. of 8th International Symposium on Stabilization, Safety, and
Security of Distributed Systems (SSS’06), Dallas, Texas, Nov 2006.

[59] M. R. Malekpour, R. Siminiceanu. Comments on the byzantine self-stabilizing pulse synchro-
nization protocol: Counterexamples. Technical Memorandum NASA-TM213951, NASA,
Feb 2006. http://hdl.handle.net/2002/16159.

BIBLIOGRAPHY 127

[60] T. Masuzawa, S. Tixeuil. A self-stabilizing link-coloring protocol resilient to unbounded
byzantine faults in arbitrary networks. Technical Report 1396, Laboratoire de Recherche en
Informatique, Jan 2005.

[61] R. E. Mirollo, S. H. Strogatz. Synchronization of pulse-coupled biological oscillators. SIAM
J. Appl. Math, 50:1645–1662, 1990.

[62] S. Mishra, S. Srimani. Fault-tolerant mutual exclusion algorithms. P. K. Journal of Systems
and Software, 11(2):111–129, 1990.

[63] Z. Nèda, E. Ravasz, Y. Brechet, T. Vicsek, A. L. Barabàsi. Self-organizing process: The
sound of many hands clapping. Nature, 403:849–850, 2000.

[64] M. Nesterenko, A. Arora. Dining philosophers that tolerate malicious crashes. 22nd Int.
Conference on Distributed Computing Systems, 2002.

[65] M. Nesterenko, A. Arora. Local tolerance to unbounded byzantine faults. 21st IEEE Sympo-
sium on Reliable Distributed Systems (SRDS’02), 2002.

[66] M. Papatriantafilou, P. Tsigas. On self-stabilizing wait-free clock synchronization. Parallel
Processing Letters, 7(3):321–328, 1997.

[67] H. Parnas, E. Sivan. SONN - Simulator of Neuronal Networks. Hebrew University, Jerusalem,
Israel, 1996. http://www.ls.huji.ac.il/vparnas/Sonn2/sonn.html.

[68] M. Pease, R. Shostak, L. Lamport. Reaching agreement in the presence of faults. Journal of
the ACM, 27(2):228–234, Apr 1980.

[69] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: a
tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[70] E. Sivan, H. Parnas, D. Dolev. Fault tolerance in the cardiac ganglion of the lobster. Biol.
Cybern., 81:11–23, 1999.

[71] S. D. Stoller. Detecting global predicates in distributed systems with clocks. Distributed
Computing, 13(2):85–98, 2000.

[72] S. H. Strogatz, I. Stewart. Coupled oscillators and biological synchronization. Scientific
American, 269:102–109, Dec 1993.

[73] S. Toueg, K. J. Perry, T. K. Srikanth. Fast distributed agreement. SIAM Journal on Comput-
ing, 16(3):445–457, Jun 1987.

[74] T. J. Walker. Acoustic synchrony: two mechanisms in the snowy tree cricket. Science,
166:891–894, 1969.

[75] J. L. Welch, N. Lynch. A new fault-tolerant algorithm for clock synchronization. Information
and Computation, 77:1–36, 1988.

[76] J. Widder. Booting clock synchronization in partially synchronous systems. In Proc. the 17th
Int. Symposium on Distributed Computing (DISC’03), Sorrento, Italy, Oct 2003.

