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ABSTRACT
We argue that grid structures are a very promising alterna-
tive to the standard approach for distributing a clock signal
throughout VLSI circuits and other hardware devices. Tra-
ditionally, this is accomplished by a delay-balanced clock
tree, which distributes the signal supplied by a single clock
source via carefully engineered and buffered signal paths.

Our approach, termed HEX, is based on a hexagonal grid
with simple intermediate nodes, which both control the for-
warding of clock ticks in the grid and supply them to nearby
functional units. HEX is Byzantine fault-tolerant, in a way
that scales with the grid size, self-stabilizing, and seamlessly
integrates with multiple synchronized clock sources, as used
in multi-synchronous Globally Synchronous Locally Asyn-
chronous (GALS) architectures. Moreover, HEX guarantees
a small clock skew between neighbors even for wire delays
that are only moderately balanced. We provide both a theo-
retical analysis of the worst-case skew and simulation results
that demonstrate very small typical skew in realistic runs.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance; F.2.2 [Analysis of Algorithms
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and Problem Complexity]: Nonnumerical Algorithms
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1. INTRODUCTION
Being able to distribute a synchronized clock signal to

a large number of spatially distributed functional units is
crucial for the synchronous design paradigm. In Very Large
Scale Integration (VLSI) circuits and other hardware devices
(as well as in master-slave-type network clock synchroniza-
tion approaches like IEEE1588 [12]), this is accomplished
by means of a clock tree, which distributes the clock signal
supplied by a single clock source to all functional units at-
tached as leaf nodes. Topologies that guarantee equal wire
lengths from the root to the leaves, like H-trees (recursively
constructed from a H-shaped wiring topology by attaching
four smaller H-shapes to the four open ends), combined with
carefully engineered wire geometries, clock signal regenera-
tion buffers, etc. are used to ensure that clock pulses arrive at
all functional units (that is, those making up a synchronous
sub-system) simultaneously. This must be achieved with a
clock skew, i.e., the maximum difference of the occurrence
real-times of corresponding clock pulses at different func-
tional units, well below half the clock cycle time: When
a functional unit sends some data, say, on local clock count
1000, the receiver is expected to receive and process the data
when pulse 1001 occurs according to its clock count.

Clock trees are attractive for several reasons. Besides con-
ceptual simplicity, their height is only logarithmic in the
number of the leaves (which is proportional to the die area),
and the number of internal clock wires is linear in this num-
ber. As trees are planar graphs, it would (in principle) even
be possible to route these links on a single interconnect layer.

These advantages come at a price, though: Spatially close
functional units may be clocked via root-leaf paths that
share few nodes, possibly only the root. The worst-case
skew perceived between such functional units is the maximal
difference of the signal propagation delay on these disjoint
paths, which prohibits deep clock trees. Moreover, clock tree
engineering must ensure that the maximum delay discrep-
ancy remains below the acceptable clock skew, which is very



difficult for clock speeds in the GHz range [1, 8, 19, 23, 27,
29]. In particular, given that a clock tree typically supplies
a significant part of the chip (possibly even the entire die),
the logarithmic height of a clock tree inevitably results in
long wires. Making the resulting signal propagation delays
as equal as possible, despite non-negligible wire resistances
and coupling capacitances etc., is an engineering challenge
that requires considerable efforts and costs. The resulting
clock trees incorporate complex wire geometries and strong
clock buffers, and thus suffer from large area and power con-
sumption [15]. Moreover, further skew reduction typically
requires extended clock tree topologies, such as trees with
cross-links, meshes and multi-level trees [16, 29].

An even more serious issue with clock trees, which also
arises in applications where there are no severe skew require-
ments, is lacking robustness. First of all, at the top level,
a single clock source obviously constitutes a single point of
failure. This is avoided by Globally Asynchronous Locally
Synchronous (GALS) [2] architectures, where different parts
of a chip are clocked by different clock sources & clock trees.
However, using independent and hence unsynchronized clock
domains gives away the advantages of global synchrony and
thus requires non-synchronous cross-domain communication
mechanisms or synchronizers [4, 13, 21]. Multi-synchronous
clocking [25, 28] (also called mesochronous clocking [18]),
which guarantees some upper bound on the skew between
clock domains, has been invented to avoid this. The re-
sulting multi-synchronous GALS architectures can rely on a
common time base, which is attractive not only for applica-
tions programmers but also for metastability-free high-speed
communication between different clock domains [20].

Still, the problem of limited robustness of clock trees per-
sists even in GALS architectures: If just one internal wire or
clock buffer in a clock tree breaks, e.g., due to some manu-
facturing defect or electromigration, all the functional units
supplied via the affected subtree will stop working correctly.
Therefore, it is desirable to have fairly small clock trees in
a GALS system, necessitating a large number of synchro-
nized clock domains. Overcoming the fundamental scalabil-
ity and robustness issues of clock trees hence introduces the
new challenge of robustly establishing a tight synchroniza-
tion among a large number of clock domains.
Contribution: In this paper, we tackle this problem by
proposing an alternative way for distributing a synchronized
clock signal throughout an integrated circuit. Our approach,
termed HEX, is based on a sufficiently connected wiring
topology, namely, a hexagonal grid.1 At each grid point,
we place an (intermediate) node that controls when the
clock pulses are forwarded to adjacent nodes and supplies
the clock to nearby functional units, typically using a small
local clock tree. It will turn out that HEX compares favor-
ably to clock trees in most aspects.

In particular, with respect to robustness, our approach
supports multiple synchronized clock sources and tolerates
Byzantine failures of both clock sources and nodes. Its re-
silience to failures even scales with the size of the grid, in the
sense that it supports a constant density of isolated Byzan-
tine nodes, and it can handle a larger number of more benign
failures like broken wires and mute clock sources and nodes.

1Note that clock distribution by means of our HEX grid
is fundamentally different from using a clock mesh [29] for
averaging out large clock skews among near-by leaf nodes.

It is also self-stabilizing [3], in the sense that it can recover
from an arbitrary number of transient failures.2

Furthermore, HEX has enticing properties with respect to
the achievable skew between neighbors in the grid, which are
typically the ones who need to communicate synchronously
with each other. First of all, given that length and width of
the grid grow as

√
n and the density of HEX nodes should

be roughly constant (with respect to n), wires are much
shorter than in a clock tree. HEX hence neither requires
strong clock buffers nor special wires, such that the maxi-
mal difference ε of the end-to-end delays between neighbors
in the grid should be easily brought down to small values
even by moderate engineering efforts. Second, for a proper
embedding of the HEX topology, physically close nodes are
also well-synchronized: In the fault-free case, HEX guaran-
tees a worst-case skew between neighbors that is quadratic
in ε. Depending on the number and severity of faults, this
bound gracefully degrades. Moreover, it obeys a locality
property: The adverse effect of faults on the neighbor skew
decreases with the distance from the fault in the grid.
Related Work: Apart from the rich literature on clock tree
engineering and extended topologies for skew reduction, see
e.g. [1, 8, 15, 16, 19, 22, 23, 26, 29], we are not aware of much
research on alternative clock distribution techniques. An ex-
ception is the work on distributed clock generation without
local oscillators, which inherently also solves the problem of
clock distribution. These approaches are essentially based
on (distributed) ring oscillators, which are formed by gates
arranged in a feedback loop. In [17], a regular structure
of closed loops of an odd number of inverters is used for
distributed clock generation. Similarly, [6, 7] employ local
pulse generation cells, arranged in a two-dimensional grid,
with each cell inverting its output signal when its four in-
puts (from the up, down, left and right neighbor) match
the current clock output value. A more elaborate approach
along the same lines uses an array of PLLs that are mutually
synchronized among each other, using digital feedback ex-
changed across some (sparse) communication topology [11,
14, 24] like a grid. However, to the best of our knowledge,
none of these approaches has been analyzed for its fault-
tolerance properties, not to speak of self-stabilization.

The only fault-tolerant clock generation approaches for
multi-synchronous GALS systems known to us are the By-
zantine fault-tolerant DARTS approach [9, 10] and our self-
stabilizing Byzantine fault-tolerant FATAL algorithm pro-
posed in [5]. However, both approaches are complex and re-
quire a fully-connected interconnect topology. Consequently,
they are not useful for distributing a synchronized clock to a
large number of functional units, but are of course suitable
candidates for the clock sources required by our HEX grid.

2. ALGORITHM & TOPOLOGY
We consider a set of nodes executing a pulse generation

and forwarding algorithm, which communicate by message
passing over a communication network whose underlying
undirected communication graph is a cylindric hexagonal
grid. Formally, the directed communication graph G =
(V,E) of our HEX grid is defined as follows (see Figure 1):

2Note, however, that our very simple algorithm is not self-
stabilizing in the presence of ongoing Byzantine failures.
There are non-stabilizing executions with Byzantine faults,
although they seem unlikely to occur in practice.
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Figure 1: Node (`, i) and its incident links in the
cylindric hexagonal grid topology. Column coordi-
nates are modulo W and layer coordinates (rows)
are between 0 and L.

Letting L ∈ N denote its length and W ∈ N its width, the
set of nodes V is the set of tuples (`, i) ∈ [L + 1] × [W ].
Herein, [L + 1] := {0, . . . , L} denotes the row index set, re-
ferred to as layers, and [W ] = {0, . . . ,W − 1} the column
index set of the nodes in the grid. For each node (`, i) ∈ V ,
` ∈ [L + 1], i ∈ [W ], the following links are in E: Incom-
ing and outgoing links to neighboring nodes of the same
layer, namely from (`, i) to (`, i− 1 mod W ), called the left
neighbor of (`, i), and to (`, i + 1 mod W ), called the right
neighbor, and vice versa from the left and the right neigh-
bor to (`, i); if (`, i) is in a layer greater than 0, then it has
incoming links from (`− 1, i), called its lower left neighbor,
and (`− 1, i+ 1 mod W ), called its lower right neighbor; if
(`, i) is in a layer smaller than L, then it has outgoing links
to (`+1, i−1 mod W ), its upper left neighbor, and (`+1, i),
its upper right neighbor. Figure 1 depicts the structure of
the resulting HEX grid and shows a node’s communication
channels within the grid. The neighboring nodes of node
(`, i) form a hexagon, hence the name HEX grid. Due to
the fact that column coordinates are modulo W , the HEX
grid has a cylindric shape; we will briefly discuss the issue
of embedding a HEX grid on a chip in Section 5.

Each node of the grid runs an algorithm that can broad-
cast trigger messages (representing clock pulses) over its
outgoing links, as well as receive trigger messages over its
incoming links. Each (fault-free) link guarantees an end-
to-end communication delay (i.e., the time between sending
and processing a trigger message) within [d−, d+] ⊂ (0,∞),
where ε := d+ − d− ≤ d+/2. Each node further has access
to a (possibly inaccurate) clock to measure timeouts.

Nodes at layer 0 are special in that they execute a pulse
generation algorithm like the one of [5, 10], whose purpose
is to generate synchronized and well-separated consecutive
initial trigger messages. For each pulse number k ∈ N, the
time between any (non-faulty) node in layer 0 generating its
kth trigger message and another node in layer 0 generating
its (k + 1)th trigger message is sufficiently large. The pre-
cise meaning of “sufficiently large” depends on the desired
fault-tolerance properties; we will elaborate on this in Sec-
tion 3.2. Note that it is desirable to keep the maximal time
between pulses small in order to guarantee a high operating
frequency.

Nodes at layers larger than 0 run the simple pulse for-
warding algorithm specified in Algorithm 1. Basically, nodes
forward pulse k once they received trigger messages for pulse
k from two adjacent neighbors. Since clock pulses and trig-

ger messages are anonymous, i.e., can carry no information
except their sole occurrence, care must be taken in order
not to generate multiple trigger messages for a single pulse.
The simple solution we use here relies on a sufficiently large
separation between pulses, which relieves us from locally
keeping track of pulse counts. Nodes can simply go to sleep
for a while after forwarding a pulse and clear their history
upon waking up again. In order to support practical (hence
inaccurate) ways of implementing local timeouts, we allow
the sleeping time to vary within the interval [T−, T+]. In the
fault-free case, comparing the minimal and maximal possi-
ble speeds of pulse propagation shows that T− ∈ O(εL) is
sufficient; with faults and in particular for self-stabilization,
more care is required. The respective constraints on T− and
T+ will be discussed in Section 3.2. Due to its simplicity, the
forwarding algorithm can easily be implemented by means
of an asynchronous state machine.

Algorithm 1: Pulse forwarding algorithm for nodes in
layer ` > 0.

once received trigger messages from (left and lower left)
or (lower left and lower right) or (lower right and right)
neighbors do

broadcast trigger message; // local clock pulse
sleep for some time within [T−, T+];
forget previously received trigger messages

While the purpose of the nodes in layer 0 is to generate
pulses in a synchronized way, which typically necessitates
full interconnection between all these nodes, the purpose
of the nodes at higher layers is to propagate these pulses
throughout the entire system via a low-connectivity net-
work. Synchronized pulses generated by layer 0 propagate
as “waves” through the HEX grid up to the very last layer.
In the fault-free case, the propagation of every pulse can
hence be analyzed independently.

3. SKEW & RESILIENCE
We are now going to analyze the skew and fault-tolerance

properties of the algorithm and topology presented in the

previous section. By t
(k)
`,i , we denote the triggering time of

node (`, i), i.e., the time when it forwards the kth pulse.

Generally, we will use superscript (k) to denote variables
associated with the kth pulse. When indexing nodes and
trigger times, we will usually omit “mod W” to simplify the
notation.

3.1 The Fault-free Case
As discussed earlier, in the fault-free case, we can restrict

our attention to a single pulse and hence omit all pulse in-
dices. We just assume that, initially, all nodes have cleared
their memory and are waiting for the next pulse generated
by the nodes in layer 0.

Definition 3.1 (Causal Links and Paths). We say
that a node is left-triggered / centrally triggered / right-
triggered, if the satisfied guard from Algorithm 1 causing
the node to trigger has received trigger messages from the
left and lower left / lower left and lower right / lower right
and right neighbors, respectively. In each case both of the
respective links are causal. A causal path consists of causal
links only.
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Figure 2: Illustration of the situation in Lemma 3.3.

Note that a link being causal implies that its endpoint is
triggered at least d− time after its origin. For instance, if
(`, i) is left-triggered, the links ((`, i − 1), (`, i)) and ((` −
1, i), (`, i)) are causal, while ((`, i + 1), (`, i)), ((` − 1, i +
1), (`, i)) are not.

The following definition backtraces a sequence of causal
links, either to the node in layer 0 starting the causal chain
or to some specific column of interest.

Definition 3.2 (Left Zig-Zag Paths). Given are a
layer 0 < ` ∈ [L + 1] and column indices i, i′ ∈ [W ], i < i′.

The causal left zig-zag path p
i′→(`,i)
left is composed of right-

ward links ((`′, j − 1), (`′, j)) and up-left links ((`′ − 1, j +
1), (`′, j)). It is inductively defined as follows. We start
with the 0-length path ((`, i)). Suppose that in some step of
the construction the current path originates at node (`′, j)
with `′ > 0. If (`′, j) is left-triggered, we extend the path
by adding the rightward link ((`′, j − 1), (`′, j)) as first link
(and (`′, j − 1) as its origin). Otherwise, the up-left link
((`′ − 1, j + 1), (`′, j)) is causal and can be added as pre-
fix to the path (and (`′ − 1, j + 1) as its origin). In the
case of adding an up-left link the construction terminates if
`′ − 1 = 0 or if both j + 1 = i′ and the path now contains
more up-left than rightward links.

Since causal paths are acyclic, there must be fewer than
W left-links before we go from `′ to `′ − 1, implying that
the construction terminates after a finite number of steps.
We now prove a useful technical lemma, which reveals a
connection between the triggering times of two nodes at the
same layer and left zig-zag paths, and thereby gives a bound
on the maximum difference of their skew.

Lemma 3.3. Suppose that path π is a prefix of some left

zig-zag path p
i′→(`′′,i′′)
left and that π starts at node (`′, i′) and

ends at node (`, i). Let r be the number of up-left links minus
the number of rightward links along π. Then

t`,i′ ≤ t`,i + rd− + (`− `′)ε.

Proof. From Definition 3.2, it follows that left zig-zag
paths contain more up-left than rightward links or start at
layer 0; hence, `′ < `. W.l.o.g., we set `′ = 0, i.e., we shift all
layer indices by `′ and the new value of ` now represents `−`′.
Moreover, since the path p

i′→(`′′,i′′)
left starts at node (`′, i′), we

must have r > 0, since otherwise the construction of the left
zig-zag path would have terminated before reaching (`′, i′),
cf. Figure 2.

Consider the set S of nodes in the triangle with corners
(0, i′), (`, i′ − `), and (`, i′) in Figure 2.3 Observe that

p
i′→(`′′,i′′)
left starts at the lower corner of the triangle and the

prefix π never leaves it. By induction on the kth diagonal of
the triangle (k, i′), . . . , (`, i′ − (` − k)) (for k ∈ [` + 1]), we
will prove that each node p that is both on the diagonal k
and either on π or to the right of π is triggered at the latest
at time tp ≤ t`,i − (`− r)d− + kd+. Since this implies that
t`,i′ ≤ t`,i + rd− + `ε, this will establish the claim of the
lemma.

To this end, let us show the induction hypothesis first
for each node on π. Observe that node (`, i) is on diagonal
(`− r). Hence, a node p that is h hops from (`, i) on π must

be on a diagonal k ≥ (`−r)−h. Since p
i′→(`′′,i′′)
left is causal, it

follows that tp ≤ t`,i−hd− ≤ t`,i− (`−r)d−+kd+, showing
the statement for nodes on π.

Note that all nodes on diagonal 0 are either on or to the
left of π, hence we already covered the induction anchor at
k = 0. For the induction step from k to k + 1, observe that
any node will be left-triggered within at most d+ time once
both its left and lower-left neighbors are triggered. For any
node p on the (k+1)th diagonal that is strictly right of π, its
left and lower-left neighbor are on the diagonal k of S and
either on π or to the right of π. The statement for diagonal
k thus implies tp ≤ t`,i − (` − r)d− + kd+ + d+. Since we
already covered nodes on π, the induction step succeeds.

Based on the following definition, we will now develop
bounds on the maximal skew in a given layer.

Definition 3.4 (Distance and Skew Potential).
For i, j ∈ Z, let d := i − j mod W and define |i − j|w :=
min{d,W − d}. For ` ∈ [L+ 1], the skew potential on layer
` is ∆`, where ∆` := maxi,j∈[W ]{t`,i − t`,j − |i− j|wd−}.

We first prove a weak bound on the maximal skew at the
upper layers that holds independently of the initial potential
∆0. Notice that this result implies tolerance of HEX against
arbitrary layer 0 skews.

Lemma 3.5. For all ` ∈ {W − 2, . . . , L} we have that
∆` ≤ 2(W − 2)ε.

Proof. W.l.o.g. assume that ` = W − 2 and fix i, i′ ∈
[W ], i < i′ (wrap-around cases are symmetrical). We dis-
tinguish two cases.

Case 1: p
i′→(`,i)
left starts at node (`′, i′) for some `′ ∈

{1, . . . , `− 1}. Then, by Lemma 3.3,

t`,i′ ≤ t`,i + (i′ − i)d− + (`− `′)ε ≤ t`,i + (i′ − i)d− + `ε.

Case 2: p
i′→(`,i)
left starts at node (0, j), j ∈ [W ]. Then

the path has length at least 2` − (i′ − i), since at least `
up-left and ` − (i′ − i) right links are required for the path
to originate at layer 0. Denote by t0 the earliest time when
a pair of two adjacent nodes in layer 0 are both triggered.

Clearly, the second node on p
i′→(`,i)
left cannot be triggered

before time t0 + d− because it is in layer 1. Hence, t`,i ≥
t0 + (2`− (i′ − i))d− and thus

t`,i ≥ t0 + (2(W − 2)− (i′ − i))d−. (1)

3Here we assume w.l.o.g. that i′−` ≥ 0, i.e., no wrap-around
within the triangle. The general case is treated analogously,
ignoring that some of the index pairs may actually refer to
the same node.
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Figure 3: Illustration of Case 1 of Lemma 3.6.

Denote by (0, j0) a node with max{t0,j0 , t0,j0+1} = t0; by
definition of t0 such a node exists. We claim that all nodes in
layer W−2 are triggered no later than time t0+2(W−2)d+.
This follows by induction on the layers λ ∈ [W−1], where the
hypothesis is that all nodes (λ, j−λ), (λ, j−λ+1), . . . , (λ, j+
1) are triggered until time t0 + 2λd+. Since in layer λ these
are 2+λ nodes, i.e., allW nodes in layerW−2, this will prove
the claim. By the definition of t0, the induction hypothesis
holds for λ = 0. To perform the step from λ to λ+1, observe
that all nodes (λ+ 1, j − λ), (λ+ 1, j − λ+ 1), . . . , (λ+ 1, j)
are triggered no later than time t0 + (2λ + 1)d+, since by
the hypothesis their lower left and lower right neighbors are
triggered at least d+ before that time. Until time t0 + 2(λ+
1)d+, nodes (λ+ 1, j − (λ+ 1)) and (λ+ 1, j + 1) then must
follow, completing the induction. In particular, this shows
that t`,i′ ≤ t0 + 2(W − 2)d+ and hence, by using (1),

t`,i′ − t`,i ≤ (i′ − i)d− + 2(W − 2)ε.

Overall, since i and i′ > i were arbitrary, from the two
cases and symmetry for i′ < i, we conclude that

∆` = max
i,i′∈[W ]

{t`,i′ − t`,i − |i′ − i|wd−} ≤ 2(W − 2)ε,

as claimed.

Next, we derive more refined bounds on the skew between
two neighboring nodes in the same layer ` > 0. In contrast
to Lemma 3.5, the next lemma takes the maximal skew in
previous layers into account.

Lemma 3.6. For all `0 ∈ [L] and ` ∈ {`0 + 1, . . . , L}, it
holds for each i ∈ [W ] that

|t`,i − t`,i+1| ≤ d+ +

⌈
(`− `0)ε

d+

⌉
ε+ ∆`0 .

Proof. Fix some value of ` ≥ 1, set i+ 1 = W − 1, and
assume that `0 = 0 and t`,i < t`,i+1 (all wrap-around cases
are symmetrical). Define λ0 := b`d−/d+c, such that

`− λ0 = `−
⌊
`d−

d+

⌋
=

⌈
`ε

d+

⌉
. (2)

We distinguish three cases.
Case 1: tλ,i+1 ≤ tλ,i + d+ for some λ ≥ λ0 (Figure 3).

W.l.o.g. let λ be maximal with this property. Hence, for all
λ′ ∈ {λ+1, . . . , `}, it follows that tλ′,i+1 > tλ′,i+d

+. Notice
that the choice of λ implies that for all such λ′, node (λ′, i)
cannot be right-triggered, as the links ((λ′, i+1), (λ′, i)) can-
not be causal. Hence, all links ((λ′ − 1, i), (λ′, i)) must be
causal. By induction on λ′, we infer t`,i ≥ tλ,i + (`− λ)d−.

Furthermore, since the condition ensures that the trigger
message from (λ′, i) to (λ′, i + 1) arrives well before time

layer 0

layer λ0

(0, j0)

≥ (2`+ r)d−

(`, i) (`, i+ 1)

(0, i) (0, i+ 1) (0, i+ λ0)

≤ λ0d
+

≤ (`− λ0)d+

r

∆0 + (λ0 + r + 1)d−

Figure 4: Illustration of Case 2 of Lemma 3.6.

tλ′,i+1, node (λ′, i + 1) will be triggered at the latest when
the trigger message from its lower left neighbor (λ′−1, i+1)
arrives. Again by induction on λ′, we infer that t`,i+1 ≤
tλ,i+1 + (`− λ)d+, and hence

t`,i+1 ≤ tλ,i + (`− λ+ 1)d+. (3)

By (2), thus t`,i − t`,i+1 ≤ (`− λ)ε+ d+ ≤ d+ + d`ε/d+eε.
Case 2: Case 1 does not apply and p

i+1→(`,i)
left starts

at some node (0, j0), for j0 6= i+ 1 (Figure 4).

If p
i+1→(`,i)
left contained more left-up links than rightward

links, it would contain a subpath originating at a node in
column i + 1 that also would have more left-up than right-
ward links. This is not possible, since then the construc-
tion would have terminated at this node, either resulting in
the path originating at a layer `′ > 0 or at node (0, i + 1).

Hence p
i+1→(`,i)
left is of length 2` + r for some r ≥ 0 and

j0 = i− r mod W .
For all indices j ∈ {i + 1, i + 2, . . . , i + 1 + λ0} we have

that |j − j0|w ≤ j − i+ r. We obtain that

t`,i ≥ t0,j0 + (2`+ r)d−

= t0,j − (t0,j − t0,j0 − |j − j0|wd
−)

−|j − j0|wd− + (2`+ r)d−

≥ t0,j −∆0 − (j − i)d− + 2`d−

≥ t0,j −∆0 + (2`− λ0 − 1)d−.

Moreover, by induction on λ ∈ {0, . . . , λ0}, it follows that all
nodes (λ, i+1), . . . , (λ, (i+1+λ0−λ) mod W ) are triggered
by time

max
j∈[i+λ0+2]\[i+1]

{t0,j}+λd+ ≤ t`,i+∆0−(2`−λ0−1)d−+λd+.

In particular, by the definition of λ0, tλ0,i+1 ≤ t`,i + ∆0 −
(` − λ0 − 1)d−. Since Case 1 does not hold, we can use
similar arguments as for deriving (3) to obtain that t`,i+1 ≤
tλ0,i+1 + (`− λ0)d+. It follows that

t`,i+1 ≤ t`,i+d−+(`−λ0)ε+∆0 = t`,i+d−+

⌈
`ε

d+

⌉
ε+∆0.

Case 3: Neither Case 1 nor Case 2 apply (Figure 5).

In other words, p
i+1→(`,i)
left starts at node (`′, i+ 1) for some

`′ < `, and tλ,i+1 > tλ,i + d+ for all λ ∈ {λ0, . . . , `}. Note

that by construction the first link of p
i+1→(`,i)
left is ((`′, i +

1), (`′+ 1, i)). Hence, we have that `′ < λ0− 1, as otherwise
node (`′ + 1, i + 1) would be triggered no later than time



(`′, i+ 1)

(λ0, i+ 1)(λ0, j0)

(`, i)(`, i+ 1)

layer λ0

Figure 5: Illustration of Case 3 of Lemma 3.6.

max{t`′,i+1 + d+, t`′+1,i + d+} = t`′+1,i + d+, contradicting
the fact that Case 1 does not apply.

Let (λ0, j0) be the last node on the causal path p
i+1→(`,i)
left

in layer λ0. Observe that j0+r−l = i, where r (resp. l) is the

number of rightward (resp. up-left) hops of p
i+1→(`,i)
left after

(λ0, j0). The prefix of p
i+1→(`,i)
left ending at (λ0, j0) satisfies

the precondition of Lemma 3.3, yielding tλ0,i+1 ≤ tλ0,j0 +
(i + 1 − j0)d− + (λ0 − `′)ε. Recall that since Case 1 does
not apply, we have by (3) that t`,i+1 ≤ tλ0,i+1 + (`− λ0)d+.
Using that d+ = d− + ε, we obtain

t`,i+1 ≤ tλ0,j0 + (`− λ0 + i+ 1− j0)d− + (`− `′)ε.

By construction, p
i+1→(`,i)
left is of length 2(`− `′)− 1 and its

prefix ending at node (λ0, j0) is of length 2(λ0−`′)−(i+1−
j0). Therefore, the length of the suffix of p

i+1→(`,i)
left starting

at (λ0, j0) is 2(` − λ0) + (i − j0). Because this suffix is a
causal path, we may infer that

t`,i ≥ tλ0,j0 + (2(`− λ0) + (i− j0))d−.

Altogether, we arrive at

t`,i+1 − t`,i ≤ (`− `′)ε− (`− λ0 − 1)d−

≤ `ε−
(
`ε

d+
− 1

)
d− = d− +

`ε2

d+
.

Since these cases are exhaustive and for each the claimed
bound holds, this concludes the proof.

Finally, by some slightly modified reasoning, it is also pos-
sible to derive a skew bound in W .

Corollary 3.7. Set δ := d−/2 − ε. For each layer ` ∈
{W, . . . , L} and all i ∈ [W ] it holds that

|t`,i − t`,i+1| ≤ max

{
d+ +

⌈
Wε

d+

⌉
ε,∆`−W + d+ −Wδ

}
.

Proof Sketch. The proof is analogous to the one of
Lemma 3.6, where Case 2 is treated slightly differently. As-
suming w.l.o.g. that ` = W , in Case 2 we bound for all
indices j ∈ {i+ 1, i+ 2, . . . , i+ λ0 + 1}

t`,i ≥ t0,j −∆0 − |j − j0|wd− + 2`d− ≥ t0,j −∆0 +
3`d−

2
,

where in the second step we exploit that |j − j0|w is up-
per bounded by W/2 = `/2. Proceeding as in the proof of
Lemma 3.6, the claimed bound follows.

We are now ready to derive our main result, namely,
bounds on the worst-case skews between neighbors.

Theorem 3.8 (Skew Bounds—Fault-free Case).
Suppose that ε ≤ d+/7. Then the following upper bounds
hold on the intra-layer skew σ` := maxi∈[W ]{|t`,i − t`,i+1|}
in layer `. If ∆0 = 0, then σ` is uniformly bounded by
d+ + dWε/d+eε for any ` ∈ [L+ 1]. In the general case,

∀` ∈ {1, . . . , 2W − 3} : σ` ≤ d+ + 2Wε2/d+ + ∆0.

∀` ∈ {2W − 2, . . . , L} : σ` ≤ d+ + dWε/d+eε.

Moreover, regarding the inter-layer skew of layer ` ∈ [L], for
all i ∈ [W ] that

t`,i − σ` + d− ≤ t`+1,i ≤ t`,i + σ` + d+ and

t`,i+1 − σ` + d− ≤ t`+1,i ≤ t`,i+1 + σ` + d+.

Proof. Assume first that ∆0 = 0. For the sake of the
argument, imagine that the HEX grid would start at layer
−(W−1), where for all i ∈ [W ] and all ` ∈ {−(W−1), . . . , 0}
we would have that t`,i = `d+. Clearly, starting from any
execution on the actual grid, this would result in a feasible
execution on the extended grid if we choose all link delays
on the imagined links to be d+. It follows that ∆` = 0 for
all ` ∈ {−(W − 1), . . . , 0}. From Lemma 3.5, we obtain
that ∆` < (2W − 1)ε for all ` ∈ {1, . . . , L} (since we have
negative layer indices until −(W−1), the lemma also applies
to layers 1, . . . ,W − 3). Now we apply Corollary 3.7 to all
layers {1, . . . , L}, yielding that

σ` ≤ max

{
d+ +

⌈
Wε

d+

⌉
ε,W (2ε− δ) + d−

}
.

Since ε ≤ d+/7, we have that 2ε − δ ≤ 0, showing the first
statement.

Now consider the case where ∆0 is arbitrary. The bound
on σ` for ` ∈ {1, . . . , 2W − 3} follows from Lemma 3.6. For
` ≥ 2W − 2, observe first that we can apply Lemma 3.5 to
all layers ` ∈ {W − 2, . . . , L}. Hence the same bound as
in the previous case holds due to Corollary 3.7 applied to
layers ` ∈ {2W − 2, . . . , L}.

The third inequality of the theorem holds since

t`,i − σ` + d− ≤ min{t`,i, t`,i+1}+ d−

≤ t`+1,i

≤ max{t`,i, t`,i+1}+ d+

≤ t`,i + σ` + d+;

the final inequality is proved analogously.

We remark that it is fairly straightfoward to construct worst-
case executions that almost match these bounds (cf. Fig-
ure 6), i.e., they are essentially tight.

3.2 Fault-Tolerance Properties
We will now shed light on the fault-tolerance properties

of our approach. We will consider transient and perma-
nent faults, and for permanent faults we distinguish between
crash faults, where a node simply ceases to operate, and
Byzantine faults, where a node behaves arbitrarily. For the
sake of simplicity, we will not discuss link failures, which
can be understood by essentially the same arguments and
insights we present for node failures.
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Figure 6: A worst-case pulse wave, with maxi-
mal intra-layer skew between the top-layer nodes
in columns 8 and 9. Nodes in and left of column 8
are left-triggered (except for the “flat” region) with
minimal delays of d−. Nodes in and right of column
9 are slow due to large delays of d+ and large initial
skews in the respective region of layer 0. To focus on
the essential central part of the grid, we introduced
a barrier of “dead” nodes in column 16.

Due to the large number of possible fault patterns, we can-
not hope for a comprehensive and exhaustive formal anal-
ysis of all cases within the scope of this paper. Thus, we
will mostly confine ourselves to a qualitative discussion of
the effects of faults; in Section 4, we will elaborate on some
concrete scenarios by means of simulations.
Byzantine Faults. Since the communication structure of
our algorithm is extremely simple, it is not difficult to un-
derstand the “options” of Byzantine nodes for disrupting the
system’s operation. If they have the possibility to generate
“false” pulses, i.e., trigger non-faulty nodes without the sup-
port of other non-faulty nodes, this will clearly break our
protocol: Once this happens, this will cause a chain reac-
tion distributing the false pulse just like a correct one.

A similar problem arises if a node has a second faulty
neighbor (even if it is just a crash fault) and the two faults
are not just the left and right neighbor. If both faulty neigh-
bors are not sending trigger messages, the node is not go-
ing to be triggered. However, if a Byzantine neighbor does
send a trigger message, the node can be triggered. Hence, a
Byzantine node can essentially trigger the node at an arbi-
trary time between pulses, which again enables it to create
a false pulse. We therefore require the following.

Condition 3.9 (Fault Separation). No node can be
triggered by Byzantine nodes only. (This is equivalent to no
two neighbors being Byzantine unless they are both in layer
L.) Every node with a Byzantine neighbor can be triggered
by a pair of non-faulty nodes.

With Condition 3.9 in place, the power of a Byzantine
node is reduced to (i) locally accelerating the progress of
a pulse by sending messages prematurely, (ii) delaying or
halting the progress of a pulse by sending a message late or
not at all, or (iii) asymmetrically combining (i) and (ii) by
speeding up the progress of a pulse on one side and delaying
it on the other side. For a single faulty node, the respective
effects are always limited to increasing skews by at most a
few d+, since we can “work around” the defective node in
our reasoning. In particular, when inductively constructing

a zig-zag path (which will imply a skew bound), we can
switch to the other causal link of the current node if we
run into a Byzantine node. Note that such a node could
increase the skew caused along the original (shortest) zig-zag
path, since it may trigger the next node along the path (and
hence the fast node among the two suffering from the worst-
case skew) d− time earlier than a correct node. Similarly,
since a Byzantine node could impair our reasoning why the
slow node is triggered in a timely fashion, we can just avoid
reasoning about the faulty node’s behavior and make a short
“detour”. In both cases, the alternative paths considered
have lengths almost identical to the ones constructed for
the fault-free case, which results in a small increase of the
corresponding skew bounds only.
Crash Faults and Fault Containment. For multiple
faults, such arguments do not apply in all cases. For ex-
ample, if every other node in a layer is crash-faulty, Condi-
tion 3.9 is not violated. Yet, no node in the layers above is
triggered at all.

It is easy to see, however, that such problematic fault pat-
terns entail faults in close vicinity to each other. If it is not
the case that an entire layer “blocks” pulses and sufficiently
many layers above it are fault-free the caused damage to
the synchronization quality will “heal”. An extreme case of
this kind of resilience is illustrated by Theorem 3.8, which
shows that within 2W − 2 layers the strong skew bounds of
the fault-free case are established for arbitrary initial skews,
provided that there are sufficiently many consecutive fault-
free layers (and the pulse arrives at the lowest of them at all).
Less severe problems will cause less hassle (cf. Section 4).
Pulse Separation. As discussed in Section 2, we require
that pulses arrive at each node sufficiently well-separated so
that the nodes do not need to keep track of the pulse number
and can rely on the proposed simple sleeping mechanism
instead. This amounts to ensuring that, for each node, the
sleep period of at most T+ after triggering pulse k is over
before any signal of pulse k + 1 arrives, i.e.,

t
(k)
`,i + T+ ≤ max{t(k+1)

`,i−1 , t
(k+1)
`−1,i , t

(k+1)
`−1,i+1, t

(k+1)
`,i+1 }+ d−.

In the fault-free case, the following condition is sufficient:

Condition 3.10 (Fault-free Separation Time).
For all k ∈ N, we require that

min
i∈[W ]

{t(k+1)
0,i } ≥ max

i∈[W ]
{t(k)0,i }+ Lε+ T+.

If there are no faults, t
(k)
`,i ≤ maxi∈[W ]{t(k)0,i } + `d+ and any

node in layer ` − 1 or ` will not trigger pulse k + 1 before

time mini∈[W ]{t(k+1)
0,i }+ (`− 1)d−. Since ` ≤ L, we see that

Condition 3.10 is sufficient in the fault-free case.
In the presence of faults, a conservative bound would ar-

gue that the longest feasible time for a pulse to reach all
nodes is bounded by WLd+,4 however, such a worst-case
bound will be of little significance in practice. For the system
to be operational, the number of faults must be sufficiently
small to maintain reasonable skews. Moreover, faults sig-
nificantly affecting the time to complete pulses, yet at the
same time not causing large skews, appear extremely un-
likely. Hence adding a slack of a few d+ to Condition 3.10

4This follows since acceptable fault patterns disallow that
non-faulty nodes are triggered by faulty ones, implying that
the pulse must be complete if for more than d+ time no node
is triggered.



should suffice in all relevant cases. This view is supported
by our simulations, see Section 4.
Self-stabilization. Self-stabilization is the ability of the
system to recover from an unbounded number of arbitrary
transient faults [3]. That is, once transient faults cease, the
system will resume normal operation within a bounded sta-
bilization time. This is equivalent to demanding that a sys-
tem where the individual components behave according to
their specification will resume normal operation from an ar-
bitrary initial state, since arbitrary faults may result in ar-
bitrary states. Recall that the pulse generation at layer 0
is outside the scope of this paper; to make the system as a
whole self-stabilizing, clearly a self-stabilizing algorithm is
to be employed for that purpose.

Theorem 3.11. Suppose maxk∈N{∆(k)
0 } ≤ ∆ and denote

σ0 := ∆ + d−. Assume that5

min
i∈[W ]

{t(k+1)
0,i } ≥ max

i∈[W ]
{t(k)0,i }+Wd+ + Lε+ T+,

that T− > σ`+d
++ε+tpulse for all ` ∈ [L+1], where σ` is as

in Theorem 3.8 with ∆0 = ∆, and that the pulse generation
algorithm employed at layer 0 is self-stabilizing. Then, HEX
self-stabilizes within L pulses once layer 0 stabilized, in the
sense that each node triggers exactly once per pulse, and for
each pulse the bounds from Theorem 3.8 apply.

Proof. For simplicity, we denote the first correctly gen-
erated pulse as pulse 0. Hence the induction hypothesis is
that layer ` executes pulses k ≥ ` correctly. Denote for

k ∈ N0 by t
(k)
− and t

(k)
+ the times when the first and last

nodes in layer 0 trigger their kth pulse, respectively. To per-
form the induction step from ` ∈ N0 to ` + 1, observe that
the induction hypothesis applied to layer ` implies that, for
all k ≥ `, no nodes in layer ` are triggered during[

t
(k)
+ + `d+, t

(k+1)
− + `d−

]
.

Consequently, no trigger messages from layer ` are received
by nodes in layer `+ 1 during[

t
(k)
+ + (`+ 1)d+, t

(k+1)
− + (`+ 1)d−

]
.

Hence no node in layer ` + 1 can be triggered twice during
this period. If for d+ additional time no node in layer `+1 is
triggered within this interval, this implies that all messages
have been received and therefore no further nodes may trig-
ger. Overall, it follows that no node on layer ` + 1 may be
triggered during the interval

[t
(k)
+ + (`+ 1)d+ +Wd+, t

(k+1)
− + (`+ 1)d−],

implying that none of these nodes is sleeping during

[t
(k)
+ + (`+ 1)d+ +Wd+ + T+, t

(k+1)
− + (`+ 1)d−].

By the prerequisites of the theorem, this time interval is
non-empty. Hence, all nodes in layer ` + 1 will be ready to
participate in pulse k + 1.

It remains to show that each node will trigger exactly once
per pulse and that the skew bounds hold. To see this, we
show by induction on the layers ` ∈ {1, . . . , L} that (i) for
pulses k > `, no node in layer 1, . . . , ` will trigger due to a
“falsely” memorized trigger message from a neighbor from

5We assume that messages are zero-length signal pulses here.

which the trigger message for pulse k has not been received
yet and (ii) that the skew bounds from Theorem 3.8 apply
to layers 1, . . . , ` for pulses k > `. Note that (ii) follows from
(i) and the fact that we just showed that no node on layer
`′ ∈ {1, . . . , `} is sleeping when pulse k arrives, since this
implies that the assumptions on the behaviour of the nodes
made in Section 3.1 hold and Theorem 3.8 applies.

To anchor the induction at ` = 0, we just observe that the
skew bounds are satisfied with respect to σ0, as we will not
require more than that for the induction step. For the step
from ` to `+1 ∈ N, recall that we already know that all nodes
on layer ` + 1 will be triggered at least once for each pulse
k ≥ `+ 1. Hence, for node (`+ 1, i), i ∈ {1, . . . ,W}, we can

define t
(k)
`+1,i as the first such triggering time (uniqueness will

follow later). For each i, one of the links ((`, i), (`+ 1, i)) or
((`, i+1), (`+1, i)) is causal. W.l.o.g. let it be ((`, i), (`+1, i))

(the other case is symmetrical). Then t
(k)
`+1,i ≥ t

(k)
`,i + d−. It

follows that t
(k)
`,i+1 ≤ t

(k)
`,i + σ` ≤ t

(k)
`+1,i + σ` − d−. Hence,

since nodes (`+ 1, i− 1) and (`+ 1, i+ 1) follow at most d+

after t
(k)
`,i+1, we observe

max
{
t
(k)
`+1,i−1, t

(k)
`,i , t

(k)
`,i+1, t

(k)
`+1,i+1

}
≤ t(k)`+1,i + σ` + ε,

implying that node (` + 1, i) will not receive any message

from pulses ≤ k after time t
(k)
`+1,i+σ`+d+ +ε ≤ t(k)`+1,i+T−,

showing (i) for ` + 1. As (ii) follows by Theorem 3.8, this
completes the induction and also the proof.

Note that the same reasoning applies in the presence of
crashed nodes, provided the skew bounds (and thus also T−)
are adapted accordingly. For Byzantine faults, stabilization
is more involved and requires to modify the algorithm: If
a node has e.g. a Byzantine lower-left neighbor and misses
the trigger signal of pulse k from its right neighbor due to
sleeping, but just wakes up before the signal from its lower
right neighbor arrives, the Byzantine neighbor can trigger
the node at any later point in time. In particular, it can
send the node to sleep such that the same situation occurs
in pulses k + 1, k + 2, . . . Slightly more complex triggering
rules that take into account the timing of the received signals
may circumvent this issue.

It should also be noted that the required pulse separation
time of Theorem 3.11 can be reduced, since a more involved
analysis can be used to prove stabilization without a linear
additive term of Wd+. The detailed exploration of these
issues, which determine the maximum sustainable clock fre-
quency, is an important part of our future work.

4. SIMULATION EXPERIMENTS
In order to get an idea of the behavior of HEX in re-

alistic scenarios, we developed a framework for simulation
experiments. Rather than simulating the simple VHDL im-
plementation6 of Algorithm 1 in Modelsim directly, we used
Matlab due to its greater flexibility and controllability.
6Algorithm 1 just consists of a 3-state asynchronous state
machine in conjunction with memory flags (flip-flops) for
memorizing the reception of trigger signals from neighbors.
State fire, entered when the node is triggered, signals a clock
pulse to its neighbors and is immediately left for state sleep,
where the clock pulse is reverted and the sleep timeout is
started. When it expires, the state machine clears all mem-
ory flags and enters the state wait, where it remains until
one of the triggering conditions becomes true.
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Figure 7: Pulse wave propagation for uniformly cho-
sen link delays in [50, 55] and σ0 = ∆0 = 0.

To complement the analytic results provided in the previ-
ous section, this section provides a glimpse of our simulation
results. Their primary purpose is the following:

(1) Demonstrating small typical skew in the fault-free case.
The quite fancy scenarios required for establishing the
worst-case skews in Theorem 3.8 suggest that they are
very unlikely to occur in practice. Our simulation stud-
ies support this view.

(2) Demonstrating fault locality. As argued in Section 3.2,
HEX implicitly confines the effects of faulty nodes.
Our simulation results show that this is indeed true,
even for clustered crash faults and multiple (but sepa-
rated) Byzantine nodes.

For our simulations, we developed a Matlab implemen-
tation of Algorithm 1 that can be plugged into arbitrarily
sized grids with configurable topologies. We implemented
different choices for the individual link delays, including uni-
formly at random from [d−, d+] and fixed values. Different
choices for the triggering times of the nodes in layer 0 are
also provided.

The primary quantities of interest observed in our sim-
ulation runs are the intra-layer neighbor skews max{|t`,i −
t`,i+1|, |t`,i − t`,i−1|} of every node (`, i) in layer `, as well
as the inter-layer neighbor skews, i.e., t`+1,i−1 − t`,i and
t`+1,i−t`,i of every node (`, i) relative to its direct layer `+1
neighbors (`+ 1, i− 1) and (`+ 1, i), respectively. Note that
the former is defined in terms of the absolute values due
to the symmetry of the topology (and thus skews) within a
layer, whereas the latter respects the sign of the difference
in trigger times. This is of interest, since the (non-zero)
expected clock skew between adjacent layers can be compen-
sated at the level of the (final) local clocks (to be synchro-
nized by means of the HEX pulses), thereby providing clocks
that are also well-synchronized between different layers.

We compute the skews from the matrix of all triggering
times t`,i obtained in a simulation run; this data also allows
us to visualize the detailed propagation of a pulse through-
out the grid.
The Fault-free Case. We conducted a suite of simula-
tions that complement the analytic intra- and inter-layer
worst-case skew bounds given in Theorem 3.8. As an appe-
tizer, Figure 7 shows a 3D plot of a typical pulse propaga-
tion wave in a grid with W = 10 and L = 20. The entire
grid (sliced between width W − 1 and 0 ≡ W ) lies in the
(` ∈ [L + 1], i ∈ [W ]) plane, the z-axis gives the trigger-
ing time t`,w of the corresponding node (`, i). To improve

intra-layer inter-layer
init. layer 0 avg max min avg max

0 2.19 13 50 53.95 67
rand. [0, d−] 3.31 44 50 54.84 103
rand. [0, d+] 3.42 49 50 54.94 108
ramp d+ 12.99 55 34 60.08 110

Table 1: Intra- and inter-layer skews of all nodes
in the grid from 100 simulation runs, for uniformly
random link delays in [50, 55].

intra-layer inter-layer
init. layer 0 avg max min avg max

0 9.66 56 50 68.89 124
rand. [0, d−] 10.37 62 50 69.43 131
rand. [0, d+] 10.94 66 46 69.86 146
ramp d+ 23.4 79 -15 74.51 150

Table 2: Intra- and inter-layer skews of all nodes
in the grid from 100 simulation runs, for uniformly
random link delays in [50, 75].

the readability of intra-layer skews, we connected all points
(`, i, t`,w) and (`, i + 1, t`,i+1), i ∈ [W − 1]. It is apparent
that the wave propagates evenly throughout the grid, nicely
smoothing out differences in link delays. We note, though,
that by choosing the delays accordingly, we were able to
produce pulse propagation waves exhibiting the worst-case
skew of Lemma 3.6 (see Figure 6).

Table 1 and Table 2 show, for four different choices of
the layer 0 skews between neighbors, the average and max-
imal intra-layer skews and the minimal, average, and maxi-
mal inter-layer skews, respectively. These values where com-
puted over all nodes and 100 simulation runs.

Table 1 shows the skews for link delays chosen uniformly
at random from [50, 55] (such that d+ = 1.1d− and ε/d+ =
1/11) in all settings. The triggering times of the layer 0
nodes t0,i are (i) all 0 (resulting in σ0 = 0 and skew potential
∆0 = 0), (ii) uniformly in [0, d−] (i.e., σ0 ≈ d− and ∆0 = 0),
(iii) uniformly in [0, d+] (i.e., σ0 ≈ d+ and ∆0 ≈ ε), and
(iv) ramping-up/down by d+, i.e., t0,i+1 = t0,i + d+ for
0 ≤ i < W/2 and t0,i+1 = t0,i − d+ for W/2 ≤ i < W − 1
(i.e., σ0 = d+ and ∆0 = Wε/2 = 25). Note that (iii) resp.
(iv) reasonably model the average case and worst-case input
provided by a layer 0 clock generation scheme with neighbor
skew bound d+, respectively.

Figure 8 shows the histogram of the skew distribution of
(i). For (ii) and (iii) the distributions look very similar,
whereas for the extreme case of (iv) the large initial skews
result in noticeably worse bounds for the first few layers.
Due to lack of space, we summarize the results in Table 2.

Our simulation results show that the typical skews are
considerably smaller than our analytic worst-case bounds:
For example, plugging the above parameters and ∆0 = 0
into Theorem 3.8 yields an intra-layer skew bound of d+ +
dWε/d+eε ≈ 80 and an inter-layer skew in the range of
≈ [−30, 135]. By contrast, even for setting (iii) with ∆0 ≈
ε, the average of the observed intra-layer skew is below 4,
with a maximum of 49, and the range of inter-layer skews
is [50, 108]. It should be particularly noted that for settings
(i)-(iii) the minimal inter-layer skew is always 50, showing
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Figure 8: Cumulated histograms for intra-layer
(top) and inter-layer (bottom) skew for uniformly
chosen link delays in [50, 55] and σ0 = ∆0 = 0.

that all nodes were centrally triggered and no “intervention”
by neighbors within a layer was ever necessary.

Table 2 gives the skews for link delays chosen uniformly in
[50, 75] (such that d+ = 1.5d− and ε/d+ = 1/3). Note that
the latter choice of d+ and d− violates the constraint ε ≤
d+/7 of Theorem 3.8; we included this scenario to also shed
some light on the behavior of HEX in extreme situations,
however. Qualitatively, the situation is very similar to the
previous one, except that the grid does not recover as well
from the large initial skews of (iv). Small values of ε hence
provide excellent skew bounds and fast recovery from initial
skews in the fault-free setting, which has been supported by
preliminary simulation runs as well.
Failures. To back up our considerations related to failures
in Section 3.2, we provide two 3D plots of wave propaga-
tion in the presence of crashed and Byzantine faulty nodes,
respectively, which clearly demonstrate the claimed failure
locality property. Figure 9 shows a setup where a whole clus-
ter of nodes ((3, 7), (3, 8), (4, 6), (4, 7), (4, 8), (5, 6) and (5, 7))
has crashed.7 Observe that the disturbances (= increase) of
the skew emanating from the faulty nodes fade with the dis-
tance from the fault location, and how nodes above establish
synchrony via left- and right-triggering.

Figure 10 shows a scenario with a single Byzantine node
(2, 8) that sends a zero-delay trigger message to its right
and up-right neighbors when triggered itself and delays the
messages to its other neighbors for 3d+. It is evident from
the figure that the disruptive power of this fault is not much
worse than that of a crash fault. This is also confirmed by
Table 3, which provides the analog to the fault-free results
given in Table 1. Further simulations, shown in Figure 11
and Figure 12, confirmed that this also holds in the presence
of multiple (separated) Byzantine faults.

7Note that the Node (6, 6) cannot make progress as both
neighbors in layer 5 have crashed.
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Figure 9: Pulse wave propagation for uniformly cho-
sen link delays in [50, 55] and σ0 = 0, with a cluster
of crashed nodes (“fake” trigger time -1).
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Figure 10: Pulse wave propagation for uniformly
chosen link delays in [50, 55] and σ0 = 0, with one
Byzantine node ( “fake” trigger time of -1).

5. CONCLUSIONS & FUTURE WORK
In this work, we proposed a candidate for a scalable and

fault-tolerant alternative for clock distribution in VLSI cir-
cuits. Whereas our analysis proved that HEX has excellent
features, several important issues still need to be addressed
for making the approach feasible in practice. An important
part of our future work is devoted to the following topics:
Clock Frequency. Due to the tick separation requirement
required for self-stabilization (cf. Theorem 3.11) of Algo-
rithm 1, HEX cannot be used for distributing very high-
frequency clock pulses. Several solutions are conceivable
to eventually achieve this: Local clock multipliers, e.g. (i)
Phase-Locked Loops (PLL) that lock on the low-frequency
pulses, or (ii) pausible high-frequency local clocks started
upon a tick that generate a fixed number of fast clock pulses.
Note that (i) provides smoother clocks but requires low-
jitter input clocks (guaranteed by HEX at least for static
crash failures). Alternatively, (iii) pipelining of ticks as in
[9] could be used. This would avoid the need for sleeping
times and tick separation, but requires additional hardware
for locally counting ticks and a considerably more involved
self-stabilization analysis.
Embedding. The presented topology can be embedded
into a VLSI circuit using two interconnect layers: One sim-
ply“squeezes”the cylindric shape of the HEX grid flat. How-
ever, this simplistic solution has two substantial drawbacks.
First, the now physically close nodes from opposite “sides”



intra-layer inter-layer
init. layer 0 avg max min avg max

0 6.51 64 41 56.15 113
rand. [0, d−] 7.16 82 27 56.79 140
rand. [0, d+] 7.24 85 24 56.87 143
ramp d+ 13.05 165 -18 59.85 162

Table 3: Skews of all nodes in the grid from 100
simulation runs with a single Byzantine node, for
uniformly chosen link delays in [50, 55].
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Figure 11: Pulse wave propagation for uniformly
chosen link delays in [50, 55] and σ0 = ∆0 = 0, with
two byzantine nodes (“fake” trigger time −1).

of the original cylinder are distant in the grid and therefore
may suffer from larger skews. This might entail that actu-
ally half of the nodes cannot be used for clocking. Second, it
might be difficult to synchronize the nodes at layer 0 unless
they are physically close. This requires that either W � L
and the chip is rectangular with a large discrepancy in side
lengths, or a way of (reliably and accurately) distributing a
clock signal to nodes arranged in a line.

As a remedy, we propose the use of a slightly modified
topology that arranges the nodes of each layer in a circu-
lar pattern. To avoid large variations in link lengths, we
include “doubling layers” where we “duplicate” the nodes of
a standard layer to quickly increase the number of nodes
(see Figure 13). This topology has several advantages over
a cylindric HEX grid: (i) only a few links require an addi-
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Figure 12: Pulse wave propagation for uniformly
chosen link delays in [50, 55] and σ0 = ∆0 = 0, with
multiple byzantine nodes (“fake” trigger time −1).

layer 0

layer L

Figure 13: Alternative Topology. White nodes are
in doubling layers. Doubling layers become less fre-
quent with increasing distance from the center.

tional interconnect layer, (ii) doubling layers will help dis-
perse skews and thus may only improve the bounds,8 and
(iii) since the “initial” width W close to the clock source is
very small and most doubling layers are close to the source
as well, any initial skew will be mitigated very quickly.
Fault-tolerance Properties. A more detailed theoretical
analysis as well as measurements that determine realistic
fault patterns are in order to make best use of the potential
for resilience of the HEX topology. In particular, a simple so-
lution for self-stabilization despite ongoing Byzantine faults
seems both possible and highly desirable, and a quantitative
analysis of the skews in the presence of a larger number of
faults is of interest. Concerning the latter, suitable proba-
bilistic fault models are to be established and analyzed.
Skews in Realistic Executions. Regarding the skew
bounds from Theorem 3.8, even for a fairly large value of ε,
say 0.1d+, it appears reasonable to assume that min{L,W}·
ε2/d+ ≤ d+, since otherwise the chip would comprise at least
10,000 HEX nodes. Moreover, since link lengths are near-
identical (or vary within a small constant factor for the alter-
native topology proposed above), smaller ε should be afford-
able at reasonable costs. The skew bound is thus essentially
O(d+), where the constant depends on the fault patterns
and the fault locality properties of HEX. This should be
contrasted with the skew on a clock tree, where the domi-
nating term is the maximal difference of signal propagation
times to the leaves. While the latter may be small com-
pared to the total delays in a tree, one needs to take into
account that the total distance bridged by the signal is (for
an H-tree) close to half of the circumference of the (rect-
angular) chip. In particular for large chips, HEX may thus
be competitive in terms of the skew between physically close
functional units, despite its excellent resilience to faults! Im-
proving our understanding of the skew incurred by HEX in
realistic executions with multiple faults is thus a pivotal part
of our future work.
Static Systems. An important special case occurs when
the delay of each individual link is the same in each pulse
(up to negligible fluctuations) and faults are static in the
sense that the respective nodes respond identically in each

8This follows from the proofs in Section 3.1; the right-
ward/leftward links vital for the slower node catching up
are in smaller layers than those required to trigger a fast
node early.



pulse. Then the system will stabilize to a fixed triggering
pattern that is identically reproduced for each pulse. Note
that this covers an important class of realistic fault patterns,
in particular, manufacturing defects and electric wear-out as
well as the result of some dynamic grid reconfiguration in
case of failures. Understanding this setting is thus of high
interest for potential applications of our scheme.
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