
Distributed Protocols for Leader Election: a
Game-Theoretic Perspective?

Ittai Abraham1, Danny Dolev2??, and Joseph Y. Halpern3? ? ?

1 Microsoft Research, Silicon Valley
ittaia@microsoft.com

2 The Hebrew University of Jerusalem, Jerusalem, Israel
dolev@cs.huji.ac.il

3 Computer Science Department, Cornell University, Ithaca, NY 14853, USA
halpern@cs.cornell.edu

Abstract. We do a game-theoretic analysis of leader election, under the assump-
tion that each agent prefers to have some leader than to have no leader at all. We
show that it is possible to obtain a fair Nash equilibrium, where each agent has
an equal probability of being elected leader, in a completely connected network,
in a bidirectional ring, and a unidirectional ring, in the synchronous setting. In
the asynchronous setting, Nash equilibrium is not quite the right solution con-
cept. Rather, we must consider ex post Nash equilibrium; this means that we
have a Nash equilibrium no matter what a scheduling adversary does. We show
that ex post Nash equilibrium is attainable in the asynchronous setting in all the
networks we consider, using a protocol with bounded running time. However,
in the asynchronous setting, we require that n > 2. We can get a fair ε-Nash
equilibrium if n = 2 in the asynchronous setting, under some cryptographic as-
sumptions (specifically, the existence of a pseudo-random number generator and
polynomially-bounded agents), using ideas from bit-commitment protocols. We
then generalize these results to a setting where we can have deviations by a coali-
tion of size k. In this case, we can get what we call a fair k-resilient equilibrium
if n > 2k; under the same cryptographic assumptions, we can a get a k-resilient
equilibrium if n = 2k. Finally, we show that, under minimal assumptions, not
only do our protocols give a Nash equilibrium, they also give a sequential equi-
librium [?], so players even play optimally off the equilibrium path.

1 Introduction
As has been often observed, although distributed computing and game theory are inter-
ested in much the same problems—dealing with systems where there are many agents,
? This is the authors copy of the paper that will appear in DISC 2013.

?? Incumbent of the Berthold Badler Chair in Computer Science. Part of the work was done
Supported in part by The Israeli Centers of Research Excellence (I-CORE) program, (Center
No. 4/11), by NSF, AFOSR grant FA9550-09-1-0266, and by the Google Inter-University
Center for Electronic Markets and Auctions.

? ? ? Supported in part by NSF grants IIS-0534064, IIS-0812045, and IIS-0911036, IIS-0911036,
and CCF-1214844, AFOSR grants FA9550-08-1-0438, FA9550-09-1-0266, and FA9550-12-
1-0040, and ARO grant W911NF-09-1-0281.



facing uncertainty, and having possibly different goals—in practice, there has been a
significant difference in the models used in the two areas. In game theory, the focus
has been on rational agents: each agent is assumed to have a utility on outcomes, and
be acting so as to maximize expected utility. In distributed computing, the focus has
been on the “good guys/bad guys” model. The implicit assumption here is that there
is a system designer who writes code for all the processes in the system, but some of
the processes may get taken over by an adversary, or some computers may fail. The
processes that have not been corrupted (either by the adversary or because of a faulty
computer) follow the designer’s protocol. The goal has typically been to prove that the
system designer’s goals are achieved, no matter what the corrupted processes do.

More recently, there has been an interest in examining standard distributed com-
puted problems under the assumption that the agents are rational, and will deviate from
the designer’s protocol if it is in their best interest to do so. Halpern and Teague [?]
were perhaps the first to do this; they showed (among other things) that secret sharing
and multiparty communication could not be accomplished by protocols with bounded
running time, if agents were using the solution concept of iterated admissibility (i.e.,
iterated deletion of weakly dominated strategies). Since then, there has been a wide
variety of work done at the border of distributed computing and game theory. For one
thing, work has continued on secret sharing and multiparty computation, taking faulty
and rational behavior into account (e.g., [?,?,?,?,?]). There has also been work on when
and whether a problem that can be solved with a trusted third party can be converted to
one that can be solved using cheap talk, without a third party, a problem that has also
attracted the attention of game theorists (e.g., [?,?,?,?,?,?,?,?,?,?,?,?,?]). This is rele-
vant because there are a number of well-known distributed computing problems that
can be solved easily by means of a “trusted” mediator. For example, if fewer than half
the agents are corrupted, then we can easily do Byzantine agreement with a mediator:
all the agents simply tell the mediator their preference, and the mediator chooses the
majority. Another line of research was initiated by work on the BAR model [?]; see,
for example, [?,?]. Like the work in [?,?], the BAR model allows Byzantine (or faulty)
players and rational players; in addition, it allows for acquiescent players, who follow
the recommended protocols.4 Traditional game theory can be viewed as allowing only
rational players, while traditional distribution computing considers only acquiescent
and Byzantine players.

In this paper, we try to further understand the impact of game-theoretic thinking on
standard problems in distributed computing. We consider the classic distributed com-
puting problem of electing a leader in an anonymous network (a network where, ini-
tially, each process knows its own name, but does not know the name of any other
process). Leader election is a fundamental problem in distributed computing. Not sur-
prisingly, there are numerous protocols for this problem (see, e.g., [?,?,?,?,?]) if we
assume that no agents have been corrupted; there have also been extensions that deal
with corrupted agents [?,?]. Much of this work focuses on leader election in a ring (e.g.,
[?,?,?,?,?]).

4 Originally, the “A” in “BAR” stood for altruistic, but it was changed to stand for “acquiescent”
[?].



In this paper we study what happens if we assume that agents are rational. It is
easy to show that if all agents (a) prefer to have a leader to not having a leader and
(b) are indifferent as to who is the leader, then all the standard distributed computing
protocols work without change. This can be viewed as formalizing the intuition that in
the standard setting in distributed computing, we are implicitly assuming that all the
agents share the system designer’s preferences. But what happens if the agents have
different preferences regarding who becomes the leader? For example, an agent may
prefer that he himself becomes the leader, since this may make the cost of routing to
other agents smaller. In this case, the standard protocols (which typically assume that
each agent has a distinct id, and end up electing the agent with the lowest id, or the agent
with the highest id, as the leader) do not work; agents have an incentive to lie about their
id. Nevertheless, there is always a trivial Nash equilibrium for leader election: no one
does anything. Clearly no agent has any incentive to do anything if no one else does.
We are thus interested in obtaining a fair Nash equilibrium, one in which each agent
has an equal probability of being elected leader. Moreover, we want the probability
that someone will be elected to be 1.5 In the language of the BAR model, we allow
acquiescent and rational players, but not Byzantine players.

It is easy to solve leader election with a mediator: the agents simply send the media-
tor their ids, and the mediator picks an id at random as the leader and announces it to the
group. We cannot immediately apply the ideas in the work on solving the problem with
a mediator and then replacing the mediator with cheap talk to this problem because all
these results assume (a) that agents have commonly-known names, (b) that the network
is completely connected, and (c) the network is synchronous. Nevertheless, we show
that thinking in terms of mediators can be helpful in deriving a simple protocol in the
case of a completely connected network that is a fair Nash equilibrium in which a leader
is elected with probability 1. We can then modify the protocol so that it works when the
network is a ring. We also show that our protocol is actually k-resilient [?,?]: it toler-
ates coalitions of size k, as long as n > k. This forms an interesting contrast to work
on Byzantine agreement, where it is known that the network must be 2k + 1 connected
to tolerate k Byzantine failures [?]. But we can tolerate coalitions of k rational players
even in a unidirectional ring.

These protocols work if the network is synchronous. What happens in an asyn-
chronous setting? Before answering this question, we need to deal with a subtlety: what
exactly a Nash equilibrium is in an asynchronous setting? To make sense of Nash equi-
librium, we have to talk about an agent’s best response. An action for an agent i is a
best response if it maximizes i’s expected utility, given the other agents’ strategies. But
to compute expected utility, we need a probability on outcomes. In general, in an asyn-

5 Without the last requirement, the existence of a fair Nash equilibrium follows from well-known
results, at least in the case of a completely connected network. We can model our story as a
symmetric game, one where all agents have the same choice of actions, and an agent’s payoff
depends only on what actions are performed by others, not who performs them. In addition to
showing that every game has a Nash equilibrium, Nash also showed that a symmetric game
has a symmetric Nash equilibrium, and a symmetric equilibrium is clearly fair. However, in a
symmetric equilibrium, it may well be the case that there is no leader chosen. For example, a
trivial symmetric equilibrium for our game is one where everyone chooses a candidate leader
at random. However, in most cases, agents choose different candidates, so there is no leader.



chronous setting, the outcome may depend on the order that agents are scheduled and on
message-delivery times. But we do not have a probability on these. We deal with these
problems in this setting by using the standard approach in distributed computing. We
assume that an adversary chooses the scheduling and chooses message-delivery times,
and try to obtain a strategy that is a Nash equilibrium no matter what the adversary does.
This intuition gives rise to what has been called in the literature an ex post Nash equilib-
rium. We provide a simple protocol that gives a fair ex post Nash equilibrium provided
that n > 2. More generally, we provide a fair ex post k-resilient equilibrium as long as
n > 2k. We then show that these results are optimal: there is no fair k-resilient ex post
Nash equilibrium if n ≤ 2k.

The lower bounds assume that agents are not computationally bounded. If we as-
sume that agents are polynomially-bounded (and make a standard assumption from the
cryptography literature, namely, that a pseudorandom number generator exists), then
we can show, using ideas of Naor [?], that there is a fair ex post ε-Nash equilibrium
in this case (one where agents can gain at most ε by deviating) for an arbitrarily small
ε; indeed, we can show that there is a fair ex post ε–k-resilient equilibrium as long as
n > k.

Finally, we show that, under minimal assumptions, not only do our protocols give
a Nash equilibrium, they also give a sequential equilibrium [?], so players even play
optimally off the equilibrium path.

2 The Model
We model a network as a directed, simple (so that there is at most one edge between
each pair of nodes), strongly connected, and finite graph. The nodes represent agents,
and the edges represent communication links. We assume that the topology of the net-
work is common knowledge, so that if we consider a completely connected network,
all agents know that the network is completely connected, and know that they know,
and so on; this is similarly the case when we consider unidirectional or bidirectional
rings. Deviating agents can communicate only using the network topology; there is no
“out of band” communication. We assume that, with each agent, there is associated a
unique id, taken from some commonly-known name space, which we can take to be a
set of natural numbers. Initially agents know their ids, but may not know the id of any
other agent. For convenience, if there are n agents, we name them 1, . . . , n. These are
names used for our convenience when discussing protocols (so that we can talk about
agent i); these names are not known by the agents. Message delivery is handled by the
channel (and is not under the control of the agents). Agents can identify on which of
their incoming links a message comes in, and can distinguish outgoing links.

When we consider synchronous systems, we assume that agents proceed in lock-
step. In round m, (if m > 0) after all messages sent in round m− 1 are received by all
agents, agents do whatever internal computation they need to do (including setting the
values of variables); then messages are sent (which will be received at the beginning of
round m+ 1). 6 In the asynchronous setting, agents are scheduled to move at arbitrary
times by a (possibly adversarial) scheduler. When they are scheduled, they perform the
same kinds of actions as in the synchronous case: receive some messages that were sent

6 Thus, the synchronous model assumes no “rushing”.



to them earlier and not yet received, do some computation, and send some messages.
For ease of exposition, we assume that the message space is finite. While we assume
that all messages sent are eventually received (uncorrupted), there is no bound on mes-
sage delivery time. Nor do we make any assumption on the number of times one agent
can be scheduled relative to another, although we do assume that agents are scheduled
infinitely often (so that, for all agents i and times t, there will be a time after t when i
is scheduled).

For leader election, we assume that each agent i has a variable leader i which can be
set to some agent’s id. If, at the end of the protocol, there is an id v such that leader i = v
for all agents i, then we say that the agent with id v has been elected leader. Otherwise,
we say that there is no leader. (Note that we are implicitly requiring that, when there
is a leader, all the players know who that leader is.) We assume that each agent i has a
utility on outcomes of protocols. For the purposes of this paper, we assume that agents
prefer having a leader to not having one, in the weak sense that each agent i never
assigns a higher utility to an outcome where there is no leader than to one in which
there is a leader (although we allow the agent to be indifferent between an outcome
where there is no leader and an outcome where there is a leader). We make no further
assumptions on the utility function. It could well be that i prefers that he himself is
the leader rather than anyone else; i could in addition prefer a protocol where he sends
fewer messages, or does less computation, to one where he sends more messages or does
more computation. Nevertheless, our eassumptions require that player i never prefers
an outcome where there is no leader to one where there is, even if the latter outcome
involves sending many messages and a great deal of computation (although in fact our
protocols are quite message-efficient and do not require much computation). Note that
our assumptions imply that agent i can “punish” other agents by simply setting leader i
to ⊥; this ensures that there will be no leader. In the language of [?], this means that
each agent has a punishment strategy.

A strategy profile (i.e., a strategy or protocol for each agent) is a Nash equilibrium
if no agent can unilaterally increase his expected utility by switching to a different
protocol (assuming that all the other agents continue to use their protocols). It is easy
to see that if all the agents are indifferent regarding who is the leader (i.e., if, for each
agent i, i’s utility of the outcome where j is the leader is the same for all j, including
j = i), then any protocol that solves leader election is a Nash equilibrium. Note that it
is possible that one Nash equilibrium Pareto dominates another: all agents are better off
in the first equilibrium. For example, if agents are indifferent about who the leader is,
so that any protocol that solves leader election is a Nash equilibrium, all agents might
prefer an equilibrium where fewer messages are sent; nevertheless, a protocol for leader
election where all agents send many messages could still be a Nash equilibrium.

For the remainder of this paper, we assume that each agent has a preference for
leadership: agent i’s utility function is such that i does not give higher utility to an
outcome where there is no leader than to one where there is a leader. (Agent i may also
prefer to be the leader himself, or have preferences about which agent j is the leader if
he is not the leader; these preferences do not play a role in this paper.)



3 The protocols

We consider protocols in three settings: a completely connected network, a unidirec-
tional ring, and a bidirectional ring. We also consider both the synchronous case and
the asynchronous case.

3.1 Completely connected network, synchronous case
Consider leader election in a completely connected network. First suppose that we have
a mediator, that is, a trusted third party. Then there seems to be a naive protocol that can
be used: each agent tells the mediator his id, then the mediator picks the highest id, and
announces it to all the agents. The agent with this id is the leader. This naive protocol
has two obvious problems. First, since we assume that the name space is commonly
known, and all agents prefer to be the leader, agents will be tempted to lie about their
ids, and to claim that the highest id is their id. Second, even if all agents agree that an
agent with a particular id v is the leader, they don’t know which agent has that id.

We solve the first problem by having the mediator choose an id at random; we solve
the second problem by having agents share their ids. In more detail, we assume that in
round 1, agents tell each other their ids. In round 2, each agent tells the mediator all the
set of ids he has heard about (including his own). In round 3, the mediator compares all
the sets of ids. If they are all the same, the mediator chooses an id v at random from the
set; otherwise, the mediator announces “no leader”. If the mediator announces that v is
the leader, each agent i sets leader i = v (and marks the incoming link on which the id
v was originally received); otherwise, leader i is undefined (and there is no leader).

It is easy to see that everyone using this protocol gives a Nash equilibrium. If some
agent does not send everyone the same id, then the mediator will get different lists from
different agents, and there will be no leader. And since a leader is chosen at random, no
one has any incentive not to give his actual id. Note that this protocol is, in the language
of [?,?], k-resilient for all k < n, where n is the number of agents. That is, not only is
it the case that no single agent has any incentive to deviate, neither does any coalition
of size k. Moreover, the resulting Nash equilibrium is fair: each agent is equally likely
to be the chosen leader.

Now we want to implement this protocol using cheap talk. Again, this is straight-
forward. At round 1, each agent i sends everyone his id; at round 2, i sends each other
agent j the set of ids that he (i) has received (including his own). If the sets received
by agent i are not all identical or if i does not receive an id from some agent, then i
sets leader i to ⊥, and leader election fails. Otherwise, let n be the cardinality of the
set of ids. Agent i chooses a random number Ni in {0, . . . , n − 1} and sends it to all
the other agents. Each agent i then computes N =

∑n
i=1Ni (mod n), and then takes

the agent with the N th highest id in the set to be the leader. (If some agent j does
not send i a random number, then i sets leader i = ⊥.) Call this protocol for agent i
LEADcc

i . The formal pseudocode of the protocol appears in the full paper, available
at http://www.cs.cornell.edu/home/halpern/papers/leader.pdf. Let LEADcc denote the
profile (LEADcc

1 , . . . ,LEAD
cc
1 ) (we use boldface for profiles throughout the paper).

Clearly, with the profile LEADcc , all the agents will choose the same leader. It is also
easy to see that no agent (and, indeed, no group of size k < n) has any incentive to
deviate from this strategy profile.



Theorem 1. LEADcc is a fair, k-resilient equilibrium in a completely connected net-
work of n agents, for all k < n. 7

Up to now we have implicitly assumed that each agent somehow gets a signal re-
garding when to start the protocol. This assumption is unnecessary. Even if only some
agents want to start the protocol, they send a special round 0 message to everyone ask-
ing them to start a leader election protocol. The protocol then proceeds as above.

3.2 Unidirectional ring, synchronous case

We give a Nash equilibrium for leader election in a unidirectional ring, under the as-
sumption that the ring size n is common knowledge. This assumption is necessary, for
otherwise an agent can create k sybils, for an arbitrary k, and pretend that the sybils are
his neighbors. That is, i can run the protocol as if the ring size is n + k rather than n,
simulating what each of his sybils would do. No other agent can distinguish the situa-
tion where there are n agents and one agent has created k sybils from a situation where
there are actually n+k agents. Of course, if any of i’s sybils are elected, then it is as if i
is elected. Thus, creating sybils can greatly increase i’s chances of being elected leader,
giving i an incentive to deviate. (However, the overhead of doing may be sufficient to
deter an agent from doing so. See the discussion in Section 4.) Note that in the case
of a completely connected network, given that the topology is common knowledge, the
number of agents is automatically common knowledge (since each agent can tell how
many agents he is connected to).

The protocol is based on the same ideas as in the completely connected case. It
is easy to ensure that there is agreement among the agents on what the set of agents
is; implementing a random selection is a little harder. We assume that the signal to
start leader election may come to one or more agents. Each of these agents then sends
a “signed” message (i.e., a message with his id) to his neighbor. Messages are then
passed around the ring, with each agent, appending his id before passing it on. If an
agent receives a second message that originated with a different agent, the message is
ignored if the originating agent has a lower id; otherwise it is passed on. Eventually the
originator of the message with the highest id gets back the message. At this point, he
knows the ids of all the agents. The message is then sent around the ring a second time.
Note that when an agent gets a message for the second time, he will know when the
message should make it back to the originator (since the system is synchronous and he
knows the size of the ring).

At the round when the originator gets back the message for the second time, each
agent i chooses a random number Ni < n and sends it around the ring. After n rounds,
all agents will know all the numbers N1, . . . , Nn, if each agent indeed sent a message.
They can then computeN =

∑n
i=1Ni (mod n), and take the agent with theN th highest

id in the set to be the leader. If agent i does not receive a message when he expects
to, then he aborts, and no leader is elected. For example, if an agent who originated
a message does not get his message back n rounds and 2n rounds after he sent it,
or gets a message from an originator with a lower id, then he aborts. Similarly, if an
agent who forwarded an originator’s message does not get another message from that

7 All proofs can be found in the full paper.



originator n rounds later or get a message from another originator with a lower id, then
he aborts. Finally, for each of the n rounds after the originator with the highest id gets
back his message for the second time, each agent i should get a random number from
the appropriate agent (i.e., k rounds after the originator with the highest id gets back his
message for the second time, agent i should get agent j’s random number, j is k steps
before i on the ring). If any of these checks is not passed, then i aborts, and no leader
is chosen. Call this protocol for agent i LEADuni

i . The formal pseudocode of this and
all other protocols mentioned in this paper appear int the full paper.

We would now like to show that LEADuni gives a k-resilient fair Nash equilib-
rium. But there is a subtlety, which we already hinted at in the introduction. In a Nash
equilibrium, we want to claim that what an agent does is a best response to what the
other agents are doing. But this implicitly assumes that the outcome depends only on
the strategies chosen by the agents. But in this case, the outcome may in principle also
depend on the (nondeterministic) choices made by nature regarding which agents get
an initial signal. Thus, we are interested in what has been called an ex post Nash equi-
librium. We must show that, no matter which agents get an initial signal, no agent has
any incentive to deviate (even if the deviating agent knows which agents get the initial
signal, and knows the remaining agents are playing their part of the Nash equilibrium).
In fact, we show that no coalition of k < n agents has any incentive to deviate, inde-
pendent of nature’s choices.

Theorem 2. LEADuni is a fair, k-resilient (ex post) equilibrium in a unidirectional
ring with n agents, for all k < n.

3.3 Bidirectional ring, synchronous case

It is easy to see that the same protocol will work for the case of the bidirectional ring.
More precisely, if there is agreement on the ring orientation, each agent implements the
protocol above by just sending left, ignoring the fact that he can send right. If there is
no agreement on orientation, then each originating agent can just arbitrarily choose a
direction to send; each agent will then continue forwarding in the same direction (by
forwarding the message with his id appended to the neighbor from which he did not
receive the message). The originator with the highest id will still be the only one to
receive his original message back. At that point the protocol continues with round 2
of the protocol for the unidirectional case, and all further messages will be sent in the
direction of the original message of the originator with the highest id. Since it is only in
the second round that agents append their random numbers to messages, what happened
in the first round has no effect on the correctness of the algorithm; we still get a Nash
equilibrium as before.

3.4 Asynchronous Ring

We now consider an asynchronous setting. It turns out to be convenient to start with a
unidirectional ring, then apply the ideas to a bidirectional ring. For the unidirectional
ring, we can find a protocol that gives an ex post Nash equilibrium provided that there
are at least 3 agents in the ring.



Consider the following protocol. It starts just as the protocol for the unidirectional
case in the synchronous setting. Again, we assume that the signal to start a leader elec-
tion may come to one or more agents. Each of these agents then sends a message with
his id to his neighbor. Messages are then passed around the ring, with each agent ap-
pending his id before passing it on. If an agent receives a second message that originated
with a different agent, the message is ignored if the originating agent has a lower id;
otherwise it is passed on. Eventually the originator of the message with the highest id
gets back the message. The originator checks to make sure that the message has n (dif-
ferent) ids, to ensure that no “bogus” ids were added. The message is then sent around
the ring a second time. When an agent i gets the message the second time, he chooses
a random number Ni mod n and sends it to his neighbor (as well as passing on the list
of names). Agent i’s neighbor does not pass on Ni; he just keeps it. Roughly speak-
ing, by sending Ni to his neighbor, agent i is committing to the choice. Crucially, this
commitment must be made before i knows any of the random choices other than that
of the agent j of whom i is the neighbor (if i is not the originator). When the origina-
tor gets the message list for the second time (which means that it has gone around the
ring twice), he sends it around the ring the third time. This time each agent i adds his
random choice Ni to the list; agent i’s neighbor j checks that the random number that
i adds to the list is the same as the number that i sent j the previous time. When the
originator gets back the list for the third time, it now includes each agent i’s random
number. The originator then sends the list around the ring for a fourth time. After the
fourth time around the ring, all agents know all the random choices. Each agent then
computes N =

∑n
i=1Ni (mod n), and then takes the agent with the N th highest id

in the set to be the leader. Each time an agent i gets a message, he checks that it is
compatible with earlier messages that he has seen; that is, the second time he gets the
message, all the ids between the originator and his id must be the same; the third time
he gets the message, all the ids on the list must be the same as they were the second
time he saw the message; and the fourth time he gets the message, not only must the list
of ids be the same, but all the random choices that he has seen before can not have been
changed. If the message does not pass all the checks, then agent i sets leader i to ⊥.

Clearly this approach will not work with two agents: The originator’s neighbor will
get the originator’s random choice before sending his own, and can then choose his
number so as to ensure that he becomes leader. (We discuss how this problem can be
dealt with in Section 3.7.) As we now show, this approach gives a fair ex post Nash
equilibrium provided that there are at least three agents. In an asynchronous setting,
nature has much more freedom than in the synchronous setting. Now the outcome may
depend not only on which agents get an initial signal, but also on the order in which
agents are scheduled and on message delivery times. Ex post equilibrium implicitly
views all these choices as being under the control of the adversary; our protocol has the
property that, if all agents follow it, the distribution of outcomes is independent of the
adversary’s choices. However, for the particular protocol we have given, it is easy to see
that, no matter what choices are made by the adversary, we have a Nash equilibrium.
While considering ex post Nash equilibrium seems like a reasonable thing to do in
asynchronous systems (or, more generally, in settings where we can view an adversary



as making choices, in addition to the agents making choices), it is certainly not the only
solution concept that can be considered. (See Section 4.)

What about coalitions? Observe that, for the protocol we have given, a coalition
of size two does have an incentive to deviate. Suppose that i1 is the originator of the
message, and i1 is i2’s neighbor (so that i2 will be the last agent on the list originated
by i1). If i1 and i2 form a coalition, then i2 does not have to bother sending i1 a random
choice on the second time around the ring. After receiving everyone’s random choices,
i2 can choose Ni2 so that he (or i1) becomes the leader. This may be better for both i1
and i2 than having a random choice of leader.

We can get a protocol that gives a k-resilient (ex post) Nash equilibrium if n > 2k.
We modify the protocol above by having each agent i send his random choice k steps
around the ring, rather than just one step (i.e., to his neighbor). This means that i is
committing Ni to k other agents. In more detail, we start just as with the protocol
presented earlier. Each agent who gets a signal to start the protocol sends a message
with his id to his neighbor. The messages are then passed around the ring, with each
agent appending his id. If an agent receives a second message that originated with a
different agent, the message is ignored if the originating agent has a lower id; otherwise
it is passed on. Eventually the originator of the message with the highest id gets back the
message. The originator checks to make sure that the message has n ids, to ensure that
no “bogus” ids were added. The message is then sent around the ring a second time;
along with the message, each agent i (including the sender) sends a random number
Ni. Agent i’s neighbor does not pass on Ni; he just keeps it, while forwarding the
list of ids. When the originator gets the message the third time, he forwards to his
neighbor the random number he received in the previous round (which is the random
number generated by his predecessor on the ring). Again, his neighbor does not forward
the message; instead he sends to his successor the random number he received (from
the originator) on the previous round. At the end of this phase, each agent knows his
random id and that of his predecessor. We continue this process for k phases altogether.
That is, to when the originator gets a message for the third time, he sends this message
(which is the random number chosen by his predecessor’s predecessor) to his successor.
Whenever an agent gets a message, he forwards the message he received in the previous
phases. At the end of the jth phase for j ≤ k, each agent knows the random numbers of
his j closest predecessors. After these k phases complete, the sender sends his random
number to his neighbor; each agent then appends his id to the list, and it goes around
the ring twice. Each agent checks that the random numbers of his k predecessors agree
with what they earlier told him. At the end of this process, each agent knows all the
random numbers. As usual, each agent then computes N =

∑n
i=1Ni (mod n) and

chooses as leader the agent with the N th highest id.

Each time an agent i gets a message, he checks that that it is compatible with earlier
messages that he has seen; that is, the second time he gets the message, all the ids
between the originator and his id must be the same; the third time he gets the message,
all the ids on the list must be the same as they were the second time he saw the message;
and the fourth time he gets the message, not only must the list of ids be the same, but all
the random choices that he has seen before can not have been changed. He also checks
that he has gotten the random choices of his k predecessors on the ring. If the message



does not pass all the checks, then agent i sets leader i to ⊥. Call this protocol for agent
i A-LEADuni

i .

Theorem 3. If n > 2k, then A-LEADuni is a fair, k-resilient ex post equilibrium in
an asynchronous unidirectional ring.

We can also use this approach to get a fair Nash equilibrium in a bidirectional net-
work. If agents know the network orientation, they send all their messages in only one
direction, implementing the protocol in the unidirectional case. If they do not know the
orientation, they first proceed as in the synchronous, exchanging ids to determine who
has the highest id. That agent then chooses a direction for further messages, and again
they can proceed as in the unidirectional case.

3.5 Asynchronous completely connected network
We can use the ideas above to get a protocol for a completely connected network, em-
bedding a unidirectional ring into the network, but now the added connectivity hurts
us, rather than helping. When we embed a ring into the network, each coalition mem-
ber may be able to find out about up to k other random choices. Since now coalition
members can talk to each other no matter where they are on the ring, we must have
n > k(k + 1) to ensure that a coalition does not learn all the random choices before
the last member announces his random choice. We can do better by using ideas from
secure multi-party computation and secret sharing [?].

To do secret sharing, we must work in a finite field; so, for ease of exposition,
assume that n is a power of a prime. As in the synchronous case, agents start by sending
their ids to all other agents, and then exchanging the set of ids received, so that they all
agree on the set of ids in the system. (Of course, if an agent i does not get the same
set of ids from all agents, then i sets leader i = ⊥.) We denote by agent i the agent
with the ith largest id. Each agent i chooses a random value Ni ∈ {0, . . . , n − 1} and
a random degree-(k + 1) polynomial fi over the field Fn = {0, . . . , n − 1} such that
fi(0) = Ni. Then i sends each agent j the message fi(j). Once i receives fj(i) from
all agents j, then i sends DONE to all agents. Once i receives DONE messages from
all agents, i sends si =

∑n
j=1 fj(i) to all agents. After receiving these messages, i will

have n points on the degree-(k + 1) polynomial
∑n

j=1 fj (if no agents have lied about
their values). After i has received the messages sj for all agents j, i checks if there is a
unique polynomial f of degree k + 1 such that f(j) = sj for j = 1, . . . , n. If such a
polynomial f exists, and f(0) = N , then i takes the agent with the N th highest id as
leader; otherwise, i sets leader i to ⊥. Call this protocol A-LEADcc

i .

Theorem 4. If n > 2k then A-LEADcc is a fair, ex post k-resilient equilibrium in an
asynchronous completely connected network.

3.6 A matching lower bound
We now show that Theorems 3 and 4 are the best we can hope for; we cannot find a fair
ex post k-resilient strategy if n ≤ 2k.

Theorem 5. If n ≤ 2k, then there is no fair, ex post k-resilient equilibrium for an asyn-
chronous unidirectional ring (resp., bidirectional ring, completely connected network).



Observe that all the protocols above are bounded; although they involve random-
ization, there are only boundedly many rounds of communication. This is also the case
for the protocol presented in the next section. If we restrict to bounded protocols, using
ideas of [?,?], we can get a stronger result: we cannot even achieve an ε–k-resilient
equilibrium (where agents do not deviate if they can get within ε of the utility they can
get by deviating) for sufficiently small ε.

Theorem 6. If n ≤ 2k, then there exists an ε > 0 such that for all ε′ with 0 < ε′ < ε,
there is no fair, ex post ε′–k resilient equilibrium for an asynchronous unidirectional
ring (resp., bidirectional ring, completely connected network).

3.7 Doing better with cryptography
In the impossibility result of Section 3.6, we implicitly assumed that the agents were
computationally unbounded. For example, even though our proof shows that, in the 2-
agent case, one agent can always do better by deviating, it may be difficult for that agent
to recognize when it has a history where it could do better by deviating. As we now
show, if agents are polynomially-bounded and we make an assumption that is standard
in cryptography, then we can get a fair ε–k-resilient equilibrium in all these topologies,
even in the asynchronous settings, as long as n > k. Our solution is based on the
bit-commitment protocol of Naor [?]. Bit commitment ideas can be traced back to the
coin-flipping protocol of Blum [?].

The key idea of the earlier protocol is that i essentially commits Ni to his neighbor,
so that he cannot later change it once he discovers the other agents’ random choices.
We can achieve essentially the same effect by using ideas from commitment protocols
[?]. In a commitment protocol, an agent Alice commits to a number m in such a way
that another agent Bob has no idea what m is. Then at a later stage, Alice can reveal m
to Bob. Metaphorically, when Alice commits to m, she is putting it in a tamper-proof
envelope; when she reveals it, she unseals the envelope.

It should be clear how commitment can solve the problem above. Each agent i
commits to a random number Ni. After every agent has received every other agents’
commitment, they all reveal the random numbers to each other. This approach will ba-
sically work in our setting, but there are a few subtleties. Naor’s commitment protocol
requires agents to have access to a pseudorandom number generator, and to be polyno-
mially bounded. We can get an ε–k-resilient protocol for ε as small as we like (provided
that Bob is polynomially bounded) by choosing a sufficiently large security parameter
for the pseudorandom number generator, but we cannot make it 0. Thus, we actually do
not get a fair ex post Nash equilibrium, but a fair ex post ε-Nash equilibrium.

In the full paper, we show how the protocol in the synchronous setting for the uni-
directional ring can be modified by using Naor’s commitment scheme to get a protocol
A-LEADps,uni

i that works in the asynchronous setting. There is another subtlety here.
It is not enough for the commitment scheme to be secure; it must also be non-malleable
[?]. Intuitively, this means that each choice made by each agent j must be independent
of the choices made by all other agents. To understand the issue, suppose that the agent
i just before the originator on the ring knows every other agent j’s random choice Nj

before committing to his own random choice; metaphorically, i has an envelope contain-
ing Nj for each agent j 6= i. (This is actually the case in our protocol.) Even if i cannot



compute Nj , if he could choose Ni in such a way that
∑n

i=1Ni (mod n) is 3, he could
then choose his id to be 3. If the scheme were malleable, it would be possible for j’s
choice to depend on the other agents’ choices even if j did not know the other agents’
choices. Indeed, we want not just non-malleability, but concurrent non-malleability. In
the protocol, agents engage in a number of concurrent commitment protocols; we do
not want information from one commitment protocol to be used in another one. We as-
sume for ease of exposition that Naor’s scheme is concurrently pseudo-non-malleable;
not only can no agent guess other agents’ bit with probability significantly greater than
1/2, they also cannot make a choice dependent on other agents’ choices with probabil-
ity significantly greater than 1/2, even running many instances of the protocol concur-
rently. (Note that concurrent non-malleable commitment schemes are known; see [?]
for the current state of the art.)

Theorem 7. For all ε, if agents are polynomially bounded and pseudorandom number
generators exists, then A-LEADps,uni (with appropriately chosen security parameters)
is a fair, ε–k-resilient ex post equilibrium in an asynchronous unidirectional ring, for
all k < n.

The same result holds in the case of a bidirectional ring and completely connected
network; we can simply embed a unidirectional ring into the network, and run A-LEADps,uni .

4 Discussion and Open Questions
The paper illustrates some issues that might arise when trying to apply game-theoretic
approaches to distributed computing problems. Perhaps what comes out most clearly
in the case study is the role of ex post Nash equilibrium, both in the upper bounds and
lower bounds. To us, the most important question is to consider, when applying game-
theoretic ideas to distributed computing, whether this is the most appropriate solution
concept. While it is the one perhaps closest to standard assumptions made in the dis-
tributed computing literature, it is a very strong requirement, since it essentially means
that players have no incentive to deviate even if they know nature’s protocol. Are there
reasonable distributions we can place on adversary strategies? Do we have to consider
them all?

Besides this more conceptual question, there are a number of interesting technical
open problems that remain. We list a few here:

– We have focused on the case that agents are rational. In [?,?], we also considered
agents who were faulty. Our protocols break down in the presence of even one
faulty agent. It is well known that Byzantine agreement is not achievable in a graph
of connectivity ≤ 2f , where f is the number of failures. This suggests that we will
not be able to deal with one faulty agent in a ring. But it may be possible to handle
some faulty agents in a completely connected network.

– We have focused on leader election. It would be interesting to consider a game-
theoretic version of other canonical distributed computing problems. We believe
that the techniques that we have developed here should apply broadly, since many
problems can be reduced to leader election.



– In [?], it is shown that, in general, if we can attain an equilibrium with a mediator,
then we can attain the same equilibrium using cheap talk only if n > 3k. Here we
can use cheap talk to do leader election in the completely connected asynchronous
case (which is implicitly what was assumed in [?]) as long as n > k. Thus, we
beat the lower bound of [?]. There is no contradiction here. The lower bound of
[?] shows only that there exists a game for which there is an equilibrium with a
mediator that cannot be implemented using cheap talk if n ≤ 3k. It would be
interesting to understand what it is about leader election that makes it easier to
implement. More generally, can we refine the results of [?,?] to get tighter bounds
on different classes of problems?

– We have focused on “one-shot” leader election here. If we consider a situation
where leader election is done repeatedly, an agent may be willing to disrupt an
election repeatedly until he becomes leader. It would be of interest to consider
appropriate protocols in a repeated setting.

– We made one important technical assumption to get these results in rings: we as-
sumed that the ring size is known. As we argued earlier, this assumption is critical,
since otherwise an agent can create sybils and increase his chances of becoming
leader. However, this deviation comes at a cost. The agent must keep simulating
the sybils for all future interactions. This may not be worth it. Moreover, ids must
also be created for these sybils. If the name space is not large, there may be an id
clash with the id of some other agent in the ring. This will cause problems in the
protocols, so if the probability of a name clash is sufficiently high, then sybils will
not be created. It would be interesting to do a more formal game-theoretic analysis
of the role of sybils.


