
Brief Announcement: Communication-Efficient
Byzantine Consensus Without a Common Clock?

Danny Dolev1 and Christoph Lenzen2

1 Hebrew University of Jerusalem, 91904 Jerusalem, Israel
2 Massachusetts Institute of Technology, MA 02139 Cambridge, USA

Abstract. Many consensus protocols assume a synchronous system in
which all processes start executing the protocol at once and in the same
round. However, such a common start requires to establish consensus
among the correct processes in the first place, making this assumption
questionable in many circumstances. In this work, we show that it is
possible to consistently initiate consensus instances without a common
round counter. Every correct node can initiate consistent consensus in-
stances, without interfering with other nodes’ instances. Furthermore, by
bounding the frequency at which nodes may initiate instances, Byzan-
tine faulty nodes can be prevented from initiating too many instances.
communication complexity, simulation framework

Consensus is a fundamental fault-tolerance primitive in distributed systems,
which has been introduced several decades ago [?]. Both in asynchronous and
synchronous models, it is a very common assumption that all nodes start to
execute the algorithm at a given point in time.3

We provide a self-stabilizing solution to this problem. In this brief announce-
ment, we assume a synchronous model and a deterministic binary consensus
algorithm. Furthermore, output 0 is supposed to mean “take no action”, bear-
ing no effect on the system; it can thus be used as a save fallback value. All of
these restrictions are dropped in the full paper [?]. Moreover, our results can
be used to derive new algorithms for Byzantine-tolerant self-stabilizing pulse
synchronization (cf. [?]). This is subject to future publication.

Problem Statement. We assume that executions proceed in rounds, where
in each round, each node may perform local computations and send a message
to each other node, where all messages sent by correct nodes are received before
the end of the round. Up to f < n/3 faulty nodes are controlled by an adversary
that can disobey the algorithm in any fashion. In the following we assume that
a consensus protocol P is given. The goal of the initiation problem is to enable
correct nodes to initiate independent executions of P. More precisely:

? This is the authors copy of the paper that will appear in DISC 2013.
3 If in an asynchronous setting nodes unconditionally wake up and join an instance

upon receiving the “first” message, this essentially means to always run any pos-
sible instance, concurrently, resulting in unbounded message complexity in case of
Byzantine faults.



1. Each instance carries a label (r, v) ∈ N×V , where r is a round and v a node.
We say that the corresponding instance is initialized by node v in round r
(note that the nodes do not know r).

2. For each instance, each correct node decides whether it participates in the
instance at the beginning of round r + 2.

3. We assume that for each instance (r, v), each participating node w ∈ V can
compute some input iw(r, v) ∈ {0, 1}.

4. If correct node w participates in instance (r, v), it terminates this instance
at the latest in round r + R + 4 and outputs some value ow(r, v) ∈ {0, 1}.

5. If correct nodes w,w′ participate in instance (r, v), then ow(r, v) = ow′(r, v).
6. If all correct nodes participate in an instance with input b, all output b.
7. If ow(r, v) 6= 0 for some correct node participating in instance (r, v), then all

correct nodes participate in this instance (and output ow(r, v)).
8. If a correct node v initializes instance (r, v), all correct nodes w participate

in this instance with input iw(r + 2, w).

Compared to “classical” consensus, property 4 corresponds to termination, prop-
erty 5 to agreement, and property 6 to validity. Note that validity is replaced by
a safety property in case not all correct nodes participate: property 7 states that
non-zero output is feasible only if no correct node is left out. Finally, property
8 makes sure that all nodes participate in case a non-faulty node initializes an
instance, therefore ensuring validity for such instances.

Theorem 1. Given a synchronous, deterministic R-round consensus protocol
resilient to f faults, we can construct an algorithm solving the initiation problem
that self-stabilizes within R + 4 rounds.

Communication complexity. In case of crash faults, our solution is ef-
ficient in the sense that for each initiated instance, there is an overhead of 4
rounds and 4 broadcasts per node. However, Byzantine faults may result in each
faulty node initiating an instance every round, even if correct nodes are known
to do so very infrequently.

If we decide that correct nodes may initialize an instance at most once within
T rounds, we can force faulty nodes to do so as well. The modified algorithm
can be implemented such that it self-stabilizes in min{T,R + 4} rounds. Note
that the choice of T = R is particularly attractive, enabling nodes to initiate
and complete an instance within 2R + 4 rounds, yet ensuring that never more
than one instance per node causes communication.

References

1. Dolev, D., Hoch, E.N.: Byzantine Self-Stabilizing Pulse in a Bounded-Delay Model.
In: Proc. 9th Symposium on Stabilization, Safety, and Security of Distributed Sys-
tems (SSS). pp. 234–252 (2007)

2. Dolev, D., Lenzen, C.: Communication-Efficient Byzantine Consensus Without a
Common Clock. Computing Research Repository abs/1307.7976 (2013)

3. Pease, M., Shostak, R., Lamport, L.: Reaching Agreement in the Presence of Faults.
Journal of the ACM 27, 228–234 (1980)


