Order Optimal Information Spreading Using Algebraic Gossip

Chen Avin, Michael Borokhovich, Keren Censor-Hillel, Zvi Lotker

Department of Communication Systems Engineering, Ben-Gurion University of the Negev, Israel Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, USA

Israeli Networking Day 2011

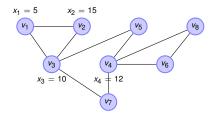
(To be presented in PODC11)

Introduction ●○	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Motivation	1				

- Wireless (sensor) networks and peer-to-peer networks need efficient algorithms for information dissemination.
- In such networks, there is no central management entity, thus local, distributed algorithms are needed.
- Network Coding with gossip algorithms (a.k.a. Algebraic Gossip) will help us to achieve faster information dissemination.
- We look at: *k* nodes want to disseminate their value to all other nodes in the network.

Informatio	n Corcodina	The k Diese	mination Dr	oblom	
Introduction ○●	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary

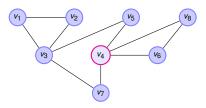
Information Spreading - The k-Dissemination Problem

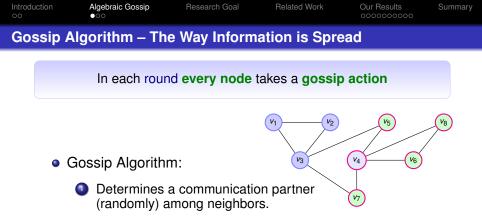


- A network represented by a graph G(V, E). $V = \{v_1, v_2, \dots, v_n\}$
- $k \le n$ values $\{x_1, x_2, \dots, x_k\}$ need to be distributed to all nodes
- A node knows only its neighbors
- Limited messages size

Introduction	Algebraic Gossip ●○○	Research Goal	Related Work	Our Results	Summary
Gossip A	lgorithm – Th	e Way Inform	ation is Spre	ad	

In each round every node takes a gossip action





- Uniform gossip.
- Non uniform gossip.

In each round every node takes a gossip action

 V_1

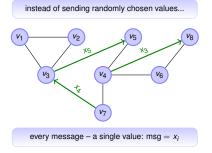
V3

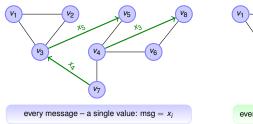
 V_2

V7

- Determines a communication partner (randomly) among neighbors.
 - Uniform gossip.
 - Non uniform gossip.
- 2 Determines how the message is sent.
 - PUSH a message is sent to the partner.
 - PULL a message is sent from the partner.
 - EXCHANGE PUSH and PULL.

Algebraic Gossip is Based on Random Linear Network Coding



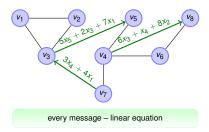


 v_1 v_2 v_3 v_4 v_6 v_4 v_6 every message – linear equation: msg = $\sum a_i x_i$

- Nodes (routers) can manipulate packets.
- All operations are in a field \mathcal{F} so messages size is (almost) the same in both cases.

Algebraic Gossip is Based on Random Linear Network Coding

nodes send random linear combinations

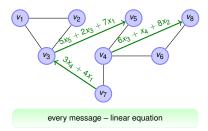


linear equations are stored in a matrix form:

$$\begin{bmatrix} 4 & 3 & 7 & 6 \\ 2 & 0 & 0 & 7 \\ 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 5 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 22 \\ 45 \\ 78 \\ 30 \end{bmatrix}$$

Algebraic Gossip is Based on Random Linear Network Coding

nodes send random linear combinations

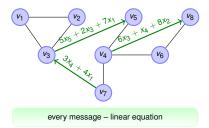


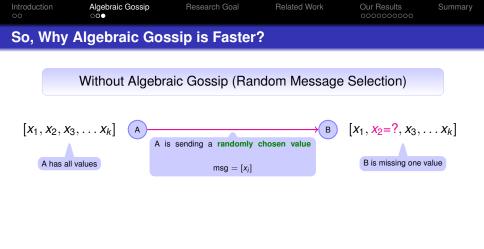
linear equations are stored in a matrix form:

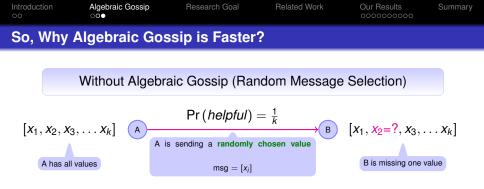
once a node has rank k – it finishes

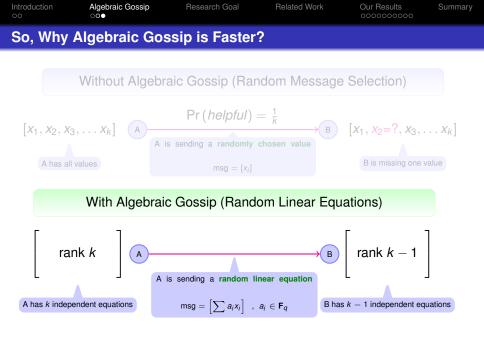
$$\begin{bmatrix} 4 & 3 & 7 & 6 \\ 2 & 0 & 0 & 7 \\ 1 & 1 & 0 & 0 \\ 0 & 2 & 1 & 5 \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 22 \\ 45 \\ 78 \\ 30 \end{bmatrix}$$

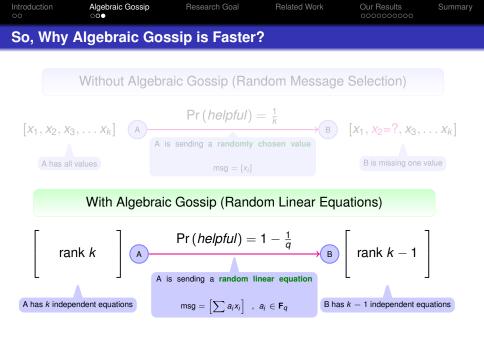
Algebraic Gossip is Based on Random Linear Network Coding

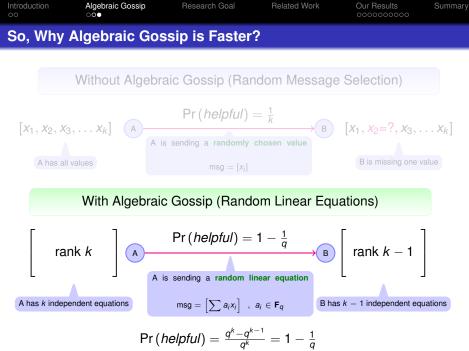






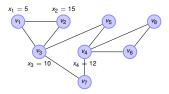






Decearab C	a al Ontimal	Ducto col for		tion Droble	
	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary

Research Goal – Optimal Protocol for *k***-Dissemination Problem**



- 1. Analyze uniform algebraic gossip for k-dissemination
 - Is it optimal?
 - For which graphs?
- 2. Study non-uniform gossip to achieve optimal *k*-dissemination

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Related \	Work on Algeb	oraic Gossip			

 Trivial lower bound – Ω(k), kn messages needed to be delivered so k rounds.

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Related	Nork on Algeh	raic Gossin			

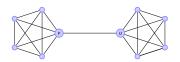
- Trivial lower bound Ω(k), kn messages needed to be delivered so k rounds.
- [Deb et al., 2006] (almost) Tight bound for the complete graph. $\Theta(k)$, for $k \gg \ln^3 n$. (push/pull)

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Related V	Nork on Algeb	oraic Gossip			

- Trivial lower bound Ω(k), kn messages needed to be delivered so k rounds.
- [Deb et al., 2006] (almost) Tight bound for the complete graph. $\Theta(k)$, for $k \gg \ln^3 n$. (push/pull)
- [Mosk-Aoyama and Shah, 2006] n-dissemination. Upper bound for arbitrary graphs, based on *conductance* measure. The bound is not tight. For complete graph: O(n log n), for Ring: O(n²).

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Related V	Nork on Algeb	oraic Gossip			

- Trivial lower bound Ω(k), kn messages needed to be delivered so k rounds.
- [Deb et al., 2006] (almost) Tight bound for the complete graph. $\Theta(k)$, for $k \gg \ln^3 n$. (push/pull)
- [Mosk-Aoyama and Shah, 2006] n-dissemination. Upper bound for arbitrary graphs, based on *conductance* measure. The bound is not tight. For complete graph: O(n log n), for Ring: O(n²).
- [BAL. ISIT10] *n*-dissemination. Upper bound for any graph: *O*(Δ*n*). Tight bound of Θ(*n*) for *constant degree graphs*. Worst case graph for algebraic gossip (barbell): Ω(*n*²).



Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Related V	Nork on Algeb	oraic Gossip			

- Trivial lower bound Ω(k), kn messages needed to be delivered so k rounds.
- [Deb et al., 2006] (almost) Tight bound for the complete graph. $\Theta(k)$, for $k \gg \ln^3 n$. (push/pull)
- [Mosk-Aoyama and Shah, 2006] n-dissemination. Upper bound for arbitrary graphs, based on *conductance* measure. The bound is not tight. For complete graph: O(n log n), for Ring: O(n²).
- [BAL. ISIT10] *n*-dissemination. Upper bound for any graph: *O*(Δ*n*). Tight bound of Θ(*n*) for *constant degree graphs*. Worst case graph for algebraic gossip (barbell): Ω(*n*²).
- Open question: What graph property capture the stopping time?

Polotod W	lark on Algoh	raia Gasain			
Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary

Related Work on Algebraic Gossip

- [Haeupler. STOC11] k-dissemination. Conductance and expansion based arguments. Two parameters: γ and λ.
 - Tight bound for the case $k = \Omega(n)$: $\Theta(n/\gamma)$
 - For k < o(n): $O(k/\gamma + \log^2 n/\lambda)$. The bound is not tight for e.g., line: $O(k + n \log^2 n)$, grid: $O(k + \sqrt{n} \log^2 n)$, binary tree: $O(k + n \log^2 n)$
 - Gave also results for dynamic networks

 Introduction
 Algebraic Gossip
 Research Goal
 Related Work
 Our Results
 Summary

 00
 00
 00
 0000000000
 0000000000
 Summary

 1st Result:
 k-Dissemination With Uniform Algebraic Gossip
 Summary

Theorem 1

For any graph with *n* nodes, diameter *D*, and maximum degree Δ , stopping time of **uniform** algebraic gossip is $O(\Delta(k + \log n + D))$ with high probability.

1st Result: *k*-Dissemination With Uniform Algebraic Gossip

Theorem 1

For any graph with *n* nodes, diameter *D*, and maximum degree Δ , stopping time of **uniform** algebraic gossip is $O(\Delta(k + \log n + D))$ with high probability.

Corollary 1

For any graph with *n* nodes and with **constant** maximum degree, stopping time of **uniform** algebraic gossip is $\Theta(k + D)$ in the **synchronous** time model.

1st Result: *k***-Dissemination With Uniform Algebraic Gossip**

Theorem 1

For any graph with *n* nodes, diameter *D*, and maximum degree Δ , stopping time of **uniform** algebraic gossip is $O(\Delta(k + \log n + D))$ with high probability.

Corollary 1

For any graph with *n* nodes and with **constant** maximum degree, stopping time of **uniform** algebraic gossip is $\Theta(k + D)$ in the **synchronous** time model.

• Tight for e.g., Line, Cycle, Grids, Binary Trees, etc.

1st Result: *k*-Dissemination With Uniform Algebraic Gossip

Theorem 1

For any graph with *n* nodes, diameter *D*, and maximum degree Δ , stopping time of **uniform** algebraic gossip is $O(\Delta(k + \log n + D))$ with high probability.

Corollary 1

For any graph with *n* nodes and with **constant** maximum degree, stopping time of **uniform** algebraic gossip is $\Theta(k + D)$ in the **synchronous** time model.

- Tight for e.g., Line, Cycle, Grids, Binary Trees, etc.
- The result holds for any gossip variation: Push, Pull, Exchange.

1st Result: *k*-Dissemination With Uniform Algebraic Gossip

Theorem 1

For any graph with *n* nodes, diameter *D*, and maximum degree Δ , stopping time of **uniform** algebraic gossip is $O(\Delta(k + \log n + D))$ with high probability.

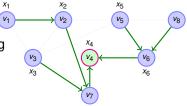
Corollary 1

For any graph with *n* nodes and with **constant** maximum degree, stopping time of **uniform** algebraic gossip is $\Theta(k + D)$ in the **synchronous** time model.

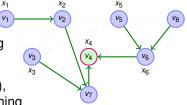
- Tight for e.g., Line, Cycle, Grids, Binary Trees, etc.
- The result holds for any gossip variation: Push, Pull, Exchange.
- When does the uniform algebraic gossip perform bad? e.g., $\Omega(kn)$ for a barbell graph.

2nd Result: *k*-Dissemination With TAG

 Construct a spanning tree of the graph using some gossip spanning tree protocol S.



- Construct a spanning tree of the graph using some gossip spanning tree protocol S.
 - The stopping time of S is t(S), and the diameter of the spanning tree is d(S).



X1

v₃

 X_3

X2

V2

 V_7

 X_5

 V_5

 V_6

 x_6

V₈

- Construct a spanning tree of the graph using some gossip spanning tree protocol S.
 - The stopping time of S is t(S), and the diameter of the spanning tree is d(S).
 - Spanning tree can be constructed e.g., by a randomize broadcast protocol, or more sophisticated method.

X1

V₃

 X_3

X2

V2

 X_5

 V_5

 V_6

v₈

- Construct a spanning tree of the graph using some gossip spanning tree protocol S.
 - The stopping time of S is t(S), and the diameter of the spanning tree is d(S).
 - Spanning tree can be constructed e.g., by a randomize broadcast protocol, or more sophisticated method.
- Once the tree is constructed, every node knows its parent.

X1

V₃

 X_3

X2

V2

 V_7

 X_5

 V_5

 V_6

 x_6

V₈

- Construct a spanning tree of the graph using some gossip spanning tree protocol S.
 - The stopping time of S is t(S), and the diameter of the spanning tree is d(S).
 - Spanning tree can be constructed e.g., by a randomize broadcast protocol, or more sophisticated method.
- Once the tree is constructed, every node knows its parent.
- Perform algebraic gossip, where every node uses a single communication partner – its parent.
 Notice, we have here **non-uniform** algebraic gossip.

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
2nd Res	ilt: k-Dissemi	nation With T	۵G		

Theorem 2

For any graph with *n* nodes,

stopping time of TAG protocol is $O(k + \log n + d(S) + t(S))$ with high probability, where:

t(S) – stopping time of the gossip spanning tree protocol S.

d(S) – diameter of the spanning tree created by S.

 Introduction
 Algebraic Gossip
 Research Goal
 Related Work
 Our Results
 Summary

 Oo
 Oo
 Oo
 Oo
 Oo
 Oo
 Oo
 Oo

 2nd Result:
 k-Dissemination With TAG
 Vith TAG
 Vith TAG
 Vith TAG
 Vith TAG

Theorem 2 For any graph with *n* nodes, stopping time of TAG protocol is $O(k + \log n + d(S) + t(S))$ with high probability, where: t(S) – stopping time of the gossip spanning tree protocol S. d(S) – diameter of the spanning tree created by S.

Corollary 2 For any graph with *n* nodes, and for $k = \Omega(k)$, TAG protocol is **order optimal** for *k*-dissemination task, i.e., the stopping time is $\Theta(n)$ with high probability.

Introd	uc	tic	

Algebraic Gossip

Research Goal

Related Work

Our Results

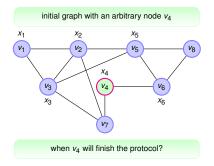
Summary

Proof Overview

k-dissemination with uniform algebraic gossip

Introduction Algebraic Gossip Research Goal Related Work Our Results Summary

Proof Overview – Converting a Graph to a System of Queues



Introduction Algebra

Algebraic Gossip

Research Goal

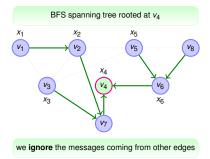
Related Work

Our Results

Summary

Proof Overview – Converting a Graph to a System of Queues



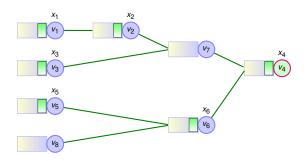


Introduction Algebraic Gossip Research Goal Related Work

Our Results

Summary

Proof Overview – Converting a Graph to a System of Queues



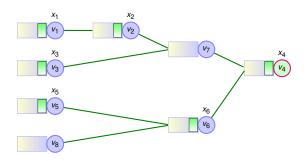
customers are helpful messages

Introduction Algebraic Gossip Research Goal Related Work

Our Results

Summary

Proof Overview – Converting a Graph to a System of Queues



customers are helpful messages

initially, some nodes have helpful messages

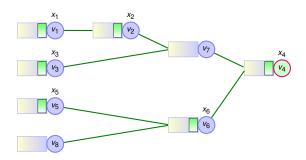
Introduction Algebraic Gossip Research Goal Related

Related Work

Our Results

Summary

Proof Overview – Converting a Graph to a System of Queues



customers are helpful messages

initially, some nodes have helpful messages

customer arriving at some node, increases its rank by 1

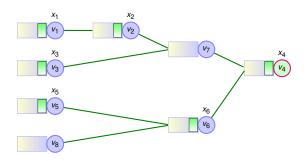
Introduction Algebraic Gossip Research Goal

Related Work

Our Results

Summary

Proof Overview – Converting a Graph to a System of Queues



customers are helpful messages

initially, some nodes have helpful messages

customer arriving at some node, increases its rank by 1

once v₄ receives k helpful messages it finishes

Introduction Algebraic Gossip Research Goal

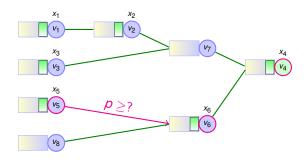
Goal

Related Work

Our Results

Summary

Proof Overview – Converting a Graph to a System of Queues



customers are helpful messages

initially, some nodes have helpful messages

customer arriving at some node, increases its rank by 1

once v4 receives k helpful messages it finishes

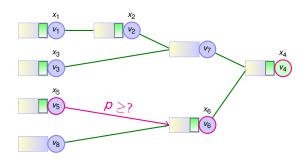
Introduction Algebraic Gossip Research Goal

Related Work

Our Results

Summary

Proof Overview – Converting a Graph to a System of Queues



customers are helpful messages

initially, some nodes have helpful messages

customer arriving at some node, increases its rank by 1

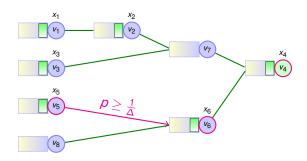
once v4 receives k helpful messages it finishes

in a given round, v5 wakes up exactly once

Research Goal **Related Work** Introduction Algebraic Gossip

Our Results 00000000000 Summary

Proof Overview – Converting a Graph to a System of Queues



in a given round, v5 wakes up exactly once

 v_5 chooses v_6 as a partner w.p. $\geq \frac{1}{\Lambda}$

customers are helpful messages

initially, some nodes have helpful messages

customer arriving at some node, increases its rank by 1

once v_4 receives k helpful messages it finishes

Introduction Algebraic Gossip Rese

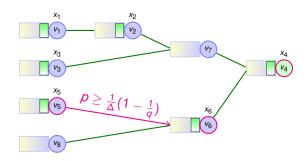
Research Goal

Related Work

Our Results

Summary

Proof Overview – Converting a Graph to a System of Queues



 Introduction
 Algebraic Gossip

 00
 000

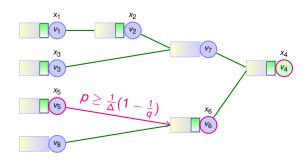
Research Goal

Related Work

Our Results

Summary

Proof Overview – Converting a Graph to a System of Queues



Algebraic Gossip

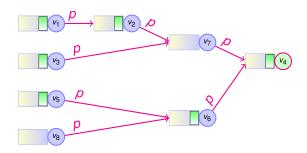
Research Goal

Related Work

Our Results

Summary

Proof Overview – Exponential Servers Instead of Geometric



Algebraic Gossip

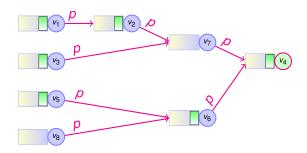
Research Goal

Related Work

Our Results

Summary

Proof Overview – Exponential Servers Instead of Geometric



If $X \sim \text{Geom}(p)$, and $Y \sim \text{Exp}(p)$, then: $\Pr(Y > t) \ge \Pr(X > t)$

Algebraic Gossip

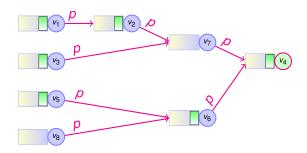
Research Goal

Related Work

Our Results

Summary

Proof Overview – Exponential Servers Instead of Geometric



If $X \sim \text{Geom}(p)$, and $Y \sim \text{Exp}(p)$, then: $\Pr(Y > t) \ge \Pr(X > t)$

so, exponential server is slower than geometric

Algebraic Gossip

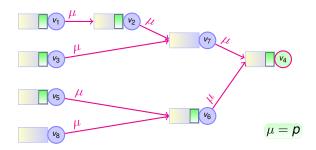
Research Goal

Related Work

Our Results

Summary

Proof Overview – Exponential Servers Instead of Geometric

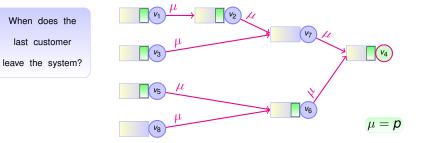


If $X \sim \text{Geom}(p)$, and $Y \sim \text{Exp}(p)$, then: $\Pr(Y > t) \ge \Pr(X > t)$

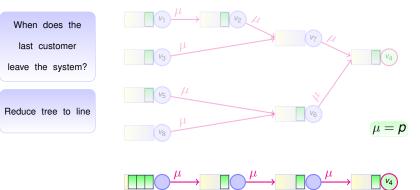
so, exponential server is slower than geometric

we replace servers, thus increasing the stopping time

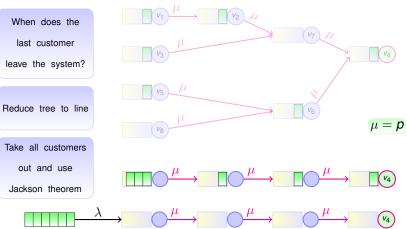
Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Line is S	lower Than Tr	ee			



Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Line is SI	ower Than Tre	ee			



Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Line is Slo	ower Than Tre	e			



Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Line of D	Queues				

For state
$$(k_1, k_2, ..., k_n)$$
, and utilization $\rho_i = \frac{\lambda_i}{\mu_i}$: $\pi(k_1, k_2, ..., k_n) = \prod_{i=1}^n \rho_i^{k_i} (1 - \rho_i)$.

Introduction 00	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Line of D	Queues				

For state
$$(k_1, k_2, ..., k_n)$$
, and utilization $\rho_i = \frac{\lambda_i}{\mu_i}$: $\pi(k_1, k_2, ..., k_n) = \prod_{i=1}^n \rho_i^{k_i} (1 - \rho_i)$.

• By setting $\lambda = \mu/2$, we obtain: $\rho < 1$.

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Line of D	Queues				

For state
$$(k_1, k_2, ..., k_n)$$
, and utilization $\rho_i = \frac{\lambda_i}{\mu_i}$: $\pi(k_1, k_2, ..., k_n) = \prod_{i=1}^n \rho_i^{k_i} (1 - \rho_i)$.

- By setting $\lambda = \mu/2$, we obtain: $\rho < 1$.
- We add dummy customers according to stationary distribution. So, the real customers see stationary distribution.

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Line of D	Queues				

For state
$$(k_1, k_2, ..., k_n)$$
, and utilization $\rho_i = \frac{\lambda_i}{\mu_i}$: $\pi(k_1, k_2, ..., k_n) = \prod_{i=1}^n \rho_i^{k_i} (1 - \rho_i)$.

- By setting $\lambda = \mu/2$, we obtain: $\rho < 1$.
- We add dummy customers according to stationary distribution. So, the real customers see stationary distribution.
- Time by which all the customers enter the system is O((k + log n)/μ), since λ = μ/2, and log n is needed for high probability.

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Line of D	Queues				

For state
$$(k_1, k_2, ..., k_n)$$
, and utilization $\rho_i = \frac{\lambda_i}{\mu_i}$: $\pi(k_1, k_2, ..., k_n) = \prod_{i=1}^n \rho_i^{k_i} (1 - \rho_i)$.

- By setting $\lambda = \mu/2$, we obtain: $\rho < 1$.
- We add dummy customers according to stationary distribution. So, the real customers see stationary distribution.
- Time by which all the customers enter the system is O((k + log n)/μ), since λ = μ/2, and log n is needed for high probability.
- Time to cross one MM1 queue in the stationary state is exponentially distributed with $\mu \lambda = \mu/2$.

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Line of D	Queues				

For state
$$(k_1, k_2, ..., k_n)$$
, and utilization $\rho_i = \frac{\lambda_i}{\mu_i}$: $\pi(k_1, k_2, ..., k_n) = \prod_{i=1}^n \rho_i^{k_i} (1 - \rho_i)$.

- By setting $\lambda = \mu/2$, we obtain: $\rho < 1$.
- We add dummy customers according to stationary distribution. So, the real customers see stationary distribution.
- Time by which all the customers enter the system is O((k + log n)/μ), since λ = μ/2, and log n is needed for high probability.
- Time to cross one MM1 queue in the stationary state is exponentially distributed with $\mu \lambda = \mu/2$.
- So, the time needed to cross D MM1 queues is $O((d + \log n)/\mu)$, where log n is needed for high probability.

Last customer leaves after: $O((k + \log n + D)/\mu) = O(\Delta(k + \log n + D))$ rounds

Algebraic Gossip

Research Goal

Related Work

Our Results

Summary

Proof Overview

k-dissemination with TAG Tree-Based Algebraic Gossip

- The proof is also based on analyzing a tree network of queues
- The uniform gossip bound is

 $O(\Delta(k + \log n + D))$

The TAG based bound is:

$$O(t(\mathcal{S}) + k + \log n + d(\mathcal{S}))$$

- In the synchronous time model t(B) ≥ d(B). (B is a broadcast that builds a tree)
- For Round Robin Broadcast, t(B_{RR}) = O(n) so for k = Ω(n) the stopping time of TAG is Θ(n)

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Summary					

- When does uniform algebraic gossip is order optimal?
 - In graphs with constant maximum degree
 - But not only, e.g., complete graph. so when exactly?

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Summary					

- When does uniform algebraic gossip is order optimal?
 - In graphs with constant maximum degree
 - But not only, e.g., complete graph. so when exactly?
- When does TAG is order optimal?
 - When $k = \Omega(n)$
 - In graphs with large weak conductance (see paper)
 - When else? What spanning algorithm to use?

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
Summary					

- When does uniform algebraic gossip is order optimal?
 - In graphs with constant maximum degree
 - But not only, e.g., complete graph. so when exactly?
- When does TAG is order optimal?
 - When $k = \Omega(n)$
 - In graphs with large weak conductance (see paper)
 - When else? What spanning algorithm to use?

• Thank you!

Introduction	Algebraic Gossip	Research Goal	Related Work	Our Results	Summary
	Deb, S., Médard,	M., and Cho	ute, C. (2006)		

Algebraic gossip: a network coding approach to optimal multiple rumor mongering.

IEEE Transactions on Information Theory, 52(6):2486–2507.

Mosk-Aoyama, D. and Shah, D. (2006). Information dissemination via network coding. In *ISIT*, pages 1748–1752.