
Monaural Azimuth Localization Using Spectral Dynamics of Speech

Roi Kliper1, Hendrik Kayser2, Daphna Weinshall1, Jörn Anemüller2 and Israel Nelken1

1Interdisciplinary Center for Neural Computation, Hebrew University of Jerusalem, Israel
2Carl von Ossietzky University, Oldenburg, Germany

kliper@cs.huji.ac.il, hendrik.kayser@uni-oldenburg.de

Abstract

We tackle the task of localizing speech signals on the hor-
izontal plane using monaural cues. We show that monaural
cues as incorporated in speech are efficiently captured by ampli-
tude modulation spectra patterns. We demonstrate that by using
these patterns, a linear Support Vector Machine can use direc-
tionality related information to learn to discriminate and clas-
sify sound location at high resolution. We propose a straightfor-
ward and robust way of integrating information from two ears:
treating each ear as an independent processor and integrate the
information at the decision level by doing that ambiguity is to a
large extent resolved.
Index Terms: Speech localization, Amplitude modulation,
Monaural

1. Introduction
The ability to perform speech and speaker localization is an
important capacity of daily human communication. Accurate
speech localization is a fundamental building block for ad-
vanced speech processing that handle problems such as stream
segregation, source separation, source enhancement and denois-
ing, ultimately producing increased speech intelligibility.

This paper employs Amplitude Modulation Spectra (AMS)
patterns as representation of speech signals to perform monau-
ral localization. While the efficacy of this representation for
speech recognition has already been demonstrated, we show
that these features can simultaneously capture location informa-
tion included in a non-specific speech signal due to direction-
dependent filtering by the human head and pinnae. We show
that the existence of this information allows for monaural lo-
calization. We propose and demonstrate the idea of treating the
two ears as two parallel processors: each processing monaural
information and reaching a hypothesis about the location of a
given source. Integration between the two ears is achieved, in
this view, at the level of the decision rather then at the level of
analysis.

A sound wave generated by an external source is diffracted
by the head and external ear (as well as other objects in the en-
vironment). The resulting changes in the temporal and intensive
characteristics of the acoustical stimuli provide cues about the
locus of the sound relative to the head. These localization cues
have traditionally been divided to Binaural cues and Monaural
cues and various researches have explored their relative efficacy
in determining sound localization. Recent efforts has been de-
voted into understanding the integration of these different types
of information, these efforts have spread from physiological re-
search through psychoacoustic research to application derived
research.

1.1. Binaural localization

Binaural hearing is a well established source of information for
the localization of sound sources in space, building upon two
distinctive properties of incoming sounds: interaural time dif-
ferences (ITDs) and interaural level differences (ILDs). These
differences arise from the fact that the two ears are separated by
both space and an acoustically opaque mass (the head). Mod-
eling of the processing of these cues build upon carefully con-
structed coincidence detectors, and are supported by both phys-
iological and psychoacoustic findings.

While such models for sound localization are both elegant
and robust these cues are limited in their efficient frequency
band [1] and are presenting a major challenge to the integrative
capabilities of the nervous system requiring very high accuracy
in highly structured labeled lines. Furthermore, to the extent
that the head and ears are symmetrical, interaural differences
should provide no cue to the vertical location of a sound source
on the median plane nor will it contribute to the resolution of the
front back confusion. While, acknowledging these limitations,
artificial system designers have favored models inspired by the
binaural models for sound localization. Some challenge to the
primacy of binaural localization cues have also been made (e.g.
[2]); however, the role of monaural cues in sound localization
is, to a great extent, only brought into focus in situations where
binaural differences are nonexistent.

1.2. Monoaural localization

For a single ear, the changes in temporal and intensive charac-
teristic of the signal are generally described by head related im-
pulse response (HRIR), a generalization of which are Monaural
Room Impulse Reposes (MRIRs). This parsimonious descrip-
tion captures all the directional influence a signal may have suf-
fered on its way to the ear drum. For example, to some abstrac-
tion, the influence of the pinnae is to produce multiple paths to
the ear canal, among them a direct path and a reflection from
the structure of the pinnae. The addition of a direct path with a
delayed path of the same signal produces a comb filtered spec-
trum containing a characteristic structure of peaks and notches.
The pinnae thus, acts as a directionally dependent filter which
strongly affects the HRIR at high frequencies.

Attempts to explain and exploit monaural cues for sound
localization have been made by several researches. Gener-
ally speaking, these researches really on the differential way
in which the HRIR effects the spectrum of the input signal and
require some interaction and/or comparison between different
spectral bands of the signal. In this respect, these researches
compel to the fact that the signal appearing at the eardrum has
no reference point but itself. A second requirement for monau-
ral localization is some statistical model of the source signal or
equivalently some restrictions to its statistical properties; direc-



tional sensitivity in itself cannot, be exploited for general sig-
nal localization. This is since the system under general signal
assumptions is underdetermined and may result in ambiguous
localization as each sound signal can be manipulated such that
it is perceived as coming from all other locations. Assuming
that the source to be located is the statistically restricted set of
speech signals is one such step.

In monaural localization of sound, and more specifically in
monaural localization of speech one should bare in mind that in-
telligibility and localization often represent competing require-
ments where intelligibility requires minimum distortion while
localization requires direction dependent distortions. Choosing
AMS patterns as a representation of speech (see Section 2.3)
highlights directional information while containing speech re-
lated information thus allowing a good balance of the intelligi-
bility - distortion equilibrium.

1.3. Physiological and psychoacoustic findings

Psychoacoustic experiments have demonstrated monaural local-
ization of a sound source on both the horizontal and the verti-
cal planes [1]. In a recent paper Shub et al [3] have demon-
strated the ability of human subjects to monaurally discriminate
and classify different directions. Our experiments follow their
paradigm and show that by employing a simple machine learn-
ing approach these results can be reproduced and surpassed (see
Section 3.2).

Chase & Young [4] explored how different acoustic local-
ization cues are coded in the inferior Colliculus (IC). The ra-
tional was that the IC integrates binaural cues (ITD, ILD) and
monaural cues (spectral information). Their results suggest that
different cues converge to different degrees in different neurons:
ITD and ILD are coded most strongly by spike rate while the
spectral envelope of the signal is coded by the temporal pat-
tern of the spikes. Localization in the vertical plane is often
thought to be a purely monaural ability but recent psychophys-
ical studies [5] have shown that both ears are used to the de-
termine the vertical elevation, with the relative contribution of
each ear varying with the horizontal location. Our binaural ex-
periment successfully implements this idea for localization in
the horizontal plane (see Section 3.2).

2. Experimental setting
2.1. Data

Experiments were carried out using a well known speech
database (see Section 2.1.1) and a database of HRIRs (see Sec-
tion 2.1.2), these together provide a rich but reproducible setting
while allowing control over the experimental conditions.

2.1.1. Speech

Speech data was taken from the TIMIT Speech corpus [6] which
provides recordings of 630 different speakers each reading ten
phonetically rich sentences recorded at sampling rate of 16 kHz.
The segmentation into train and test data was adopted from the
corpus. Both of the sets were further divided into direction spe-
cific subsets sampled randomly from the dataset and concate-
nated. No intersection between any of the subsets was allowed.

2.1.2. Head-related impulse responses

A database of head-related impulse responses [7] was employed
to introduce directional characteristics to the speech data. The
database provides, among others, HRIRs measured on an head

and torso simulator equipped with in-ear microphones under
anechoic conditions. The azimuthal resolution is 5◦ covering
the full azimuthal plane. HRIRs from an elevation angle of 0◦

(no elevation) and a radius of 3m were taken. The initial delay
contained in the HRIRs was removed and the remaining impulse
response was cut to a length of 10ms.

The audio data was convolved with the MRIR correspond-
ing to a specific direction, resulting in monaural sound signals
containing the input to either the left or the right ear. All data
was scaled to unit variance to compensate for overall level dif-
ferences between signals according to different directions. For
experiments carried out in the presence of diffuse noise, pink
random noise was generated artificially. The noise signal was
convolved with each direction’s HRIR from the full circle ex-
cept for the one the target speech source was impinging from -
well approximating an isotropic noise field. After convolution,
the noise was added to the directional speech source with the
desired SNR. The coordinate system for the azimuth angles is
relative to the center of the horizontal plane and is 0◦ in front of
the head −90◦ and 90◦ in front of the left and right ear.

2.2. Classification

Linear support vector machines [8] (SVMs) were employed
to conduct training of discriminative models using AMS fea-
tures. The task consist of either binary classification, where
a model was trained to discriminate between the directions of
two speech sources, or a multi-class classification task, where a
model was trained to estimate the absolute direction of an im-
pinging speech source in a 1 vs. all approach given a set of more
than two directions.

2.3. AMS features and their extraction

Following the structure of the temporal envelope has shown to
be crucial in human and machine recognition of speech. As a
consequence, low modulation frequencies were employed for
several tasks in speech processing and acoustic scene analysis.
These features deliver a robust and generalized representation of
speech signals and are known to be largely invariant to speaker
and channel variations such as pitch and spectral distortions in
the input signal. They showed to be robust representation of
speech even in challenging conditions, e.g. in speech detection
experiments [9]. The features that are employed here are based
on AMS [10] and are calculated as follows (cf. Figure 1):

The amplitude modulation spectrogram analyzes sound sig-
nals with respect to their modulation content by decomposing
them into time, frequency and modulation-frequency compo-
nents. It is computed by first extracting the spectral envelopes
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Figure 1: AMS calculation flow: Extraction of amplitude modula-
tion features generates a 3-dimensional representation of the input. For
each 100ms signal segment a 256 × 9 pattern is extracted, overlap of
neighboring patterns is 50ms.



of the acoustic signal via an short-term Fourier Transformation
(STFT) with a 32ms Hamming window with a shift of 2ms fol-
lowed by computation of the log-energy. To extract modulation
energy in each spectral band, another STFT is applied employ-
ing a 100ms Hamming window with a shift of 50ms.

Finally, the log-energy is computed again and the DC-
component of the modulation spectrum, containing the acous-
tic frequency spectrum of the input signal, and the first acous-
tic frequency component of the resulting AMS pattern are re-
moved to disregard spectral properties of the signal. Modula-
tion frequencies above 100Hz are also removed. The resulting
AMS spectra for each time frame span 256 frequency bands
from 32 − 8000Hz and modulation frequency bands covering
the range from 20Hz to 100Hz with a resolution of 10Hz. The
employed range patterns lie above modulation frequencies used
in speech recognition and detection.

3. Experiments and results
In the following we present first, experiments of a discrimina-
tion task which is a popular task in psychoacoustics used to
evaluate minimum audible difference. We then show results of
multi-direction classification experiments under different noise
conditions. Finally, results of a straightforward winner takes all
formalism of binaural integration are presented.

3.1. Minimum audible angle difference

In this experiment a set of models for binary classification was
trained to discriminate between two sound sources s1 and s2
impinging from different directions. s1 (target) was located at
the positions 0◦ to −180◦ in steps of −60◦ while the angular
position of s2 (reference) is varied with a resolution of 5◦ on
the same half circle. The results are shown in Figure 2.

The superiority of the contralateral monaural cues over the
ipsilateral can be read from the consistent improved accuracy
of the right ear on the left hemisphere (blue line above red line
in e.g. Figure 2 B). Contralateral cues achieve a nearly perfect
performance discriminating the target from references around it
at a resolution of 5◦. This makes sense as heavier distortion has
been introduced in the contralateral case thus allowing better di-
rectional sensitivity. We note that, as we normalized the energy
the eardrum, our results cannot be accounted for by referring to
level differences (which will appear in real scenarios). One can
also note (1) The appearance of moderate front to back confu-
sion in the cases where s1 is located exactly in front or behind
the listener (see Figure 2 A,D). (2) Increased performance in the
frontal half space. (compare Figure 2 B,C). Similar discrimina-
tion characteristics can be found in psychoacoustic monaural
localization experiments carried out in [3], however while their
experiment was done with stimuli ten times longer our results
surpass theirs.

3.2. Localization of sound sources in the presence of noise
and the integration of two ears

In the multi-class classification experiment we first evaluated
the influence of averaging the features over classification per-
formance. For that, a sliding average over time was applied
to the AMS patterns before models were trained. Averaging
was conducted with a sliding window of length ranging from
0 s (no averaging) to 5 s in steps of 0.25 s. Furthermore robust-
ness against diffuse pink noise was investigated: noise was in-
troduced as described in Section 2.1 with an SNR varying from
10 dB to 60 dB in steps of 10 dB, and infinity.
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Figure 2: Binary classification: The accuracies gained by the Right
(contralateral) ear are shown in dotted blue and by the Left (ipsilat-
eral) ear are shown in dashed red. Four target signals where classified
against a reference signal drawn one at a time from the left hemisphere
at a 5◦ resolution. Performance in terms of testing accuracy is shown
on the radial axis. Position of reference signals are shown on the circu-
lar axis. Target signal is pointed by a black arrow.

Figure 3 displays the results of this experiment for 11 direc-
tions distributed symmetrically and equally spaced around 0◦

between −150◦ and 150◦. The accuracies gained by the left and
the right ear independently, in addition to the the performance
achieved by the integration of information from both ears are
shown. For each ear, one model was trained and tested on one
condition given by the SNR and length of averaging. Different
noise condition appear in Figure 3 A-G and show a clear de-
pendency on noise condition ranging from chance level (9%) at
SNR 10 dB to 60% for a single ear and 81.2% for the combina-
tion of to ears where no noise is present (inf). Average accuracy
as dependent on the averaging length is read against the x-axis
in each figure and shows a global maximum at around 1 s sug-
gesting that longer averaging windows are erasing localization
information. Integration of the information from the two ears
was done in a winner takes all manner where the more confi-
dent ear was taken as the reliable one. Confidence was assumed
to be positively correlated to the margin from the model’s sep-
arating hyperplane. Integration of the two ears achieves up to
20% boost in average accuracy.

Besides the overall average testing accuracy the confusion
between different directions is a significant figure of merit. The
confusion matrices obtained for a complete circle (−180◦ to
150◦ in steps of 30◦) from the left and the right ear and from
the integration of both ears are shown in Figure 4. Clear prefer-
ence for the contralateral ear can be read in Figure 4 A B. The
Ipsilateral ear regains classification efficiency only when angu-
lar distance is larger then 60◦ (allowing for directional cues to
come to effect). Integration on the information from the two
ears solves most of the confusion, leaving a slightly increases
confusion around the center supposably due to noise in the con-
fidence of the classifiers.
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Figure 3: Multi-class classification at different SNRs: A-G: Perfor-
mance of the localization on 11 directions for different SNRs and av-
eraging times of the features. Blue and red lines denote the accuracy
achieved by the single ears, black the performance of the integrated ap-
proach. H: Average and standard deviation of accuracy for each SNR.

4. Discussion and conclusions
We have demonstrated that amplitude modulation spectra pat-
terns in modulation frequencies above those commonly used
for other speech applications are efficient in monaural speech
localization. Our results suggest that under clean and moderate
noise conditions, accurate speech localization can be achieved
using the information obtained by a single ear, without distort-
ing intelligibility related information. The experiments showed
a maximal performance for an integration time of around 1 s,
which corresponds to the choice of parameters in monaural lo-
calization experiments conducted by Shub et al. Keeping in
mind, that the analysis of the stimuli was done using a rather
technical approach, further investigation incorporating auditory
models as a preprocessing stage is a natural step. While monau-
ral localization was proven to be feasible, the integration of in-
formation processed parallel in the two ears is highly beneficial
as each ear performs better on the contralateral hemisphere. Re-
lating to physiological research we hypothesize that the IC may
host such an integration mechanism.

This success in speech source localization highlight the
potential use of the described method in the context of other
speech processing applications such as source separation, sig-
nal to noise ratio estimation, and noise reduction. Drawing to
the design of artificial systems, the implementation of such an
approach in ear-worn hearing assistive systems is an interesting
application as it does not necessarily demand for a technically
costly cross-linking in the case of a bilateral means.
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