ACM Symposium on Solid Modeling and Applications (2004)
G. Elber, N. Patrikalakis, P. Brunet (Editors)

Integrated Feature-Based and Geometric
CAD Data Exchange

Steven SpitzT and Ari Rappoporti

Abstract

Data exchange between CAD systems is an extremely important solid modeling concept, fundamental for both the theory of the
field and its practical applications. The two main data exchange (DE) paradigms are geometric and parametric DE. Geometric
DE is the ordinary method, in which the boundary representation of the object is exchanged. Parametric (or feature-based) DE
is a novel method where, given a parametric history (feature) graph in a source system, the goal is to construct a graph in the
target system that results in similar geometry while preserving as much parametric information as possible. Each method has
its uses and associated problems.

In this paper, we introduce Geometry Per Feature (GPF), a method for integration of parametric and geometric data exchange
at the single part (object) level. Features can be exchanged either parametrically or geometrically, according to user guidelines
and system constraints. At the target system, the resulting model is represented using a history tree, regardless of the amount
of original parametric features that have been rewritten as geometric ones. Using this method we maximize the exchange of
overall parametric data and overcome one of the main stumbling blocks for feature-based data exchange.

Categories and Subject Descriptors (according to ACM CCS): D.2.12 [Interoperability]: data mapping; 1.3.5 [Computational Ge-
ometry and Object Modeling]: Breps, CSG, solid, and object representations, geometric languages and systems; 1.3.6 [Method-

ology and Techniques]: graphics data structures and data types, languages, standards;

1. Introduction

Data exchange (DE) is a central problem in geometric and solid
modeling. It is important in practice because it is the major way
for achieving interoperability [Rappoport03]. It is important for the
theory of the field because it sheds light on how representations
can be well defined and because it is a representation conversion
problem.

The established approach for data exchange, both in theory and
in practice, is geometric DE, where the boundary representation
(Brep) of the object is transferred from a source to a target sys-
tem. The dominant way to do this today is through the STEP, IGES
and VDA standards [Bloor95]. Geometric DE is rather reliable, al-
though in many cases it results in non-solids (unstitched bound-
aries) due to geometric tolerancing problems. However, its main
drawback is the fact that it does not support today’s most com-
mon design paradigm, feature based design, and hence is lacking
in terms of its support for collaborative engineering.

All modern CAD systems are based on the feature based (FB)
design paradigm, also called parametric design and history based
design [Hoffmann93]. Feature based data exchange (FBDE) is thus
highly desirable. In FBDE, given a parametric history (feature)

T Profi ci ency Inc.
1 The Hebrew University of Jerusalem and Profi ciency Ltd.

(© The Eurographics Association 2004.

graph in a source system, the goal is to construct a graph in the
target system that results in similar geometry while preserving as
much parametric information as possible. In [Rappoport03] we
have given an overview of our UPR solution to the FBDE problem.
The STEP parametrics group has some open proposals for FBDE
(parts 108 and 55).

FBDE retains design intelligence, allows modifications at the re-
ceiving side, and potentially avoids the geometric tolerances prob-
lem. On the other hand, it is not always technically possible to suc-
cessfully exchange every feature (see the next section for an expla-
nation of how our architecture handles this issue). Geometric DE
usually works; however, when stitched solids are desired then suc-
cess rates drop, modifications are very difficult to do, and design
intelligence is lost. It is thus desirable to integrate both methods in
the same system.

What does such an integration mean? The whole discussion in
this paper is at the single part level, which is where the real chal-
lenge lies. Integration at the assembly level is an architectural,
workflow issue. At the part level, integration means that every fea-
ture (or every feature sub-tree or sub-list) could be transferred to
the target system either as features (parametrically) or as plain ge-
ometry (non-parametrically). In Section 3 we will give a formal
problem statement.

In this paper we present a general concept, Geometry Per Fea-
ture (GPF), that achieves such an integration, along with algorithms

Steven Sitz & Ari Rappoport / Integrated Feature-Based and Geometric CAD Data Exchange

for implementing it. First we give a general background of feature
based design and of our UPR FBDE architecture. We then give a
precise problem statement, present three solution alternatives: delta
solids (Section 5), delta boundary (Section 6) and delta faces (Sec-
tion 7), and show that under normal CAD circumstances the latter
is preferable. Implementation is discussed in Section 8.

2. Feature-based data exchange

In this section we give a brief background on the feature based de-
sign paradigm and of our UPR feature based data exchange (FBDE)
architecture [Rappoport03].

2.1. General background

In the feature based design paradigm, the model is represented as
a graph (or tree or list) of operations called features. The tree is
sometimes called the “history tree’. Operations create new geome-
try or modify existing geometry. Feature based design is basically
an extension of constructive solid geometry (CSG). The differences
are that in FB design there are more operation types; FB provides
associativity to parameter changes through persistent naming of
boundary entities [Kripac97; Rappoport97]; FB design heavily re-
lies on implicit constraints (usually 2-D constraints and dimensions
in sketches); and FB design includes surface operations and objects,
and is not limited to solid objects. The terms “feature’ and ‘opera-
tion” will be used in this paper interchangeably.

Although the main point with the FB paradigm is that operations
are parametric, FB systems also provide non-parametric operations.
In our context, a non-parametric operation is an operation that in-
troduces into the model a piece of fixed geometry defined indepen-
dently of the current state of the model, and potentially uses it in
order to modify the model. Examples for non-parametric operations
include the orphan and patch operations detailed in the following
sections.

The goal in FBDE is to create a target model that is feature based
as well, using features that are as similar as possible to the origi-
nal, while keeping the geometry as similar as possible. Note that
in general the geometry cannot be identical due to different toler-
ancing policies. As long as the approximation is controlled, this is
totally acceptable in practice.

As explained in [Rappoport03], FBDE is difficult due to several
reasons: inherent functional incompatibilities between CAD sys-
tems; feature semantics can in many cases be known at runtime
only; and implementational incompatibilities between the CAD
systems. Any solution to the FBDE problem must: (i) design for
the case of a system not supporting a data item (operation) that is
explicitly supported by another system, (ii) design for the case of
incompatibilities and failures that can be discovered only by exam-
ining the run-time behavior of the systems involved, and (iii) be
practically feasible.

2.2. The UPR architecture

The only complete FBDE solution described so far is the one in
[Rappoport03]. Our Universal Product Representation (UPR) ar-
chitecture is a star architecture, with data stored in a central rep-
resentation called the UPR. Export and import modules create and

read data to and from the UPR. Each feature has a unified data sec-
tion and a set of rewrites. A rewrite is a different way of importing
the feature that creates equivalent geometry. A rewrite may be a
function only or a function with internal data.

Both the unified data and all the rewrites also store verifica-
tion data, in order to identify success or failure of import. Usually,
rewrites are invoked when import success level does not match the
desired geometric quality.

The import module flow proceeds stepwise, adding one feature at
atime. This is in general the only alternative, because adding a fea-
ture requires attaching it to the existing solid, and this attachment
information may be dependent upon all preceeding features. When
selecting a method for importing a specific feature, the factor that
influences the decision the most is the set of operations available to
the user in the target CAD system. After all, in FBDE the goal is to
transfer an operation to an operation or a set of operations. That is,
a source operation is emulated by one or more target operations. It
is crucial to understand the operation repertoire of the target system
in order to select the possible emulations and sort them according
to perceived model quality. The availability of target operations or
lack thereof are central for the discussion in this paper.

3. Integrated feature-based and geometric DE: problem
statement

In this section we provide a formal problem statement and describe
motivating usage scenarios and their implications on the problem
statement.

3.1. Initial problem statement and notations

The problem we are dealing with can be phrased using the termi-
nology of the previous section as follows: implement a rewrite of a
feature F such that the resulting target model will be geometrically
equivalent to the original (as much as possible), but will be purely
geometric and will not contain any parametric, feature based infor-
mation on feature F. We refer to any solution to this problem as a
Geometry Per Feature (GPF) technique.

The above statement treats GPF as an integration of features and
geometry at the single feature level. It would be a plus if the solu-
tion would be applicable with no substantial modifications to inte-
gration at the multiple feature level, that of a full feature sub-tree
or sub-list.

Acrchitecturally, a GPF solution may in principle be implemented
at the import module only, but we allow it to require changes to both
the export and the import modules. The solutions discussed in this
paper all require changes to both modules.

Denote by G a parametric model in a source CAD system and
by H the same model after adding a single new feature F. Assume
that a FBDE application has already imported G into a target CAD
system to create a model G’, whose geometry is equivalent to that
of G. We now seek a set of non- parametric operations Fy, ., F that,
when applied to G’, will result in a model H” whose geometry is
equivalent to that of H.

The conceptual difference between one GPF solution and an-
other will lie in the nature of the non-parametric operations used at
the target system.

(© The Eurographics Association 2004.

Steven Fitz & Ari Rappoport / Integrated Feature-Based and Geometric CAD Data Exchange

It should be stated that we are mostly interested in providing a
GPF solution for solids G and H that arise in real world situations.
We would not mind that a GPF solution would pose limitations on
the geometry and/or topology of G or H that are not significant in
practice.

3.2. Usage scenarios

Once a GPF rewrite is available it can be used in different situa-
tions. There are two major ones:

1. Incidental: during FBDE, when a feature’s import and none of
its parametric rewrites match the desired target quality, GPF can
be used as the next fallback (rewrite) to attempt.

2. Intentional: when it is desired to explicitly remove the paramet-
ric feature information from the target model, e.g., for business
reasons.

Our problem statement requires that any solution will have to be
practically implementable in the context of these two usage scenar-
ios. The second is supported by the definition of what constitutes
a GPF. Supporting the first one has three major implications as de-
scribed below. First, it must be practically possible to provide a
GPF rewrite for every feature in the source model. This means that
preparation of the data needed for a GPF rewrite, either during ex-
port or during import, should not demand an excessive amount of
storage and/or time.

The second implication relates to the capability of performing
parametric changes on the target model, which is one of the main
reasons why users want a feaure based DE rather than a purely
geometric DE. In the incidental scenario, we would like to enable
the user to modify as many of the parameters of G’ features (fea-
tures preceeding the feature F rewritten using GPF) as possible.
The reader may incorrectly think that this is impossible with GPF
anyway because GPF is by definition non-parametric. For exam-
ple, parts are usually begun with an extrude feature based on a 2-D
sketch; it is difficult to think how to implement a GPF of a further
feature in the history tree in a way that will enable modifications of
the major dimensions of that sketch. However, it should be realized
that features rarely affect all of the geometry of the prior model.
Rather, they are usually local in nature. A GPF of a feature usually
leaves much room for parameter modification of previous features.
For example, imagine a GPF for a round feature (even a round fea-
ture that affects most of the model’s edges); it should not block the
modification of the depth of a hole feature that is defined in the
middle of a face and is not affected by the round feature at all.

The third implication relates to the cases when users need a
100% parametric model at the target system. In those cases GPF
is not desired; it is present at the target model only because the
FBDE software could not do better. However, it may still be pos-
sible for a human user to do what the FBDE software could not.
Hence for such users GPF needs to be implemented in a way that
enables them to replace the GPF operations by equivalent opera-
tions interactively.

In this paper we focus on the GPF technique by itself and not
on its possible applications. Hence our problem statement does not
cover any further applications of GPF beyond the two above, which
already provide enough motivation for dealing with the problem.
We will briefly touch upon one such application in the last section.

(© The Eurographics Association 2004.

4. Import of full geometry

The simplest GPF method is import of full geometry. All CAD sys-
tems support an operation that creates new geometry given a Brep
(of some sort) of that geometry. For example, in I-DEAS this op-
eration is called ‘orphan’. A simple GPF approach is to import the
full geometry of the target model H as a single unit by using such
an orphan operation. Most CAD systems require that the imported
geometry be stitched to a solid if further solid features are to be
defined on top of it.

Import of full geometry is an excellent GPF method for opera-
tions that create new geometry independently of existing geometry.
Those are typically features at the leaves of the feature tree. How-
ever, it is not an attractive method for a general GPF.

With import of full geometry, the model G’ that is present in the
target system prior to the invocation of the orphan feature must be
discarded somehow. If the feature is not a leaf of its feature tree,
the pointset of G’ is usually not the empty set. To erase the prior
model, If the CAD system has an explicit operation that does this
then it could be used (an example is placing the feature history
in a special blank or no-show layer.) Otherwise its effect must be
emulated by a feature combination. For example, one can create a
box B completely containing G, then add a Boolean subtraction
operation G’ — B, thus transforming the represented pointset to be
the empty set.

This solution is a valid rewrite, but it is not the most attractive
one. There are three major problems with it:

1. Recall that in the incidental usage scenario of GPF we want to
enable the user to manually replace the GPF operations by para-
metric ones having the same effect. The sequence ‘erase model;
import orphan’ is very difficult to edit in such a manner, because
the system does not represent in any explicit way the effect of
the particular feature to be edited. This stands in contrast to the
other GPF approaches described in the following sections.

2. This method requires the full geometry of H. A naive implemen-
tation would be to export it after each and every feature opera-
tion in the source system. This approach is obviously wasteful in
storage and probably in computation time. A more sophisticated
approach would be to compute and export only the changes that
occurred in the original model geometry, and reconstruct the full
geometry before importing it. We will not explain here the de-
tails of how to do this, because this is exactly the type of method
discussed in the next sections of this paper, where reconstruction
is done using the capabilities of the target CAD system.

3. Any associativity with the prior model G’ is lost. By that we
mean that parameters of G’ features cannot be modified such
that the result will be manifested at the target model H’. This
contradicts one of our requirements as discussed in the previous
section .

5. Deltasolids

A second GPF method is based on solid differences, or delta solids.
The idea utilizes the symmetric set difference between H and G,
and the formula H = G + (H — G) — (G — H). We compute the
pointset that is added to G as a result of the feature F, DA=H —G,
and the pointset that is subtracted from G asaresultof F, DS=G —
H. These two pointsets are transferred to the target system (using

Steven Sitz & Ari Rappoport / Integrated Feature-Based and Geometric CAD Data Exchange

(@)

© A9

© (’fj

Figure 1. Delta solids: (a) the model G; (b) the model H resulting
from an application of a round feature; (c) the subtracted solid DS;
(d) the added solid DA; (e) G — DS; (f) G — DS + DA.

an orphan operation) to create the two solids DA’ and DS’. Using
these latter two pointsets, we then create H’ using two Boolean
operations, union and subtraction: H' = G’ + DA’ —DS'. See Figure
1.

In many cases due to the semantics of the feature F we can know
in advance that one of these sets will be empty, and optimize the
computation accordingly. Note that it is indeed possible for a sin-
gle feature to result in both sets being non-empty, e.g, the round
feature in Fig. 1 defined over convex and concave edges simulta-
neously. It is also possible for both sets to be empty. This is a rare,
but interesting case. For example, some features modify the topol-
ogy, but not the geometry. Recall that our only requirement was to
reconstruct the geometry, hence the result will be valid. Note that
in general, two CAD systems will represent the same solid using
different topological representations.

Delta solids avoid the three problems with import of full geome-
try: the effect of the feature is represented in a localized manner at
the target system; intermediate storage is optimized; and associa-
tivity in areas not affected by the feature is retained to a maximal
degree.

However, the computations involved with a direct implementa-

tion of the delta solids method are both heavy and unstable. In gen-
eral, Boolean operations are among the heaviest operations in solid
modeling in terms of computing time. Moreover, in our specific
case most of the boundaries of the participating solids overlap each
other, which makes the operation very difficult to implement in a
robust manner. In such a case symbolic methods, such as persistent
naming, must be integrated with the general purpose Boolean oper-
ation procedure, notifying it of known overlaps. It is possible that
such methods are used by CAD systems internally (CAD systems
are aware of face and edge overlaps between feature operations due
to their persistent naming mechanisms), but it is not guaranteed.
This means that the FBDE system should probably implement ro-
bust Boolean operations by itself and not rely on the capabilities
of the CAD systems. The delta faces method we will present be-
low implements such a symbolic approach in a more elegant and
efficient manner.

6. Deltaboundaries

In this section we describe a boundary based alternative to delta
solids, called delta boundaries. Delta boundaries forms the basis of
delta faces, which is our optimized solution presented in the next
section.

6.1. General idea

The boundary differences or delta boundaries method is similar to
the delta solids method, but handles the boundary of the model in-
stead of its solid pointset. The parts of the boundary of G that are
removed by the new feature F are cut out; new parts added are
glued in. One way to create H' is as follows. First, we compute
BDA = Boundary(H) — Boundary(G) and BDS = Boundary(G) —
Boundary(H). BDA and BDS are in general open surface sheets,
not solids. We transfer BDA and BDS to the target system to cre-
ate BDA” and BDS’. We now have to cut BDS off and glue BDA in,
which in principle can be done in two different ways: first glue then
cut, or first cut then glue.

The first option assumes that the CAD system supports the rep-
resentation of non-manifold solids. In this case,

H’ = SubSheetRemove(SheetAdd (G’,BDA’),BDS’).

The semantics of the two operations follows the selective geometric
complex (SGC) framework [Rossignac88]. SheetAdd (P, Q) adds a
surface sheet Q to the SGC entities of the a solid P. Crucially, even
if the input solid P is manifold the resulting object will be a non-
manifold solid, unless the sheet Q lies completely on P’s boundary,
which usually does not happen in our case. SubSheetRemove(P, Q)
is an operation that removes a subset Q of the SGC entities of a
solid P. In our case, due to the special nature of the P and Q the
result should actually be a manifold solid H’.

In the second option, H’ = CloseToSolid(X) where X =
SubSheetCut(G’,BDS’), BDA’). SubSheetCut (P, Q) removes a sub-
set Q of the boundary of a solid P, potentially transforming it into
an non-solid surface sheet. CloseToSolid (P, Q) adds a surface sheet
Q to a surface sheet P and verifies that the resulting surface sheet
defines a closed volume that can be regarded as a solid.

The delta boundaries method is more stable than the delta solids
method, because the Boolean operations required for computing
the delta surface sheets are more stable than Boolean operations

(© The Eurographics Association 2004.

Steven Fitz & Ari Rappoport / Integrated Feature-Based and Geometric CAD Data Exchange

between solids (for example, faces that do not intersect can be sim-
ply neglected).

The problem with the two conceptual options described above is
a very pragmatic one: the required operations are not readily avail-
able in most CAD systems. Most CAD systems do not support non-
manifold solids at all, requiring their models to be either manifold
solids or surface sheets.

6.2. Implementation using the patch operation

Most CAD systems do provide an operation, patch (or sew) that
explicitly replaces sub-parts of a model’s boundary by a given sur-
face sheet, where both the input and the output model are manifold
solids. Formally, the operation Patch(P, Q) receives a solid P and
an open directed surface sheet Q (that is, Q is a sheet having a ma-
terial side) having boundary edges that are assumed to lie on the
boundary of P. It glues Q to the boundary of P, and discards the
portion of P’s boundary that does not belong to the resulting solid.
The material side information is crucial in order to determine which
faces are those to be removed; the surface sheet boundary must par-
tition the solid boundary into disjoint regions that can be oriented
consistently with the material side of the surface sheet. In addition,
the interior of the surface sheet must not intersect the boundary of
the solid, except at the regions that are to be discarded by the patch
operation.

Figure 2 shows an example. In (a) we see in full lines the model
G’ before invocation of the patch operation. The argument to the
operation, BDA, is shown in dashed lines. We can still see BDS as
well. In (b) we see the model H’ after the patch operation. BDS
has been removed, effectively replaced by BDA. BDS in this case is
exactly the part of the boundary ‘covered’ by BDA in (a).

In some CAD systems, the patching surface sheet must be con-
nected. In such systems we can apply the patch operation for each
connectivity component separately. This technique will fail in the
rare cases where both surfaces must be patched simultaneously
(e.g., when a portion of a torus is cut off by two disks, a situation
that will not arise in practice).

In some CAD systems, a patch operation is not provided directly,
but it can be emulated using a combination of other operations. For
example, I-DEAS provides operations that can be used to emulate
patch but which require the stitching edges to be already present
in the model. In this case those new edges should be created using
Euler-like operations before the application of the stitch operation.
This is a simple and straightforward technique.

BDS is not explicitly provided to the patch operation. As a re-
sult, it must be implicitly well defined by BDA and a direction. The
patch operation cannot be used to implement the delta boundaries
method when this condition does not hold. The condition does hold
in almost all practical situations. One situation in which it does not
hold is when the solid G has multiple connectivity components and
one of them is completely deleted by the feature F. In this case, all
of the faces of that component belong to BDS, but this piece of in-
formation is impossible to reconstruct by any BDA (e.g., BDA can
be empty.) A similar situation occurs when the solid G has cavities
and one of the cavities is completely removed by F.

(© The Eurographics Association 2004.

@ (b)

Figure 2: Delta boundaries and delta faces: (a) before the patch
operation; BDA is shown dashed; (b) after the patch operation.

7. Deltafaces

The delta faces method is an optimized variant of the delta bound-
aries method. It uses the idea behind delta boundaries and the fact
that the patch operation is used when importing the GPF into the
target system. The difference lies in the nature of the patched sur-
face sheet: in the delta faces method, its computation can be done
by purely symbolic data structure manipulation operations; no ge-
ometric computations are necessary.

7.1. Import: the patch operation

Import in the delta faces method is done exactly as in the delta
boundaries method, using the patch operation. The surface sheet
provided as input to the patch operation is different, as explained
immediately below.

7.2. Export: aface cover of BDA

The delta faces method is based on the following observation. A
face cover of BDA is a subset of the boundary of H that contains
BDA. A face cover is a surface sheet. Any such face cover that is
patched with G will produce H.

The minimal face cover of BDA is the minimal set of faces on the
boundary of H that contains BDA. The immediate thinking is that it
would be optimal to use a minimal face cover. The idea in the delta
faces method is that a face cover that is reasonable (but not neces-
sarily minimal) can be computed without geometric computations.

Computing a face cover is sometimes a simple matter. When
the CAD system provides persistent haming for its boundary en-
tities, then computing the delta faces is a matter of calculating the
symmetric difference of two sets of face names. However, typically
CAD systems do not provide access to persistent names. Nonethe-
less, all CAD systems provide information as to what new faces
were created by a feature. What we need now are the identities of
the faces that were modified by the feature.

Given the new faces information, we utilize the faces adjacent to
the new faces as if they were the modified faces. This is formally
incorrect in two cases. The first case is if the adjacent face was
not modified. This does not pose any problem to the GPF export,
because then the face cover is only larger than the minimal one, but
would still produce correct results. The second case is the very rare

Steven Sitz & Ari Rappoport / Integrated Feature-Based and Geometric CAD Data Exchange

case of a face being modified without being adjacent to a new face.
For example, a hole that is filled with material modifies the face
that the hole was positioned on, but does not create any new faces
in case the CAD system merges the former face with the new hole
cover to asingle face. Even in this case the results of the overall data
exchange task would be correct, because our architecture includes
feature verification information for every feature (see Section 2). If
the model resulting after the application of GPF fails a verification
test, this is treated just like any other feature failure: the execution
is rolled back and a feature rewrite is invoked.

There is a limitation of the patch operation which may affect the
delta faces method: if the face cover is closed, then it cannot be used
with the patch operation. This is another rare case, which can occur
with global operations, e.g., when all edges have been rounded.
In these cases, the delta face is the full geometry as discussed in
Section 5.

One must be careful as to what constitutes a new face and what
constitutes a modified face. We assume that any change to a face
(topological) or to its carrier (geometric) implies that the face has
been modified, but faces may flip direction (material side) as a re-
sult of applying the feature. We call these inverted faces, and treat
inverted faces as modified faces. Again, in all of these cases the
worst that can happen is addition of faces to the delta faces set that
are not strictly necessary but which cause no error to the result.

Computing the minimal face cover involves geometric computa-
tions, but can be computed as follows if desired. Start with the set of
faces that were created by the feature. Obviously, these faces must
be included in the covering. Next, add adjacent faces as needed. An
adjacent face is needed if it bounds the created face on an edge that
does not lie on the boundary of G. This is a necessary, but not suf-
ficient, condition for minimal face cover faces, because of the very
rare case of a face being modified without being adjacent to a new
face.

8. Implementation

GPF has been implemented in a commercial product, the Profi-
ciency Collaboration Gateway (CG). CG currently supports feature
based data exchange between today’s five high end CAD systems:
Catia V4, Catia V5, ProEngineer, Unigraphics and I-DEAS. CG
supports several versions of each system. The GPF implementation
is stably integrated within CG since mid 2002. It has been success-
fully used in hundreds of thousands of DE operations exchanging
real product data ranging from simple parts to huge assemblies.

The recommended mode of operation is to export a GPF for ev-
ery feature in order that the GPF data be available in the UPR in
case it is needed during import. This enables GPF import to be in-
dependent of the source CAD system. Another option is ‘GPF on
export failure’, where GPF is computed in case a feature’s export
has failed for some unpredictable reason.

Figures 3-6 show a real world example of an angle bracket trans-
ferred from Unigraphics to Catia V5, ProEngineer and Catia V4.
The resulting models are completely feature-based apart from a
single ‘complex hole’ Unigraphics feature, which has been inten-
tionally transferred as GPF. When the feature is not marked as to be
transferred using GPF, the system transfers it as a fully parametric
feature like all the other features in the model.

9. Discussion

We have raised the question of how to integrate geometric and fea-
ture based CAD data exchange, and presented several methods to
solve it. Among them, the delta-faces GPF was shown to be the
most attractive for practical usage due to its reliance on purely sym-
bolic operations during export and on relatively stable geometric
operations on import. An implementation which continuously sat-
isfies real world customers has been done. In this implementation,
GPF is mostly used as the ultimate single-feature rewrite in the
UPR architecture.

Another advantage of GPF is that its rewrite data can be used
by applications other than DE. For example, we have implemented
a feature based viewer application that uses the faces exported by
the GPF mechanism by highlighting them, thus providing a visu-
alization of the geometric semantics of the feature. This is the first
feature-based CAD viewer that is CAD system independent.

The discussion in this paper was done in terms of GPF for a
single feature. Note that it is a simple matter to use the same tech-
niques in order to provide a GPF rewrite for several features at once
(e.g., a complete sub-tree or sub- list of the feature history). We
simply take the union of the geometric entities created or affected
by those features.

Since GPF is by definition an integration of geometric DE within
a FBDE environment, it suffers from the usual problems of geo-
metric DE. In particular, GPF can result in unstitched solids, which
may pose a problem for the continuation of the FBDE task. In such
cases, more radical rewrites may be needed (e.g., a global or semi-
global geometric rewrite). If desired, the unstitched GPF can be
stored in the target model as a detached set of surfaces, in order
to help manual manipulation of the model. In our implementation,
such problems rarely occur.

Acknowledgement. Michal Etzion actively contributed to the Pro-
ficiency GPF design and implementation. The content of this paper
is patent pending.

References

[Bloor95] BLOOR M.S., OWEN J., Product Data Exchange, UCL
Press, University College London, Gower Street, London, 1995.

[Hoffmann93b] HoOFFMANN C.M., On the semantics of genera-
tive geometry representations. 19th ASME Design Conference,
Albuquerque, New Mexico, September 1993.

[Kripac97] KRiPAC J., A mechanism for persistently naming
topological entities in history-based parametric solid models.
Computer-Aided Design 29(2):113-122, 1997.

[Rappoport97] RAPPOPORT A., The Generic Geometric Com-
plex (GGC): a modeling scheme for families of decomposed
pointsets. Solid Modeling *97, ACM Press, pp. 19-30.

[Rappoport03] RAPPOPORT A., An architecture for universal
CAD data exchange. Solid Modeling 03, ACM Press, pp. 266—
269.

[Rossignac88] RossIGNAC J.R., O’CONNOR M.A., SGC: a
dimension-independent model for pointsets with internal struc-
tures and incomplete boundaries. In: Wozny, M., Turner, J.,
Preiss, K. (eds), Geometric Modeling for Product Engineering,
North-Holland, 1988.

(© The Eurographics Association 2004.

Seven Spitz & Ari Rappoport / Integrated Feature-Based and Geometric CAD Data Exchange

raphics N - Modeling - [anglebracket_white.prt] =181
Fle Edt View Insert Format Tools Assemblies WCS Information: Analysts Preferences Application indow Help 181 x|
EXv3BHEA0Ey & a2 |mhLd4056
© Model Navigator
Festure Name 7
El-anlebracket_white
€ FIRED_DATUM_PLANE...
FIED_DATUM_Ax15(1)
FIED_DATUM_AXIS(z)
2 SKETCH_000:SKETCH(3)
5 ERTRUDED(4)
4 SKETCH_D01:SKETCH(S)
ED(6)
& U
B4 (7 BLEND(S)
B 4 SKETCH_002:SKETCH(S)
&85 EXTRUDED(10)
- B [HOLLOW(1L1)
B ¥4 SKETCH_003:5KETCH. ..
A5 EXTRUDED(13)
£ g LNITE(14)
B SCETCH D04 SKETCH...
& REVOLYED(16)
5 off UNITE(17)
£ () BLEND[18)
BT SKETCH_O0S:SKETCH. ..

2 € 6] 6 B

9 &5 EXTRUDED(20)
4 & FIXED_DATUM_PLANE...
4 €9 FIKED_DATUM_PLANE...
7 9 FIXED_DATUM_PLARE
- g SUBTRACT(32)

b

174 SKETCH_006:SKETCH o
425 EXTRUDED(36)

- B) BLEND(38)

& (9 BLenotas)

B4 (7 BLEND(40)

9 [CHAMFER(41)

& (3 BLENDL4Z)

B £ CHanFeR(H)

TOP WORK KT —
e .

i ks saved T

[Fegg|dllsue iEaeses

Figure 3: The original angle bracket in Unigraphics. Note the highlighted ‘complex hole’ feature.

[£]CATIA V5 - [anglebracket_CTS.CATPart] —&x]
B et e Edt Vew Insert Jools Window Help -18] %]

| 1 =] S|

@ Pocket.1
|y Sketch.3

et

&P shell.1

? Add.2
Body.4

% Add.3
Body.5

By EdgeFillet.2

“‘% Remove.1
Body.6

HfF e St

— &) EdgeFillet.3

&) EdgeFillet.4

&5 EdgeFillet.5
P ™1 R

O Reyvdoa@sEE B 27! @

Sewsurface, 1 PartBody/temp selected of

Figure 4. Feature-based import of angle bracket into Catia V5 with a single GPF. Note the highlighted ‘SewSurface’ feature.

(© The Eurographics Association 2004.

Steven Sitz & Ari Rappoport / Integrated Feature-Based and Geometric CAD Data Exchange

FhE s e
i !
FRER e

b=egs0acmed|Baamy]ainit

b
I

d i h

Foundid 109 =
CUT_ID_202_DRIENT_REF
DTM7

Cutid 202

Shellid 234
PROTRUSION_ID_231_ORIER
DTHI

Pratnusian id 291
PROTRUSION_ID_331_ORIER,
DTH11

Frotusion id 331

Roundid 372
CUT_ID_443_DRIENT_REF
DTMIZ

EE S R A

) 523 ORIENT_REF
DTMIE
Cutid 523
Roundid 567
Roundid 617
Roundid 748
Chanmfer id 679
Foundid 304
Chanfer id 955

InsetHere

FUUYLUULELERLNRUHFR LR EAR LY

il

|

Figure5: Feature-based import of angle bracket into ProEngineer with the same GPF. Note the highlighted ‘patch’ feature.

1p
[LPFK
[SOLTDE
CREATE
OPERATN
TRANSFOR

MODIFY
EXTRACT
UPDATE

INERTIA
NUMERTC

uusﬁiaxs[vugsp 30
SEL> FEATURE

Figure 6: Feature-based import of angle bracket into Catia V4 with the same GPF. Note the ‘skin’ feature on the left.

(© The Eurographics Association 2004.

