
Extraction of Typographic Elements from OutlineRepresentations of FontsAriel Shamir and Ari RappoportInstitute of Computer Science, The Hebrew University of JerusalemJerusalem 91904, Israel. farik,arirg@cs.huji.ac.ilAbstractDigital typefaces for computer graphics and multimedia applications must be capable of supporting operationssuch as font variations, transformations, deformations and blending. A powerful implementation of such op-erations must rely on the inherent typographic attributes of the typeface. However, even today's most advancedtypeface representations support only geometric outline representations and basic font variations.In this paper we discuss high-level typeface representations which we term Parametric Typographic Represen-tations (PTRs). We present an algorithm for automatically extracting typographic elements of typefaces fromtheir outline representation, which is an essential initial step in converting typefaces from outline representa-tions to PTRs. The extracted typographic elements include serifs, bars, stems, slants, bows, arcs, curve stemsand curve bars. Most notable is the treatment of serifs, which are represented by �nite-automata. The algorithmonly needs to learn a serif type once, and is then capable of automatically recognizing it in di�erent typefaces.We show an application of a PTR for automatic high-quality hinting of fonts, which is one of the mostimportant stages in digital font production. Our system was used to generate hints for dozens of thousands ofKanji, Roman and Hebrew characters.Keywords: Digital typography; outline fonts; typographic elements; hinting; parametric typographic repre-sentations1. IntroductionPrinted pages have constituted a major way of communication between literate people ever since the inventionof print by G�utenberg in the 15th century. The existence of electronic media has modi�ed this situation.Typsetting, page layout, typefaces and fonts need to change their nature and become more 
exible. A widerange of applications such as multimedia publishing, computer animation, and even mechanical or electroniccomputer-aided design systems must incorporate a diverse set of text manipulation functions, from simplea�ne transformations to advanced deformations. The basic technology which supports this functionality isencapsulated in the representation used for digital typographic typefaces, or digital fonts. Hence, the degreeof sophistication of digital typeface representations is a crucial factor in the expressive power and usability ofmodern visual communication.In the design and analysis of typefaces one uses terms such as stems, bars, serifs, style, size, weight andwidth [Lawson90, Rubinstein88, Bringhurst92, Bauermeister88] (see the �gures in this paper for examples).However, even the advanced typeface representations in use today (e.g. QuickDraw-GX [Apple94], TrueTypeand TrueType Open [Microsoft90], Type 1 [Adobe90, Adobe92]) concentrate only on representing the geometryof a font and on the provision of relatively simple font variations. There is a large gap between the high-levelterms used by designers and between current representations. A representation which supports high-levelparameterization based on typographic terminology is needed. The general term which we use for such arepresentation is a Parametric Typographic Representation (PTR). Extraction of typographic elements fromexisting font representations is essential in order to convert today's outline representations into any parametrictypographic representation.



1.1. Previous WorkSome previous work of identifying typographic elements has been done for the sake of automating the processof hinting an outline font (`hints' are needed in order to rasterize scaled fonts correctly, whether on a screenor in print). Basic hints can be added to the outline description automatically by recognizing horizontal andvertical bars and curvilinear shape extrema [Andler90], or even some serif parts [Karow89].Hersch and B�etrisey have presented an elaborate automatic hinting method [Hersch91a] which requires atopological font-independent model for the description of each Roman letter shape. These models includespeci�c hints connected to various typographic elements. In order to add hints to a concrete letter shape, amatching algorithm between the real shape and the models is performed. After a match has been found, thehints contained in the matched model are adapted to the real letter shape by identifying similar points inboth the model and the actual letter shape. This scheme involves the de�nition of a model for each topologyof a letter shape, a process which is both di�cult and time and space consuming, for example in ideographic(Chinese, Japanese and Korean) scripts.Several other techniques for automatic hinting of outlined characters exist inside the font developmentsystems of commercial companies such as Bitstream, Adobe and Apple. These systems are considered acommercial secret, but by examining their output (e.g. TrueType or Type 1 fonts) one can see that a largeamount of typographic information is still not identi�ed by the automatic hinting process, and therefore a lotof manual proo�ng and hinting is taking place in order to achieve the desired quality.Some research has been done on the extraction of strokes from the outline description, for applications suchas display of Kanji characters [Chialing89], conversion to a di�erent representation [D�urst93a, D�urst93b], andoptical character recognition [Feng75]. The general spirit of these papers is opposite to ours, since they areinterested in removing the subtle typographic details of typefaces in order to create a skeleton representationof characters, which is simpler and easier to recognize.A font represented in metafont [Knuth86] is in principle parametric, since metafont is a proceduralprogramming language. However, all the parameterization is done manually by the programmer. Conversionof PostScript fonts to metafont has been described in [Haralambous93], but the method is speci�c to thesetwo representations and it does not treat automatic extraction of typographic elements.1.2. ContributionIn this paper we present an algorithm to extract typographic elements of typefaces from an outline repre-sentation of a font and show how to use its results for automatic hinting. The conversion algorithm extractsbasic typographic elements from the outline description of a character (Figure 7) and can gather informationregarding the relationships between them, both inside each character and across the font. This informationcan then be used to assign parametric attributes to the typographic elements. With this capability, the algo-rithm can be viewed as an essential initial step in converting a typeface from an outline representation into aparametric typographic representation.Our conversion method involves two main stages. The �rst stage is the designation and classi�cation ofcharacteristic points along the glyph outline, which is similar in spirit to some previous work [Hersch91a],but is given here in a more detailed manner. The second stage uses data from the �rst stage for the actualextraction of the typographic features from the outline. Among the basic features recognized are stems andbars, bows and arcs, curve stems and curve bars, slants, extrema, and, most notably, serifs of all types. Thesetypographic features are in turn gathered to create higher degree elements such as groups of bars inside aglyph or a Kanji stroke-like element [Zhang92].Special treatment has been given to the extraction of serifs. Serifs play a crucially important role in thedesign of a typeface, and there is an enormous diversity of serif designs. We create a �nite-automaton [Lewis81]that de�nes the sequence or sequences of points which characterize each type of serif. Once this automatonhas been de�ned, serifs of this type can be extracted and recognized in any outlined font input to the system.If a new typeface containing new types of serifs is introduced to the system, only a few new �nite-automataneed to be de�ned in order to extract the new typeface features.Along with a raster-to-outline module, our system can convert a typeface in any lower-level descriptiontechnique to a higher level parametric typographic representation. We do not require a model for each glyph,



since the information regarding typographic elements is stored in a higher representational level that appliesto any glyph. The algorithm is time and space e�cient: if n is the number of points de�ning the outline ofa glyph and k is the number of features extracted from it (where k << n), the process for recognizing basicelements for one glyph takes O(n log n+ k2) time and O(n+ k) space.Our method needs much less manual manipulation and proo�ng than previous work; it is multi-lingual innature, not using language-dependent letter models; and it produces higher level typographic details suitableto modern visual communication applications.The problem dealt with in this paper is very similar to the problem of feature recognition extensivelyresearched in geometric and solid modeling [Woodwark92]. In both cases we desire to convert a boundaryrepresentation (Brep), which is a relatively low-level representation, to a higher-level one supporting termstaken from the application domain.In Section 2 we describe the state of the art in digital typography today and the hierarchy of digital typefacerepresentations. Section 3 describes the classi�cation of the points describing the outline. Section 4 describesthe actual extraction of the typographic elements. Finally, in Section 5 we discuss an important applicationof the resulting parametric typographic representation, namely automatic hinting of fonts.2. Hierarchy of Digital Typeface RepresentationsExamination of the di�erent representations available today in digital typography reveals a hierarchy in thedegree of abstraction concerning the freedom to modify the font at the level of the typographic design axes[Rubinstein88, Karow94a, Karow94b, Southall91].The hierarchy begins with bitmap fonts. A bitmap font is a collection of matrices of dots in a �xed sizewhose appearance corresponds to the original typeface design. Bitmaps are used in order to create the imageof a character in most output systems today including phototypesetters printers and CRT screens. Therefore,every higher level representation should support its eventual conversion to a bitmap. Bitmaps are also themost constrained representation having a �xed coordinate in all axes of the typographic taxonomy, and almostno possibility for an appropriate variation in any dimension. The Macintosh and Windows operating systemshave algorithms for slanting, condensing, bolding etc. of bitmap fonts but the outcome is very poor in quality.Digital outline fonts were created mainly to solve the �xed size constraint in bitmap fonts (Figure 1). Theyhold the ability to create bitmaps in any size using some special process of scaling, grid�tting, rasterizing and�lling [Rubinstein88, Karow87, Microsoft90, Adobe90, Southall91]. However, many have found that simplyusing an outline description of a typeface does not su�ce in order to perform the task of bitmap creation[Rubinstein88, Karow89, Hersch87, B�etrisey89, Hersch91a, Hersch91b, Karow89]. Additional information inthe form of `hints' has been added to the font. Hints are special constraints that help the grid �tted outline,and thus the bitmap created from it, retain some typographic attributes (e.g., equality of stems, height ofcharacter, symmetry of serif) [Microsoft90, Adobe90, Hersch91a, Karow89, Changyuan93].
Figure 1: Outline of characters from (left to right) Roman, Kanji and Hebrew fonts, including their de�ningcontrol points.Outlines can also be used successfully in order to rotate text or to create outlined or slanted text subject to



special distortion algorithms which consider some more typographic constraints and probably using hints. Thissuggests that outline fonts could carry the ability to vary along any dimension in the typographic taxonomy.Attempts have been made to use several outline representation instances of one typeface in order to create arepresentation with the ability to vary along one or more dimensions using interpolation between outlines orextrapolation from one outline [Apple94, Adobe92]. The conclusion of these attempts has been that in orderto succeed some more information concerning the typographic attributes of the typeface should be added tothe outline representation, and later on used in the deformation algorithms.Several other description techniques for digital fonts have been de�ned with the intention of remaining asmuch as possible in the typographic domain and saving as much information as possible while converting thedesigner images to the actual description of the font. Character parts in these representations are linked totheir typographic de�nitions such as a stem, an arc, a dot or a serif. They include typographic attributessuch as width, angle, special optical correction or o�set values, which in turn could be parametrized creatingvariation instances of the typeface [Knuth86, Adams89, Stamm93a, Stamm93b, McQueen93]. We use theterm Parametric Typographic Representation (PTR) when referring to this class of digital typefacerepresentations.A major problem of previous work on PTR techniques is that it deals mainly with the creation or de�nitionof new fonts, disregarding the huge wealth of existing fonts already de�ned or converted to the outline formof representation. Conversion techniques such as [Haralambous93] rely on manually recognizing and insertingparametric values to the outline, which is very time-consuming and requires special skills.3. Classi�cation of PointsThe �rst stage in the conversion from an outline to a PTR consists of geometric and topological analysis ofthe outline. Although there are several di�erent methods for representing an outline of a glyph, almost all ofthem share some basic characteristics. A glyph outline is a closed path consisting of consecutive segments oftwo types: straight line segments and curve segments (see Figure 2, lines segments are bounded by squaresand curve segments are bounded in both sides by circles). Each segment is uniquely de�ned by its start andend points which lie on the outline of the glyph. The points are numbered consecutively, and the direction ofthe outline at each point is the direction of travel from lower indexed point to higher indexed points.Curve segments include some additional representation-dependent control points. These points lie outsidethe outline and do not include any special information regarding the topological nature of the outline thereforewe do not include them in our classi�cation. These points are important in the process of converting an outlinerepresentation from one form to another (e.g. cubic B�ezier in Type 1 fonts to Quadratic B-Splines in TrueTypefonts). This involves converting only curve segments de�ned by a set of some control points to the same (orapproximated) segments de�ned by a set of other control points.In order to perform the typographic decomposition of the outline properly, certain points have to be includedin the glyph's outline. Such points are local maxima or minima in the X or Y direction, in
ection points,points where a discontinuity of derivative occurs or tangent points (see de�nitions below). Often these pointsexist in the outline and are used to de�ne its segments. However, in order to make sure that no point ismissing and in order to correct misplaced points, the outline description of glyphs go through a well knownpreparation stage used often after digitization [Karow89]. Hence, the �rst degree classi�cation of the outlinepoints borrows its de�nitions from the digitization process (Figure 2):� A corner point (denoted as C point) is a point where two outline segments meet with discontinuity of thederivative of the outline.� A curve point (denoted as CT point) is a point where two curve segments meet with continuity of thederivative.� A tangent point (denoted as T point) is a point where a curve segment and a line segment having thedirection of the derivative of the curve meet.The only neglected pair in these de�nitions is the case of two line segments meeting with continuousderivative. It is safe to say that for almost all cases this situation is undesirable, because it carries redundantinformation, and the preparation stage of the outline would recognize such cases and replaces the two linesegments by a single one. A case where this information should not be discarded is, for example, when twomaster glyphs are being matched in order to create interpolated instances between them. It could be that in



Figure 2: Classi�cation of points: corners points(squares), tangents points (circles), curve point(triangle). Figure 3: Further classi�cation of points: Hpoints (dark in-facing triangles), V points (lightin-facing triangles), CH points (dark out-facingtriangles), CV points (light out-facing triangles),V R points (rhombus).one of them this point is in fact a corner point (discontinuity) and in the other the derivative of the segmentsare continuous. Discarding this point in one of the glyphs would make it hard to match these glyphs and tocreate the interpolations.Second degree classi�cation is further applied to the point in order to extract geometric properties (Figure 3):� A curve V -extremum (V point) is a curve point which is a local extremum in the x direction.� A curve H-extremum (H point) is a curve point which is a local extremum in the y direction.� An in
ection point (I point) is a curve point which is an in
ection point.� A corner V -extremum (CV point) is a corner point which is a local extremum in the x direction.� A corner H-extremum (CH point) is a corner point which is a local extremum in the y direction.� A spike (S point) is a point which is both a x-extreme and a y-extreme.� A V -corner (V R point) is a corner with one of its neighboring segments de�ned as a vertical line segment.� A H-corner (HR point) is a corner with one of its neighboring segments de�ned as a horizontal linesegment.� An L-corner (LR point) is a corner which is both a V -corner and an H-corner.One important distinction should be made in these de�nitions between `real' geometric properties and`de�ned' geometric properties. The di�erence lies in the notion of tolerance. For example, the real de�nitionof vertical segments would be:De�nition 1 Segment s is vertical if it is a line segment and its start and end points have the same xcoordinate.When we refer to de�ned vertical segments we generalize the previous de�nition to be:De�nition 2 Segment s is considered vertical if it is a line segment and for some prede�ned epsilon �, the xcoordinate of its start and end points do not di�er by more than �.For certain type of typefaces, where straight line segments are rare (Figure 4), a further generalization isneeded:De�nition 3 Segment s is considered vertical if for some prede�ned epsilon �, the width (xmax-xmin) of itsbounding box is not greater than or equal to �.We will call these kinds of generalizations the epsilon rule. Its implementation in geometric de�nitionis crucial to the success of feature extraction both from non-regularized typefaces and from subtly designedtypefaces.Beside the type of a point, the additional information classi�ed for each point includes its coordinates, thetype of segments meeting at the point and the direction of these segments.



Figure 4: Part of the outline of a character from the Macintosh Sai Mincho font. Notice that the stem ismade of a left vertical line and a right vertical curve.4. Extraction of Typographic ElementsThe second stage of conversion to a PTR is the actual extraction of typographic elements. This stage uses all thedata acquired in the �rst stage when the topological and geometric analysis of the outline was performed. Everytypographic element is de�ned in terms of the types of points and segments building it and the relationshipsbetween them. This section presents these de�nitions for each typographic element, and discusses the algorithmfor recognizing them in the outline.All upcoming de�nitions are subject to the epsilon rule stated earlier. Not only that the de�nitions ofvertical or horizontal segments, the de�nition of equality of angles or sizes, the de�nition of the signi�cant sizeof overlaps, etc. are all within a certain parameter epsilon, in fact the de�nition of a segment may also varyin turn and consist of several continuous or even broken segments with the same direction.Color Figure 8 exempli�es the terms in this section.4.1. Stems, Bars and Slants� A stem consists of two vertical segments with opposite directions overlapping each other vertically withthe space between the overlaps considered internal to the outline.� A bar consists of two horizontal segments with opposite directions overlapping each other horizontally withthe space between the overlaps considered internal to the outline.� A slant consists of two slanted segments having the same angle, with opposite directions overlapping eachother and the space between the overlaps is considered internal to the outline.The algorithm for �nding such elements is quite straightforward: we �rst �nd the segments and then matchopposite direction segments. For example, the stems and bars extraction was de�ned for Japanese charactersin [Chialing89].Slants might present some complication because of the variety of angles. We used a data structure sorted byangle to insert non vertical or horizontal segments and match groups of lines created within a certain rangeof angles.4.2. Bows and Arcs� A bow consists of two V -extreme points having the same y coordinate and the same extreme type (min ormax), the outline passing through them having opposite directions, and the line between them consideredinternal to the outline.� An arc consists of two H-extreme points having the same x coordinate and the same extreme type (min ormax), the outline passing through them having opposite directions, and the line between them consideredinternal to the outline.Finding bows and arcs is done by �nding all x (or y) extremum points, sorting them by y (or x) coordinateand matching them to each other within the epsilon ranges.



4.3. Curve Stems and Curve Bars� A curve stem is a V -extreme point and a vertical segment at the side of the extreme (on the left if theV -extreme point is a minimum and on the right if it is a maximum) overlapping in some y coordinate, theoutline passing through them having opposite directions, and the line between them considered internal tothe outline.� A curve bar is a H-extreme point and a horizontal segment at the side of the extreme (lower if minimumand higher if maximum) overlapping in some x coordinate, the outline passing through them having oppositedirections, and the line between them considered internal to the outline.The same sorted data structure having x (or y) extreme points and vertical (or horizontal) segments canbe used to match extreme points to straight segments and extract curve stems and curve bars.Actually, the three algorithms for �nding stems, bars, arcs, bows, curve stems and curve bars are executedall in one pass. First all the basic features like extreme points and vertical or horizontal segments (or multi-segments) are inserted to a data structure sorted by x or y coordinate and then the matching is done to �ndthe typographic elements. The complexity of the whole process is therefore O(n log n) where n is the numberof points in the outline. The dominant part is the sorting stage.4.4. SerifsExtraction of serif parts is a powerful feature of our algorithm. Serifs are one of the most important elementsin typographic design; previous works have usually not addressed this issue completely.All other typographic elements (e.g. bars, stems, arcs) could be de�ned geometrically with acceptablevariations incorporated in the epsilon rule. Serifs could carry almost any geometric shape and the rules whethera serif is included or not in certain parts of the character may vary dramatically from one language to another.For example, all bars in Japanese Mincho-style characters possess a serif at the right end. On the other hand,Hebrew serifs are located only at the left end of the topmost bar in a character. Therefore, there is no way todistinguish and recognize a serif without prior knowledge of the design of a font.We de�ne a serif as a sequence (or several possible sequences) of points having certain prede�ned typesaccording to the design of the serif. For example, a Mincho style bar serif and a Roman style stem serif couldbe de�ned as seen in Figures 5 and 6.The identi�cation of a certain serif is done by using a �nite automaton [Lewis81] built to recognize thesequence of points de�ning the serif. The outline is traversed and the types of the points encountered are fedby order of appearance to the di�erent �nite automata for di�erent serif types. Whenever an automaton hasreached a �nal accepting state, it means that its serif has been identi�ed. All �nite automata are then reset tothe start state and the outline is further traversed. In order not to depend on the selection of the �rst outlinepoint, the outline is traversed once again or until all automata have been reset.
Figure 5: Kanji serif de�ned by the sequence:fHR point,CH point, T point, V point, T pointg. Figure 6: Roman serif de�ned by the sequence:fT point, T point, LC point, LC point, LC point,LC point, T point, T pointg.Whenever a new type of serif is encountered within a new typeface, only the sequence(s) of points de�ning



it should be inserted to the system. It is given a name (e.g. MinchoBarCap or RomanRoundHalfSerif) and a�nite automaton recognizing the sequence is created and added to a pool of automates. Automates from thispool can then be turned on or o� while converting a certain typeface, depending on the serif types expectedto be encountered.There are cases when one serif's de�ning sequence is a sub-sequence in some other serif de�ning sequence.Several methods could be used to overcome this situation. The simplest is turning o� identi�cation for theincorrect one. This might not always be possible, since one typeface could include both types of serifs. A bettermethod would be to further classify the point types. For example, an L corner could be sub-classi�ed to fourdi�erent corner types according to orientation. This method can also be seen as adding geometric constraintsto the transition rules in the �nite automata.When the methods above fail, we specify certain automata as being sub-automata of others. This meansthat when the sub-automaton has reached its �nal state, the including automaton is not reset. Both serifsare identi�ed and the correct one is chosen. In our experience, the combination of these methods solves mostambiguities and clearly identi�es all serifs.5. Automatic HintingThe process of hinting an outline font must recognize and use typographic features of the glyph and font inorder to create the hint rules or constraints. In [Hersch91a] a topological model holding hinting informationof each character (and variants of the same character) is built. A matching algorithm between real shapes ofcharacters and the models is performed, allowing the transformation of hints from the model to the real shape.We have already mentioned the di�culty of creating such models for all huge variety of shapes representingRoman letters; moreover, the task seems close to impossible when looking at ideographic scripts.Examining the di�erent hint situations [Karow87] reveals that most of them are actually local in nature,meaning you must only examine a small portion of the outline of a glyph including several neighboring points(neighboring not only in the sense of consecutive points lying on the same contour, but also close in space) inorder to decide whether a hint should be applied or not. This means there is no need for a topological modelfor the whole glyph, but rather a model for each hint situation. This is exactly the type of model a PTR is(see Figure 9). Once an outline font has been converted to a PTR, it already includes all information neededfor creating grid-�tting hints to the outline of its glyphs, and so automatic hinting can easily be performed.We have used our feature extraction technique on several di�erent typefaces having widely di�erent designs,converting them to a PTR. A large portion of the design di�erence between typefaces lies in the di�erenttypes of serif design, or stroke endings in sans-serif typefaces. This di�erence can be handled by de�ning anumber of typical �nite automata to describe each typeface's serifs. Using this method we have managed toextract automatically all hinting situations from the outline of glyphs (see Figure 7) and have actually usedthis information to create constraints for Type 1 fonts and instructions for TrueType fonts.Most typographic features are also cross-lingual in nature. Examining distinct types of scripts and writings,one can see that a major part of the di�erences between letter shapes lies in the di�erent usage and likelihoodof the same type of features. This of course is the outcome of all of them sharing the common source processof writing (in fact, a few major di�erences arise from di�erences in the writing techniques, for example usinga pen in Roman scripts vs. a brush in Chinese and Japanese). Again, di�erent serif designs are a majordistinction between languages. Extracting typographic features should therefore be cross-lingual, which it isin our algorithm (Figure 10).Hinting situations can therefore be de�ned almost exactly the same in all languages, and so we have alsoused a PTR for Japanese Kanji and PTR Hebrew typefaces in order to automatically hint and create digitalfonts. Some di�erence in hinting di�erent languages is of course inevitable, but can be overcome e�ectivelyusing a PTR. As an example, Figure 11 shows the outline of the letter `m'. This letter exempli�es one of themost di�cult rasterizing problems of outline fonts, which even caused a special hint referred to as `counter' tobe de�ned. The typographic constraints for rasterizing this glyph are both `black' and `white' in nature. Thethree stems of the letter should retain their equal widths at all sizes (black) but also the two gaps betweenthe stems should retain their equal widths at all sizes (white).This task is not so simple to achieve when imposing a pixel grid of certain size on the glyph's outline, as canbe seen in Figure 11. The question whether to make the leftmost and rightmost stems one or two pixels wide



could be answered only by looking at the middle stem. Furthermore, which pixel column should be chosen torepresent the stems could be answered only by looking at the gaps between the stems.In ideographic languages this problem is further enhanced because of the quantity and complexity of barsand stems in a glyph (Figure 10), and due to the nature of reading in these languages which uses mainlyrecognition of bars and stems structures in order to discriminate between symbols.Our answer to this problem using a PTR is to de�ne a higher level typographic element using lower levelbars and stems. The special case where several stems are equal in width and length, and are placed in equaldistances one after the other (all within the tolerance rule) is called a stem-ladder, or a bar-ladder in thehorizontal case (see the X symbol in Figure 11). This typographic element is then used as a constraint whilegrid-�tting or deforming the letter, and can be further converted to rules or hints in a rasterizing languagesuch as TrueType or Type 1 (Adobe Type 1 technology supports only triple ladders).A PTR generated by our feature extraction algorithm is therefore a general and robust solution to theproblem of automatic hinting of digital outline typefaces, which is one of the most important stages of digitalfont production today.6. ConclusionWe have described a complete and e�cient algorithm for extracting typographic elements from outline repre-sentations of typefaces. The algorithm is essential for converting existing typefaces into the modern family ofrepresentations which we call parametric typographic representations (PTR).The algorithm was implemented as a part of a commercial system for conversion between di�erent outlinerepresentations and for automatic hinting and regularization of typefaces. The system has been used on dozensof thousands of Roman, Kanji and Hebrew characters, and it is being successfully used on a daily basis. Thefonts generated are consistently of higher hinting quality than most commercially available fonts.A PTR is capable of providing answers to well known and di�cult problems in font rasterization anddigitization. such as hinting and regularization. In addition, it enables typefaces to take a more active partin electronic media using deformations, variations and animations while retaining their original typographicnature and design. Lack of space prevents us from describing these PTR applications in the present paper;they are more fully described in the technical report [Shamir95] and will be presented in future papers.Additional future work should concentrate on the issues of parametrization of the extracted typographicelements and on the de�nition of typographic parts for extensively cursive and illustrated typefaces.ReferencesAdams89 Adams D., Abcdefg: a better constraint driven environment for font generation, in: Andr�e, Hersch (Eds.),Raster Imaging and Digital Typography, Cambridge University Press, 1989, pp. 54-70.Adobe92 Adobe Developer Support, Adobe Type 1 Font Format: Multiple Master Extensions, 1992.Adobe90 Adobe Systems Inc., The Type 1 Format Speci�cation, Addison Wesley, 1990.Andler90 Andler S., Automatic generation of grid�tting hints for rasterization of outline fonts or graphics, in R.Furuta (Ed.), EP90, Proceedings of the International Conference on Electronic Publishing, Document Manipulation& Typography, Cambridge University Press, Sep. 1990, pp. 221-234.Apple94 Apple Computer, QuickDraw-GX: Typography; Font File Formats; 1994.Bauermeister88 Bauermeister B., A Manual of Comparative Typography: the PANOSE system, Van Nostrand Rein-hold, New York, 1988.B�etrisey89 B�etrisey C. and Hersch, Roger D., Flexible application of outline grid constraints, in: Andr�e, Hersch (Eds.),Raster Imaging and Digital Typography, Cambridge University Press, 1989, pp. 242-250.Bringhurst92 Bringhurst, Robert, The Elements of Typographic Style, Hartley & Marks, 1992.Changyuan93 Changyuan, Hu, and Fuyan, Zhang, Automatic hinting of Chinese outline font based on stroke sepa-rating method, Proceedings of the First Paci�c Conference on Computer Graphics and Applications, Paci�c Graphics'93, Vol.1, 1993, pp. 359-368.Chialing89 Chialing Ou, and Yoshio Ohno, Font generation algorithms for Kanji characters, in: Andr�e, Hersch (Eds.),Raster Imaging and Digital Typography, Cambridge University Press, 1989, pp. 123-133.D�urst93a D�urst, Martin J., Coordinate independent font description using Kanji as an example, Electronic Publishing:Origination, Dissemination, and Design 6(3):133-143, John Wiley & Sons, 1993.



D�urst93b D�urst, Martin J., Structured character description for font design: a preliminary approach based on Prolog,Proceedings of the First Paci�c Conference on Computer Graphics and Applications, Paci�c Graphics '93, Vol.1,1993, pp. 369-380.Feng75 Feng H.F., and Pavlidis T., Decomposition of polygons into simpler components: feature generation for syn-tactic pattern recognition, IEEE Transactions or Computers, vol. 24 June 1975, pp. 636-650.Haralambous93 Haralambous, Yannis, Parametrization of PostScript fonts through metafont { an alternative toAdobe Multiple Master fonts, Electronic Publishing: Origination, Dissemination, and Design, 6(3):145-157, JohnWiley & Sons 1993.Hersch91a Hersch, Roger D. and B�etrisey C., Model-based matching and hinting of fonts, Proceedings SIGGRAPH'91, ACM Computer Graphics, Vol 25, July 1991, pp. 71-80.Hersch91b Hersch, Roger D. and B�etrisey C., Advanced grid constraints: performances and limitations, in: Morris,Andr�e (Eds.), Raster Imaging and Digital Typography, Cambridge University Press, 1991, pp. 190-204.Hersch87 Hersch, Roger D., Character generation under grid constraints, Proceedings SIGGRAPH '87, ACM Com-puter Graphics, Vol. 21, July 1987, pp. 243-252.Karow94a Karow, Peter, Digital Typefaces: Description and Formats, Springer-Verlag, Berlin, 1994.Karow94b Karow, Peter, Font Technology: Description and Tools, Springer-Verlag, Berlin, 1994.Karow89 Karow, Peter, Automatic hinting for intelligent font scaling, in: Andr�e, Hersch (Eds.), Raster Imaging andDigital Typography, Cambridge University Press, 1989, 232-241.Karow87 Karow, Peter, Intelligent FontScaling, Technical report, URW Unternehmensberstung, Hamburg, Germany,1987.Knuth86 Knuth, Donald E., The metafont Book, Addison-Wesley, 1986.Lawson90 Lawson, Alexander, Anatomy of a Typeface, Hamish Hamilton, 1990.Lewis81 Lewis, H.R., and Papadimitriou C.H., Elements of The Theory of Computation, Prentice-Hall, 1981.McQueen93 McQueen, Clyde D., and Beausoleil, Raymond G., In�nifont: a parametric font generation system, Elec-tronic Publishing: Origination, Dissemination, and Design 6(3):117-132, John Wiley & Sons 1993.Microsoft90 Microsoft Corporation, The TrueType Font Format Speci�cation, 1990.Rubinstein88 Rubinstein, Richard, Digital Typography: An Introduction to Type and Composition for ComputerSystem Design, Addison-Wesley, 1988.Shamir95 Shamir, A. and Rappoport, A., Parametric typographic representation of typefaces: automatic conversionfrom outline fonts and applications, Technical Report TR-95-01, Institute of Computer Science, The Hebrew Univer-sity, 1995.Southall91 Southall Richard, CharacterDescriptionTechniques in Type Manufacture, in: Morris, Andr�e (Eds.), RasterImaging and Digital Typography, Cambridge University Press, 1991, pp. 16-27.Stamm93a Stamm, Beat, Dynamic regularization of intelligent outline fonts, Electronic Publishing: Origination, Dis-semination, and Design, 6(3), John Wiley & Sons, 1993.Stamm93b Stamm, Beat, Object oriented and extensibility in a font scalar, Electronic Publishing: Origination, Dis-semination, and Design 6(3):159-170, John Wiley & Sons, 1993.Woodwark92 Woodwark, J.R., Some speculations on feature recognition, in: GeometricReasoning,Kapur and Mundy(Eds), 1992.Zhang92 Zhang, Fuyan andGeWeimua,An automatic stroke separatingmethod, Proceedingsof the third internationalconference on Chinese information processing (ICCCIP '92), Beijing, 1992.



Figure 7: The lower-case letters of the Bookman Light typeface, with the typographic features extracted markedin di�erent colors. Vertical elements such as stems and bows are shown green, horizontal elements such as barsand arcs are shown blue, slants are shown yellow and serifs are shown red.
Figure 8: Typographic elements: stems (green), bars (blue), bows (red), arcs (violet), curve stems (orange,notice the extremum triangle.)



Figure 9: Similar features extracted from di�erent type of \G" glyphs.
Figure 10: Enhanced use of bars and stems in Japanese.
Figure 11: The multiple stems rasterizing problem.


