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Abstract

Interactive modeling of 3-D solids is an important and difficult
problem in computer graphics. The Constructive Solid Geometry
(CSG) modeling scheme is highly attractive for interactive design,
due to its support for hierarchical modeling and Boolean opera-
tions. Unfortunately, current algorithms for interactive display of
CSG models require expensive special-purpose hardware that is not
easily available.

In this paper we present a method for interactive display of CSG
models using standard, widely available graphics hardware. The
method enables the user to interactively modify the affine transfor-
mations associated with CSG sub-objects. The application we focus
upon is that of conceptual design, a stage in the design process in
which rapid, interactive visualization of the model and high-level
design operations are of crucial importance, while the objects are
relatively simple.

The method converts the CSG graph to a novelConvex Differences
Aggregate(CDA)representation. The CDA utilizes graph re-writing
techniques, efficient geometric algorithms on convex objects and a
built-in hierarchical acceleration scheme. The CDA rendering al-
gorithm is very simple, takes advantage of standard graphics hard-
ware, and makes efficient use of system resources by splitting the
work between the graphics system and the CPU.

CR Categories and Subject Descriptors:I.3.3 [Computer Graph-
ics]: Picture/Image Generation — Display algorithms; I.3.5 [Com-
puter Graphics]: Computational Geometry and Object Modeling —
CSG; J.6 [Computer Applications]: Computer-Aided Engineering
— CAD.

Additional Key Words: geometric modeling, solid modeling, con-
ceptual design, Boolean operations, convex differences, convex dif-
ferences aggregate, convex polyhedra.

1 Introduction

Interactive design of 3-D geometric models is of major importance
in computer graphics. The Constructive Solid Geometry (CSG)
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solid representation scheme [Requicha80] is highly attractive for in-
teractive design, because it lets the user compose objects hierarchi-
cally using Boolean operations. Unfortunately, current algorithms
for interactive display of CSG models require expensive special-
purpose hardware that is not widely available.

In this paper we address the problem of displaying CSG models
at interactive rates using standard, off-the-shelf graphics hardware.
The application we have in mind is that of conceptual design, a
stage in the design process in which rapid, interactive visualization
of the model and high-level design operations are of crucial impor-
tance, while the objects are relatively simple.

Background. A design process starts with conceptual design and
progresses by iterative refinement stages until meeting the design
goal [Smithers89]. In geometric design, the initial conceptual de-
sign phase is one of the most difficult to computerize. Other stages,
such as detailed geometric design and physical analysis, are already
supported in current modeling systems. Conceptual design is rarely
supported.

The reason why conceptual design is so difficult to support is that
it imposes the largest demands for interactivity. Initially, designers
need to experiment with a large number of potential designs. This
‘navigation in design space’ must be done in a very intuitive and fast
manner. The vocabulary by which designer intentions are expressed
should be very high-level, and is translated into a large number of
low-level operations that could be difficult to compute efficiently.
Nonetheless, conceptual design is easier than detailed design in
that (1) the number of geometric objects involved is usually much
smaller, (2) it suffices to support model visualization (other opera-
tions are not strictly essential), and (3) interactive visualization is
much more important than accuracy of the model.

Most conceptual design is currently done using pen and paper.
When designing 3-D models, the great potential advantage of com-
puter graphics is obvious, letting designers inspect their models
from different viewpoints and at different scales and make fast mod-
ifications. We are interested in direct conceptual design of 3-D mod-
els.

Constructive Solid Geometry (CSG) [Requicha80, Hoffmann89] is
a well-known representation scheme that represents 3-D solids by a
graph whose leaves contain geometric primitives and whose nodes
contain Boolean and affine operations. The arcs of the graph denote
the fact that an operation uses an object as an argument. The native
CSG modeling operations include: (1) instantiation of simple geo-
metric primitives, (2) composition of objects from simpler objects
in a hierarchical manner, using the union Boolean operation, (3)
performing affine operations (translation, rotation and scaling) on
objects, and (4) using one object to modify another by the Boolean
difference and intersection operations. These relatively high-level
modeling operations make CSG an attractive choice for conceptual
design.

A CSG graph models a family of objects spanning a design space.
Navigation through this design space is performed by modifying
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the numerical parameters defining the affine transformations. It is
crucial that such navigation could be performed in an interactive
manner, otherwise the design process is damaged to the point that
pen and paper are more effective. Rapid display of CSG objects
after modification of their affine parameters is the goal of this paper.

Previous work. Previous work on rendering CSG models can be
classified into several categories according to the methods used.
The most obvious method is to convert the CSG representation into
a boundary representation, which is the native format accepted by
virtually all interactive rendering systems. However, all boundary
evaluation methods require considerable amounts of computation
[Requicha85] and are too slow for interactive modification of the
model.

Several well-known graphics algorithms have been customized
for CSG display. This includes scanline methods [Atherton83,
Bronsvoort87], ray tracing and ray casting [Roth82], image subdi-
vision [Cameron94], octrees [Meagher84] and even point sampling
and voxel reconstruction [Breen91]. Again, all of these methods do
not provide interactive performance.

Binary Space Partitioning (BSP) trees, known in computer graph-
ics for acceleration of many types of computations, were used for
CSG [Thibault87, Naylor92, Naylor96]. Although the results are
impressive, these method are basically an acceleration of complete
boundary evaluation. They utilize standard graphics hardware only
to a limited extent, and limit the range of modifications that can be
done on the object.

Many methods were suggested for CSG display using special pur-
pose hardware. These methods have progressed from a special
kind of z-buffer [Okino84, VanHook86, Rossignac86] to usage
of multiple z and frame buffers and multiple rendering passes
[Goldfeather86, Jansen86, Jansen87, Goldfeather89, Rossignac90,
Jansen91]. These methods do support real-time rendering of CSG
models (naturally, depending upon the model size), but are not prac-
tical for every-day use because they require expensive special pur-
pose hardware that is not easily available.

[Wiegand96] presents a method to emulate the algorithm of [Gold-
feather89], designed for a parallel pixel-based architecture, on stan-
dard graphics hardware. In effect, double z and image buffers
are emulated by using multiple passes and memory copying. This
method, and a similar method detailed in [McReynolds96], are the
most practical methods suggested so far. However, these multi-pass
methods are brute-force ones, putting virtually all of the computa-
tional load on the graphics system. Demanding applications should
try to use all the computational resources provided by the machine,
especially considering that today’s CPUs are rather powerful and
that multi-processor machines are not uncommon. In addition, the
brute-force methods do not support many kinds of geometric accel-
eration schemes.

In summary, none of the existing methods fulfills the goal of in-
teractive display of CSG models while using standard graphics
hardware. The methods that partially support that goal (e.g. [Wie-
gand96]) do not make efficient use of the overall architecture and
are too low level and brute-force to provide satisfactory support for
conceptual design.

Proposed approach.In this paper we present a method for dis-
playing CSG models, which is particularly attractive for conceptual
design. The method enables interactive modification of the numeri-
cal parameters of the affine transformations in the CSG graph. The
major advantages of the method are:

1. Interactive performance,

2. Utilization of standard, widely available graphics hardware,

3. Splitting the work between the CPU and the graphics system.

In addition, our internal representation speeds up complete approx-
imate boundary evaluation when desired, and possesses a built-in
spatial hierarchy.

The method utilizes a combination of graph re-writing, efficient
geometric algorithms and standard graphics hardware. The sur-
faces of solid CSG primitives are approximated by linear facets,
and the primitives themselves are expressed as convex polyhedra
or Boolean combinations of convex polyhedra. All traditional CSG
primitives (box, tetrahedron, pyramid, sphere, cylinder, cone, torus)
are easily supported. The torus is modeled as a union of several
simple convex pieces. Note that constraints imposed by sub-object
convexity are present in other interactive solutions as well [Wie-
gand96]. Support for free-form objects is more difficult, although
there is no inherent reason why they could not be used.

The CSG graph is transformed into a novelConvex Differences Ag-
gregate (CDA)representation. The CDA is a union of cells each
of which is a containing convex polyhedron minus a set of con-
tained convex polyhedra. Interactions between polyhedral faces that
might affect visibility are efficiently detected and handled by aface
bindingmechanism. Display of an aggregate involves standard ca-
pabilities of the graphics system (polygon rasterization, z-buffer, a
single stencil bit-plane). The process of building a CDA can be di-
vided into two: structure and geometry. Structure is re-computed
each time the structure of the corresponding CSG graph is modi-
fied. This computation is very fast. Geometry is updated each time
visual feedback is needed, in particular when the user modifies the
parameters defining the affine operations. This update is done by
computing 3-D convex hulls of sets of points.

By itself, the CDA is alossymodeling scheme [Rappoport95] be-
cause it approximates geometry using planar faces and because it
loses the object hierarchy. However, the method as a whole is loss-
less, because the original CSG graph is retained.

The paper is structured as follows. The CDA representation is de-
fined in Section 2. Rendering a CDA is detailed in Section 3. Con-
version of a CSG object to a CDA is described in Section 4, and
general system aspects and results are discussed in Section 5.

2 The Convex Differences Aggregate (CDA)

In this section we introduce the convex differences aggregate
(CDA) representation. The CDA utilizes the difference between
a containing convex polyhedron and other convex polyhedra. As
such, it resembles the 2-D representations in [Sklansky72, Batche-
lor80, Tor84, Rappoport90, Rappoport92] and the 3-D and n-D rep-
resentations in [Woo82, Kim90, Rappoport91]. However, the CDA
is different from these representations in structure, geometric as-
pects, and the fact that it is optimized for computer graphics dis-
play.

A CDA A represents a pointsetSet(A) by a set ofcells A =
fC1, : : : ,Cng. Each cellC represents a pointsetSet(C). The pointset
represented by the CDA is the union of the pointsets represented by
the cells:Set(A) = Set(C1)[ : : :[Set(Cn). In principle, the CDA is
a pure aggregate of cells and there are no relationships between the
cells. Figure 1 shows a CDA consisting of two cells,C1 andC2.

A cell C is represented by a singlepositivecell Pos(C), a set ofneg-
ativecellsNeg(C) = fN1, : : : , Nmg, and a set ofzerocellsZero(C) =
fZ1, : : : , Zkg. We denote a cell byC = fP; N1, : : : , Nm; Z1, : : : ,Zkg.
The pointset represented by a cell is the set difference between that
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Figure 1 A 2-D CDA consisting of two cells,C1 = fA; C, D; Eg
andC2 = fB; F, G; Hg. Each cell has two negative cells intersecting
in a single zero cell.

represented by its positive cell and the union of pointsets repre-
sented by its negative cells:

Set(C) = Set(P) n (Set(N1) [ : : : [ Set(Nm)).

Negative cells represent holes in their positive cells. In Figure 1,
C,D,F andG are negative cells. Zero cells do not affect the pointset
represented by a cell; they exist solely to assist rendering. Un-
less stated otherwise, throughout this paper we assume regularized
Boolean operations, ensuring the full dimensionality of CSG ob-
jects. The result of a regularized Boolean operation between two
sets is the topological closure of the result of the Boolean opera-
tion when applied to the topological interior of the two sets [Re-
quicha80].

The pointset represented by a positive, negative or zero cellH is
given by a convex polyhedron associated with the cell. For sim-
plicity, we will also denote the polyhedron byH. We will also call a
face positive (negative, zero) when referring to a face of the polyhe-
dron of a positive (negative, zero) cell. We assume that face normals
of positive polyhedra consistently point out of the positive polyhe-
dron, and that normals of negative faces consistently point into the
negative polyhedron.

From a set-theoretic modeling point of view, the CDA is a spe-
cial kind of CSG graph: it contains only the union and difference
Boolean operations (no intersections, complements, and affine op-
erations), it possesses a special structure (its depth is exactly three,
the first and third levels contain union operations and the second
level a difference operation), and all primitives are convex polyhe-
dra.

The CDA imposes additional structural and geometric requirements
from its ingredients, which are an integral part of its definition: (1)
containment relationships between pointsets of positive and nega-
tive cells, (2) existence of zero cells and intersection relationships
between their pointsets and that of negative cells, (3) binding be-
tween certain faces of negative and positive cells, and (4) binding
between certain faces of zero and negative cells. The motivation for
these requirements is optimizing the display operation while sup-
porting fast affine modification of geometry.

Containment. Negative cells are required to be contained in their
positive cell. Negative cells of dimensionality lower than 3 are re-
dundant and should be discarded (recall that the Boolean operations
are regularized).

Zero cells. A zero cell Zij exists for every intersecting pair of
negative cells that belong to the same aggregate cell:Set(Zij ) =

Set(Ni) \ Set(Nj). In Figure 1, each cell has two negative cells in-
tersecting in a single zero cell. A zero cell may exist even when the
intersection between the negative cells is of one dimension lower
than the cell dimension (but see the definition of zero face bind-
ings below). For example, if two negative 3-D convex polyhedra
intersect only in a face, then the resulting zero cell is a degenerate
polyhedron with two identical faces having opposite normals.

In Figure 2, negative cellsM andN intersect in a zero cellZ which
is of full dimensionality in (a) and (b) and of dimension one lower
in (c).

N

M

Z
//

//

= =

N

M

Z
//

N

M

Z
//

= =

(a) (c)(b)

Figure 2 Two negative cells can yield a zero cell of full dimension-
ality (a, b) or of dimension one lower than themselves (c). Bound
zero faces are crossed by two short line segments. Note that the
lower face of the zero cell in (b) is not bound.

Positive-negative (P-N) face bindings.If a positive face and a neg-
ative face belonging to the same cell are co-planar, there is an ex-
plicit binding between these two faces. We say that the positive face
is bounddownwardsand that the negative face is boundupwards.
Note that since both polyhedra are convex, a negative face is bound
to no more than a single positive face. However, it is certainly possi-
ble that two different negative cells will be co-planar with the same
positive face. Thus, a positive face can be bound to several different
negative faces.

Negative-zero (N-Z) face bindings.A face of a zero cell can be ex-
plicitly bound to a face of one of the two negative cells that yielded
the zero cell. This binding exists in one of two situations:

1. The zero face is co-planar with exactly one negative face (e.g.
the bound faces in Figure 2(a) and (b)), or

2. The zero face is co-planar with both negative faces, and the
normals of the negative faces point in opposite directions (e.g.
Figure 2(c)).

We say that the negative face is bounddownwardsand that the zero
face is boundupwards.The lower zero face in Figure 2(b) is not
bound because the normals of the originating negative faces point in
the same direction. The bound faces of zero cells are exactly those
that do not belong to the union of their two originating negative
cells. Since negative polyhedra are convex, their intersection is also
convex and a zero face is bound to no more than a single negative
face. A negative face can be bound to several different zero faces.

3 Rendering a CDA

In this section we discuss CDA rendering, showing how the struc-
tural and geometric properties of a CDA make its rendering very
simple. A CDA is rendered using a standard 3-D graphics API such
as OpenGL. The graphics system should support polygon-based
hidden surface removal (usually, using a z-buffer) and a stencil bit-
plane.



The rationale behind the convex differences aggregate representa-
tion is made clear when considering the rendering operation. We
can render aggregate cells independently because their pointsets are
unioned; from the point of view of the graphics system, these cells
can be treated as separate objects. Positive faces can be rendered
correctly because holes in them are modeled explicitly by face bind-
ings. Negative faces can be rendered correctly because interactions
between negative cells that might modify visibility relationships are
represented by the existence of zero cells, and are handled by bind-
ings between zero and negative faces.

The CDA rendering algorithm is shown in Figure 3. Rendering a
CDA starts by clearing the frame buffer and the z-buffer, and then
independently rendering all of its cells. Rendering a cell is done
by rendering its positive cell and all its negative cells. Rendering a
positive or negative cell is done by rendering its polyhedron. Ren-
dering a polyhedron is done by rendering those of its faces that are
front-facing (a simple optimization) and not bound upwards. This
discards only negative faces bound to positive ones, because zero
faces are not rendered directly. Rendering a face starts by clearing
the stencil bit-plane. The faces bound to the rendered face (actually,
only those that are bound downwards) are rendered onto the stencil;
they leave no mark on the frame buffer and z buffers. Then the face
itself is rendered on the parts of the frame and z buffers not masked
by the stencil.

CDARender (CDAA):
clear frame and z buffers.
for all cellsCi of A

CellRender (Ci).
�

CellRender (CellC):
PolyhedronRender (Pos (C)).
for all negative cellsNi of C

PolyhedronRender (Ni)).
�

PolyhedronRender (PolyhedronP):
for all facesFi of P

if Fi is front-facing and not bound upwards
FaceRender (Fi).

�

FaceRender (FaceF):
clear stencil bit-planeS.
for all bound facesbj of F

renderbj onS.
renderF on the parts of the frame and z buffers
not masked byS.

�

Figure 3 Rendering a convex differences aggregate.

A formal proof of correctness of the rendering algorithm is given
in [Spitz94]; here we only give an informal argument. First, note
that since the pointset represented by the CDA is the union of the
pointsets represented by the aggregate cells, the z-buffer automati-
cally guarantees that if cells are rendered correctly then the results
are combined correctly.

Next, consider positive faces. Because negative cells are contained
in the positive cell, positive faces are never hidden by negative ones.
At most, they coincide with them. Since negative cells are of full di-
mensionality, a negative face that coincides with a positive face rep-
resents a through-hole in the positive face. Such negative faces are
bound (by definition of the CDA) to the positive face, and masked
by the stencil. As a result, the visible pixels of positive faces are
exactly those that are rendered.

Finally, consider negative faces. Negative faces that overlap positive
faces represent holes in the positive face through which something
may be visible. Such faces are bound upwards and are not directly
rendered by the algorithm; they were rendered as holes in the stencil
when rendering the positive face. Regarding other negative faces, if
a negative face does not intersect any other negative face, it might
be visible like any ordinary face of a non-convex polyhedron and is
rendered similarly to positive faces (note that normals of negative
faces by definition point in the correct direction, outside the object
represented by the cell). If a facef of a negative cellN is intersected
by a negative cellM, there are three cases:

1. The intersection betweenN and M is not along a co-planar
face; the intersection is of full dimensionality. In this case the
cell M cuts a through-hole in the facef . By definition, the face
f is bound to a zero face having the exact geometry of the
through-hole. When the facef is rendered, the stencil masks
the through-hole.

2. The intersection betweenN andM is along a faceg of M co-
planar withf , and the normals off and g point in opposite
directions. This case is similar to the previous one, sinceg
again comprises a hole inf . This is why we allow degenerate
zero cells having lower dimensionality.

3. The intersection betweenN andM is along a faceg of M co-
planar withf , and the normals off and g point in identical
directions. In this casef andg can be rendered independently,
since they do not hide or create through-holes in each other.
This is why in this case there are no zero faces bound to either
of them.

The requirement that cell polyhedra must be convex is not strictly
necessary for rendering, and is needed only in order to efficiently
recompute the geometry of the cells, as explained in Section 4.2. In
addition, the fixed three-level depth of the CDA is not essential, but
is more efficient for rendering. An arbitrary depth CDA-like repre-
sentation for n-D polyhedra called theextended convex differences
tree is described in [Rappoport91].

The deep reason why the rendering algorithm works is, of course,
the fact that the CDA is asolid representation. Whenever a face has
a through-hole, the hole is simply masked and the rest of the face
is rendered ordinarily. Because the object is modeled as a solid,
if the through-hole is not a real hole through the object, at some
point some face will block it. For the same reason, our rendering
algorithm will not work when the viewer is located inside the solid.

4 Conversion of CSG to CDA

In this section we show how to convert a CSG graph to a convex dif-
ferences aggregate representation. Initially, the primitives are tes-
sellated into linear polyhedra according to approximation param-
eters supplied by the user. The conversion proceeds in two parts:
generation of thestructureof the resulting CDA (Section 4.1), and
computation of thegeometryof the convex polyhedra present in
the CDA (Section 4.2). The separation into different structure and
geometry computations is only done in order to simplify the pre-
sentation. In practice, the two are intermixed to enable pruning op-
timizations [Spitz94].

4.1 CDA Structure Generation

Generation of the correct structure of a CDA corresponding to a
CSG graph is done by a simple graph re-writing procedure. Many
of the previous algorithms for rendering CSG objects [Rossignac90,



Goldfeather89, Wiegand96] utilize such procedures. Our graph re-
writing is different from all of these, although it shares with them
the fact that the top level of the resulting expression contains only
union operations.

Initially, the CSG graph is converted into an equivalent binary tree
by duplicating a node according to the number of its outcoming
arcs and by splitting Boolean operations having more than two ar-
guments to a series of binary operations. All affine operations in the
resulting CSG tree are now propagated into its leaves and attached
to the primitives. All these steps are standard CSG procedures. We
now have a tree of Boolean operations in which every primitive is
located in its final position.

The CDA is computed recursively (bottom-up computation is also
possible). When visiting a node, we call the evaluation algorithm re-
cursively for its children, and merge the returned CDAs to form the
CDA returned by the node. Since CSG nodes contain only union,
intersection and difference Boolean operations, it is enough to show
how the union, intersection and difference of two CDAs can be
transformed into a CDA. In the following, denote the two CDAs
and their cells byA =

Sn
i=1 Ci ,B =

Sr
j=1 Dj .

Aggregate union.The union of two aggregates is simply an aggre-
gate containing all of their cells:A[B =

Sn
i=1 Ci

Sr
j=1 Dj . Obviously,

the pointset represented by the new aggregate is indeed the union
of the two pointsets represented byA andB. Since all cells are valid
before executing the aggregate operation, they are also valid after
its execution, and the result is a valid CDA.

Aggregate intersection.Since
Sn

i=1 Ci \
Sr

j=1 Dj =
S

i=1..n,j=1..r Ci \

Dj , the intersection of two CDAs is a CDA whose cells are the
pairwise intersections between the cells of the two aggregates:
A \ B = fCi \ Dj , i = 1 : : : n, j = 1 : : : rg. Again, the pointset of
the result is the intersection of the original pointsets. However, we
also have to show how to implement the cell intersection operation
so that the result possesses a valid structure.

Cell intersection. Denote the two cells to be intersected byC =
fP; N1, : : : , Nm; Z1, : : : ,Zkg, andD = fQ; M1, : : : ,Ms; X1, : : : , Xtg,
and also denoteN = N1 [ : : : [ Nm, M = M1 [ : : : [ Ms. Now,
Set(C) = P n N, Set(D) = Q n M. By De-Morgan’s formulae, we
have (PnN)\ (QnM) = (P\Nc)\ (Q\Mc) = (P\Q\ (N[M)c) =
(P\Q)n(N[M) = (P\Q)n(N1[: : :[Nm[M1[: : :[Ms), which is
of the structural form desired. The CDA also requires that negative
cells are contained within their positive ones, so we intersect each
negative cell withP \ Q. P’s original cells are already contained
in P, so we only have to intersect them withQ; the same holds for
Q’s original cells. We obtainC\D = f(P\Q); (Q\N1), : : : , (Q\
Nm), (P\ M1), : : : , (P\ Ms)g.

Now to the zero cells. Each original zero cellZij of C has originated
from an intersection between two negative cellsNi ,Nj . Hence the
new corresponding negative cells (Q\Ni) and (Q\Nj) may poten-
tially intersect. We can thus intersectZij with Q, and add the result
(if it is not empty) to the zero cell list. This, however, is not suf-
ficient, because there may be new zero cells arising from intersec-
tions of the form (Q\Ni)\ (P\Mj ). Therefore, we add non-empty
intersections of this form to the result as well. To summarize, the
intersection between two cells is given by:

fP; N1. .Nm; Z1. .Zkg \ fQ; M1. .Ms; X1. .Xtg =

f(P\ Q); (Q\ N1). . (Q\ Nm), (P\ M1). . (P\ Ms);

(Q\ Z1). . (Q\ Zk), (P\ X1). . (P\ Xt), (Q\ Ni) \ (P\ Mj ). . .g.

Note that the only geometric operation in this expression is inter-
secting two convex polyhedra (all original positive, negative and

zero cells are convex polyhedra). This operation will be detailed in
Section 4.2.

Note that simple pruning optimizations are possible and should cer-
tainly be performed. If the two positive cellsP,Q do not intersect,
no other intersections calculations need be performed. If a positive
cell P does not intersect a negative cellMj of Q, it does not intersect
the zero cellsXl of Q that originated fromMj .

Aggregate difference.A n B = (
Sn

i=1 Ci) n B =
Sn

i=1(Ci n B). This
expression is a union of differences between a cell and an aggregate.
For a cellC, we haveC n B = C n

Sr
j=1 Dj = C \ (

Sr
j=1 Dj)c =

C\ (
Tr

j=1 Dc
j ) =
Tr

j=1(C\Dc
j ) =
Tr

j=1(C nDj). That is, a cell minus
an aggregate can be expressed as the intersection of terms of the
form C n Dj , which is a cell difference operation.

Cell difference.For two cellsC,D, CnD = Cn (Qn
Ss

i=1 Ms). It is
easy to see that, in general,An (Bn C) = (AnB)[ (A\C). Hence,
C n D = (C n Q) [ (C \

Ss
i=1 Ms) = (C n Q) [ (

Ss
i=1(C \ Mj)). In

other words, the difference between cellsC andD is an aggregate
whose cells arefC n Q, C \ M1, : : : ,C \ Msg . The cellC n Q is
computed by addingP \ Q to the negative cell list ofC, updating
the zero cells as well (Q cannot be added as is because it must be
contained withinC’s positive cell,P). All others are easily handled
by transforming the polyhedronMj to a cellM0

j containing a single
positive cell and intersecting the two cellsC andM0

j using the cell
intersection expression derived above.

In summary, we have seen that aggregate union, intersection and
difference can all be reduced to a series of cell intersection opera-
tions, which in turn require a single geometric operation, intersec-
tion between two convex polyhedra.

In general, the size of the resulting aggregate (in terms of the num-
ber of cells that it contains) is usually larger than the combined sizes
of the two input aggregates. Theoretically, an aggregate’s size can
be very large (see [Rossignac94]), but practically, during concep-
tual design, aggregates are of manageable sizes. The same state-
ment holds for the number of the negative cells, and especially the
zero cells, in a cell. Theoretically, all pairs of negative cells may
intersect, resulting in a large number of zero cells. However, during
the conceptual design stage features tend to be strong and geomet-
ric interactions between through-holes (resulting in zero cells) are
kept to a minimum.

Example. Figure 4 shows a CSG graph describing a simple car.
The car is built as follows. A circle primitive is scaled using an
affine operation to provide a wheel frame. A rectangle primitive is
instantiated twice, scaled and positioned to form vertical and hor-
izontal wheel holes. The wheel frame minus the holes defines the
final wheel. The wheel is instantiated twice to form a left wheel and
a right wheel. Note that the geometries of the wheels are different,
because a different affine transformation is used. Two rectangles are
intersected to form a body frame. A window is subtracted from the
body frame to generate the body, which is then positioned in place.
The car is the union of the two wheels and the body. The object is
of course very simple, but the situation is typical to a conceptual
design session: parameterized primitives are instantiated and posi-
tioned at the desired locations in the desired scale. They are com-
bined using Boolean operations to form sub-objects. Sub-objects
are usually combined using the union operation.

The result after the initial graph re-write is shown in Figure 5(a).
The graph was expanded into a tree. All primitives (marked by an
internal P) are at their final positions and scale (in the actual data
structure affine transformations are attached to the primitives; this
is not shown in the figure because we do not consider them to be
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Figure 4 A CSG graph (left) describing a simple car object (right).

part of the tree anymore).

We now describe in a bottom-up fashion all intermediate CDAs
computed during the conversion of the tree to a valid CDA. Cap-
ital letters denote CDAs, and capital letters with a hat denote CDA
cells. The first two CDAs are simplyJ = fĴ1, Ĵ2g, K = fK̂1, K̂2g.
Ĵ1 = fB; ; g, Ĵ2 = fC; ; g, K̂1 = fE; ; g, K̂2 = fF; ; g. The CDA L
results from intersecting two cells:L = fL̂1g, L̂1 = fG \ H; ; g.
The CDAM results from the difference between two CDAs:M =
A n J = fM̂1g, M̂1 = fA; A \ B,A \ C; A \ B \ Cg. M possesses
a single cell, whose positive cell isA, two negative cells, and a
single zero cell. Similarly, the CDAN is given byN = D n K =
fN̂1g, N̂1 = fD; D\E,D\ F; D\E\ Fg. The CDAO also results
from the difference between two CDAs:O = L n I = fÔ1g, Ô1 =
fG\ H; G\ H \ I ; g. The CDAsP andQ result from the union of
two CDAs:P = M[N = fM̂1, N̂1g, Q = P[O = fM̂1, N̂1, Ô1g. Fig-
ure 5(b) shows the final CDA obtained. A single prime on a cell’s
name (e.g.M0) denotes the fact that the cell corresponds to the in-
termediate CDAM. A double prime (e.g.B00) denotes the fact that
the geometry of a negative CDA cell isnot identical to the corre-
sponding intermediate result having the same name, because it must
be intersected by its positive cell.
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Figure 5 (a) The initial tree corresponding to the car CSG graph,
without affine transformations. (b) The final CDA.

4.2 CDA Geometry Computation

The only operation needed in order to compute the geometry
of a CDA whose structure was generated from a CSG graph
is the intersection between two convex polyhedra. This problem
has been extensively dealt with in the computational geometry
literature [Muller78, Preparata85, Hertel84, Bieri88, Chazelle87,
Chazelle92]. For the sake of completeness, we will briefly outline
the algorithm in [Muller78, Preparata85], which is the one we have
implemented. Generation of face bindings is a simple book-keeping
matter during the execution of the algorithm.

Initially, a single point inside the intersection of the two polyhedra
A,B is computed by linear programming. The two polyhedra are
now translated so that the common intersection point lies at the ori-
gin. Each face is transformed to its dual point: if the plane equation
of the face isax + by + cz+ 1 = 0, the dual point is (a,b, c). The
3-D convex hull of all dual points (belonging to bothA andB) is
computed. We have used an excellent available implementation of
the QuickHull algorithm [Barber93]. The plane equations of the re-
sulting convex hull are now dualized back to vertices. These are the
vertices of the intersectionA\B. The correctness of this algorithm
is simple to prove [Preparata85].

The complexity of 3-D convex hull isO(n log n), so this step dom-
inates the theoretical complexity of the algorithm. However, note
that in our application the algorithm is repeatedly invoked on poly-
hedra whose relative geometries are almost unchanged. Therefore,
there is reason to hope that incremental computation will reduce the
complexity to linear time in practice.

We should note that there are efficient algorithms todetecta possi-
ble intersection between two convex polyhedra [Dobkin83]. In gen-
eral, the fact that the CDA utilizes convex objects enables usage of
the considerable amount of efficient algorithms for convex objects
developed by the computational geometry community.

Note that a full boundary representation of the object represented
by a single CDA cell can be computed by performing 2-D differ-
ence operations between bound faces. Thus, the CDA saves some
computations when a complete boundary evaluation (with approxi-
mate primitives) needs to be performed. This is useful, for example,
when converting the designed object to the VRML format.

5 Implementation and Results

In this section we give a brief description of our implementation. It
is not our intention to describe a complete system; a complete dis-
cussion of system aspects would have to include important issues
such as general user interface, direct 3-D manipulation of geomet-
ric primitives, visualization of the CSG graph structure, treatment
at the object level, etc. All these are beyond the scope of the present
paper. Our purpose in this section is only to let the reader under-
stand the system context of our algorithms and data structures. A
CSG system emphasizing user interface issues and direct 3-D ma-
nipulation is described in [Emmerik93].

The system was implemented on SGI workstations running Irix 5.3.
Figure 6 shows the general system architecture. The user can per-
form four types of operations: (1) modification of the structure of
the CSG graph, by adding or deleting nodes and arcs, (2) selection
of sub-objects to manipulate, (3) modification of the affine opera-
tion associated with the selected sub-object, and (4) manipulation
of the graphics view. All operations are done through a user inter-
face module. Obviously, this general architecture suits many of the
previous CSG display algorithms as well.

Operation 1 necessitates a re-computation of a CDA (both structure
and geometry) from the modified CSG. This is the only operation
requiring computation of CDA structure. The result of Operation
2, the current selected object, is stored in a separate data structure.
In practice, this is a collection of pointers to CDA and CSG nodes.
Operation 3 is the main one, triggering a re-computation of the ge-
ometry of the selected CDA nodes. Affine parameters are modified
using a ‘direct manipulation device’ (DMD) [Emmerik93] for edit-
ing 3-D local coordinate systems (Figure 9, (a) and (e)). Operation
4 is done directly at the level of the graphics API and does not affect
the CSG or CDA data structures.

Figures 7–9 show some objects designed using the system. We
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found it useful to consistently use two different colors during edit-
ing to emphasize that the arguments of the difference operation do
not have a symmetric role. In Figure 7 there are four cells, each
containing a single difference operation. This is a common case,
which is dealt with very efficiently by the CDA. In Figure 8, we
see how the system can be used in order to investigate interesting
geometric relationships between objects. In (c), there is a single
CDA cell. Its positive cell is formed by the intersection of the two
‘outer’ cones, and it has two negative cells originating from the two
subtracted cones. In (d), there are two cells, having one and two
negative cells respectively. In Figure 9(a–g) we tried to convey the
feeling of interactively moving a hole ((h) shows an intersection).
The complexity of the CDA structure depends on whether the cube
pattern is modeled using a union of nine small cubes or a single
flat box minus four slabs. These examples show the advantage and
pleasure derived from interactive 3-D Boolean operations using ba-
sic primitives.

Note that the relatively coarse tessellation of the cylinder in Fig-
ures 7 and 9 is not harmful for conceptual design, where dominant
geometric features, their composition and interrelationships are the
important issues.

The computational bottleneck in the system is the geometry update
following modification of affine transformations of selected nodes.
The current system implements only the raw conversion algorithm,
without adding additional efficiency schemes. For example, all geo-
metric computations on the geometric elements are repeated on ev-
ery user event, even if the elements have not been modified, and no
spatial acceleration scheme is used to prune possible intersections
between negative cells (a quadratic number of such intersections
is possible). To give some idea regarding the raw performance of
the method, consider that the examples in Figures 7–9 run in about
5–30 frames per second on a 100 MHZ R4000 SGI Indigo with a
GR2-XZ graphics board.

6 Discussion

Computer graphics and geometric modeling have not yet been able
to provide adequate support for conceptual design. The CSG mod-
eling operations, in particular the Boolean operations, are highly
attractive for design. In this paper we presented a method that con-
stitutes a step towards interactive conceptual design of 3-D solids,
by allowing interactive modifications of affine transformations in
CSG graphs.

Interactive editing and visualization of general CSG models is a
truly difficult problem; in this paper we focused on the sub-problem
of conceptual design of relatively simple 3-D solids, showing that
interactive Boolean operations can be achieved for that purpose.
Obviously, beyond a certain level of object complexity the method
will no longer provide interactive performance. Because the present
implementation incorporates virtually no efficiency schemes be-

yond that of the raw algorithm, it is difficult to assess at present
the maximal object complexity supported. Two measures of object
complexity are the number of products in the disjunctive form of the
CSG tree and the number of negations in a product. The present sys-
tem is useful mostly for cases when the maximal number of nega-
tions is very small (say, less than 10). Performance grows roughly
linearly in the number of products.

In the future, we plan to extend our system in the following direc-
tions. First, we will try to improve efficiency by using incremental
geometric algorithms, spatial acceleration schemes and integration
with multi-pass methods. We believe that the combination of these
techniques will provide better scaling to larger models and will take
advantage of temporal coherence. Note that a spatial acceleration
scheme can be naturally provided by the CDA itself, since each cell
in the CDA possesses a two-level hierarchy: convex set minus con-
tained convex sets. If two positive cells do not intersect, their nega-
tive children do not intersect as well. Thus, the CDA is suitable for
efficient collision detection schemes such as the one described in
[Ponamgi95].

Second, we will enhance the system with higher-level functional-
ity, most notably by adding constraints to the set of modeling oper-
ations available to the designer. Constraints are also important for
object positioning, since the visual feedback provided by tessellated
models may not suffice for tangency, incidence and right angle rela-
tionships. Constraints may be defined between node coordinate sys-
tems or between entities of the object’s boundary (such as vertices
and edges). Supporting the latter while enabling the user to mod-
ify the degree of tessellation of non-planar surfaces may require
efficient handling of the persistent naming problem [Rappoport96,
Rappoport97], a challenging problem in geometric and solid mod-
eling.

Finally, one of the main ideas in the CDA approach is that faces
in a product are not represented explicitly, as done by most CAD
systems, but are represented as the difference between an enclosing
convex polygon and a set of possibly overlapping convex polygons.
We intend to study other possible applications of this idea in geo-
metric modeling.
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Figure 7 An abstract statue. The object is modeled as a union of the base and the three tubes. Each tube is the difference between two cylinders,
and the base is the difference between two blocks. All the `holes' can be moved, scaled and rotated in real time.

(a) (b)

(c) (d)

Figure 8 Visualization of the geometric interrelationships between two ice cream cones, each defined as the difference between two cones. (a)
union, bottom view; (b) union, side view; (c) intersection; (d) difference. Affine operations can be executed on all constituents of this model in
real time.
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Figure 9 Interaction between a cylinder and a pattern of small cubes. (a) manipulation view; (b-d) moving a cylindrical hole; (e) manipulation
view when scaling and rotating the cylinder; (f-g) rotating the hole; (h) intersection with a scaled-up cylinder.


